aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-11-15 17:44:22 +0000
committerdos-reis <gdr@axiomatics.org>2007-11-15 17:44:22 +0000
commite2aabd8c9625a3009115624618a290627c2c61fa (patch)
treefdd935224f471b32a175c4059bfc155f6ddc819b /src/share
parent404b0530acf25537720b73664ec84c331743f9d9 (diff)
downloadopen-axiom-e2aabd8c9625a3009115624618a290627c2c61fa.tar.gz
add spad parser library
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase1580
-rw-r--r--src/share/algebra/category.daase1546
-rw-r--r--src/share/algebra/compress.daase4
-rw-r--r--src/share/algebra/interp.daase8892
-rw-r--r--src/share/algebra/operation.daase5536
5 files changed, 8784 insertions, 8774 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 1ed6dd1a..283ba313 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2204743 . 3403927923)
+(2205538 . 3404130410)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4177 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4173 . T) (-4178 . T) (-4172 . T) (-3353 . T))
+((-4180 . T) (-4178 . T) (-4177 . T) ((-4185 "*") . T) (-4176 . T) (-4181 . T) (-4175 . T) (-3252 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -1696)
+(-31 R -2184)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4180)))
+((|HasAttribute| |#1| (QUOTE -4183)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4180 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4184 . T) (-3252 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,17 +78,17 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -1696 UP UPUP -1734)
+(-39 -2184 UP UPUP -3962)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3807 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3807 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
-(-40 R -1696)
+((-4176 |has| (-377 |#2|) (-333)) (-4181 |has| (-377 |#2|) (-333)) (-4175 |has| (-377 |#2|) (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3763 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3763 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3763 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3763 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
+(-40 R -2184)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -400) (|devaluate| |#1|)))))
@@ -102,23 +102,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-278))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T))
+((-4180 |has| |#1| (-509)) (-4178 . T) (-4177 . T))
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|))))))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (-3763 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3763 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|)))))) (-3763 (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|))))))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")))
@@ -126,7 +126,7 @@ NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -1696)
+(-53 |Base| R -2184)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4180 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4184 . T) (-3252 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-59 -1207)
+(-59 -1211)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -1207)
+(-60 -1211)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -1207)
+(-61 -1211)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -1207)
+(-62 -1211)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -1207)
+(-63 -1211)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -1207)
+(-64 -1211)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -1207)
+(-65 -1211)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -1207)
+(-66 -1211)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -1207)
+(-67 -1211)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -1207)
+(-68 -1211)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -1207)
+(-69 -1211)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -1207)
+(-70 -1211)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -1207)
+(-71 -1211)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -1207)
+(-72 -1211)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,55 +228,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -1207)
+(-75 -1211)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -1207)
+(-76 -1211)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -1207)
+(-77 -1211)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -1207)
+(-78 -1211)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -1207)
+(-79 -1211)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -1207)
+(-80 -1211)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -1207)
+(-81 -1211)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -1207)
+(-82 -1211)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -1207)
+(-83 -1211)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -1207)
+(-84 -1211)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -1207)
+(-85 -1211)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -1207)
+(-86 -1211)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -1207)
+(-87 -1211)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -286,7 +286,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-333))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-90 S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
@@ -298,15 +298,15 @@ NIL
NIL
(-92)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4180 . T))
+((-4183 . T))
NIL
(-93)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4180 . T) ((-4182 "*") . T) (-4181 . T) (-4177 . T) (-4175 . T) (-4174 . T) (-4173 . T) (-4178 . T) (-4172 . T) (-4171 . T) (-4170 . T) (-4169 . T) (-4168 . T) (-4176 . T) (-4179 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4167 . T))
+((-4183 . T) ((-4185 "*") . T) (-4184 . T) (-4180 . T) (-4178 . T) (-4177 . T) (-4176 . T) (-4181 . T) (-4175 . T) (-4174 . T) (-4173 . T) (-4172 . T) (-4171 . T) (-4179 . T) (-4182 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4170 . T))
NIL
(-94 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-95 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -322,15 +322,15 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-99 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4182 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4185 "*"))))
(-100)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4180 . T))
+((-4183 . T))
NIL
(-101 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -338,23 +338,23 @@ NIL
NIL
(-102 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4181 . T) (-3353 . T))
+((-4184 . T) (-3252 . T))
NIL
(-103)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1050))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3763 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
(-104)
((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
(-105)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1003))) (-12 (|HasCategory| (-107) (QUOTE (-1003))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))))
(-106 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
NIL
(-107)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|implies| (($ $ $) "\\spad{implies(a,{}b)} returns the logical implication of Boolean \\spad{a} and \\spad{b}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical inclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of Boolean \\spad{a} and \\spad{b}.")) (|not| (($ $) "\\spad{not n} returns the negation of \\spad{n}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -368,25 +368,25 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-110 -1696 UP)
+(-110 -2184 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-111 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-112 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-111 |#1|) (QUOTE (-831))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-937))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1049))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3807 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (|HasCategory| (-111 |#1|) (QUOTE (-132)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-111 |#1|) (QUOTE (-831))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-937))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1050))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3763 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (|HasCategory| (-111 |#1|) (QUOTE (-132)))))
(-113 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4181)))
+((|HasAttribute| |#1| (QUOTE -4184)))
(-114 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-115 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -394,7 +394,7 @@ NIL
NIL
(-116 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-117 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
@@ -402,7 +402,7 @@ NIL
NIL
(-118)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
(-119 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -410,15 +410,15 @@ NIL
NIL
(-120 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4180 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4184 . T) (-3252 . T))
NIL
(-121 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-122 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-123)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4182 "*") . T))
+(((-4185 "*") . T))
NIL
-(-126 |minix| -2806 S T$)
+(-126 |minix| -2630 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-127 |minix| -2806 R)
+(-127 |minix| -2630 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
(-128)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4180 . T) (-4170 . T) (-4181 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
+((-4183 . T) (-4173 . T) (-4184 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3763 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
(-129 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -458,7 +458,7 @@ NIL
NIL
(-132)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-133 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -466,9 +466,9 @@ NIL
NIL
(-134)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4177 . T))
+((-4180 . T))
NIL
-(-135 -1696 UP UPUP)
+(-135 -2184 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -479,14 +479,14 @@ NIL
(-137 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasAttribute| |#1| (QUOTE -4180)))
+((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasAttribute| |#1| (QUOTE -4183)))
(-138 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-139 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4175 . T) (-4174 . T) (-4177 . T))
+((-4178 . T) (-4177 . T) (-4180 . T))
NIL
(-140)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -500,7 +500,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-143 R -1696)
+(-143 R -2184)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -527,10 +527,10 @@ NIL
(-149 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasAttribute| |#2| (QUOTE -4176)) (|HasAttribute| |#2| (QUOTE -4179)) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-779))))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-1095))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasAttribute| |#2| (QUOTE -4179)) (|HasAttribute| |#2| (QUOTE -4182)) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-779))))
(-150 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4173 -3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4176 |has| |#1| (-6 -4176)) (-4179 |has| |#1| (-6 -4179)) (-3392 . T) (-3353 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 -3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4179 |has| |#1| (-6 -4179)) (-4182 |has| |#1| (-6 -4182)) (-3295 . T) (-3252 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-151 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -542,8 +542,8 @@ NIL
NIL
(-153 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4173 -3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4176 |has| |#1| (-6 -4176)) (-4179 |has| |#1| (-6 -4179)) (-3392 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-1094))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-278))) (-3807 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-207))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-207))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-831))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-831))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasAttribute| |#1| (QUOTE -4176)) (|HasAttribute| |#1| (QUOTE -4179)) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-319)))))
+((-4176 -3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4179 |has| |#1| (-6 -4179)) (-4182 |has| |#1| (-6 -4182)) (-3295 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-1095))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-502))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-278))) (-3763 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-207))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-207))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1095)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-831))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-831))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-333)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasAttribute| |#1| (QUOTE -4179)) (|HasAttribute| |#1| (QUOTE -4182)) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074))))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-319)))))
(-154 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -554,11 +554,11 @@ NIL
NIL
(-156)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-157 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4182 "*") . T) (-4173 . T) (-4178 . T) (-4172 . T) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") . T) (-4176 . T) (-4181 . T) (-4175 . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-158 R)
((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}.")))
@@ -584,7 +584,7 @@ NIL
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-164 R -1696)
+(-164 R -2184)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -688,19 +688,19 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-190 -1696 UP UPUP R)
+(-190 -2184 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-191 -1696 FP)
+(-191 -2184 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-192)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
-(-193 R -1696)
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1050))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3763 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+(-193 R -2184)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -714,19 +714,19 @@ NIL
NIL
(-196 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-197 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4177 . T))
+((-4180 . T))
NIL
-(-198 R -1696)
+(-198 R -2184)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-199)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-3284 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-200)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -734,23 +734,23 @@ NIL
NIL
(-201 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4185 "*"))) (|HasCategory| |#1| (QUOTE (-333))))
(-202 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-203 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4181 . T) (-3353 . T))
+((-4184 . T) (-3252 . T))
NIL
(-204 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))))
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))))
(-205 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-206 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -758,36 +758,36 @@ NIL
NIL
(-207)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-208 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4180)))
+((|HasAttribute| |#1| (QUOTE -4183)))
(-209 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4181 . T) (-3353 . T))
+((-4184 . T) (-3252 . T))
NIL
(-210)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-211 S -2806 R)
+(-211 S -2630 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4177)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003))))
-(-212 -2806 R)
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4180)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003))))
+(-212 -2630 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T) (-3353 . T))
+((-4177 |has| |#2| (-961)) (-4178 |has| |#2| (-961)) (-4180 |has| |#2| (-6 -4180)) ((-4185 "*") |has| |#2| (-156)) (-4183 . T) (-3252 . T))
NIL
-(-213 -2806 A B)
+(-213 -2630 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-214 -2806 R)
+(-214 -2630 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+((-4177 |has| |#2| (-961)) (-4178 |has| |#2| (-961)) (-4180 |has| |#2| (-6 -4180)) ((-4185 "*") |has| |#2| (-156)) (-4183 . T))
+((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3763 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3763 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4180)) (|HasCategory| |#2| (QUOTE (-123))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3763 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))))
(-215)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -798,47 +798,47 @@ NIL
NIL
(-217)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4173 . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-218 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-219 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-220 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-221 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-222)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: October 18,{} 2007. Basic Operations: Related Constructors: Type,{} OutputForm Also See: Type")))
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: November 13,{} 2007. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type")) (|reify| (((|Syntax|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-223 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4177 -3807 (-4035 (|has| |#4| (-961)) (|has| |#4| (-207))) (-4035 (|has| |#4| (-961)) (|has| |#4| (-822 (-1073)))) (|has| |#4| (-6 -4177)) (-4035 (|has| |#4| (-961)) (|has| |#4| (-579 (-517))))) (-4174 |has| |#4| (-961)) (-4175 |has| |#4| (-961)) ((-4182 "*") |has| |#4| (-156)) (-4180 . T))
-((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3807 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961)))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (QUOTE (-207))) (-3807 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#4| (QUOTE (-961))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003)))) (-3807 (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003))))) (-3807 (|HasAttribute| |#4| (QUOTE -4177)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3807 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+((-4180 -3763 (-1651 (|has| |#4| (-961)) (|has| |#4| (-207))) (-1651 (|has| |#4| (-961)) (|has| |#4| (-822 (-1074)))) (|has| |#4| (-6 -4180)) (-1651 (|has| |#4| (-961)) (|has| |#4| (-579 (-517))))) (-4177 |has| |#4| (-961)) (-4178 |has| |#4| (-961)) ((-4185 "*") |has| |#4| (-156)) (-4183 . T))
+((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3763 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3763 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961)))) (-3763 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3763 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#4| (QUOTE (-207))) (-3763 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-3763 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3763 (|HasCategory| |#4| (QUOTE (-961))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003)))) (-3763 (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003))))) (-3763 (|HasAttribute| |#4| (QUOTE -4180)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3763 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))))))
(-224 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4177 -3807 (-4035 (|has| |#3| (-961)) (|has| |#3| (-207))) (-4035 (|has| |#3| (-961)) (|has| |#3| (-822 (-1073)))) (|has| |#3| (-6 -4177)) (-4035 (|has| |#3| (-961)) (|has| |#3| (-579 (-517))))) (-4174 |has| |#3| (-961)) (-4175 |has| |#3| (-961)) ((-4182 "*") |has| |#3| (-156)) (-4180 . T))
-((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3807 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-207))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3807 (|HasAttribute| |#3| (QUOTE -4177)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+((-4180 -3763 (-1651 (|has| |#3| (-961)) (|has| |#3| (-207))) (-1651 (|has| |#3| (-961)) (|has| |#3| (-822 (-1074)))) (|has| |#3| (-6 -4180)) (-1651 (|has| |#3| (-961)) (|has| |#3| (-579 (-517))))) (-4177 |has| |#3| (-961)) (-4178 |has| |#3| (-961)) ((-4185 "*") |has| |#3| (-156)) (-4183 . T))
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3763 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3763 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3763 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3763 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-207))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3763 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3763 (|HasAttribute| |#3| (QUOTE -4180)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3763 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))))))
(-225 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-207))))
(-226 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
NIL
(-227 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4180 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4184 . T) (-3252 . T))
NIL
(-228)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -878,8 +878,8 @@ NIL
NIL
(-237 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-238 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -924,11 +924,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-249 R -1696)
+(-249 R -2184)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-250 R -1696)
+(-250 R -2184)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -946,7 +946,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))))
(-254 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4181 . T) (-3353 . T))
+((-4184 . T) (-3252 . T))
NIL
(-255 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -967,18 +967,18 @@ NIL
(-259 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4181)))
+((|HasAttribute| |#1| (QUOTE -4184)))
(-260 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-261 S R |Mod| -3271 -3237 |exactQuo|)
+(-261 S R |Mod| -1476 -2262 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-262)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4173 . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-263 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
@@ -990,21 +990,21 @@ NIL
NIL
(-265 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4177 -3807 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4174 |has| |#1| (-961)) (-4175 |has| |#1| (-961)))
-((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1015))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1003)))))
+((-4180 -3763 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4177 |has| |#1| (-961)) (-4178 |has| |#1| (-961)))
+((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3763 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3763 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1015))) (-3763 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-21))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1003)))))
(-266 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3763 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
(-267)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-268 -1696 S)
+(-268 -2184 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-269 E -1696)
+(-269 E -2184)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1042,7 +1042,7 @@ NIL
NIL
(-278)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-279 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1052,7 +1052,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-281 -1696)
+(-281 -2184)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1062,8 +1062,8 @@ NIL
NIL
(-283 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-1049))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3807 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132)))) (-3807 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132))))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-1050))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3763 (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132)))) (-3763 (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132))))))
(-284 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1074,9 +1074,9 @@ NIL
NIL
(-286 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4177 -3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-961)) (|has| |#1| (-442)))) (|has| |#1| (-961)) (|has| |#1| (-442))) (-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-509)) (-4172 |has| |#1| (-509)))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-961))) (-3807 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1015))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3807 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
-(-287 R -1696)
+((-4180 -3763 (-1651 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3763 (-1651 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-961)) (|has| |#1| (-442)))) (|has| |#1| (-961)) (|has| |#1| (-442))) (-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) ((-4185 "*") |has| |#1| (-509)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-509)) (-4175 |has| |#1| (-509)))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-961))) (-3763 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3763 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3763 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3763 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1015))) (-3763 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3763 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
+(-287 R -2184)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1086,8 +1086,8 @@ NIL
NIL
(-289 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
(-290 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1098,7 +1098,7 @@ NIL
NIL
(-292 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
((|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-724))))
(-293 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1114,19 +1114,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))))
(-296 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-297 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
-(-298 S -1696)
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-298 S -2184)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))))
-(-299 -1696)
+(-299 -2184)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-300)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
@@ -1144,54 +1144,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-304 S -1696 UP UPUP R)
+(-304 S -2184 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-305 -1696 UP UPUP R)
+(-305 -2184 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-306 -1696 UP UPUP R)
+(-306 -2184 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-307 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))))
(-308 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-309 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-349)))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
(-310 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-311 S -1696 UP UPUP)
+(-311 S -2184 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-333))))
-(-312 -1696 UP UPUP)
+(-312 -2184 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 |has| (-377 |#2|) (-333)) (-4181 |has| (-377 |#2|) (-333)) (-4175 |has| (-377 |#2|) (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-313 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3763 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
(-314 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3763 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-315 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3763 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-316 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1206,33 +1206,33 @@ NIL
NIL
(-319)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-320 R UP -1696)
+(-320 R UP -2184)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-321 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3763 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
(-322 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3763 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-323 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3763 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-324 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3763 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
(-325 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
-(-326 -1696 GF)
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3763 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-326 -2184 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1240,21 +1240,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-328 -1696 FP FPP)
+(-328 -2184 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-329 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3763 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-330 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-331 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-332 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1262,7 +1262,7 @@ NIL
NIL
(-333)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-334 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1278,7 +1278,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-509))))
(-337 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T))
+((-4180 |has| |#1| (-509)) (-4178 . T) (-4177 . T))
NIL
(-338)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1290,7 +1290,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-333))))
(-340 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-341 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1299,14 +1299,14 @@ NIL
(-342 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))))
+((|HasAttribute| |#1| (QUOTE -4184)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))))
(-343 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4180 . T) (-3353 . T))
+((-4183 . T) (-3252 . T))
NIL
(-344 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4178 . T) (-4177 . T))
NIL
(-345 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1318,7 +1318,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))))
(-347 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4177 . T))
+((-4180 . T))
NIL
(-348 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1326,7 +1326,7 @@ NIL
NIL
(-349)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4163 . T) (-4171 . T) (-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4166 . T) (-4174 . T) (-3284 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-350 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1334,23 +1334,23 @@ NIL
NIL
(-351 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
((|HasCategory| |#1| (QUOTE (-156))))
(-352 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
NIL
(-353)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-354)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-3353 . T))
+((-3252 . T))
NIL
(-355 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
((|HasCategory| |#1| (QUOTE (-156))))
(-356 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1358,7 +1358,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-779))))
(-357)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-358)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1370,13 +1370,13 @@ NIL
NIL
(-360 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
NIL
(-361)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-362 -1696 UP UPUP R)
+(-362 -2184 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1390,27 +1390,27 @@ NIL
NIL
(-365)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-366)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-3353 . T))
+((-3252 . T))
NIL
(-367)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-368 -1207 |returnType| |arguments| |symbols|)
+(-368 -1211 |returnType| |arguments| |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-369 -1696 UP)
+(-369 -2184 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-370 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-3353 . T))
+((-3252 . T))
NIL
(-371 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1418,15 +1418,15 @@ NIL
NIL
(-372)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-373 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4163)) (|HasAttribute| |#1| (QUOTE -4171)))
+((|HasAttribute| |#1| (QUOTE -4166)) (|HasAttribute| |#1| (QUOTE -4174)))
(-374)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-3284 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-375 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1438,15 +1438,15 @@ NIL
NIL
(-377 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4167 -12 (|has| |#1| (-6 -4178)) (|has| |#1| (-421)) (|has| |#1| (-6 -4167))) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4178)) (|HasAttribute| |#1| (QUOTE -4167)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+((-4170 -12 (|has| |#1| (-6 -4181)) (|has| |#1| (-421)) (|has| |#1| (-6 -4170))) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4181)) (|HasAttribute| |#1| (QUOTE -4170)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-378 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-379 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-380 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1460,11 +1460,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-383 R -1696 UP A)
+(-383 R -2184 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4177 . T))
+((-4180 . T))
NIL
-(-384 R -1696 UP A |ibasis|)
+(-384 R -2184 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -952) (|devaluate| |#2|))))
@@ -1478,12 +1478,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-387 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T))
+((-4180 |has| |#1| (-509)) (-4178 . T) (-4177 . T))
NIL
(-388 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1112)))))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1113)))))
(-389 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1510,17 +1510,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
(-395 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4180 . T) (-4170 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4173 . T) (-4184 . T) (-3252 . T))
NIL
-(-396 R -1696)
+(-396 R -2184)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-397 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4167 -12 (|has| |#1| (-6 -4167)) (|has| |#2| (-6 -4167))) (-4174 . T) (-4175 . T) (-4177 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4167)) (|HasAttribute| |#2| (QUOTE -4167))))
-(-398 R -1696)
+((-4170 -12 (|has| |#1| (-6 -4170)) (|has| |#2| (-6 -4170))) (-4177 . T) (-4178 . T) (-4180 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4170)) (|HasAttribute| |#2| (QUOTE -4170))))
+(-398 R -2184)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1530,17 +1530,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))))
(-400 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4177 -3807 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-509)) (-4172 |has| |#1| (-509)) (-3353 . T))
+((-4180 -3763 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) ((-4185 "*") |has| |#1| (-509)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-509)) (-4175 |has| |#1| (-509)) (-3252 . T))
NIL
-(-401 R -1696)
+(-401 R -2184)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-402 R -1696)
+(-402 R -2184)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-403 R -1696)
+(-403 R -2184)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1548,7 +1548,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-405 R -1696 UP)
+(-405 R -2184 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-47)))))
@@ -1566,17 +1566,17 @@ NIL
NIL
(-409)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-410)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-3353 . T))
+((-3252 . T))
NIL
(-411 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-412 R UP -1696)
+(-412 R UP -2184)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1614,16 +1614,16 @@ NIL
NIL
(-421)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-422 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4177 |has| (-377 (-874 |#1|)) (-509)) (-4175 . T) (-4174 . T))
+((-4180 |has| (-377 (-874 |#1|)) (-509)) (-4178 . T) (-4177 . T))
((|HasCategory| (-377 (-874 |#1|)) (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-377 (-874 |#1|)) (QUOTE (-509))))
(-423 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-424 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1650,7 +1650,7 @@ NIL
NIL
(-430 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
NIL
(-431 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1658,7 +1658,7 @@ NIL
NIL
(-432 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))))
(-433 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1688,7 +1688,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-440 |lv| -1696 R)
+(-440 |lv| -2184 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1698,45 +1698,45 @@ NIL
NIL
(-442)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-443 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
(-444 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4181 . T))
-((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))))
+((-4184 . T))
+((|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|)))))) (-3763 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))))
(-445 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
(-446)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-447 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3763 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
(-448)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-449 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-450 -2806 S)
+(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-450 -2630 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+((-4177 |has| |#2| (-961)) (-4178 |has| |#2| (-961)) (-4180 |has| |#2| (-6 -4180)) ((-4185 "*") |has| |#2| (-156)) (-4183 . T))
+((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3763 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3763 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4180)) (|HasCategory| |#2| (QUOTE (-123))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3763 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))))
(-451 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-452 -1696 UP UPUP R)
+(-452 -2184 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1746,15 +1746,15 @@ NIL
NIL
(-454)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1050))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3763 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
(-455 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4180)) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))
+((|HasAttribute| |#1| (QUOTE -4183)) (|HasAttribute| |#1| (QUOTE -4184)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))
(-456 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-457 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
@@ -1764,33 +1764,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-459 -1696 UP |AlExt| |AlPol|)
+(-459 -2184 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-460)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
(-461 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-462 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-463 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-464 R UP -1696)
+(-464 R UP -2184)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-465 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1003))) (-12 (|HasCategory| (-107) (QUOTE (-1003))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))))
(-466 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1804,10 +1804,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-469 -1696 |Expon| |VarSet| |DPoly|)
+(-469 -2184 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1073)))))
+((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1074)))))
(-470 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -1850,32 +1850,32 @@ NIL
((|HasCategory| |#2| (QUOTE (-724))))
(-480 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-481 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3763 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338)))))
(-482 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-483 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-484 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4181)))
+((|HasAttribute| |#3| (QUOTE -4184)))
(-485 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4181)))
+((|HasAttribute| |#7| (QUOTE -4184)))
(-486 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4185 "*"))) (|HasCategory| |#1| (QUOTE (-333))))
(-487 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
@@ -1888,7 +1888,7 @@ NIL
((|constructor| (NIL "converts entire exponents to OutputForm")))
NIL
NIL
-(-490 K -1696 |Par|)
+(-490 K -2184 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -1908,7 +1908,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-495 K -1696 |Par|)
+(-495 K -2184 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -1938,17 +1938,17 @@ NIL
NIL
(-502)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4181 . T) (-4182 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-503 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
-(-504 R -1696)
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3763 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+(-504 R -2184)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-505 R0 -1696 UP UPUP R)
+(-505 R0 -2184 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -1958,7 +1958,7 @@ NIL
NIL
(-507 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3383 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-3284 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-508 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -1966,9 +1966,9 @@ NIL
NIL
(-509)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-510 R -1696)
+(-510 R -2184)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -1980,7 +1980,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-513 R -1696 L)
+(-513 R -2184 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|))))
@@ -1988,31 +1988,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-515 -1696 UP UPUP R)
+(-515 -2184 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-516 -1696 UP)
+(-516 -2184 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-517)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4162 . T) (-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4165 . T) (-4171 . T) (-4175 . T) (-4170 . T) (-4181 . T) (-4182 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-518)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-519 R -1696 L)
+(-519 R -2184 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|))))
-(-520 R -1696)
+(-520 R -2184)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569)))))
-(-521 -1696 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569)))))
+(-521 -2184 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2020,54 +2020,54 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-523 -1696)
+(-523 -2184)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-524 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3383 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-3284 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-525)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-526 R -1696)
+(-526 R -2184)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509))))
-(-527 -1696 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509))))
+(-527 -2184 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-528 R -1696)
+(-528 R -2184)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
(-529 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-530 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338))))
(-531)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-532 R -1696)
+(-532 R -2184)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-533 E -1696)
+(-533 E -2184)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-534 -1696)
+(-534 -2184)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4175 . T) (-4174 . T))
-((|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1073)))))
+((-4178 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1074)))))
(-535 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2090,19 +2090,19 @@ NIL
NIL
(-540 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-3807 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-3763 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3763 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3763 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
(-541 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-542 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))))
(-543 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4175 |has| |#1| (-509)) (-4174 |has| |#1| (-509)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4177 . T))
+((-4178 |has| |#1| (-509)) (-4177 |has| |#1| (-509)) ((-4185 "*") |has| |#1| (-509)) (-4176 |has| |#1| (-509)) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-509))))
(-544 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2112,7 +2112,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-546 R -1696 FG)
+(-546 R -2184 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2122,31 +2122,31 @@ NIL
NIL
(-548 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-549 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4180)) (|HasCategory| |#3| (QUOTE (-1003))))
+((|HasAttribute| |#1| (QUOTE -4184)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4183)) (|HasCategory| |#3| (QUOTE (-1003))))
(-550 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-551 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4177 -3807 (-4035 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4175 . T) (-4174 . T))
-((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
+((-4180 -3763 (-1651 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4178 . T) (-4177 . T))
+((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
(-552 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#1|)))))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1057) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (QUOTE (-1057))) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#1|)))))))
(-553 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-554 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4181 . T) (-3353 . T))
+((-4184 . T) (-3252 . T))
NIL
(-555 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2164,7 +2164,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-559 -1696 UP)
+(-559 -2184 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2174,20 +2174,20 @@ NIL
NIL
(-561 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-562 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-777))))
-(-563 R -1696)
+(-563 R -2184)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-564 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4173 . T) (-4177 . T))
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))
+((-4178 . T) (-4177 . T) ((-4185 "*") . T) (-4176 . T) (-4180 . T))
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))
(-565 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2198,7 +2198,7 @@ NIL
NIL
(-567 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-568 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2208,30 +2208,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-570 R -1696)
+(-570 R -2184)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-571 |lv| -1696)
+(-571 |lv| -2184)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-572)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4181 . T))
-((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))))
+((-4184 . T))
+((|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1057) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (QUOTE (-1057))) (LIST (QUOTE |:|) (QUOTE -1266) (QUOTE (-51))))))) (-3763 (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))))
(-573 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-574 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4178 . T) (-4177 . T))
NIL
(-575 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4177 -3807 (-4035 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4175 . T) (-4174 . T))
-((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
+((-4180 -3763 (-1651 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4178 . T) (-4177 . T))
+((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
(-576 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2243,10 +2243,10 @@ NIL
(-578 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-333))) (-2630 (|HasCategory| |#1| (QUOTE (-333)))))
+((|HasCategory| |#1| (QUOTE (-333))) (-2455 (|HasCategory| |#1| (QUOTE (-333)))))
(-579 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-580 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2262,11 +2262,11 @@ NIL
NIL
(-583 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-584 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))))
(-585 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
@@ -2279,22 +2279,22 @@ NIL
(-587 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4181)))
+((|HasAttribute| |#1| (QUOTE -4184)))
(-588 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-3353 . T))
+((-3252 . T))
NIL
-(-589 R -1696 L)
+(-589 R -2184 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-590 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-591 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-592 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2302,15 +2302,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-593 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-594 -1696 UP)
+(-594 -2184 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-595 A -2252)
+(-595 A -1328)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-596 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
@@ -2326,7 +2326,7 @@ NIL
NIL
(-599 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
((|HasCategory| |#1| (QUOTE (-723))))
(-600 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2334,7 +2334,7 @@ NIL
NIL
(-601 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4178 . T) (-4177 . T))
((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-156))))
(-602 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2342,13 +2342,13 @@ NIL
NIL
(-603 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
-(-604 -1696)
+(-604 -2184)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-605 -1696 |Row| |Col| M)
+(-605 -2184 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2358,8 +2358,8 @@ NIL
NIL
(-607 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4177 . T) (-4180 . T) (-4174 . T) (-4175 . T))
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3807 (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#2| (QUOTE (-156))))
+((-4180 . T) (-4183 . T) (-4177 . T) (-4178 . T))
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3763 (|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3763 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))) (|HasCategory| |#2| (QUOTE (-156))))
(-608 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
@@ -2370,12 +2370,12 @@ NIL
NIL
(-610 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-611 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-612 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
@@ -2411,10 +2411,10 @@ NIL
(-620 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))))
+((|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))))
(-621 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4180 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4184 . T) (-3252 . T))
NIL
(-622 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2422,13 +2422,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))))
(-623 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4185 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-624 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-625 S -1696 FLAF FLAS)
+(-625 S -2184 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2438,11 +2438,11 @@ NIL
NIL
(-627)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4173 . T) (-4178 |has| (-632) (-333)) (-4172 |has| (-632) (-333)) (-3392 . T) (-4179 |has| (-632) (-6 -4179)) (-4176 |has| (-632) (-6 -4176)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3807 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-937))) (|HasCategory| (-632) (QUOTE (-1094))) (-12 (|HasCategory| (-632) (QUOTE (-918))) (|HasCategory| (-632) (QUOTE (-1094)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-970))) (-12 (|HasCategory| (-632) (QUOTE (-970))) (|HasCategory| (-632) (QUOTE (-1094)))) (-3807 (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3807 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-831))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4179)) (|HasAttribute| (-632) (QUOTE -4176)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-319)))))
+((-4176 . T) (-4181 |has| (-632) (-333)) (-4175 |has| (-632) (-333)) (-3295 . T) (-4182 |has| (-632) (-6 -4182)) (-4179 |has| (-632) (-6 -4179)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3763 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-937))) (|HasCategory| (-632) (QUOTE (-1095))) (-12 (|HasCategory| (-632) (QUOTE (-918))) (|HasCategory| (-632) (QUOTE (-1095)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-970))) (-12 (|HasCategory| (-632) (QUOTE (-970))) (|HasCategory| (-632) (QUOTE (-1095)))) (-3763 (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3763 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-831))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4182)) (|HasAttribute| (-632) (QUOTE -4179)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-3763 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3763 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3763 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3763 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-319)))))
(-628 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4181 . T) (-3353 . T))
+((-4184 . T) (-3252 . T))
NIL
(-629 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2452,13 +2452,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-631 OV E -1696 PG)
+(-631 OV E -2184 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-632)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-3284 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-633 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2466,7 +2466,7 @@ NIL
NIL
(-634)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4179 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4182 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-635 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2488,7 +2488,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-640 S -2731 I)
+(-640 S -2553 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2498,31 +2498,31 @@ NIL
NIL
(-642 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-643 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-644 R |Mod| -3271 -3237 |exactQuo|)
+(-644 R |Mod| -1476 -2262 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-645 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4179 |has| |#1| (-333)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-646 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-647 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
+((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))))
-(-648 R |Mod| -3271 -3237 |exactQuo|)
+(-648 R |Mod| -1476 -2262 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4177 . T))
+((-4180 . T))
NIL
(-649 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2530,11 +2530,11 @@ NIL
NIL
(-650 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
NIL
-(-651 -1696)
+(-651 -2184)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-652 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2558,7 +2558,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))))
(-657 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4173 |has| |#1| (-333)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 |has| |#1| (-333)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-658 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2568,7 +2568,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-660 -1696 UP)
+(-660 -2184 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2586,8 +2586,8 @@ NIL
NIL
(-664 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-665 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2602,15 +2602,15 @@ NIL
NIL
(-668 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
+((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
((-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-779))))
(-669 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4170 . T) (-4181 . T) (-3353 . T))
+((-4173 . T) (-4184 . T) (-3252 . T))
NIL
(-670 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4180 . T) (-4170 . T) (-4181 . T))
+((-4183 . T) (-4173 . T) (-4184 . T))
((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-671)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2622,7 +2622,7 @@ NIL
NIL
(-673 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4178 . T) (-4177 . T) (-4180 . T))
NIL
(-674 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2638,7 +2638,7 @@ NIL
NIL
(-677 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
NIL
(-678)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2720,15 +2720,15 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-698 -1696)
+(-698 -2184)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-699 P -1696)
+(-699 P -2184)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-700 UP -1696)
+(-700 UP -2184)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2742,9 +2742,9 @@ NIL
NIL
(-703)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4182 "*") . T))
+(((-4185 "*") . T))
NIL
-(-704 R -1696)
+(-704 R -2184)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -2764,7 +2764,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-709 -1696 |ExtF| |SUEx| |ExtP| |n|)
+(-709 -2184 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -2778,23 +2778,23 @@ NIL
NIL
(-712 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (QUOTE (-502)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-517))))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-2455 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-2455 (|HasCategory| |#1| (QUOTE (-502)))) (-2455 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-2455 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2455 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-2455 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-517))))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-713 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-714 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4179 |has| |#1| (-333)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-715 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
(-716 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
(-717 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -2846,25 +2846,25 @@ NIL
((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
(-729 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-730 -3807 R OS S)
+(-730 -3763 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-731 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))))
+((-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3763 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3763 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))))
(-732)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-733 R -1696 L)
+(-733 R -2184 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-734 R -1696)
+(-734 R -2184)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -2872,7 +2872,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-736 R -1696)
+(-736 R -2184)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -2880,11 +2880,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-738 -1696 UP UPUP R)
+(-738 -2184 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-739 -1696 UP L LQ)
+(-739 -2184 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -2892,41 +2892,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-741 -1696 UP L LQ)
+(-741 -2184 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-742 -1696 UP)
+(-742 -2184 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-743 -1696 L UP A LO)
+(-743 -2184 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-744 -1696 UP)
+(-744 -2184 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-745 -1696 LO)
+(-745 -2184 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-746 -1696 LODO)
+(-746 -2184 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-747 -2806 S |f|)
+(-747 -2630 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+((-4177 |has| |#2| (-961)) (-4178 |has| |#2| (-961)) (-4180 |has| |#2| (-6 -4180)) ((-4185 "*") |has| |#2| (-156)) (-4183 . T))
+((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3763 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3763 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4180)) (|HasCategory| |#2| (QUOTE (-123))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3763 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))))
(-748 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-749 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4182 "*") |has| |#2| (-333)) (-4173 |has| |#2| (-333)) (-4178 |has| |#2| (-333)) (-4172 |has| |#2| (-333)) (-4177 . T) (-4175 . T) (-4174 . T))
+(((-4185 "*") |has| |#2| (-333)) (-4176 |has| |#2| (-333)) (-4181 |has| |#2| (-333)) (-4175 |has| |#2| (-333)) (-4180 . T) (-4178 . T) (-4177 . T))
((|HasCategory| |#2| (QUOTE (-333))))
(-750 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -2938,7 +2938,7 @@ NIL
NIL
(-752)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-753)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -2966,7 +2966,7 @@ NIL
NIL
(-759 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-207))))
(-760)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -2978,7 +2978,7 @@ NIL
NIL
(-762 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4180 . T) (-4170 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4173 . T) (-4184 . T) (-3252 . T))
NIL
(-763)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -2990,11 +2990,11 @@ NIL
NIL
(-765 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4177 |has| |#1| (-777)))
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
+((-4180 |has| |#1| (-777)))
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3763 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
(-766 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
+((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))))
(-767)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3018,13 +3018,13 @@ NIL
NIL
(-772 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4177 |has| |#1| (-777)))
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
+((-4180 |has| |#1| (-777)))
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3763 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
(-773)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-774 -2806 S)
+(-774 -2630 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3038,7 +3038,7 @@ NIL
NIL
(-777)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-778 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3054,19 +3054,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))))
(-781 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-782 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))))
-(-783 R |sigma| -1330)
+(-783 R |sigma| -2234)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
-(-784 |x| R |sigma| -1330)
+(-784 |x| R |sigma| -2234)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-333))))
(-785 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
@@ -3090,7 +3090,7 @@ NIL
NIL
(-790 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
+((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))))
(-791 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3102,20 +3102,20 @@ NIL
NIL
(-793 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-794 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-795 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-794 |#1|) (QUOTE (-831))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-937))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1049))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3807 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (|HasCategory| (-794 |#1|) (QUOTE (-132)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-794 |#1|) (QUOTE (-831))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-937))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1050))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3763 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (|HasCategory| (-794 |#1|) (QUOTE (-132)))))
(-796 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3807 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3763 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-797)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3167,7 +3167,7 @@ NIL
(-809 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (-12 (-2630 (|HasCategory| |#2| (QUOTE (-961)))) (-2630 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2630 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))))))
+((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))) (-12 (-2455 (|HasCategory| |#2| (QUOTE (-961)))) (-2455 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2455 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))))))
(-810 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3176,7 +3176,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-812 R -2731)
+(-812 R -2553)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3200,7 +3200,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-818 UP -1696)
+(-818 UP -2184)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3218,7 +3218,7 @@ NIL
NIL
(-822 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-823 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
@@ -3230,7 +3230,7 @@ NIL
NIL
(-825 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4177 . T))
+((-4180 . T))
NIL
(-826 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3238,8 +3238,8 @@ NIL
NIL
(-827 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4177 . T))
-((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779)))))
+((-4180 . T))
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779)))))
(-828 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3254,13 +3254,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-132))))
(-831)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-832 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338))))
-(-833 R0 -1696 UP UPUP R)
+(-833 R0 -2184 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3274,7 +3274,7 @@ NIL
NIL
(-836 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-837 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3288,7 +3288,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-840 -1696)
+(-840 -2184)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3298,17 +3298,17 @@ NIL
NIL
(-842)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-843)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4182 "*") . T))
+(((-4185 "*") . T))
NIL
-(-844 -1696 P)
+(-844 -2184 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-845 |xx| -1696)
+(-845 |xx| -2184)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
@@ -3332,7 +3332,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-851 R -1696)
+(-851 R -2184)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3344,7 +3344,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-854 S R -1696)
+(-854 S R -2184)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3364,11 +3364,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -808) (|devaluate| |#1|))))
-(-859 R -1696 -2731)
+(-859 R -2184 -2553)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-860 -2731)
+(-860 -2553)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3390,8 +3390,8 @@ NIL
NIL
(-865 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-866 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3411,12 +3411,12 @@ NIL
(-870 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-831))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))))
(-871 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
NIL
-(-872 E V R P -1696)
+(-872 E V R P -2184)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3426,9 +3426,9 @@ NIL
NIL
(-874 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-875 E V R P -1696)
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-875 E V R P -2184)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-421))))
@@ -3446,13 +3446,13 @@ NIL
NIL
(-879 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-880)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-881 -1696)
+(-881 -2184)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3466,15 +3466,15 @@ NIL
NIL
(-884 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)))
(-885 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4177 -12 (|has| |#2| (-442)) (|has| |#1| (-442))))
-((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))))
+((-4180 -12 (|has| |#2| (-442)) (|has| |#1| (-442))))
+((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))))
(-886 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4180 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4184 . T) (-3252 . T))
NIL
(-887 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3490,7 +3490,7 @@ NIL
NIL
(-890 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-891)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3502,7 +3502,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-509))))
(-893 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4180 . T) (-3353 . T))
+((-4183 . T) (-3252 . T))
NIL
(-894 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3518,7 +3518,7 @@ NIL
NIL
(-897 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
(-898 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3536,7 +3536,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-902 K R UP -1696)
+(-902 K R UP -2184)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -3563,10 +3563,10 @@ NIL
(-908 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1049))))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1050))))
(-909 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-3353 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-3252 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-910 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3574,7 +3574,7 @@ NIL
NIL
(-911 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4180 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4184 . T) (-3252 . T))
NIL
(-912 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
@@ -3582,7 +3582,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-262))))
(-913 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4173 |has| |#1| (-262)) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 |has| |#1| (-262)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-914 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3590,11 +3590,11 @@ NIL
NIL
(-915 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4173 |has| |#1| (-262)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3807 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))))
+((-4176 |has| |#1| (-262)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3763 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))))
(-916 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-917 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
@@ -3604,14 +3604,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-919 -1696 UP UPUP |radicnd| |n|)
+(-919 -2184 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3807 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3807 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
+((-4176 |has| (-377 |#2|) (-333)) (-4181 |has| (-377 |#2|) (-333)) (-4175 |has| (-377 |#2|) (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3763 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3763 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3763 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3763 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
(-920 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1050))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3763 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
(-921)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3631,10 +3631,10 @@ NIL
(-925 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-1003))))
+((|HasAttribute| |#1| (QUOTE -4184)) (|HasCategory| |#2| (QUOTE (-1003))))
(-926 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-927 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
@@ -3642,21 +3642,21 @@ NIL
NIL
(-928)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4173 . T) (-4178 . T) (-4172 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4177 . T))
+((-4176 . T) (-4181 . T) (-4175 . T) (-4178 . T) (-4177 . T) ((-4185 "*") . T) (-4180 . T))
NIL
-(-929 R -1696)
+(-929 R -2184)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-930 R -1696)
+(-930 R -2184)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-931 -1696 UP)
+(-931 -2184 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-932 -1696 UP)
+(-932 -2184 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -3686,9 +3686,9 @@ NIL
NIL
(-939 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4173 . T) (-4178 . T) (-4172 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))))
-(-940 -1696 L)
+((-4176 . T) (-4181 . T) (-4175 . T) (-4178 . T) (-4177 . T) ((-4185 "*") . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (-3763 (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))))
+(-940 -2184 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -3698,12 +3698,12 @@ NIL
((|HasCategory| |#1| (QUOTE (-1003))))
(-942 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
(-943 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4182 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4185 "*"))))
(-944 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -3724,14 +3724,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-949 -1696 |Expon| |VarSet| |FPol| |LFPol|)
+(-949 -2184 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-950)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (|HasCategory| (-1073) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -1266) (QUOTE (-51))))))) (|HasCategory| (-1074) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3763 (|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))))
(-951 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
@@ -3762,7 +3762,7 @@ NIL
NIL
(-958 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1003))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -712) (|devaluate| |#1|) (LIST (QUOTE -789) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-789 |#2|) (QUOTE (-338))))
(-959)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -3774,9 +3774,9 @@ NIL
NIL
(-961)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4177 . T))
+((-4180 . T))
NIL
-(-962 |xx| -1696)
+(-962 |xx| -2184)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -3786,12 +3786,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-278))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-509))) (|HasCategory| |#4| (QUOTE (-156))))
(-964 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4180 . T) (-3353 . T) (-4175 . T) (-4174 . T))
+((-4183 . T) (-3252 . T) (-4178 . T) (-4177 . T))
NIL
(-965 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4180 . T) (-4175 . T) (-4174 . T))
-((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))))))
+((-4183 . T) (-4178 . T) (-4177 . T))
+((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3763 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3763 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))))))
(-966 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -3810,7 +3810,7 @@ NIL
NIL
(-970)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-971 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -3818,19 +3818,19 @@ NIL
NIL
(-972)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4171 . T) (-4175 . T) (-4170 . T) (-4181 . T) (-4182 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-973)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (|HasCategory| (-1073) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))))
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -1266) (QUOTE (-51))))))) (|HasCategory| (-1074) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3763 (|HasCategory| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))))
(-974 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1073)))))
+((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1074)))))
(-975 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
NIL
(-976 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
@@ -3850,7 +3850,7 @@ NIL
NIL
(-980 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
(-981 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -3860,11 +3860,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-983 |Base| R -1696)
+(-983 |Base| R -2184)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-984 |Base| R -1696)
+(-984 |Base| R -2184)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -3878,8 +3878,8 @@ NIL
NIL
(-987 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4173 |has| |#1| (-333)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319)))))
+((-4176 |has| |#1| (-333)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319)))))
(-988 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -3898,8 +3898,8 @@ NIL
NIL
(-992 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-993 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -3918,7 +3918,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-1003))))
(-997 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-998 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
@@ -3926,7 +3926,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1003))))
(-999 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-3353 . T))
+((-3252 . T))
NIL
(-1000 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
@@ -3934,7 +3934,7 @@ NIL
NIL
(-1001 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4170 . T) (-3353 . T))
+((-4173 . T) (-3252 . T))
NIL
(-1002 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -3950,8 +3950,8 @@ NIL
NIL
(-1005 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4180 . T) (-4170 . T) (-4181 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4183 . T) (-4173 . T) (-4184 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-1006 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -3978,7 +3978,7 @@ NIL
NIL
(-1012 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
(-1013)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -3994,13 +3994,13 @@ NIL
NIL
(-1016 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4174 |has| |#3| (-961)) (-4175 |has| |#3| (-961)) (-4177 |has| |#3| (-6 -4177)) ((-4182 "*") |has| |#3| (-156)) (-4180 . T))
-((|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3807 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-207))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (|HasAttribute| |#3| (QUOTE -4177)) (|HasCategory| |#3| (QUOTE (-123))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-25))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+((-4177 |has| |#3| (-961)) (-4178 |has| |#3| (-961)) (-4180 |has| |#3| (-6 -4180)) ((-4185 "*") |has| |#3| (-156)) (-4183 . T))
+((|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3763 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3763 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3763 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3763 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-207))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3763 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (|HasAttribute| |#3| (QUOTE -4180)) (|HasCategory| |#3| (QUOTE (-123))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-25))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3763 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))))))
(-1017 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-421))))
-(-1018 R -1696)
+(-1018 R -2184)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4014,19 +4014,19 @@ NIL
NIL
(-1021)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4171 . T) (-4175 . T) (-4170 . T) (-4181 . T) (-4182 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-1022 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4180 . T) (-4181 . T) (-3353 . T))
+((-4183 . T) (-4184 . T) (-3252 . T))
NIL
(-1023 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4182 "*"))) (|HasCategory| |#3| (QUOTE (-156))))
+((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4185 "*"))) (|HasCategory| |#3| (QUOTE (-156))))
(-1024 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-3353 . T) (-4180 . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-3252 . T) (-4183 . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
(-1025 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4034,17 +4034,17 @@ NIL
NIL
(-1026 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-1027 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
(-1028 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
-(-1029 UP -1696)
+(-1029 UP -2184)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4073,580 +4073,584 @@ NIL
NIL
NIL
(-1036)
-((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
+((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
(-1037)
+((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
+NIL
+NIL
+(-1038)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1038 V C)
+(-1039 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1039 V C)
+(-1040 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-1038 |#1| |#2|) (QUOTE (-1003))) (-12 (|HasCategory| (-1038 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1038) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1038 |#1| |#2|) (QUOTE (-1003)))))
-(-1040 |ndim| R)
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-1039 |#1| |#2|) (QUOTE (-1003))) (-12 (|HasCategory| (-1039 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1039) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1039 |#1| |#2|) (QUOTE (-1003)))))
+(-1041 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4177 . T) (-4169 |has| |#2| (-6 (-4182 "*"))) (-4180 . T) (-4174 . T) (-4175 . T))
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#2| (QUOTE (-156))))
-(-1041 S)
+((-4180 . T) (-4172 |has| |#2| (-6 (-4185 "*"))) (-4183 . T) (-4177 . T) (-4178 . T))
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (-3763 (|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3763 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))) (|HasCategory| |#2| (QUOTE (-156))))
+(-1042 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1042)
+(-1043)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
-(-1043 R E V P TS)
+(-1044 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1044 R E V P)
+(-1045 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
-(-1045 S)
+(-1046 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4180 . T) (-4181 . T))
+((-4183 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-1046 A S)
+(-1047 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1047 S)
+(-1048 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-3353 . T))
+((-3252 . T))
NIL
-(-1048 |Key| |Ent| |dent|)
+(-1049 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4181 . T))
-((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))))
-(-1049)
+((-4184 . T))
+((|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|)))))) (-3763 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))))
+(-1050)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1050 |Coef|)
+(-1051 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1051 S)
+(-1052 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1052 A B)
+(-1053 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1053 A B C)
+(-1054 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1054 S)
+(-1055 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4181 . T))
+((-4184 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-779))))
-(-1055)
+(-1056)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
-(-1056)
+(-1057)
NIL
-((-4181 . T) (-4180 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
-(-1057 |Entry|)
+((-4184 . T) (-4183 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3763 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
+(-1058 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#1|)))))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-1058 A)
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (QUOTE (-1057))) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#1|)))))) (|HasCategory| (-1057) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3763 (|HasCategory| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-1059 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
-(-1059 |Coef|)
+(-1060 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1060 |Coef|)
+(-1061 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1061 R UP)
+(-1062 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-278))))
-(-1062 |n| R)
+(-1063 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1063 S1 S2)
+(-1064 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1064 |Coef| |var| |cen|)
+(-1065 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4182 "*") -3807 (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-831)))) (-4173 -3807 (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1065 R -1696)
+(((-4185 "*") -3763 (-1651 (|has| |#1| (-333)) (|has| (-1072 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-1651 (|has| |#1| (-333)) (|has| (-1072 |#1| |#2| |#3|) (-831)))) (-4176 -3763 (-1651 (|has| |#1| (-333)) (|has| (-1072 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-1651 (|has| |#1| (-333)) (|has| (-1072 |#1| |#2| |#3|) (-831)))) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))) (-3763 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1066 R -2184)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1066 R)
+(-1067 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1067 R S)
+(-1068 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1068 E OV R P)
+(-1069 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1069 R)
+(-1070 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1070 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4179 |has| |#1| (-333)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-1071 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
+(-1072 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
-(-1072)
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
+(-1073)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1073)
+(-1074)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1074 R)
+(-1075 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1075 R)
+(-1076 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| (-888) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)))
-(-1076)
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| (-888) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)))
+(-1077)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1077)
+(-1078)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1078)
-((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) (|List| $)) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}.")) (|buildSyntax| (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|convert| (($ (|String|)) "\\spad{convert(s)} injects the string value \\spad{`s'} into the syntax domain") (($ (|Symbol|)) "\\spad{convert(s)} injects the symbol \\spad{`s'} into the syntax domain.") (($ (|DoubleFloat|)) "\\spad{convert(f)} injects the float value \\spad{`f'} into the syntax domain") (($ (|Integer|)) "\\spad{convert(i)} injects the integer value `i' into the syntax domain") (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
+(-1079)
+((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|buildSyntax| (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|convert| (($ (|String|)) "\\spad{convert(s)} injects the string value \\spad{`s'} into the syntax domain") (($ (|Symbol|)) "\\spad{convert(s)} injects the symbol \\spad{`s'} into the syntax domain.") (($ (|DoubleFloat|)) "\\spad{convert(f)} injects the float value \\spad{`f'} into the syntax domain") (($ (|Integer|)) "\\spad{convert(i)} injects the integer value `i' into the syntax domain") (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1079 R)
+(-1080 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1080 S)
+(-1081 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1081 S)
+(-1082 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1082 |Key| |Entry|)
+(-1083 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4180 . T) (-4181 . T))
-((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
-(-1083 R)
+((-4183 . T) (-4184 . T))
+((|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3342) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1266) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3763 (|HasCategory| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+(-1084 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1084 S |Key| |Entry|)
+(-1085 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1085 |Key| |Entry|)
+(-1086 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4181 . T) (-3353 . T))
+((-4184 . T) (-3252 . T))
NIL
-(-1086 |Key| |Entry|)
+(-1087 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1087)
+(-1088)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1088 S)
+(-1089 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1089)
+(-1090)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1090)
+(-1091)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1091 R)
+(-1092 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1092)
+(-1093)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1093 S)
+(-1094 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1094)
+(-1095)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1095 S)
+(-1096 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-1096 S)
+(-1097 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1097)
+(-1098)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1098 R -1696)
+(-1099 R -2184)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1099 R |Row| |Col| M)
+(-1100 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1100 R -1696)
+(-1101 R -2184)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -808) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -808) (|devaluate| |#1|)))))
-(-1101 S R E V P)
+(-1102 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-338))))
-(-1102 R E V P)
+(-1103 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
-(-1103 |Coef|)
+(-1104 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
-(-1104 |Curve|)
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
+(-1105 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1105)
+(-1106)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1106 S)
+(-1107 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
-(-1107 -1696)
+(-1108 -2184)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1108)
+(-1109)
((|constructor| (NIL "The fundamental Type.")))
-((-3353 . T))
+((-3252 . T))
NIL
-(-1109 S)
+(-1110 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
((|HasCategory| |#1| (QUOTE (-779))))
-(-1110)
+(-1111)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1111 S)
+(-1112 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1112)
+(-1113)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1113 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1114 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1114 |Coef|)
+(-1115 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1115 S |Coef| UTS)
+(-1116 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-333))))
-(-1116 |Coef| UTS)
+(-1117 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-3353 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-3252 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1117 |Coef| UTS)
+(-1118 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-831))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))))
-(-1118 |Coef| |var| |cen|)
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-831))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3763 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))))
+(-1119 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4182 "*") -3807 (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-831)))) (-4173 -3807 (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1119 ZP)
+(((-4185 "*") -3763 (-1651 (|has| |#1| (-333)) (|has| (-1147 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-1651 (|has| |#1| (-333)) (|has| (-1147 |#1| |#2| |#3|) (-831)))) (-4176 -3763 (-1651 (|has| |#1| (-333)) (|has| (-1147 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-1651 (|has| |#1| (-333)) (|has| (-1147 |#1| |#2| |#3|) (-831)))) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))) (-3763 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1120 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1120 R S)
+(-1121 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-777))))
-(-1121 S)
+(-1122 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1003))))
-(-1122 |x| R |y| S)
+(-1123 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1123 R Q UP)
+(-1124 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1124 R UP)
+(-1125 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1125 R UP)
+(-1126 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1126 R U)
+(-1127 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1127 |x| R)
+(-1128 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4176 |has| |#2| (-333)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-1128 R PR S PS)
+(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4179 |has| |#2| (-333)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3763 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-1129 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1129 S R)
+(-1130 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1049))))
-(-1130 R)
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1050))))
+(-1131 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4179 |has| |#1| (-333)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
NIL
-(-1131 S |Coef| |Expon|)
+(-1132 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2256) (LIST (|devaluate| |#2|) (QUOTE (-1073))))))
-(-1132 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2182) (LIST (|devaluate| |#2|) (QUOTE (-1074))))))
+(-1133 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1133 RC P)
+(-1134 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1134 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1135 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1135 |Coef|)
+(-1136 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1136 S |Coef| ULS)
+(-1137 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1137 |Coef| ULS)
+(-1138 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1138 |Coef| ULS)
+(-1139 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
-(-1139 |Coef| |var| |cen|)
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
+(-1140 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
-(-1140 R FE |var| |cen|)
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3763 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
+(-1141 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4182 "*") |has| (-1139 |#2| |#3| |#4|) (-156)) (-4173 |has| (-1139 |#2| |#3| |#4|) (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-421))) (-3807 (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-509))))
-(-1141 A S)
+(((-4185 "*") |has| (-1140 |#2| |#3| |#4|) (-156)) (-4176 |has| (-1140 |#2| |#3| |#4|) (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-421))) (-3763 (|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-509))))
+(-1142 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4181)))
-(-1142 S)
+((|HasAttribute| |#1| (QUOTE -4184)))
+(-1143 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-3353 . T))
+((-3252 . T))
NIL
-(-1143 |Coef1| |Coef2| UTS1 UTS2)
+(-1144 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1144 S |Coef|)
+(-1145 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasSignature| |#2| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4151) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1073))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))))
-(-1145 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-1095))) (|HasSignature| |#2| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2863) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1074))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))))
+(-1146 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1146 |Coef| |var| |cen|)
+(-1147 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
-(-1147 |Coef| UTS)
+(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3763 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2182) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
+(-1148 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1148 -1696 UP L UTS)
+(-1149 -2184 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-509))))
-(-1149 |sym|)
+(-1150 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1150 S R)
+(-1151 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1151 R)
+(-1152 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4181 . T) (-4180 . T) (-3353 . T))
+((-4184 . T) (-4183 . T) (-3252 . T))
NIL
-(-1152 A B)
+(-1153 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1153 R)
+(-1154 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4181 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1154)
+((-4184 . T) (-4183 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3763 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1155)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1155)
+(-1156)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1156)
+(-1157)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1157)
+(-1158)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1158)
+(-1159)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1159 A S)
+(-1160 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1160 S)
+(-1161 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4175 . T) (-4174 . T))
+((-4178 . T) (-4177 . T))
NIL
-(-1161 R)
+(-1162 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1162 K R UP -1696)
+(-1163 K R UP -2184)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1163 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1164 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
+((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))))
-(-1164 R E V P)
+(-1165 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4181 . T) (-4180 . T))
+((-4184 . T) (-4183 . T))
((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
-(-1165 R)
+(-1166 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4174 . T) (-4175 . T) (-4177 . T))
+((-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1166 |vl| R)
+(-1167 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4177 . T) (-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4173)))
-(-1167 R |VarSet| XPOLY)
+((-4180 . T) (-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4176)))
+(-1168 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1168 |vl| R)
+(-1169 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
+((-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
NIL
-(-1169 S -1696)
+(-1170 S -2184)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))))
-(-1170 -1696)
+(-1171 -2184)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
-(-1171 |VarSet| R)
+(-1172 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4173)))
-(-1172 |vl| R)
+((-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4176)))
+(-1173 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
+((-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
NIL
-(-1173 R)
+(-1174 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4173 |has| |#1| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4173)))
-(-1174 R E)
+((-4176 |has| |#1| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4176)))
+(-1175 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4177 . T) (-4178 |has| |#1| (-6 -4178)) (-4173 |has| |#1| (-6 -4173)) (-4175 . T) (-4174 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4177)) (|HasAttribute| |#1| (QUOTE -4178)) (|HasAttribute| |#1| (QUOTE -4173)))
-(-1175 |VarSet| R)
+((-4180 . T) (-4181 |has| |#1| (-6 -4181)) (-4176 |has| |#1| (-6 -4176)) (-4178 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4180)) (|HasAttribute| |#1| (QUOTE -4181)) (|HasAttribute| |#1| (QUOTE -4176)))
+(-1176 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4173)))
-(-1176 A)
+((-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4176)))
+(-1177 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1177 R |ls| |ls2|)
+(-1178 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1178 R)
+(-1179 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1179 |p|)
+(-1180 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+(((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
NIL
NIL
NIL
@@ -4668,4 +4672,4 @@ NIL
NIL
NIL
NIL
-((-1184 NIL 2204723 2204728 2204733 2204738) (-3 NIL 2204703 2204708 2204713 2204718) (-2 NIL 2204683 2204688 2204693 2204698) (-1 NIL 2204663 2204668 2204673 2204678) (0 NIL 2204643 2204648 2204653 2204658) (-1179 "ZMOD.spad" 2204452 2204465 2204581 2204638) (-1178 "ZLINDEP.spad" 2203496 2203507 2204442 2204447) (-1177 "ZDSOLVE.spad" 2193345 2193367 2203486 2203491) (-1176 "YSTREAM.spad" 2192838 2192849 2193335 2193340) (-1175 "XRPOLY.spad" 2192058 2192078 2192694 2192763) (-1174 "XPR.spad" 2189787 2189800 2191776 2191875) (-1173 "XPOLY.spad" 2189342 2189353 2189643 2189712) (-1172 "XPOLYC.spad" 2188659 2188675 2189268 2189337) (-1171 "XPBWPOLY.spad" 2187096 2187116 2188439 2188508) (-1170 "XF.spad" 2185557 2185572 2186998 2187091) (-1169 "XF.spad" 2183998 2184015 2185441 2185446) (-1168 "XFALG.spad" 2181022 2181038 2183924 2183993) (-1167 "XEXPPKG.spad" 2180273 2180299 2181012 2181017) (-1166 "XDPOLY.spad" 2179887 2179903 2180129 2180198) (-1165 "XALG.spad" 2179485 2179496 2179843 2179882) (-1164 "WUTSET.spad" 2175380 2175397 2179187 2179214) (-1163 "WP.spad" 2174394 2174438 2175238 2175305) (-1162 "WFFINTBS.spad" 2171957 2171979 2174384 2174389) (-1161 "WEIER.spad" 2170171 2170182 2171947 2171952) (-1160 "VSPACE.spad" 2169844 2169855 2170139 2170166) (-1159 "VSPACE.spad" 2169537 2169550 2169834 2169839) (-1158 "VOID.spad" 2169127 2169136 2169527 2169532) (-1157 "VIEW.spad" 2166749 2166758 2169117 2169122) (-1156 "VIEWDEF.spad" 2161946 2161955 2166739 2166744) (-1155 "VIEW3D.spad" 2145781 2145790 2161936 2161941) (-1154 "VIEW2D.spad" 2133518 2133527 2145771 2145776) (-1153 "VECTOR.spad" 2132195 2132206 2132446 2132473) (-1152 "VECTOR2.spad" 2130822 2130835 2132185 2132190) (-1151 "VECTCAT.spad" 2128710 2128721 2130778 2130817) (-1150 "VECTCAT.spad" 2126419 2126432 2128489 2128494) (-1149 "VARIABLE.spad" 2126199 2126214 2126409 2126414) (-1148 "UTSODETL.spad" 2125492 2125516 2126155 2126160) (-1147 "UTSODE.spad" 2123680 2123700 2125482 2125487) (-1146 "UTS.spad" 2118469 2118497 2122147 2122244) (-1145 "UTSCAT.spad" 2115920 2115936 2118367 2118464) (-1144 "UTSCAT.spad" 2113015 2113033 2115464 2115469) (-1143 "UTS2.spad" 2112608 2112643 2113005 2113010) (-1142 "URAGG.spad" 2107230 2107241 2112588 2112603) (-1141 "URAGG.spad" 2101826 2101839 2107186 2107191) (-1140 "UPXSSING.spad" 2099472 2099498 2100910 2101043) (-1139 "UPXS.spad" 2096499 2096527 2097604 2097753) (-1138 "UPXSCONS.spad" 2094256 2094276 2094631 2094780) (-1137 "UPXSCCA.spad" 2092714 2092734 2094102 2094251) (-1136 "UPXSCCA.spad" 2091314 2091336 2092704 2092709) (-1135 "UPXSCAT.spad" 2089895 2089911 2091160 2091309) (-1134 "UPXS2.spad" 2089436 2089489 2089885 2089890) (-1133 "UPSQFREE.spad" 2087848 2087862 2089426 2089431) (-1132 "UPSCAT.spad" 2085441 2085465 2087746 2087843) (-1131 "UPSCAT.spad" 2082740 2082766 2085047 2085052) (-1130 "UPOLYC.spad" 2077718 2077729 2082582 2082735) (-1129 "UPOLYC.spad" 2072588 2072601 2077454 2077459) (-1128 "UPOLYC2.spad" 2072057 2072076 2072578 2072583) (-1127 "UP.spad" 2069107 2069122 2069615 2069768) (-1126 "UPMP.spad" 2067997 2068010 2069097 2069102) (-1125 "UPDIVP.spad" 2067560 2067574 2067987 2067992) (-1124 "UPDECOMP.spad" 2065797 2065811 2067550 2067555) (-1123 "UPCDEN.spad" 2065004 2065020 2065787 2065792) (-1122 "UP2.spad" 2064366 2064387 2064994 2064999) (-1121 "UNISEG.spad" 2063719 2063730 2064285 2064290) (-1120 "UNISEG2.spad" 2063212 2063225 2063675 2063680) (-1119 "UNIFACT.spad" 2062313 2062325 2063202 2063207) (-1118 "ULS.spad" 2052872 2052900 2053965 2054394) (-1117 "ULSCONS.spad" 2046915 2046935 2047287 2047436) (-1116 "ULSCCAT.spad" 2044512 2044532 2046735 2046910) (-1115 "ULSCCAT.spad" 2042243 2042265 2044468 2044473) (-1114 "ULSCAT.spad" 2040459 2040475 2042089 2042238) (-1113 "ULS2.spad" 2039971 2040024 2040449 2040454) (-1112 "UFD.spad" 2039036 2039045 2039897 2039966) (-1111 "UFD.spad" 2038163 2038174 2039026 2039031) (-1110 "UDVO.spad" 2037010 2037019 2038153 2038158) (-1109 "UDPO.spad" 2034437 2034448 2036966 2036971) (-1108 "TYPE.spad" 2034359 2034368 2034417 2034432) (-1107 "TWOFACT.spad" 2033009 2033024 2034349 2034354) (-1106 "TUPLE.spad" 2032395 2032406 2032908 2032913) (-1105 "TUBETOOL.spad" 2029232 2029241 2032385 2032390) (-1104 "TUBE.spad" 2027873 2027890 2029222 2029227) (-1103 "TS.spad" 2026462 2026478 2027438 2027535) (-1102 "TSETCAT.spad" 2013577 2013594 2026418 2026457) (-1101 "TSETCAT.spad" 2000690 2000709 2013533 2013538) (-1100 "TRMANIP.spad" 1995056 1995073 2000396 2000401) (-1099 "TRIMAT.spad" 1994015 1994040 1995046 1995051) (-1098 "TRIGMNIP.spad" 1992532 1992549 1994005 1994010) (-1097 "TRIGCAT.spad" 1992044 1992053 1992522 1992527) (-1096 "TRIGCAT.spad" 1991554 1991565 1992034 1992039) (-1095 "TREE.spad" 1990348 1990359 1991384 1991411) (-1094 "TRANFUN.spad" 1990179 1990188 1990338 1990343) (-1093 "TRANFUN.spad" 1990008 1990019 1990169 1990174) (-1092 "TOPSP.spad" 1989682 1989691 1989998 1990003) (-1091 "TOOLSIGN.spad" 1989345 1989356 1989672 1989677) (-1090 "TEXTFILE.spad" 1987902 1987911 1989335 1989340) (-1089 "TEX.spad" 1984919 1984928 1987892 1987897) (-1088 "TEX1.spad" 1984475 1984486 1984909 1984914) (-1087 "TEMUTL.spad" 1984030 1984039 1984465 1984470) (-1086 "TBCMPPK.spad" 1982123 1982146 1984020 1984025) (-1085 "TBAGG.spad" 1981147 1981170 1982091 1982118) (-1084 "TBAGG.spad" 1980191 1980216 1981137 1981142) (-1083 "TANEXP.spad" 1979567 1979578 1980181 1980186) (-1082 "TABLE.spad" 1978540 1978563 1978810 1978837) (-1081 "TABLEAU.spad" 1978021 1978032 1978530 1978535) (-1080 "TABLBUMP.spad" 1974804 1974815 1978011 1978016) (-1079 "SYSSOLP.spad" 1972277 1972288 1974794 1974799) (-1078 "syntax.spad" 1970748 1970757 1972267 1972272) (-1077 "SYMTAB.spad" 1968804 1968813 1970738 1970743) (-1076 "SYMS.spad" 1964789 1964798 1968794 1968799) (-1075 "SYMPOLY.spad" 1963799 1963810 1963881 1964008) (-1074 "SYMFUNC.spad" 1963274 1963285 1963789 1963794) (-1073 "SYMBOL.spad" 1960610 1960619 1963264 1963269) (-1072 "SWITCH.spad" 1957367 1957376 1960600 1960605) (-1071 "SUTS.spad" 1954266 1954294 1955834 1955931) (-1070 "SUPXS.spad" 1951280 1951308 1952398 1952547) (-1069 "SUP.spad" 1948057 1948068 1948838 1948991) (-1068 "SUPFRACF.spad" 1947162 1947180 1948047 1948052) (-1067 "SUP2.spad" 1946552 1946565 1947152 1947157) (-1066 "SUMRF.spad" 1945518 1945529 1946542 1946547) (-1065 "SUMFS.spad" 1945151 1945168 1945508 1945513) (-1064 "SULS.spad" 1935697 1935725 1936803 1937232) (-1063 "SUCH.spad" 1935377 1935392 1935687 1935692) (-1062 "SUBSPACE.spad" 1927384 1927399 1935367 1935372) (-1061 "SUBRESP.spad" 1926544 1926558 1927340 1927345) (-1060 "STTF.spad" 1922643 1922659 1926534 1926539) (-1059 "STTFNC.spad" 1919111 1919127 1922633 1922638) (-1058 "STTAYLOR.spad" 1911509 1911520 1918992 1918997) (-1057 "STRTBL.spad" 1910588 1910605 1910737 1910764) (-1056 "STRING.spad" 1910055 1910064 1910069 1910096) (-1055 "STRICAT.spad" 1909831 1909840 1910011 1910050) (-1054 "STREAM.spad" 1906822 1906833 1909579 1909594) (-1053 "STREAM3.spad" 1906367 1906382 1906812 1906817) (-1052 "STREAM2.spad" 1905435 1905448 1906357 1906362) (-1051 "STREAM1.spad" 1905139 1905150 1905425 1905430) (-1050 "STINPROD.spad" 1904045 1904061 1905129 1905134) (-1049 "STEP.spad" 1903246 1903255 1904035 1904040) (-1048 "STBL.spad" 1902334 1902362 1902501 1902516) (-1047 "STAGG.spad" 1901399 1901410 1902314 1902329) (-1046 "STAGG.spad" 1900472 1900485 1901389 1901394) (-1045 "STACK.spad" 1900046 1900057 1900302 1900329) (-1044 "SREGSET.spad" 1897806 1897823 1899748 1899775) (-1043 "SRDCMPK.spad" 1896351 1896371 1897796 1897801) (-1042 "SRAGG.spad" 1891436 1891445 1896307 1896346) (-1041 "SRAGG.spad" 1886553 1886564 1891426 1891431) (-1040 "SQMATRIX.spad" 1884235 1884253 1885143 1885230) (-1039 "SPLTREE.spad" 1879102 1879115 1883986 1884013) (-1038 "SPLNODE.spad" 1875690 1875703 1879092 1879097) (-1037 "SPFCAT.spad" 1874467 1874476 1875680 1875685) (-1036 "SPECOUT.spad" 1873017 1873026 1874457 1874462) (-1035 "SPACEC.spad" 1857030 1857041 1873007 1873012) (-1034 "SPACE3.spad" 1856806 1856817 1857020 1857025) (-1033 "SORTPAK.spad" 1856351 1856364 1856762 1856767) (-1032 "SOLVETRA.spad" 1854108 1854119 1856341 1856346) (-1031 "SOLVESER.spad" 1852628 1852639 1854098 1854103) (-1030 "SOLVERAD.spad" 1848638 1848649 1852618 1852623) (-1029 "SOLVEFOR.spad" 1847058 1847076 1848628 1848633) (-1028 "SNTSCAT.spad" 1846646 1846663 1847014 1847053) (-1027 "SMTS.spad" 1844906 1844932 1846211 1846308) (-1026 "SMP.spad" 1842348 1842368 1842738 1842865) (-1025 "SMITH.spad" 1841191 1841216 1842338 1842343) (-1024 "SMATCAT.spad" 1839289 1839319 1841123 1841186) (-1023 "SMATCAT.spad" 1837331 1837363 1839167 1839172) (-1022 "SKAGG.spad" 1836280 1836291 1837287 1837326) (-1021 "SINT.spad" 1834588 1834597 1836146 1836275) (-1020 "SIMPAN.spad" 1834316 1834325 1834578 1834583) (-1019 "SIGNRF.spad" 1833424 1833435 1834306 1834311) (-1018 "SIGNEF.spad" 1832693 1832710 1833414 1833419) (-1017 "SHP.spad" 1830611 1830626 1832649 1832654) (-1016 "SHDP.spad" 1822717 1822744 1823226 1823355) (-1015 "SGROUP.spad" 1822183 1822192 1822707 1822712) (-1014 "SGROUP.spad" 1821647 1821658 1822173 1822178) (-1013 "SGCF.spad" 1814528 1814537 1821637 1821642) (-1012 "SFRTCAT.spad" 1813444 1813461 1814484 1814523) (-1011 "SFRGCD.spad" 1812507 1812527 1813434 1813439) (-1010 "SFQCMPK.spad" 1807144 1807164 1812497 1812502) (-1009 "SFORT.spad" 1806579 1806593 1807134 1807139) (-1008 "SEXOF.spad" 1806422 1806462 1806569 1806574) (-1007 "SEX.spad" 1806314 1806323 1806412 1806417) (-1006 "SEXCAT.spad" 1803418 1803458 1806304 1806309) (-1005 "SET.spad" 1801774 1801785 1802895 1802934) (-1004 "SETMN.spad" 1800208 1800225 1801764 1801769) (-1003 "SETCAT.spad" 1799693 1799702 1800198 1800203) (-1002 "SETCAT.spad" 1799176 1799187 1799683 1799688) (-1001 "SETAGG.spad" 1795699 1795710 1799144 1799171) (-1000 "SETAGG.spad" 1792242 1792255 1795689 1795694) (-999 "SEGXCAT.spad" 1791355 1791367 1792222 1792237) (-998 "SEG.spad" 1791169 1791179 1791274 1791279) (-997 "SEGCAT.spad" 1789989 1789999 1791149 1791164) (-996 "SEGBIND.spad" 1789062 1789072 1789944 1789949) (-995 "SEGBIND2.spad" 1788759 1788771 1789052 1789057) (-994 "SEG2.spad" 1788185 1788197 1788715 1788720) (-993 "SDVAR.spad" 1787462 1787472 1788175 1788180) (-992 "SDPOL.spad" 1784861 1784871 1785151 1785278) (-991 "SCPKG.spad" 1782941 1782951 1784851 1784856) (-990 "SCACHE.spad" 1781624 1781634 1782931 1782936) (-989 "SAOS.spad" 1781497 1781505 1781614 1781619) (-988 "SAERFFC.spad" 1781211 1781230 1781487 1781492) (-987 "SAE.spad" 1779390 1779405 1780000 1780135) (-986 "SAEFACT.spad" 1779092 1779111 1779380 1779385) (-985 "RURPK.spad" 1776734 1776749 1779082 1779087) (-984 "RULESET.spad" 1776176 1776199 1776724 1776729) (-983 "RULE.spad" 1774381 1774404 1776166 1776171) (-982 "RULECOLD.spad" 1774234 1774246 1774371 1774376) (-981 "RSETGCD.spad" 1770613 1770632 1774224 1774229) (-980 "RSETCAT.spad" 1760386 1760402 1770569 1770608) (-979 "RSETCAT.spad" 1750191 1750209 1760376 1760381) (-978 "RSDCMPK.spad" 1748644 1748663 1750181 1750186) (-977 "RRCC.spad" 1747029 1747058 1748634 1748639) (-976 "RRCC.spad" 1745412 1745443 1747019 1747024) (-975 "RPOLCAT.spad" 1724773 1724787 1745280 1745407) (-974 "RPOLCAT.spad" 1703849 1703865 1724358 1724363) (-973 "ROUTINE.spad" 1700295 1700303 1703078 1703105) (-972 "ROMAN.spad" 1699528 1699536 1700161 1700290) (-971 "ROIRC.spad" 1698609 1698640 1699518 1699523) (-970 "RNS.spad" 1697513 1697521 1698511 1698604) (-969 "RNS.spad" 1696503 1696513 1697503 1697508) (-968 "RNG.spad" 1696239 1696247 1696493 1696498) (-967 "RMODULE.spad" 1695878 1695888 1696229 1696234) (-966 "RMCAT2.spad" 1695287 1695343 1695868 1695873) (-965 "RMATRIX.spad" 1694023 1694041 1694510 1694549) (-964 "RMATCAT.spad" 1689545 1689575 1693967 1694018) (-963 "RMATCAT.spad" 1684969 1685001 1689393 1689398) (-962 "RINTERP.spad" 1684858 1684877 1684959 1684964) (-961 "RING.spad" 1684216 1684224 1684838 1684853) (-960 "RING.spad" 1683582 1683592 1684206 1684211) (-959 "RIDIST.spad" 1682967 1682975 1683572 1683577) (-958 "RGCHAIN.spad" 1681622 1681637 1682527 1682554) (-957 "RF.spad" 1679237 1679247 1681612 1681617) (-956 "RFFACTOR.spad" 1678700 1678710 1679227 1679232) (-955 "RFFACT.spad" 1678436 1678447 1678690 1678695) (-954 "RFDIST.spad" 1677425 1677433 1678426 1678431) (-953 "RETSOL.spad" 1676843 1676855 1677415 1677420) (-952 "RETRACT.spad" 1676193 1676203 1676833 1676838) (-951 "RETRACT.spad" 1675541 1675553 1676183 1676188) (-950 "RESULT.spad" 1674184 1674192 1674770 1674797) (-949 "RESRING.spad" 1673532 1673578 1674122 1674179) (-948 "RESLATC.spad" 1672857 1672867 1673522 1673527) (-947 "REPSQ.spad" 1672587 1672597 1672847 1672852) (-946 "REP.spad" 1670140 1670148 1672577 1672582) (-945 "REPDB.spad" 1669846 1669856 1670130 1670135) (-944 "REP2.spad" 1659419 1659429 1669688 1669693) (-943 "REP1.spad" 1653410 1653420 1659369 1659374) (-942 "REGSET.spad" 1651264 1651280 1653112 1653139) (-941 "REF.spad" 1650594 1650604 1651219 1651224) (-940 "REDORDER.spad" 1649771 1649787 1650584 1650589) (-939 "RECLOS.spad" 1648561 1648580 1649264 1649357) (-938 "REALSOLV.spad" 1647694 1647702 1648551 1648556) (-937 "REAL.spad" 1647567 1647575 1647684 1647689) (-936 "REAL0Q.spad" 1644850 1644864 1647557 1647562) (-935 "REAL0.spad" 1641679 1641693 1644840 1644845) (-934 "RDIV.spad" 1641331 1641355 1641669 1641674) (-933 "RDIST.spad" 1640895 1640905 1641321 1641326) (-932 "RDETRS.spad" 1639692 1639709 1640885 1640890) (-931 "RDETR.spad" 1637800 1637817 1639682 1639687) (-930 "RDEEFS.spad" 1636874 1636890 1637790 1637795) (-929 "RDEEF.spad" 1635871 1635887 1636864 1636869) (-928 "RCFIELD.spad" 1633055 1633063 1635773 1635866) (-927 "RCFIELD.spad" 1630325 1630335 1633045 1633050) (-926 "RCAGG.spad" 1628228 1628238 1630305 1630320) (-925 "RCAGG.spad" 1626068 1626080 1628147 1628152) (-924 "RATRET.spad" 1625429 1625439 1626058 1626063) (-923 "RATFACT.spad" 1625122 1625133 1625419 1625424) (-922 "RANDSRC.spad" 1624442 1624450 1625112 1625117) (-921 "RADUTIL.spad" 1624197 1624205 1624432 1624437) (-920 "RADIX.spad" 1620990 1621003 1622667 1622760) (-919 "RADFF.spad" 1619407 1619443 1619525 1619681) (-918 "RADCAT.spad" 1619001 1619009 1619397 1619402) (-917 "RADCAT.spad" 1618593 1618603 1618991 1618996) (-916 "QUEUE.spad" 1618159 1618169 1618423 1618450) (-915 "QUAT.spad" 1616745 1616755 1617087 1617152) (-914 "QUATCT2.spad" 1616364 1616382 1616735 1616740) (-913 "QUATCAT.spad" 1614529 1614539 1616294 1616359) (-912 "QUATCAT.spad" 1612446 1612458 1614213 1614218) (-911 "QUAGG.spad" 1611260 1611270 1612402 1612441) (-910 "QFORM.spad" 1610723 1610737 1611250 1611255) (-909 "QFCAT.spad" 1609414 1609424 1610613 1610718) (-908 "QFCAT.spad" 1607711 1607723 1608912 1608917) (-907 "QFCAT2.spad" 1607402 1607418 1607701 1607706) (-906 "QEQUAT.spad" 1606959 1606967 1607392 1607397) (-905 "QCMPACK.spad" 1601706 1601725 1606949 1606954) (-904 "QALGSET.spad" 1597781 1597813 1601620 1601625) (-903 "QALGSET2.spad" 1595777 1595795 1597771 1597776) (-902 "PWFFINTB.spad" 1593087 1593108 1595767 1595772) (-901 "PUSHVAR.spad" 1592416 1592435 1593077 1593082) (-900 "PTRANFN.spad" 1588542 1588552 1592406 1592411) (-899 "PTPACK.spad" 1585630 1585640 1588532 1588537) (-898 "PTFUNC2.spad" 1585451 1585465 1585620 1585625) (-897 "PTCAT.spad" 1584533 1584543 1585407 1585446) (-896 "PSQFR.spad" 1583840 1583864 1584523 1584528) (-895 "PSEUDLIN.spad" 1582698 1582708 1583830 1583835) (-894 "PSETPK.spad" 1568131 1568147 1582576 1582581) (-893 "PSETCAT.spad" 1562039 1562062 1568099 1568126) (-892 "PSETCAT.spad" 1555933 1555958 1561995 1562000) (-891 "PSCURVE.spad" 1554916 1554924 1555923 1555928) (-890 "PSCAT.spad" 1553683 1553712 1554814 1554911) (-889 "PSCAT.spad" 1552540 1552571 1553673 1553678) (-888 "PRTITION.spad" 1551383 1551391 1552530 1552535) (-887 "PRS.spad" 1540945 1540962 1551339 1551344) (-886 "PRQAGG.spad" 1540364 1540374 1540901 1540940) (-885 "PRODUCT.spad" 1538044 1538056 1538330 1538385) (-884 "PR.spad" 1536433 1536445 1537138 1537265) (-883 "PRINT.spad" 1536185 1536193 1536423 1536428) (-882 "PRIMES.spad" 1534436 1534446 1536175 1536180) (-881 "PRIMELT.spad" 1532417 1532431 1534426 1534431) (-880 "PRIMCAT.spad" 1532040 1532048 1532407 1532412) (-879 "PRIMARR.spad" 1531045 1531055 1531223 1531250) (-878 "PRIMARR2.spad" 1529768 1529780 1531035 1531040) (-877 "PREASSOC.spad" 1529140 1529152 1529758 1529763) (-876 "PPCURVE.spad" 1528277 1528285 1529130 1529135) (-875 "POLYROOT.spad" 1527049 1527071 1528233 1528238) (-874 "POLY.spad" 1524349 1524359 1524866 1524993) (-873 "POLYLIFT.spad" 1523610 1523633 1524339 1524344) (-872 "POLYCATQ.spad" 1521712 1521734 1523600 1523605) (-871 "POLYCAT.spad" 1515118 1515139 1521580 1521707) (-870 "POLYCAT.spad" 1507826 1507849 1514290 1514295) (-869 "POLY2UP.spad" 1507274 1507288 1507816 1507821) (-868 "POLY2.spad" 1506869 1506881 1507264 1507269) (-867 "POLUTIL.spad" 1505810 1505839 1506825 1506830) (-866 "POLTOPOL.spad" 1504558 1504573 1505800 1505805) (-865 "POINT.spad" 1503622 1503632 1503709 1503736) (-864 "PNTHEORY.spad" 1500288 1500296 1503612 1503617) (-863 "PMTOOLS.spad" 1499045 1499059 1500278 1500283) (-862 "PMSYM.spad" 1498590 1498600 1499035 1499040) (-861 "PMQFCAT.spad" 1498177 1498191 1498580 1498585) (-860 "PMPRED.spad" 1497646 1497660 1498167 1498172) (-859 "PMPREDFS.spad" 1497090 1497112 1497636 1497641) (-858 "PMPLCAT.spad" 1496160 1496178 1497022 1497027) (-857 "PMLSAGG.spad" 1495741 1495755 1496150 1496155) (-856 "PMKERNEL.spad" 1495308 1495320 1495731 1495736) (-855 "PMINS.spad" 1494884 1494894 1495298 1495303) (-854 "PMFS.spad" 1494457 1494475 1494874 1494879) (-853 "PMDOWN.spad" 1493743 1493757 1494447 1494452) (-852 "PMASS.spad" 1492755 1492763 1493733 1493738) (-851 "PMASSFS.spad" 1491724 1491740 1492745 1492750) (-850 "PLOTTOOL.spad" 1491504 1491512 1491714 1491719) (-849 "PLOT.spad" 1486335 1486343 1491494 1491499) (-848 "PLOT3D.spad" 1482755 1482763 1486325 1486330) (-847 "PLOT1.spad" 1481896 1481906 1482745 1482750) (-846 "PLEQN.spad" 1469112 1469139 1481886 1481891) (-845 "PINTERP.spad" 1468728 1468747 1469102 1469107) (-844 "PINTERPA.spad" 1468510 1468526 1468718 1468723) (-843 "PI.spad" 1468117 1468125 1468484 1468505) (-842 "PID.spad" 1467073 1467081 1468043 1468112) (-841 "PICOERCE.spad" 1466730 1466740 1467063 1467068) (-840 "PGROEB.spad" 1465327 1465341 1466720 1466725) (-839 "PGE.spad" 1456580 1456588 1465317 1465322) (-838 "PGCD.spad" 1455462 1455479 1456570 1456575) (-837 "PFRPAC.spad" 1454605 1454615 1455452 1455457) (-836 "PFR.spad" 1451262 1451272 1454507 1454600) (-835 "PFOTOOLS.spad" 1450520 1450536 1451252 1451257) (-834 "PFOQ.spad" 1449890 1449908 1450510 1450515) (-833 "PFO.spad" 1449309 1449336 1449880 1449885) (-832 "PF.spad" 1448883 1448895 1449114 1449207) (-831 "PFECAT.spad" 1446549 1446557 1448809 1448878) (-830 "PFECAT.spad" 1444243 1444253 1446505 1446510) (-829 "PFBRU.spad" 1442113 1442125 1444233 1444238) (-828 "PFBR.spad" 1439651 1439674 1442103 1442108) (-827 "PERM.spad" 1435332 1435342 1439481 1439496) (-826 "PERMGRP.spad" 1430068 1430078 1435322 1435327) (-825 "PERMCAT.spad" 1428620 1428630 1430048 1430063) (-824 "PERMAN.spad" 1427152 1427166 1428610 1428615) (-823 "PENDTREE.spad" 1426648 1426658 1427004 1427009) (-822 "PDRING.spad" 1425139 1425149 1426628 1426643) (-821 "PDRING.spad" 1423638 1423650 1425129 1425134) (-820 "PDEPROB.spad" 1422595 1422603 1423628 1423633) (-819 "PDEPACK.spad" 1416597 1416605 1422585 1422590) (-818 "PDECOMP.spad" 1416059 1416076 1416587 1416592) (-817 "PDECAT.spad" 1414413 1414421 1416049 1416054) (-816 "PCOMP.spad" 1414264 1414277 1414403 1414408) (-815 "PBWLB.spad" 1412846 1412863 1414254 1414259) (-814 "PATTERN.spad" 1407277 1407287 1412836 1412841) (-813 "PATTERN2.spad" 1407013 1407025 1407267 1407272) (-812 "PATTERN1.spad" 1405315 1405331 1407003 1407008) (-811 "PATRES.spad" 1402862 1402874 1405305 1405310) (-810 "PATRES2.spad" 1402524 1402538 1402852 1402857) (-809 "PATMATCH.spad" 1400686 1400717 1402237 1402242) (-808 "PATMAB.spad" 1400111 1400121 1400676 1400681) (-807 "PATLRES.spad" 1399195 1399209 1400101 1400106) (-806 "PATAB.spad" 1398959 1398969 1399185 1399190) (-805 "PARTPERM.spad" 1396321 1396329 1398949 1398954) (-804 "PARSURF.spad" 1395749 1395777 1396311 1396316) (-803 "PARSU2.spad" 1395544 1395560 1395739 1395744) (-802 "PARSCURV.spad" 1394972 1395000 1395534 1395539) (-801 "PARSC2.spad" 1394761 1394777 1394962 1394967) (-800 "PARPCURV.spad" 1394219 1394247 1394751 1394756) (-799 "PARPC2.spad" 1394008 1394024 1394209 1394214) (-798 "PAN2EXPR.spad" 1393420 1393428 1393998 1394003) (-797 "PALETTE.spad" 1392390 1392398 1393410 1393415) (-796 "PADICRC.spad" 1389723 1389741 1390898 1390991) (-795 "PADICRAT.spad" 1387741 1387753 1387962 1388055) (-794 "PADIC.spad" 1387436 1387448 1387667 1387736) (-793 "PADICCT.spad" 1385977 1385989 1387362 1387431) (-792 "PADEPAC.spad" 1384656 1384675 1385967 1385972) (-791 "PADE.spad" 1383396 1383412 1384646 1384651) (-790 "OWP.spad" 1382380 1382410 1383254 1383321) (-789 "OVAR.spad" 1382161 1382184 1382370 1382375) (-788 "OUT.spad" 1381245 1381253 1382151 1382156) (-787 "OUTFORM.spad" 1370659 1370667 1381235 1381240) (-786 "OSI.spad" 1370134 1370142 1370649 1370654) (-785 "ORTHPOL.spad" 1368595 1368605 1370051 1370056) (-784 "OREUP.spad" 1367955 1367983 1368277 1368316) (-783 "ORESUP.spad" 1367256 1367280 1367637 1367676) (-782 "OREPCTO.spad" 1365075 1365087 1367176 1367181) (-781 "OREPCAT.spad" 1359132 1359142 1365031 1365070) (-780 "OREPCAT.spad" 1353079 1353091 1358980 1358985) (-779 "ORDSET.spad" 1352245 1352253 1353069 1353074) (-778 "ORDSET.spad" 1351409 1351419 1352235 1352240) (-777 "ORDRING.spad" 1350799 1350807 1351389 1351404) (-776 "ORDRING.spad" 1350197 1350207 1350789 1350794) (-775 "ORDMON.spad" 1350052 1350060 1350187 1350192) (-774 "ORDFUNS.spad" 1349178 1349194 1350042 1350047) (-773 "ORDFIN.spad" 1349112 1349120 1349168 1349173) (-772 "ORDCOMP.spad" 1347580 1347590 1348662 1348691) (-771 "ORDCOMP2.spad" 1346865 1346877 1347570 1347575) (-770 "OPTPROB.spad" 1345445 1345453 1346855 1346860) (-769 "OPTPACK.spad" 1337830 1337838 1345435 1345440) (-768 "OPTCAT.spad" 1335505 1335513 1337820 1337825) (-767 "OPQUERY.spad" 1335054 1335062 1335495 1335500) (-766 "OP.spad" 1334796 1334806 1334876 1334943) (-765 "ONECOMP.spad" 1333544 1333554 1334346 1334375) (-764 "ONECOMP2.spad" 1332962 1332974 1333534 1333539) (-763 "OMSERVER.spad" 1331964 1331972 1332952 1332957) (-762 "OMSAGG.spad" 1331740 1331750 1331908 1331959) (-761 "OMPKG.spad" 1330352 1330360 1331730 1331735) (-760 "OM.spad" 1329317 1329325 1330342 1330347) (-759 "OMLO.spad" 1328742 1328754 1329203 1329242) (-758 "OMEXPR.spad" 1328576 1328586 1328732 1328737) (-757 "OMERR.spad" 1328119 1328127 1328566 1328571) (-756 "OMERRK.spad" 1327153 1327161 1328109 1328114) (-755 "OMENC.spad" 1326497 1326505 1327143 1327148) (-754 "OMDEV.spad" 1320786 1320794 1326487 1326492) (-753 "OMCONN.spad" 1320195 1320203 1320776 1320781) (-752 "OINTDOM.spad" 1319958 1319966 1320121 1320190) (-751 "OFMONOID.spad" 1316145 1316155 1319948 1319953) (-750 "ODVAR.spad" 1315406 1315416 1316135 1316140) (-749 "ODR.spad" 1314854 1314880 1315218 1315367) (-748 "ODPOL.spad" 1312203 1312213 1312543 1312670) (-747 "ODP.spad" 1304445 1304465 1304818 1304947) (-746 "ODETOOLS.spad" 1303028 1303047 1304435 1304440) (-745 "ODESYS.spad" 1300678 1300695 1303018 1303023) (-744 "ODERTRIC.spad" 1296619 1296636 1300635 1300640) (-743 "ODERED.spad" 1296006 1296030 1296609 1296614) (-742 "ODERAT.spad" 1293557 1293574 1295996 1296001) (-741 "ODEPRRIC.spad" 1290448 1290470 1293547 1293552) (-740 "ODEPROB.spad" 1289647 1289655 1290438 1290443) (-739 "ODEPRIM.spad" 1286921 1286943 1289637 1289642) (-738 "ODEPAL.spad" 1286297 1286321 1286911 1286916) (-737 "ODEPACK.spad" 1272899 1272907 1286287 1286292) (-736 "ODEINT.spad" 1272330 1272346 1272889 1272894) (-735 "ODEIFTBL.spad" 1269725 1269733 1272320 1272325) (-734 "ODEEF.spad" 1265092 1265108 1269715 1269720) (-733 "ODECONST.spad" 1264611 1264629 1265082 1265087) (-732 "ODECAT.spad" 1263207 1263215 1264601 1264606) (-731 "OCT.spad" 1261354 1261364 1262070 1262109) (-730 "OCTCT2.spad" 1260998 1261019 1261344 1261349) (-729 "OC.spad" 1258772 1258782 1260954 1260993) (-728 "OC.spad" 1256272 1256284 1258456 1258461) (-727 "OCAMON.spad" 1256120 1256128 1256262 1256267) (-726 "OASGP.spad" 1255935 1255943 1256110 1256115) (-725 "OAMONS.spad" 1255455 1255463 1255925 1255930) (-724 "OAMON.spad" 1255316 1255324 1255445 1255450) (-723 "OAGROUP.spad" 1255178 1255186 1255306 1255311) (-722 "NUMTUBE.spad" 1254765 1254781 1255168 1255173) (-721 "NUMQUAD.spad" 1242627 1242635 1254755 1254760) (-720 "NUMODE.spad" 1233763 1233771 1242617 1242622) (-719 "NUMINT.spad" 1231321 1231329 1233753 1233758) (-718 "NUMFMT.spad" 1230161 1230169 1231311 1231316) (-717 "NUMERIC.spad" 1222234 1222244 1229967 1229972) (-716 "NTSCAT.spad" 1220724 1220740 1222190 1222229) (-715 "NTPOLFN.spad" 1220269 1220279 1220641 1220646) (-714 "NSUP.spad" 1213287 1213297 1217827 1217980) (-713 "NSUP2.spad" 1212679 1212691 1213277 1213282) (-712 "NSMP.spad" 1208878 1208897 1209186 1209313) (-711 "NREP.spad" 1207250 1207264 1208868 1208873) (-710 "NPCOEF.spad" 1206496 1206516 1207240 1207245) (-709 "NORMRETR.spad" 1206094 1206133 1206486 1206491) (-708 "NORMPK.spad" 1203996 1204015 1206084 1206089) (-707 "NORMMA.spad" 1203684 1203710 1203986 1203991) (-706 "NONE.spad" 1203425 1203433 1203674 1203679) (-705 "NONE1.spad" 1203101 1203111 1203415 1203420) (-704 "NODE1.spad" 1202570 1202586 1203091 1203096) (-703 "NNI.spad" 1201457 1201465 1202544 1202565) (-702 "NLINSOL.spad" 1200079 1200089 1201447 1201452) (-701 "NIPROB.spad" 1198562 1198570 1200069 1200074) (-700 "NFINTBAS.spad" 1196022 1196039 1198552 1198557) (-699 "NCODIV.spad" 1194220 1194236 1196012 1196017) (-698 "NCNTFRAC.spad" 1193862 1193876 1194210 1194215) (-697 "NCEP.spad" 1192022 1192036 1193852 1193857) (-696 "NASRING.spad" 1191618 1191626 1192012 1192017) (-695 "NASRING.spad" 1191212 1191222 1191608 1191613) (-694 "NARNG.spad" 1190556 1190564 1191202 1191207) (-693 "NARNG.spad" 1189898 1189908 1190546 1190551) (-692 "NAGSP.spad" 1188971 1188979 1189888 1189893) (-691 "NAGS.spad" 1178496 1178504 1188961 1188966) (-690 "NAGF07.spad" 1176889 1176897 1178486 1178491) (-689 "NAGF04.spad" 1171121 1171129 1176879 1176884) (-688 "NAGF02.spad" 1164930 1164938 1171111 1171116) (-687 "NAGF01.spad" 1160533 1160541 1164920 1164925) (-686 "NAGE04.spad" 1153993 1154001 1160523 1160528) (-685 "NAGE02.spad" 1144335 1144343 1153983 1153988) (-684 "NAGE01.spad" 1140219 1140227 1144325 1144330) (-683 "NAGD03.spad" 1138139 1138147 1140209 1140214) (-682 "NAGD02.spad" 1130670 1130678 1138129 1138134) (-681 "NAGD01.spad" 1124783 1124791 1130660 1130665) (-680 "NAGC06.spad" 1120570 1120578 1124773 1124778) (-679 "NAGC05.spad" 1119039 1119047 1120560 1120565) (-678 "NAGC02.spad" 1118294 1118302 1119029 1119034) (-677 "NAALG.spad" 1117829 1117839 1118262 1118289) (-676 "NAALG.spad" 1117384 1117396 1117819 1117824) (-675 "MULTSQFR.spad" 1114342 1114359 1117374 1117379) (-674 "MULTFACT.spad" 1113725 1113742 1114332 1114337) (-673 "MTSCAT.spad" 1111759 1111780 1113623 1113720) (-672 "MTHING.spad" 1111416 1111426 1111749 1111754) (-671 "MSYSCMD.spad" 1110850 1110858 1111406 1111411) (-670 "MSET.spad" 1108848 1108858 1110612 1110651) (-669 "MSETAGG.spad" 1108681 1108691 1108804 1108843) (-668 "MRING.spad" 1105652 1105664 1108389 1108456) (-667 "MRF2.spad" 1105220 1105234 1105642 1105647) (-666 "MRATFAC.spad" 1104766 1104783 1105210 1105215) (-665 "MPRFF.spad" 1102796 1102815 1104756 1104761) (-664 "MPOLY.spad" 1100234 1100249 1100593 1100720) (-663 "MPCPF.spad" 1099498 1099517 1100224 1100229) (-662 "MPC3.spad" 1099313 1099353 1099488 1099493) (-661 "MPC2.spad" 1098955 1098988 1099303 1099308) (-660 "MONOTOOL.spad" 1097290 1097307 1098945 1098950) (-659 "MONOID.spad" 1096464 1096472 1097280 1097285) (-658 "MONOID.spad" 1095636 1095646 1096454 1096459) (-657 "MONOGEN.spad" 1094382 1094395 1095496 1095631) (-656 "MONOGEN.spad" 1093150 1093165 1094266 1094271) (-655 "MONADWU.spad" 1091164 1091172 1093140 1093145) (-654 "MONADWU.spad" 1089176 1089186 1091154 1091159) (-653 "MONAD.spad" 1088320 1088328 1089166 1089171) (-652 "MONAD.spad" 1087462 1087472 1088310 1088315) (-651 "MOEBIUS.spad" 1086148 1086162 1087442 1087457) (-650 "MODULE.spad" 1086018 1086028 1086116 1086143) (-649 "MODULE.spad" 1085908 1085920 1086008 1086013) (-648 "MODRING.spad" 1085239 1085278 1085888 1085903) (-647 "MODOP.spad" 1083898 1083910 1085061 1085128) (-646 "MODMONOM.spad" 1083430 1083448 1083888 1083893) (-645 "MODMON.spad" 1080140 1080156 1080916 1081069) (-644 "MODFIELD.spad" 1079498 1079537 1080042 1080135) (-643 "MMAP.spad" 1079238 1079272 1079488 1079493) (-642 "MLO.spad" 1077665 1077675 1079194 1079233) (-641 "MLIFT.spad" 1076237 1076254 1077655 1077660) (-640 "MKUCFUNC.spad" 1075770 1075788 1076227 1076232) (-639 "MKRECORD.spad" 1075372 1075385 1075760 1075765) (-638 "MKFUNC.spad" 1074753 1074763 1075362 1075367) (-637 "MKFLCFN.spad" 1073709 1073719 1074743 1074748) (-636 "MKCHSET.spad" 1073485 1073495 1073699 1073704) (-635 "MKBCFUNC.spad" 1072970 1072988 1073475 1073480) (-634 "MINT.spad" 1072409 1072417 1072872 1072965) (-633 "MHROWRED.spad" 1070910 1070920 1072399 1072404) (-632 "MFLOAT.spad" 1069355 1069363 1070800 1070905) (-631 "MFINFACT.spad" 1068755 1068777 1069345 1069350) (-630 "MESH.spad" 1066487 1066495 1068745 1068750) (-629 "MDDFACT.spad" 1064680 1064690 1066477 1066482) (-628 "MDAGG.spad" 1063955 1063965 1064648 1064675) (-627 "MCMPLX.spad" 1059935 1059943 1060549 1060750) (-626 "MCDEN.spad" 1059143 1059155 1059925 1059930) (-625 "MCALCFN.spad" 1056245 1056271 1059133 1059138) (-624 "MATSTOR.spad" 1053521 1053531 1056235 1056240) (-623 "MATRIX.spad" 1052448 1052458 1052932 1052959) (-622 "MATLIN.spad" 1049774 1049798 1052332 1052337) (-621 "MATCAT.spad" 1041347 1041369 1049730 1049769) (-620 "MATCAT.spad" 1032804 1032828 1041189 1041194) (-619 "MATCAT2.spad" 1032072 1032120 1032794 1032799) (-618 "MAPPKG3.spad" 1030971 1030985 1032062 1032067) (-617 "MAPPKG2.spad" 1030305 1030317 1030961 1030966) (-616 "MAPPKG1.spad" 1029123 1029133 1030295 1030300) (-615 "MAPHACK3.spad" 1028931 1028945 1029113 1029118) (-614 "MAPHACK2.spad" 1028696 1028708 1028921 1028926) (-613 "MAPHACK1.spad" 1028326 1028336 1028686 1028691) (-612 "MAGMA.spad" 1026116 1026133 1028316 1028321) (-611 "M3D.spad" 1024037 1024047 1025719 1025724) (-610 "LZSTAGG.spad" 1021255 1021265 1024017 1024032) (-609 "LZSTAGG.spad" 1018481 1018493 1021245 1021250) (-608 "LWORD.spad" 1015186 1015203 1018471 1018476) (-607 "LSQM.spad" 1013470 1013484 1013868 1013919) (-606 "LSPP.spad" 1013003 1013020 1013460 1013465) (-605 "LSMP.spad" 1011843 1011871 1012993 1012998) (-604 "LSMP1.spad" 1009647 1009661 1011833 1011838) (-603 "LSAGG.spad" 1009304 1009314 1009603 1009642) (-602 "LSAGG.spad" 1008993 1009005 1009294 1009299) (-601 "LPOLY.spad" 1007947 1007966 1008849 1008918) (-600 "LPEFRAC.spad" 1007204 1007214 1007937 1007942) (-599 "LO.spad" 1006605 1006619 1007138 1007165) (-598 "LOGIC.spad" 1006207 1006215 1006595 1006600) (-597 "LOGIC.spad" 1005807 1005817 1006197 1006202) (-596 "LODOOPS.spad" 1004725 1004737 1005797 1005802) (-595 "LODO.spad" 1004111 1004127 1004407 1004446) (-594 "LODOF.spad" 1003155 1003172 1004068 1004073) (-593 "LODOCAT.spad" 1001813 1001823 1003111 1003150) (-592 "LODOCAT.spad" 1000469 1000481 1001769 1001774) (-591 "LODO2.spad" 999744 999756 1000151 1000190) (-590 "LODO1.spad" 999146 999156 999426 999465) (-589 "LODEEF.spad" 997918 997936 999136 999141) (-588 "LNAGG.spad" 993710 993720 997898 997913) (-587 "LNAGG.spad" 989476 989488 993666 993671) (-586 "LMOPS.spad" 986212 986229 989466 989471) (-585 "LMODULE.spad" 985854 985864 986202 986207) (-584 "LMDICT.spad" 985360 985370 985628 985655) (-583 "LIST.spad" 983078 983088 984507 984534) (-582 "LIST3.spad" 982369 982383 983068 983073) (-581 "LIST2.spad" 981009 981021 982359 982364) (-580 "LIST2MAP.spad" 977886 977898 980999 981004) (-579 "LINEXP.spad" 977318 977328 977866 977881) (-578 "LINDEP.spad" 976095 976107 977230 977235) (-577 "LIMITRF.spad" 974009 974019 976085 976090) (-576 "LIMITPS.spad" 972892 972905 973999 974004) (-575 "LIE.spad" 970906 970918 972182 972327) (-574 "LIECAT.spad" 970382 970392 970832 970901) (-573 "LIECAT.spad" 969886 969898 970338 970343) (-572 "LIB.spad" 968516 968524 969127 969142) (-571 "LGROBP.spad" 965869 965888 968506 968511) (-570 "LF.spad" 964788 964804 965859 965864) (-569 "LFCAT.spad" 963807 963815 964778 964783) (-568 "LEXTRIPK.spad" 959310 959325 963797 963802) (-567 "LEXP.spad" 957313 957340 959290 959305) (-566 "LEADCDET.spad" 955697 955714 957303 957308) (-565 "LAZM3PK.spad" 954401 954423 955687 955692) (-564 "LAUPOL.spad" 953092 953105 953996 954065) (-563 "LAPLACE.spad" 952665 952681 953082 953087) (-562 "LA.spad" 952105 952119 952587 952626) (-561 "LALG.spad" 951881 951891 952085 952100) (-560 "LALG.spad" 951665 951677 951871 951876) (-559 "KOVACIC.spad" 950378 950395 951655 951660) (-558 "KONVERT.spad" 950100 950110 950368 950373) (-557 "KOERCE.spad" 949837 949847 950090 950095) (-556 "KERNEL.spad" 948372 948382 949621 949626) (-555 "KERNEL2.spad" 948075 948087 948362 948367) (-554 "KDAGG.spad" 947166 947188 948043 948070) (-553 "KDAGG.spad" 946277 946301 947156 947161) (-552 "KAFILE.spad" 945389 945405 945624 945651) (-551 "JORDAN.spad" 943216 943228 944679 944824) (-550 "IXAGG.spad" 941329 941353 943196 943211) (-549 "IXAGG.spad" 939307 939333 941176 941181) (-548 "IVECTOR.spad" 938303 938318 938458 938485) (-547 "ITUPLE.spad" 937448 937458 938293 938298) (-546 "ITRIGMNP.spad" 936259 936278 937438 937443) (-545 "ITFUN3.spad" 935753 935767 936249 936254) (-544 "ITFUN2.spad" 935483 935495 935743 935748) (-543 "ITAYLOR.spad" 933275 933290 935319 935444) (-542 "ISUPS.spad" 925686 925701 932249 932346) (-541 "ISUMP.spad" 925183 925199 925676 925681) (-540 "ISTRING.spad" 924186 924199 924352 924379) (-539 "IRURPK.spad" 922899 922918 924176 924181) (-538 "IRSN.spad" 920859 920867 922889 922894) (-537 "IRRF2F.spad" 919334 919344 920815 920820) (-536 "IRREDFFX.spad" 918935 918946 919324 919329) (-535 "IROOT.spad" 917266 917276 918925 918930) (-534 "IR.spad" 915056 915070 917122 917149) (-533 "IR2.spad" 914076 914092 915046 915051) (-532 "IR2F.spad" 913276 913292 914066 914071) (-531 "IPRNTPK.spad" 913036 913044 913266 913271) (-530 "IPF.spad" 912601 912613 912841 912934) (-529 "IPADIC.spad" 912362 912388 912527 912596) (-528 "INVLAPLA.spad" 912007 912023 912352 912357) (-527 "INTTR.spad" 905253 905270 911997 912002) (-526 "INTTOOLS.spad" 902965 902981 904828 904833) (-525 "INTSLPE.spad" 902271 902279 902955 902960) (-524 "INTRVL.spad" 901837 901847 902185 902266) (-523 "INTRF.spad" 900201 900215 901827 901832) (-522 "INTRET.spad" 899633 899643 900191 900196) (-521 "INTRAT.spad" 898308 898325 899623 899628) (-520 "INTPM.spad" 896671 896687 897951 897956) (-519 "INTPAF.spad" 894439 894457 896603 896608) (-518 "INTPACK.spad" 884749 884757 894429 894434) (-517 "INT.spad" 884110 884118 884603 884744) (-516 "INTHERTR.spad" 883376 883393 884100 884105) (-515 "INTHERAL.spad" 883042 883066 883366 883371) (-514 "INTHEORY.spad" 879455 879463 883032 883037) (-513 "INTG0.spad" 872918 872936 879387 879392) (-512 "INTFTBL.spad" 866947 866955 872908 872913) (-511 "INTFACT.spad" 866006 866016 866937 866942) (-510 "INTEF.spad" 864321 864337 865996 866001) (-509 "INTDOM.spad" 862936 862944 864247 864316) (-508 "INTDOM.spad" 861613 861623 862926 862931) (-507 "INTCAT.spad" 859866 859876 861527 861608) (-506 "INTBIT.spad" 859369 859377 859856 859861) (-505 "INTALG.spad" 858551 858578 859359 859364) (-504 "INTAF.spad" 858043 858059 858541 858546) (-503 "INTABL.spad" 857123 857154 857286 857313) (-502 "INS.spad" 854519 854527 857025 857118) (-501 "INS.spad" 852001 852011 854509 854514) (-500 "INPSIGN.spad" 851435 851448 851991 851996) (-499 "INPRODPF.spad" 850501 850520 851425 851430) (-498 "INPRODFF.spad" 849559 849583 850491 850496) (-497 "INNMFACT.spad" 848530 848547 849549 849554) (-496 "INMODGCD.spad" 848014 848044 848520 848525) (-495 "INFSP.spad" 846299 846321 848004 848009) (-494 "INFPROD0.spad" 845349 845368 846289 846294) (-493 "INFORM.spad" 842617 842625 845339 845344) (-492 "INFORM1.spad" 842242 842252 842607 842612) (-491 "INFINITY.spad" 841794 841802 842232 842237) (-490 "INEP.spad" 840326 840348 841784 841789) (-489 "INDE.spad" 840232 840249 840316 840321) (-488 "INCRMAPS.spad" 839653 839663 840222 840227) (-487 "INBFF.spad" 835423 835434 839643 839648) (-486 "IMATRIX.spad" 834591 834617 835103 835130) (-485 "IMATQF.spad" 833685 833729 834547 834552) (-484 "IMATLIN.spad" 832290 832314 833641 833646) (-483 "ILIST.spad" 830946 830961 831473 831500) (-482 "IIARRAY2.spad" 830557 830595 830776 830803) (-481 "IFF.spad" 829967 829983 830238 830331) (-480 "IFARRAY.spad" 827677 827692 829373 829400) (-479 "IFAMON.spad" 827539 827556 827633 827638) (-478 "IEVALAB.spad" 826928 826940 827529 827534) (-477 "IEVALAB.spad" 826315 826329 826918 826923) (-476 "IDPO.spad" 826113 826125 826305 826310) (-475 "IDPOAMS.spad" 825869 825881 826103 826108) (-474 "IDPOAM.spad" 825589 825601 825859 825864) (-473 "IDPC.spad" 824523 824535 825579 825584) (-472 "IDPAM.spad" 824268 824280 824513 824518) (-471 "IDPAG.spad" 824015 824027 824258 824263) (-470 "IDECOMP.spad" 821252 821270 824005 824010) (-469 "IDEAL.spad" 816175 816214 821187 821192) (-468 "ICDEN.spad" 815326 815342 816165 816170) (-467 "ICARD.spad" 814515 814523 815316 815321) (-466 "IBPTOOLS.spad" 813108 813125 814505 814510) (-465 "IBITS.spad" 812365 812378 812802 812829) (-464 "IBATOOL.spad" 809240 809259 812355 812360) (-463 "IBACHIN.spad" 807727 807742 809230 809235) (-462 "IARRAY2.spad" 806938 806964 807557 807584) (-461 "IARRAY1.spad" 806206 806221 806344 806371) (-460 "IAN.spad" 804421 804429 806024 806117) (-459 "IALGFACT.spad" 804022 804055 804411 804416) (-458 "HYPCAT.spad" 803446 803454 804012 804017) (-457 "HYPCAT.spad" 802868 802878 803436 803441) (-456 "HOAGG.spad" 800126 800136 802848 802863) (-455 "HOAGG.spad" 797169 797181 799893 799898) (-454 "HEXADEC.spad" 795041 795049 795639 795732) (-453 "HEUGCD.spad" 794056 794067 795031 795036) (-452 "HELLFDIV.spad" 793646 793670 794046 794051) (-451 "HEAP.spad" 793261 793271 793476 793503) (-450 "HDP.spad" 785499 785515 785876 786005) (-449 "HDMP.spad" 782678 782693 783296 783423) (-448 "HB.spad" 780915 780923 782668 782673) (-447 "HASHTBL.spad" 779947 779978 780158 780185) (-446 "HACKPI.spad" 779430 779438 779849 779942) (-445 "GTSET.spad" 778425 778441 779132 779159) (-444 "GSTBL.spad" 777506 777541 777680 777695) (-443 "GSERIES.spad" 774673 774700 775638 775787) (-442 "GROUP.spad" 773847 773855 774653 774668) (-441 "GROUP.spad" 773029 773039 773837 773842) (-440 "GROEBSOL.spad" 771517 771538 773019 773024) (-439 "GRMOD.spad" 770088 770100 771507 771512) (-438 "GRMOD.spad" 768657 768671 770078 770083) (-437 "GRIMAGE.spad" 761262 761270 768647 768652) (-436 "GRDEF.spad" 759641 759649 761252 761257) (-435 "GRAY.spad" 758100 758108 759631 759636) (-434 "GRALG.spad" 757147 757159 758090 758095) (-433 "GRALG.spad" 756192 756206 757137 757142) (-432 "GPOLSET.spad" 755702 755725 755930 755957) (-431 "GOSPER.spad" 754967 754985 755692 755697) (-430 "GMODPOL.spad" 754105 754132 754935 754962) (-429 "GHENSEL.spad" 753174 753188 754095 754100) (-428 "GENUPS.spad" 749275 749288 753164 753169) (-427 "GENUFACT.spad" 748852 748862 749265 749270) (-426 "GENPGCD.spad" 748436 748453 748842 748847) (-425 "GENMFACT.spad" 747888 747907 748426 748431) (-424 "GENEEZ.spad" 745827 745840 747878 747883) (-423 "GDMP.spad" 742848 742865 743624 743751) (-422 "GCNAALG.spad" 736743 736770 742642 742709) (-421 "GCDDOM.spad" 735915 735923 736669 736738) (-420 "GCDDOM.spad" 735149 735159 735905 735910) (-419 "GB.spad" 732667 732705 735105 735110) (-418 "GBINTERN.spad" 728687 728725 732657 732662) (-417 "GBF.spad" 724444 724482 728677 728682) (-416 "GBEUCLID.spad" 722318 722356 724434 724439) (-415 "GAUSSFAC.spad" 721615 721623 722308 722313) (-414 "GALUTIL.spad" 719937 719947 721571 721576) (-413 "GALPOLYU.spad" 718383 718396 719927 719932) (-412 "GALFACTU.spad" 716548 716567 718373 718378) (-411 "GALFACT.spad" 706681 706692 716538 716543) (-410 "FVFUN.spad" 703694 703702 706661 706676) (-409 "FVC.spad" 702736 702744 703674 703689) (-408 "FUNCTION.spad" 702585 702597 702726 702731) (-407 "FT.spad" 700797 700805 702575 702580) (-406 "FTEM.spad" 699960 699968 700787 700792) (-405 "FSUPFACT.spad" 698861 698880 699897 699902) (-404 "FST.spad" 696947 696955 698851 698856) (-403 "FSRED.spad" 696425 696441 696937 696942) (-402 "FSPRMELT.spad" 695249 695265 696382 696387) (-401 "FSPECF.spad" 693326 693342 695239 695244) (-400 "FS.spad" 687377 687387 693090 693321) (-399 "FS.spad" 681219 681231 686934 686939) (-398 "FSINT.spad" 680877 680893 681209 681214) (-397 "FSERIES.spad" 680064 680076 680697 680796) (-396 "FSCINT.spad" 679377 679393 680054 680059) (-395 "FSAGG.spad" 678482 678492 679321 679372) (-394 "FSAGG.spad" 677561 677573 678402 678407) (-393 "FSAGG2.spad" 676260 676276 677551 677556) (-392 "FS2UPS.spad" 670649 670683 676250 676255) (-391 "FS2.spad" 670294 670310 670639 670644) (-390 "FS2EXPXP.spad" 669417 669440 670284 670289) (-389 "FRUTIL.spad" 668359 668369 669407 669412) (-388 "FR.spad" 662056 662066 667386 667455) (-387 "FRNAALG.spad" 657143 657153 661998 662051) (-386 "FRNAALG.spad" 652242 652254 657099 657104) (-385 "FRNAAF2.spad" 651696 651714 652232 652237) (-384 "FRMOD.spad" 651091 651121 651628 651633) (-383 "FRIDEAL.spad" 650286 650307 651071 651086) (-382 "FRIDEAL2.spad" 649888 649920 650276 650281) (-381 "FRETRCT.spad" 649399 649409 649878 649883) (-380 "FRETRCT.spad" 648778 648790 649259 649264) (-379 "FRAMALG.spad" 647106 647119 648734 648773) (-378 "FRAMALG.spad" 645466 645481 647096 647101) (-377 "FRAC.spad" 642569 642579 642972 643145) (-376 "FRAC2.spad" 642172 642184 642559 642564) (-375 "FR2.spad" 641506 641518 642162 642167) (-374 "FPS.spad" 638315 638323 641396 641501) (-373 "FPS.spad" 635152 635162 638235 638240) (-372 "FPC.spad" 634194 634202 635054 635147) (-371 "FPC.spad" 633322 633332 634184 634189) (-370 "FPATMAB.spad" 633074 633084 633302 633317) (-369 "FPARFRAC.spad" 631547 631564 633064 633069) (-368 "FORTRAN.spad" 630047 630096 631537 631542) (-367 "FORT.spad" 628976 628984 630037 630042) (-366 "FORTFN.spad" 626136 626144 628956 628971) (-365 "FORTCAT.spad" 625810 625818 626116 626131) (-364 "FORMULA.spad" 623148 623156 625800 625805) (-363 "FORMULA1.spad" 622627 622637 623138 623143) (-362 "FORDER.spad" 622318 622342 622617 622622) (-361 "FOP.spad" 621519 621527 622308 622313) (-360 "FNLA.spad" 620943 620965 621487 621514) (-359 "FNCAT.spad" 619271 619279 620933 620938) (-358 "FNAME.spad" 619163 619171 619261 619266) (-357 "FMTC.spad" 618961 618969 619089 619158) (-356 "FMONOID.spad" 616016 616026 618917 618922) (-355 "FM.spad" 615711 615723 615950 615977) (-354 "FMFUN.spad" 612731 612739 615691 615706) (-353 "FMC.spad" 611773 611781 612711 612726) (-352 "FMCAT.spad" 609427 609445 611741 611768) (-351 "FM1.spad" 608784 608796 609361 609388) (-350 "FLOATRP.spad" 606505 606519 608774 608779) (-349 "FLOAT.spad" 599669 599677 606371 606500) (-348 "FLOATCP.spad" 597086 597100 599659 599664) (-347 "FLINEXP.spad" 596798 596808 597066 597081) (-346 "FLINEXP.spad" 596464 596476 596734 596739) (-345 "FLASORT.spad" 595784 595796 596454 596459) (-344 "FLALG.spad" 593430 593449 595710 595779) (-343 "FLAGG.spad" 590436 590446 593398 593425) (-342 "FLAGG.spad" 587355 587367 590319 590324) (-341 "FLAGG2.spad" 586036 586052 587345 587350) (-340 "FINRALG.spad" 584065 584078 585992 586031) (-339 "FINRALG.spad" 582020 582035 583949 583954) (-338 "FINITE.spad" 581172 581180 582010 582015) (-337 "FINAALG.spad" 570153 570163 581114 581167) (-336 "FINAALG.spad" 559146 559158 570109 570114) (-335 "FILE.spad" 558729 558739 559136 559141) (-334 "FILECAT.spad" 557247 557264 558719 558724) (-333 "FIELD.spad" 556653 556661 557149 557242) (-332 "FIELD.spad" 556145 556155 556643 556648) (-331 "FGROUP.spad" 554754 554764 556125 556140) (-330 "FGLMICPK.spad" 553541 553556 554744 554749) (-329 "FFX.spad" 552916 552931 553257 553350) (-328 "FFSLPE.spad" 552405 552426 552906 552911) (-327 "FFPOLY.spad" 543657 543668 552395 552400) (-326 "FFPOLY2.spad" 542717 542734 543647 543652) (-325 "FFP.spad" 542114 542134 542433 542526) (-324 "FF.spad" 541562 541578 541795 541888) (-323 "FFNBX.spad" 540074 540094 541278 541371) (-322 "FFNBP.spad" 538587 538604 539790 539883) (-321 "FFNB.spad" 537052 537073 538268 538361) (-320 "FFINTBAS.spad" 534466 534485 537042 537047) (-319 "FFIELDC.spad" 532041 532049 534368 534461) (-318 "FFIELDC.spad" 529702 529712 532031 532036) (-317 "FFHOM.spad" 528450 528467 529692 529697) (-316 "FFF.spad" 525885 525896 528440 528445) (-315 "FFCGX.spad" 524732 524752 525601 525694) (-314 "FFCGP.spad" 523621 523641 524448 524541) (-313 "FFCG.spad" 522413 522434 523302 523395) (-312 "FFCAT.spad" 515314 515336 522252 522408) (-311 "FFCAT.spad" 508294 508318 515234 515239) (-310 "FFCAT2.spad" 508039 508079 508284 508289) (-309 "FEXPR.spad" 499752 499798 507799 507838) (-308 "FEVALAB.spad" 499458 499468 499742 499747) (-307 "FEVALAB.spad" 498949 498961 499235 499240) (-306 "FDIV.spad" 498391 498415 498939 498944) (-305 "FDIVCAT.spad" 496433 496457 498381 498386) (-304 "FDIVCAT.spad" 494473 494499 496423 496428) (-303 "FDIV2.spad" 494127 494167 494463 494468) (-302 "FCPAK1.spad" 492680 492688 494117 494122) (-301 "FCOMP.spad" 492059 492069 492670 492675) (-300 "FC.spad" 481884 481892 492049 492054) (-299 "FAXF.spad" 474819 474833 481786 481879) (-298 "FAXF.spad" 467806 467822 474775 474780) (-297 "FARRAY.spad" 466175 466185 467212 467239) (-296 "FAMR.spad" 464295 464307 466073 466170) (-295 "FAMR.spad" 462399 462413 464179 464184) (-294 "FAMONOID.spad" 462049 462059 462353 462358) (-293 "FAMONC.spad" 460271 460283 462039 462044) (-292 "FAGROUP.spad" 459877 459887 460167 460194) (-291 "FACUTIL.spad" 458073 458090 459867 459872) (-290 "FACTFUNC.spad" 457249 457259 458063 458068) (-289 "EXPUPXS.spad" 454082 454105 455381 455530) (-288 "EXPRTUBE.spad" 451310 451318 454072 454077) (-287 "EXPRODE.spad" 448182 448198 451300 451305) (-286 "EXPR.spad" 443484 443494 444198 444601) (-285 "EXPR2UPS.spad" 439576 439589 443474 443479) (-284 "EXPR2.spad" 439279 439291 439566 439571) (-283 "EXPEXPAN.spad" 436220 436245 436854 436947) (-282 "EXIT.spad" 435891 435899 436210 436215) (-281 "EVALCYC.spad" 435349 435363 435881 435886) (-280 "EVALAB.spad" 434913 434923 435339 435344) (-279 "EVALAB.spad" 434475 434487 434903 434908) (-278 "EUCDOM.spad" 432017 432025 434401 434470) (-277 "EUCDOM.spad" 429621 429631 432007 432012) (-276 "ESTOOLS.spad" 421461 421469 429611 429616) (-275 "ESTOOLS2.spad" 421062 421076 421451 421456) (-274 "ESTOOLS1.spad" 420747 420758 421052 421057) (-273 "ES.spad" 413294 413302 420737 420742) (-272 "ES.spad" 405749 405759 413194 413199) (-271 "ESCONT.spad" 402522 402530 405739 405744) (-270 "ESCONT1.spad" 402271 402283 402512 402517) (-269 "ES2.spad" 401766 401782 402261 402266) (-268 "ES1.spad" 401332 401348 401756 401761) (-267 "ERROR.spad" 398653 398661 401322 401327) (-266 "EQTBL.spad" 397687 397709 397896 397923) (-265 "EQ.spad" 392571 392581 395370 395479) (-264 "EQ2.spad" 392287 392299 392561 392566) (-263 "EP.spad" 388601 388611 392277 392282) (-262 "ENTIRER.spad" 388269 388277 388545 388596) (-261 "EMR.spad" 387470 387511 388195 388264) (-260 "ELTAGG.spad" 385710 385729 387460 387465) (-259 "ELTAGG.spad" 383914 383935 385666 385671) (-258 "ELTAB.spad" 383361 383379 383904 383909) (-257 "ELFUTS.spad" 382740 382759 383351 383356) (-256 "ELEMFUN.spad" 382429 382437 382730 382735) (-255 "ELEMFUN.spad" 382116 382126 382419 382424) (-254 "ELAGG.spad" 380047 380057 382084 382111) (-253 "ELAGG.spad" 377927 377939 379966 379971) (-252 "EFUPXS.spad" 374703 374733 377883 377888) (-251 "EFULS.spad" 371539 371562 374659 374664) (-250 "EFSTRUC.spad" 369494 369510 371529 371534) (-249 "EF.spad" 364260 364276 369484 369489) (-248 "EAB.spad" 362536 362544 364250 364255) (-247 "E04UCFA.spad" 362072 362080 362526 362531) (-246 "E04NAFA.spad" 361649 361657 362062 362067) (-245 "E04MBFA.spad" 361229 361237 361639 361644) (-244 "E04JAFA.spad" 360765 360773 361219 361224) (-243 "E04GCFA.spad" 360301 360309 360755 360760) (-242 "E04FDFA.spad" 359837 359845 360291 360296) (-241 "E04DGFA.spad" 359373 359381 359827 359832) (-240 "E04AGNT.spad" 355215 355223 359363 359368) (-239 "DVARCAT.spad" 351900 351910 355205 355210) (-238 "DVARCAT.spad" 348583 348595 351890 351895) (-237 "DSMP.spad" 346017 346031 346322 346449) (-236 "DROPT.spad" 339962 339970 346007 346012) (-235 "DROPT1.spad" 339625 339635 339952 339957) (-234 "DROPT0.spad" 334452 334460 339615 339620) (-233 "DRAWPT.spad" 332607 332615 334442 334447) (-232 "DRAW.spad" 325207 325220 332597 332602) (-231 "DRAWHACK.spad" 324515 324525 325197 325202) (-230 "DRAWCX.spad" 321957 321965 324505 324510) (-229 "DRAWCURV.spad" 321494 321509 321947 321952) (-228 "DRAWCFUN.spad" 310666 310674 321484 321489) (-227 "DQAGG.spad" 308822 308832 310622 310661) (-226 "DPOLCAT.spad" 304163 304179 308690 308817) (-225 "DPOLCAT.spad" 299590 299608 304119 304124) (-224 "DPMO.spad" 293633 293649 293771 294067) (-223 "DPMM.spad" 287689 287707 287814 288110) (-222 "domain.spad" 287458 287466 287679 287684) (-221 "DMP.spad" 284683 284698 285255 285382) (-220 "DLP.spad" 284031 284041 284673 284678) (-219 "DLIST.spad" 282666 282676 283437 283464) (-218 "DLAGG.spad" 281067 281077 282646 282661) (-217 "DIVRING.spad" 280514 280522 281011 281062) (-216 "DIVRING.spad" 280005 280015 280504 280509) (-215 "DISPLAY.spad" 278185 278193 279995 280000) (-214 "DIRPROD.spad" 270160 270176 270800 270929) (-213 "DIRPROD2.spad" 268968 268986 270150 270155) (-212 "DIRPCAT.spad" 267900 267916 268822 268963) (-211 "DIRPCAT.spad" 266572 266590 267496 267501) (-210 "DIOSP.spad" 265397 265405 266562 266567) (-209 "DIOPS.spad" 264369 264379 265365 265392) (-208 "DIOPS.spad" 263327 263339 264325 264330) (-207 "DIFRING.spad" 262619 262627 263307 263322) (-206 "DIFRING.spad" 261919 261929 262609 262614) (-205 "DIFEXT.spad" 261078 261088 261899 261914) (-204 "DIFEXT.spad" 260154 260166 260977 260982) (-203 "DIAGG.spad" 259772 259782 260122 260149) (-202 "DIAGG.spad" 259410 259422 259762 259767) (-201 "DHMATRIX.spad" 257937 257947 259090 259117) (-200 "DFSFUN.spad" 251345 251353 257927 257932) (-199 "DFLOAT.spad" 247868 247876 251235 251340) (-198 "DFINTTLS.spad" 246077 246093 247858 247863) (-197 "DERHAM.spad" 243987 244019 246057 246072) (-196 "DEQUEUE.spad" 243528 243538 243817 243844) (-195 "DEGRED.spad" 243143 243157 243518 243523) (-194 "DEFINTRF.spad" 240668 240678 243133 243138) (-193 "DEFINTEF.spad" 239164 239180 240658 240663) (-192 "DECIMAL.spad" 237048 237056 237634 237727) (-191 "DDFACT.spad" 234847 234864 237038 237043) (-190 "DBLRESP.spad" 234445 234469 234837 234842) (-189 "DBASE.spad" 233017 233027 234435 234440) (-188 "D03FAFA.spad" 232845 232853 233007 233012) (-187 "D03EEFA.spad" 232665 232673 232835 232840) (-186 "D03AGNT.spad" 231745 231753 232655 232660) (-185 "D02EJFA.spad" 231207 231215 231735 231740) (-184 "D02CJFA.spad" 230685 230693 231197 231202) (-183 "D02BHFA.spad" 230175 230183 230675 230680) (-182 "D02BBFA.spad" 229665 229673 230165 230170) (-181 "D02AGNT.spad" 224469 224477 229655 229660) (-180 "D01WGTS.spad" 222788 222796 224459 224464) (-179 "D01TRNS.spad" 222765 222773 222778 222783) (-178 "D01GBFA.spad" 222287 222295 222755 222760) (-177 "D01FCFA.spad" 221809 221817 222277 222282) (-176 "D01ASFA.spad" 221277 221285 221799 221804) (-175 "D01AQFA.spad" 220723 220731 221267 221272) (-174 "D01APFA.spad" 220147 220155 220713 220718) (-173 "D01ANFA.spad" 219641 219649 220137 220142) (-172 "D01AMFA.spad" 219151 219159 219631 219636) (-171 "D01ALFA.spad" 218691 218699 219141 219146) (-170 "D01AKFA.spad" 218217 218225 218681 218686) (-169 "D01AJFA.spad" 217740 217748 218207 218212) (-168 "D01AGNT.spad" 213799 213807 217730 217735) (-167 "CYCLOTOM.spad" 213305 213313 213789 213794) (-166 "CYCLES.spad" 210137 210145 213295 213300) (-165 "CVMP.spad" 209554 209564 210127 210132) (-164 "CTRIGMNP.spad" 208044 208060 209544 209549) (-163 "CSTTOOLS.spad" 207287 207300 208034 208039) (-162 "CRFP.spad" 200991 201004 207277 207282) (-161 "CRAPACK.spad" 200034 200044 200981 200986) (-160 "CPMATCH.spad" 199534 199549 199959 199964) (-159 "CPIMA.spad" 199239 199258 199524 199529) (-158 "COORDSYS.spad" 194132 194142 199229 199234) (-157 "CONTFRAC.spad" 189744 189754 194034 194127) (-156 "COMRING.spad" 189418 189426 189682 189739) (-155 "COMPPROP.spad" 188932 188940 189408 189413) (-154 "COMPLPAT.spad" 188699 188714 188922 188927) (-153 "COMPLEX.spad" 182732 182742 182976 183237) (-152 "COMPLEX2.spad" 182445 182457 182722 182727) (-151 "COMPFACT.spad" 182047 182061 182435 182440) (-150 "COMPCAT.spad" 180103 180113 181769 182042) (-149 "COMPCAT.spad" 177866 177878 179534 179539) (-148 "COMMUPC.spad" 177612 177630 177856 177861) (-147 "COMMONOP.spad" 177145 177153 177602 177607) (-146 "COMM.spad" 176954 176962 177135 177140) (-145 "COMBOPC.spad" 175859 175867 176944 176949) (-144 "COMBINAT.spad" 174604 174614 175849 175854) (-143 "COMBF.spad" 171972 171988 174594 174599) (-142 "COLOR.spad" 170809 170817 171962 171967) (-141 "CMPLXRT.spad" 170518 170535 170799 170804) (-140 "CLIP.spad" 166610 166618 170508 170513) (-139 "CLIF.spad" 165249 165265 166566 166605) (-138 "CLAGG.spad" 161724 161734 165229 165244) (-137 "CLAGG.spad" 158080 158092 161587 161592) (-136 "CINTSLPE.spad" 157405 157418 158070 158075) (-135 "CHVAR.spad" 155483 155505 157395 157400) (-134 "CHARZ.spad" 155398 155406 155463 155478) (-133 "CHARPOL.spad" 154906 154916 155388 155393) (-132 "CHARNZ.spad" 154659 154667 154886 154901) (-131 "CHAR.spad" 152549 152557 154649 154654) (-130 "CFCAT.spad" 151865 151873 152539 152544) (-129 "CDEN.spad" 151023 151037 151855 151860) (-128 "CCLASS.spad" 149230 149238 150492 150531) (-127 "CARTEN.spad" 144333 144357 149220 149225) (-126 "CARTEN2.spad" 143719 143746 144323 144328) (-125 "CARD.spad" 141008 141016 143693 143714) (-124 "CACHSET.spad" 140630 140638 140998 141003) (-123 "CABMON.spad" 140183 140191 140620 140625) (-122 "BTREE.spad" 139475 139485 140013 140040) (-121 "BTOURN.spad" 138701 138711 139305 139332) (-120 "BTCAT.spad" 138077 138087 138657 138696) (-119 "BTCAT.spad" 137485 137497 138067 138072) (-118 "BTAGG.spad" 136501 136509 137441 137480) (-117 "BTAGG.spad" 135549 135559 136491 136496) (-116 "BSTREE.spad" 134507 134517 135379 135406) (-115 "BRILL.spad" 132702 132713 134497 134502) (-114 "BRAGG.spad" 131616 131626 132682 132697) (-113 "BRAGG.spad" 130504 130516 131572 131577) (-112 "BPADICRT.spad" 128488 128500 128743 128836) (-111 "BPADIC.spad" 128152 128164 128414 128483) (-110 "BOUNDZRO.spad" 127808 127825 128142 128147) (-109 "BOP.spad" 123272 123280 127798 127803) (-108 "BOP1.spad" 120658 120668 123228 123233) (-107 "BOOLEAN.spad" 119516 119524 120648 120653) (-106 "BMODULE.spad" 119228 119240 119484 119511) (-105 "BITS.spad" 118705 118713 118922 118949) (-104 "BINFILE.spad" 118048 118056 118695 118700) (-103 "BINARY.spad" 115941 115949 116518 116611) (-102 "BGAGG.spad" 115126 115136 115909 115936) (-101 "BGAGG.spad" 114331 114343 115116 115121) (-100 "BFUNCT.spad" 113895 113903 114311 114326) (-99 "BEZOUT.spad" 113030 113056 113845 113850) (-98 "BBTREE.spad" 110073 110082 112860 112887) (-97 "BASTYPE.spad" 109746 109753 110063 110068) (-96 "BASTYPE.spad" 109417 109426 109736 109741) (-95 "BALFACT.spad" 108857 108869 109407 109412) (-94 "AUTOMOR.spad" 108304 108313 108837 108852) (-93 "ATTREG.spad" 105023 105030 108056 108299) (-92 "ATTRBUT.spad" 101046 101053 105003 105018) (-91 "ATRIG.spad" 100516 100523 101036 101041) (-90 "ATRIG.spad" 99984 99993 100506 100511) (-89 "ASTACK.spad" 99540 99549 99814 99841) (-88 "ASSOCEQ.spad" 98340 98351 99496 99501) (-87 "ASP9.spad" 97421 97434 98330 98335) (-86 "ASP8.spad" 96464 96477 97411 97416) (-85 "ASP80.spad" 95786 95799 96454 96459) (-84 "ASP7.spad" 94946 94959 95776 95781) (-83 "ASP78.spad" 94397 94410 94936 94941) (-82 "ASP77.spad" 93766 93779 94387 94392) (-81 "ASP74.spad" 92858 92871 93756 93761) (-80 "ASP73.spad" 92129 92142 92848 92853) (-79 "ASP6.spad" 90761 90774 92119 92124) (-78 "ASP55.spad" 89270 89283 90751 90756) (-77 "ASP50.spad" 87087 87100 89260 89265) (-76 "ASP4.spad" 86382 86395 87077 87082) (-75 "ASP49.spad" 85381 85394 86372 86377) (-74 "ASP42.spad" 83788 83827 85371 85376) (-73 "ASP41.spad" 82367 82406 83778 83783) (-72 "ASP35.spad" 81355 81368 82357 82362) (-71 "ASP34.spad" 80656 80669 81345 81350) (-70 "ASP33.spad" 80216 80229 80646 80651) (-69 "ASP31.spad" 79356 79369 80206 80211) (-68 "ASP30.spad" 78248 78261 79346 79351) (-67 "ASP29.spad" 77714 77727 78238 78243) (-66 "ASP28.spad" 68987 69000 77704 77709) (-65 "ASP27.spad" 67884 67897 68977 68982) (-64 "ASP24.spad" 66971 66984 67874 67879) (-63 "ASP20.spad" 66187 66200 66961 66966) (-62 "ASP1.spad" 65568 65581 66177 66182) (-61 "ASP19.spad" 60254 60267 65558 65563) (-60 "ASP12.spad" 59668 59681 60244 60249) (-59 "ASP10.spad" 58939 58952 59658 59663) (-58 "ARRAY2.spad" 58522 58531 58769 58796) (-57 "ARRAY1.spad" 57580 57589 57928 57955) (-56 "ARRAY12.spad" 56249 56260 57570 57575) (-55 "ARR2CAT.spad" 51899 51920 56205 56244) (-54 "ARR2CAT.spad" 47581 47604 51889 51894) (-53 "APPRULE.spad" 46825 46847 47571 47576) (-52 "APPLYORE.spad" 46440 46453 46815 46820) (-51 "ANY.spad" 44782 44789 46430 46435) (-50 "ANY1.spad" 43853 43862 44772 44777) (-49 "ANTISYM.spad" 42292 42308 43833 43848) (-48 "ANON.spad" 42205 42212 42282 42287) (-47 "AN.spad" 40508 40515 42023 42116) (-46 "AMR.spad" 38687 38698 40406 40503) (-45 "AMR.spad" 36703 36716 38424 38429) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-1185 NIL 2205518 2205523 2205528 2205533) (-3 NIL 2205498 2205503 2205508 2205513) (-2 NIL 2205478 2205483 2205488 2205493) (-1 NIL 2205458 2205463 2205468 2205473) (0 NIL 2205438 2205443 2205448 2205453) (-1180 "ZMOD.spad" 2205247 2205260 2205376 2205433) (-1179 "ZLINDEP.spad" 2204291 2204302 2205237 2205242) (-1178 "ZDSOLVE.spad" 2194140 2194162 2204281 2204286) (-1177 "YSTREAM.spad" 2193633 2193644 2194130 2194135) (-1176 "XRPOLY.spad" 2192853 2192873 2193489 2193558) (-1175 "XPR.spad" 2190582 2190595 2192571 2192670) (-1174 "XPOLY.spad" 2190137 2190148 2190438 2190507) (-1173 "XPOLYC.spad" 2189454 2189470 2190063 2190132) (-1172 "XPBWPOLY.spad" 2187891 2187911 2189234 2189303) (-1171 "XF.spad" 2186352 2186367 2187793 2187886) (-1170 "XF.spad" 2184793 2184810 2186236 2186241) (-1169 "XFALG.spad" 2181817 2181833 2184719 2184788) (-1168 "XEXPPKG.spad" 2181068 2181094 2181807 2181812) (-1167 "XDPOLY.spad" 2180682 2180698 2180924 2180993) (-1166 "XALG.spad" 2180280 2180291 2180638 2180677) (-1165 "WUTSET.spad" 2176175 2176192 2179982 2180009) (-1164 "WP.spad" 2175189 2175233 2176033 2176100) (-1163 "WFFINTBS.spad" 2172752 2172774 2175179 2175184) (-1162 "WEIER.spad" 2170966 2170977 2172742 2172747) (-1161 "VSPACE.spad" 2170639 2170650 2170934 2170961) (-1160 "VSPACE.spad" 2170332 2170345 2170629 2170634) (-1159 "VOID.spad" 2169922 2169931 2170322 2170327) (-1158 "VIEW.spad" 2167544 2167553 2169912 2169917) (-1157 "VIEWDEF.spad" 2162741 2162750 2167534 2167539) (-1156 "VIEW3D.spad" 2146576 2146585 2162731 2162736) (-1155 "VIEW2D.spad" 2134313 2134322 2146566 2146571) (-1154 "VECTOR.spad" 2132990 2133001 2133241 2133268) (-1153 "VECTOR2.spad" 2131617 2131630 2132980 2132985) (-1152 "VECTCAT.spad" 2129505 2129516 2131573 2131612) (-1151 "VECTCAT.spad" 2127214 2127227 2129284 2129289) (-1150 "VARIABLE.spad" 2126994 2127009 2127204 2127209) (-1149 "UTSODETL.spad" 2126287 2126311 2126950 2126955) (-1148 "UTSODE.spad" 2124475 2124495 2126277 2126282) (-1147 "UTS.spad" 2119264 2119292 2122942 2123039) (-1146 "UTSCAT.spad" 2116715 2116731 2119162 2119259) (-1145 "UTSCAT.spad" 2113810 2113828 2116259 2116264) (-1144 "UTS2.spad" 2113403 2113438 2113800 2113805) (-1143 "URAGG.spad" 2108025 2108036 2113383 2113398) (-1142 "URAGG.spad" 2102621 2102634 2107981 2107986) (-1141 "UPXSSING.spad" 2100267 2100293 2101705 2101838) (-1140 "UPXS.spad" 2097294 2097322 2098399 2098548) (-1139 "UPXSCONS.spad" 2095051 2095071 2095426 2095575) (-1138 "UPXSCCA.spad" 2093509 2093529 2094897 2095046) (-1137 "UPXSCCA.spad" 2092109 2092131 2093499 2093504) (-1136 "UPXSCAT.spad" 2090690 2090706 2091955 2092104) (-1135 "UPXS2.spad" 2090231 2090284 2090680 2090685) (-1134 "UPSQFREE.spad" 2088643 2088657 2090221 2090226) (-1133 "UPSCAT.spad" 2086236 2086260 2088541 2088638) (-1132 "UPSCAT.spad" 2083535 2083561 2085842 2085847) (-1131 "UPOLYC.spad" 2078513 2078524 2083377 2083530) (-1130 "UPOLYC.spad" 2073383 2073396 2078249 2078254) (-1129 "UPOLYC2.spad" 2072852 2072871 2073373 2073378) (-1128 "UP.spad" 2069902 2069917 2070410 2070563) (-1127 "UPMP.spad" 2068792 2068805 2069892 2069897) (-1126 "UPDIVP.spad" 2068355 2068369 2068782 2068787) (-1125 "UPDECOMP.spad" 2066592 2066606 2068345 2068350) (-1124 "UPCDEN.spad" 2065799 2065815 2066582 2066587) (-1123 "UP2.spad" 2065161 2065182 2065789 2065794) (-1122 "UNISEG.spad" 2064514 2064525 2065080 2065085) (-1121 "UNISEG2.spad" 2064007 2064020 2064470 2064475) (-1120 "UNIFACT.spad" 2063108 2063120 2063997 2064002) (-1119 "ULS.spad" 2053667 2053695 2054760 2055189) (-1118 "ULSCONS.spad" 2047710 2047730 2048082 2048231) (-1117 "ULSCCAT.spad" 2045307 2045327 2047530 2047705) (-1116 "ULSCCAT.spad" 2043038 2043060 2045263 2045268) (-1115 "ULSCAT.spad" 2041254 2041270 2042884 2043033) (-1114 "ULS2.spad" 2040766 2040819 2041244 2041249) (-1113 "UFD.spad" 2039831 2039840 2040692 2040761) (-1112 "UFD.spad" 2038958 2038969 2039821 2039826) (-1111 "UDVO.spad" 2037805 2037814 2038948 2038953) (-1110 "UDPO.spad" 2035232 2035243 2037761 2037766) (-1109 "TYPE.spad" 2035154 2035163 2035212 2035227) (-1108 "TWOFACT.spad" 2033804 2033819 2035144 2035149) (-1107 "TUPLE.spad" 2033190 2033201 2033703 2033708) (-1106 "TUBETOOL.spad" 2030027 2030036 2033180 2033185) (-1105 "TUBE.spad" 2028668 2028685 2030017 2030022) (-1104 "TS.spad" 2027257 2027273 2028233 2028330) (-1103 "TSETCAT.spad" 2014372 2014389 2027213 2027252) (-1102 "TSETCAT.spad" 2001485 2001504 2014328 2014333) (-1101 "TRMANIP.spad" 1995851 1995868 2001191 2001196) (-1100 "TRIMAT.spad" 1994810 1994835 1995841 1995846) (-1099 "TRIGMNIP.spad" 1993327 1993344 1994800 1994805) (-1098 "TRIGCAT.spad" 1992839 1992848 1993317 1993322) (-1097 "TRIGCAT.spad" 1992349 1992360 1992829 1992834) (-1096 "TREE.spad" 1991143 1991154 1992179 1992206) (-1095 "TRANFUN.spad" 1990974 1990983 1991133 1991138) (-1094 "TRANFUN.spad" 1990803 1990814 1990964 1990969) (-1093 "TOPSP.spad" 1990477 1990486 1990793 1990798) (-1092 "TOOLSIGN.spad" 1990140 1990151 1990467 1990472) (-1091 "TEXTFILE.spad" 1988697 1988706 1990130 1990135) (-1090 "TEX.spad" 1985714 1985723 1988687 1988692) (-1089 "TEX1.spad" 1985270 1985281 1985704 1985709) (-1088 "TEMUTL.spad" 1984825 1984834 1985260 1985265) (-1087 "TBCMPPK.spad" 1982918 1982941 1984815 1984820) (-1086 "TBAGG.spad" 1981942 1981965 1982886 1982913) (-1085 "TBAGG.spad" 1980986 1981011 1981932 1981937) (-1084 "TANEXP.spad" 1980362 1980373 1980976 1980981) (-1083 "TABLE.spad" 1979335 1979358 1979605 1979632) (-1082 "TABLEAU.spad" 1978816 1978827 1979325 1979330) (-1081 "TABLBUMP.spad" 1975599 1975610 1978806 1978811) (-1080 "SYSSOLP.spad" 1973072 1973083 1975589 1975594) (-1079 "syntax.spad" 1971412 1971421 1973062 1973067) (-1078 "SYMTAB.spad" 1969468 1969477 1971402 1971407) (-1077 "SYMS.spad" 1965453 1965462 1969458 1969463) (-1076 "SYMPOLY.spad" 1964463 1964474 1964545 1964672) (-1075 "SYMFUNC.spad" 1963938 1963949 1964453 1964458) (-1074 "SYMBOL.spad" 1961274 1961283 1963928 1963933) (-1073 "SWITCH.spad" 1958031 1958040 1961264 1961269) (-1072 "SUTS.spad" 1954930 1954958 1956498 1956595) (-1071 "SUPXS.spad" 1951944 1951972 1953062 1953211) (-1070 "SUP.spad" 1948721 1948732 1949502 1949655) (-1069 "SUPFRACF.spad" 1947826 1947844 1948711 1948716) (-1068 "SUP2.spad" 1947216 1947229 1947816 1947821) (-1067 "SUMRF.spad" 1946182 1946193 1947206 1947211) (-1066 "SUMFS.spad" 1945815 1945832 1946172 1946177) (-1065 "SULS.spad" 1936361 1936389 1937467 1937896) (-1064 "SUCH.spad" 1936041 1936056 1936351 1936356) (-1063 "SUBSPACE.spad" 1928048 1928063 1936031 1936036) (-1062 "SUBRESP.spad" 1927208 1927222 1928004 1928009) (-1061 "STTF.spad" 1923307 1923323 1927198 1927203) (-1060 "STTFNC.spad" 1919775 1919791 1923297 1923302) (-1059 "STTAYLOR.spad" 1912173 1912184 1919656 1919661) (-1058 "STRTBL.spad" 1911252 1911269 1911401 1911428) (-1057 "STRING.spad" 1910719 1910728 1910733 1910760) (-1056 "STRICAT.spad" 1910495 1910504 1910675 1910714) (-1055 "STREAM.spad" 1907486 1907497 1910243 1910258) (-1054 "STREAM3.spad" 1907031 1907046 1907476 1907481) (-1053 "STREAM2.spad" 1906099 1906112 1907021 1907026) (-1052 "STREAM1.spad" 1905803 1905814 1906089 1906094) (-1051 "STINPROD.spad" 1904709 1904725 1905793 1905798) (-1050 "STEP.spad" 1903910 1903919 1904699 1904704) (-1049 "STBL.spad" 1902998 1903026 1903165 1903180) (-1048 "STAGG.spad" 1902063 1902074 1902978 1902993) (-1047 "STAGG.spad" 1901136 1901149 1902053 1902058) (-1046 "STACK.spad" 1900710 1900721 1900966 1900993) (-1045 "SREGSET.spad" 1898470 1898487 1900412 1900439) (-1044 "SRDCMPK.spad" 1897015 1897035 1898460 1898465) (-1043 "SRAGG.spad" 1892100 1892109 1896971 1897010) (-1042 "SRAGG.spad" 1887217 1887228 1892090 1892095) (-1041 "SQMATRIX.spad" 1884899 1884917 1885807 1885894) (-1040 "SPLTREE.spad" 1879766 1879779 1884650 1884677) (-1039 "SPLNODE.spad" 1876354 1876367 1879756 1879761) (-1038 "SPFCAT.spad" 1875131 1875140 1876344 1876349) (-1037 "SPECOUT.spad" 1873681 1873690 1875121 1875126) (-1036 "spad-parser.spad" 1873146 1873155 1873671 1873676) (-1035 "SPACEC.spad" 1857159 1857170 1873136 1873141) (-1034 "SPACE3.spad" 1856935 1856946 1857149 1857154) (-1033 "SORTPAK.spad" 1856480 1856493 1856891 1856896) (-1032 "SOLVETRA.spad" 1854237 1854248 1856470 1856475) (-1031 "SOLVESER.spad" 1852757 1852768 1854227 1854232) (-1030 "SOLVERAD.spad" 1848767 1848778 1852747 1852752) (-1029 "SOLVEFOR.spad" 1847187 1847205 1848757 1848762) (-1028 "SNTSCAT.spad" 1846775 1846792 1847143 1847182) (-1027 "SMTS.spad" 1845035 1845061 1846340 1846437) (-1026 "SMP.spad" 1842477 1842497 1842867 1842994) (-1025 "SMITH.spad" 1841320 1841345 1842467 1842472) (-1024 "SMATCAT.spad" 1839418 1839448 1841252 1841315) (-1023 "SMATCAT.spad" 1837460 1837492 1839296 1839301) (-1022 "SKAGG.spad" 1836409 1836420 1837416 1837455) (-1021 "SINT.spad" 1834717 1834726 1836275 1836404) (-1020 "SIMPAN.spad" 1834445 1834454 1834707 1834712) (-1019 "SIGNRF.spad" 1833553 1833564 1834435 1834440) (-1018 "SIGNEF.spad" 1832822 1832839 1833543 1833548) (-1017 "SHP.spad" 1830740 1830755 1832778 1832783) (-1016 "SHDP.spad" 1822846 1822873 1823355 1823484) (-1015 "SGROUP.spad" 1822312 1822321 1822836 1822841) (-1014 "SGROUP.spad" 1821776 1821787 1822302 1822307) (-1013 "SGCF.spad" 1814657 1814666 1821766 1821771) (-1012 "SFRTCAT.spad" 1813573 1813590 1814613 1814652) (-1011 "SFRGCD.spad" 1812636 1812656 1813563 1813568) (-1010 "SFQCMPK.spad" 1807273 1807293 1812626 1812631) (-1009 "SFORT.spad" 1806708 1806722 1807263 1807268) (-1008 "SEXOF.spad" 1806551 1806591 1806698 1806703) (-1007 "SEX.spad" 1806443 1806452 1806541 1806546) (-1006 "SEXCAT.spad" 1803547 1803587 1806433 1806438) (-1005 "SET.spad" 1801903 1801914 1803024 1803063) (-1004 "SETMN.spad" 1800337 1800354 1801893 1801898) (-1003 "SETCAT.spad" 1799822 1799831 1800327 1800332) (-1002 "SETCAT.spad" 1799305 1799316 1799812 1799817) (-1001 "SETAGG.spad" 1795828 1795839 1799273 1799300) (-1000 "SETAGG.spad" 1792371 1792384 1795818 1795823) (-999 "SEGXCAT.spad" 1791484 1791496 1792351 1792366) (-998 "SEG.spad" 1791298 1791308 1791403 1791408) (-997 "SEGCAT.spad" 1790118 1790128 1791278 1791293) (-996 "SEGBIND.spad" 1789191 1789201 1790073 1790078) (-995 "SEGBIND2.spad" 1788888 1788900 1789181 1789186) (-994 "SEG2.spad" 1788314 1788326 1788844 1788849) (-993 "SDVAR.spad" 1787591 1787601 1788304 1788309) (-992 "SDPOL.spad" 1784990 1785000 1785280 1785407) (-991 "SCPKG.spad" 1783070 1783080 1784980 1784985) (-990 "SCACHE.spad" 1781753 1781763 1783060 1783065) (-989 "SAOS.spad" 1781626 1781634 1781743 1781748) (-988 "SAERFFC.spad" 1781340 1781359 1781616 1781621) (-987 "SAE.spad" 1779519 1779534 1780129 1780264) (-986 "SAEFACT.spad" 1779221 1779240 1779509 1779514) (-985 "RURPK.spad" 1776863 1776878 1779211 1779216) (-984 "RULESET.spad" 1776305 1776328 1776853 1776858) (-983 "RULE.spad" 1774510 1774533 1776295 1776300) (-982 "RULECOLD.spad" 1774363 1774375 1774500 1774505) (-981 "RSETGCD.spad" 1770742 1770761 1774353 1774358) (-980 "RSETCAT.spad" 1760515 1760531 1770698 1770737) (-979 "RSETCAT.spad" 1750320 1750338 1760505 1760510) (-978 "RSDCMPK.spad" 1748773 1748792 1750310 1750315) (-977 "RRCC.spad" 1747158 1747187 1748763 1748768) (-976 "RRCC.spad" 1745541 1745572 1747148 1747153) (-975 "RPOLCAT.spad" 1724902 1724916 1745409 1745536) (-974 "RPOLCAT.spad" 1703978 1703994 1724487 1724492) (-973 "ROUTINE.spad" 1700424 1700432 1703207 1703234) (-972 "ROMAN.spad" 1699657 1699665 1700290 1700419) (-971 "ROIRC.spad" 1698738 1698769 1699647 1699652) (-970 "RNS.spad" 1697642 1697650 1698640 1698733) (-969 "RNS.spad" 1696632 1696642 1697632 1697637) (-968 "RNG.spad" 1696368 1696376 1696622 1696627) (-967 "RMODULE.spad" 1696007 1696017 1696358 1696363) (-966 "RMCAT2.spad" 1695416 1695472 1695997 1696002) (-965 "RMATRIX.spad" 1694152 1694170 1694639 1694678) (-964 "RMATCAT.spad" 1689674 1689704 1694096 1694147) (-963 "RMATCAT.spad" 1685098 1685130 1689522 1689527) (-962 "RINTERP.spad" 1684987 1685006 1685088 1685093) (-961 "RING.spad" 1684345 1684353 1684967 1684982) (-960 "RING.spad" 1683711 1683721 1684335 1684340) (-959 "RIDIST.spad" 1683096 1683104 1683701 1683706) (-958 "RGCHAIN.spad" 1681751 1681766 1682656 1682683) (-957 "RF.spad" 1679366 1679376 1681741 1681746) (-956 "RFFACTOR.spad" 1678829 1678839 1679356 1679361) (-955 "RFFACT.spad" 1678565 1678576 1678819 1678824) (-954 "RFDIST.spad" 1677554 1677562 1678555 1678560) (-953 "RETSOL.spad" 1676972 1676984 1677544 1677549) (-952 "RETRACT.spad" 1676322 1676332 1676962 1676967) (-951 "RETRACT.spad" 1675670 1675682 1676312 1676317) (-950 "RESULT.spad" 1674313 1674321 1674899 1674926) (-949 "RESRING.spad" 1673661 1673707 1674251 1674308) (-948 "RESLATC.spad" 1672986 1672996 1673651 1673656) (-947 "REPSQ.spad" 1672716 1672726 1672976 1672981) (-946 "REP.spad" 1670269 1670277 1672706 1672711) (-945 "REPDB.spad" 1669975 1669985 1670259 1670264) (-944 "REP2.spad" 1659548 1659558 1669817 1669822) (-943 "REP1.spad" 1653539 1653549 1659498 1659503) (-942 "REGSET.spad" 1651393 1651409 1653241 1653268) (-941 "REF.spad" 1650723 1650733 1651348 1651353) (-940 "REDORDER.spad" 1649900 1649916 1650713 1650718) (-939 "RECLOS.spad" 1648690 1648709 1649393 1649486) (-938 "REALSOLV.spad" 1647823 1647831 1648680 1648685) (-937 "REAL.spad" 1647696 1647704 1647813 1647818) (-936 "REAL0Q.spad" 1644979 1644993 1647686 1647691) (-935 "REAL0.spad" 1641808 1641822 1644969 1644974) (-934 "RDIV.spad" 1641460 1641484 1641798 1641803) (-933 "RDIST.spad" 1641024 1641034 1641450 1641455) (-932 "RDETRS.spad" 1639821 1639838 1641014 1641019) (-931 "RDETR.spad" 1637929 1637946 1639811 1639816) (-930 "RDEEFS.spad" 1637003 1637019 1637919 1637924) (-929 "RDEEF.spad" 1636000 1636016 1636993 1636998) (-928 "RCFIELD.spad" 1633184 1633192 1635902 1635995) (-927 "RCFIELD.spad" 1630454 1630464 1633174 1633179) (-926 "RCAGG.spad" 1628357 1628367 1630434 1630449) (-925 "RCAGG.spad" 1626197 1626209 1628276 1628281) (-924 "RATRET.spad" 1625558 1625568 1626187 1626192) (-923 "RATFACT.spad" 1625251 1625262 1625548 1625553) (-922 "RANDSRC.spad" 1624571 1624579 1625241 1625246) (-921 "RADUTIL.spad" 1624326 1624334 1624561 1624566) (-920 "RADIX.spad" 1621119 1621132 1622796 1622889) (-919 "RADFF.spad" 1619536 1619572 1619654 1619810) (-918 "RADCAT.spad" 1619130 1619138 1619526 1619531) (-917 "RADCAT.spad" 1618722 1618732 1619120 1619125) (-916 "QUEUE.spad" 1618288 1618298 1618552 1618579) (-915 "QUAT.spad" 1616874 1616884 1617216 1617281) (-914 "QUATCT2.spad" 1616493 1616511 1616864 1616869) (-913 "QUATCAT.spad" 1614658 1614668 1616423 1616488) (-912 "QUATCAT.spad" 1612575 1612587 1614342 1614347) (-911 "QUAGG.spad" 1611389 1611399 1612531 1612570) (-910 "QFORM.spad" 1610852 1610866 1611379 1611384) (-909 "QFCAT.spad" 1609543 1609553 1610742 1610847) (-908 "QFCAT.spad" 1607840 1607852 1609041 1609046) (-907 "QFCAT2.spad" 1607531 1607547 1607830 1607835) (-906 "QEQUAT.spad" 1607088 1607096 1607521 1607526) (-905 "QCMPACK.spad" 1601835 1601854 1607078 1607083) (-904 "QALGSET.spad" 1597910 1597942 1601749 1601754) (-903 "QALGSET2.spad" 1595906 1595924 1597900 1597905) (-902 "PWFFINTB.spad" 1593216 1593237 1595896 1595901) (-901 "PUSHVAR.spad" 1592545 1592564 1593206 1593211) (-900 "PTRANFN.spad" 1588671 1588681 1592535 1592540) (-899 "PTPACK.spad" 1585759 1585769 1588661 1588666) (-898 "PTFUNC2.spad" 1585580 1585594 1585749 1585754) (-897 "PTCAT.spad" 1584662 1584672 1585536 1585575) (-896 "PSQFR.spad" 1583969 1583993 1584652 1584657) (-895 "PSEUDLIN.spad" 1582827 1582837 1583959 1583964) (-894 "PSETPK.spad" 1568260 1568276 1582705 1582710) (-893 "PSETCAT.spad" 1562168 1562191 1568228 1568255) (-892 "PSETCAT.spad" 1556062 1556087 1562124 1562129) (-891 "PSCURVE.spad" 1555045 1555053 1556052 1556057) (-890 "PSCAT.spad" 1553812 1553841 1554943 1555040) (-889 "PSCAT.spad" 1552669 1552700 1553802 1553807) (-888 "PRTITION.spad" 1551512 1551520 1552659 1552664) (-887 "PRS.spad" 1541074 1541091 1551468 1551473) (-886 "PRQAGG.spad" 1540493 1540503 1541030 1541069) (-885 "PRODUCT.spad" 1538173 1538185 1538459 1538514) (-884 "PR.spad" 1536562 1536574 1537267 1537394) (-883 "PRINT.spad" 1536314 1536322 1536552 1536557) (-882 "PRIMES.spad" 1534565 1534575 1536304 1536309) (-881 "PRIMELT.spad" 1532546 1532560 1534555 1534560) (-880 "PRIMCAT.spad" 1532169 1532177 1532536 1532541) (-879 "PRIMARR.spad" 1531174 1531184 1531352 1531379) (-878 "PRIMARR2.spad" 1529897 1529909 1531164 1531169) (-877 "PREASSOC.spad" 1529269 1529281 1529887 1529892) (-876 "PPCURVE.spad" 1528406 1528414 1529259 1529264) (-875 "POLYROOT.spad" 1527178 1527200 1528362 1528367) (-874 "POLY.spad" 1524478 1524488 1524995 1525122) (-873 "POLYLIFT.spad" 1523739 1523762 1524468 1524473) (-872 "POLYCATQ.spad" 1521841 1521863 1523729 1523734) (-871 "POLYCAT.spad" 1515247 1515268 1521709 1521836) (-870 "POLYCAT.spad" 1507955 1507978 1514419 1514424) (-869 "POLY2UP.spad" 1507403 1507417 1507945 1507950) (-868 "POLY2.spad" 1506998 1507010 1507393 1507398) (-867 "POLUTIL.spad" 1505939 1505968 1506954 1506959) (-866 "POLTOPOL.spad" 1504687 1504702 1505929 1505934) (-865 "POINT.spad" 1503751 1503761 1503838 1503865) (-864 "PNTHEORY.spad" 1500417 1500425 1503741 1503746) (-863 "PMTOOLS.spad" 1499174 1499188 1500407 1500412) (-862 "PMSYM.spad" 1498719 1498729 1499164 1499169) (-861 "PMQFCAT.spad" 1498306 1498320 1498709 1498714) (-860 "PMPRED.spad" 1497775 1497789 1498296 1498301) (-859 "PMPREDFS.spad" 1497219 1497241 1497765 1497770) (-858 "PMPLCAT.spad" 1496289 1496307 1497151 1497156) (-857 "PMLSAGG.spad" 1495870 1495884 1496279 1496284) (-856 "PMKERNEL.spad" 1495437 1495449 1495860 1495865) (-855 "PMINS.spad" 1495013 1495023 1495427 1495432) (-854 "PMFS.spad" 1494586 1494604 1495003 1495008) (-853 "PMDOWN.spad" 1493872 1493886 1494576 1494581) (-852 "PMASS.spad" 1492884 1492892 1493862 1493867) (-851 "PMASSFS.spad" 1491853 1491869 1492874 1492879) (-850 "PLOTTOOL.spad" 1491633 1491641 1491843 1491848) (-849 "PLOT.spad" 1486464 1486472 1491623 1491628) (-848 "PLOT3D.spad" 1482884 1482892 1486454 1486459) (-847 "PLOT1.spad" 1482025 1482035 1482874 1482879) (-846 "PLEQN.spad" 1469241 1469268 1482015 1482020) (-845 "PINTERP.spad" 1468857 1468876 1469231 1469236) (-844 "PINTERPA.spad" 1468639 1468655 1468847 1468852) (-843 "PI.spad" 1468246 1468254 1468613 1468634) (-842 "PID.spad" 1467202 1467210 1468172 1468241) (-841 "PICOERCE.spad" 1466859 1466869 1467192 1467197) (-840 "PGROEB.spad" 1465456 1465470 1466849 1466854) (-839 "PGE.spad" 1456709 1456717 1465446 1465451) (-838 "PGCD.spad" 1455591 1455608 1456699 1456704) (-837 "PFRPAC.spad" 1454734 1454744 1455581 1455586) (-836 "PFR.spad" 1451391 1451401 1454636 1454729) (-835 "PFOTOOLS.spad" 1450649 1450665 1451381 1451386) (-834 "PFOQ.spad" 1450019 1450037 1450639 1450644) (-833 "PFO.spad" 1449438 1449465 1450009 1450014) (-832 "PF.spad" 1449012 1449024 1449243 1449336) (-831 "PFECAT.spad" 1446678 1446686 1448938 1449007) (-830 "PFECAT.spad" 1444372 1444382 1446634 1446639) (-829 "PFBRU.spad" 1442242 1442254 1444362 1444367) (-828 "PFBR.spad" 1439780 1439803 1442232 1442237) (-827 "PERM.spad" 1435461 1435471 1439610 1439625) (-826 "PERMGRP.spad" 1430197 1430207 1435451 1435456) (-825 "PERMCAT.spad" 1428749 1428759 1430177 1430192) (-824 "PERMAN.spad" 1427281 1427295 1428739 1428744) (-823 "PENDTREE.spad" 1426777 1426787 1427133 1427138) (-822 "PDRING.spad" 1425268 1425278 1426757 1426772) (-821 "PDRING.spad" 1423767 1423779 1425258 1425263) (-820 "PDEPROB.spad" 1422724 1422732 1423757 1423762) (-819 "PDEPACK.spad" 1416726 1416734 1422714 1422719) (-818 "PDECOMP.spad" 1416188 1416205 1416716 1416721) (-817 "PDECAT.spad" 1414542 1414550 1416178 1416183) (-816 "PCOMP.spad" 1414393 1414406 1414532 1414537) (-815 "PBWLB.spad" 1412975 1412992 1414383 1414388) (-814 "PATTERN.spad" 1407406 1407416 1412965 1412970) (-813 "PATTERN2.spad" 1407142 1407154 1407396 1407401) (-812 "PATTERN1.spad" 1405444 1405460 1407132 1407137) (-811 "PATRES.spad" 1402991 1403003 1405434 1405439) (-810 "PATRES2.spad" 1402653 1402667 1402981 1402986) (-809 "PATMATCH.spad" 1400815 1400846 1402366 1402371) (-808 "PATMAB.spad" 1400240 1400250 1400805 1400810) (-807 "PATLRES.spad" 1399324 1399338 1400230 1400235) (-806 "PATAB.spad" 1399088 1399098 1399314 1399319) (-805 "PARTPERM.spad" 1396450 1396458 1399078 1399083) (-804 "PARSURF.spad" 1395878 1395906 1396440 1396445) (-803 "PARSU2.spad" 1395673 1395689 1395868 1395873) (-802 "PARSCURV.spad" 1395101 1395129 1395663 1395668) (-801 "PARSC2.spad" 1394890 1394906 1395091 1395096) (-800 "PARPCURV.spad" 1394348 1394376 1394880 1394885) (-799 "PARPC2.spad" 1394137 1394153 1394338 1394343) (-798 "PAN2EXPR.spad" 1393549 1393557 1394127 1394132) (-797 "PALETTE.spad" 1392519 1392527 1393539 1393544) (-796 "PADICRC.spad" 1389852 1389870 1391027 1391120) (-795 "PADICRAT.spad" 1387870 1387882 1388091 1388184) (-794 "PADIC.spad" 1387565 1387577 1387796 1387865) (-793 "PADICCT.spad" 1386106 1386118 1387491 1387560) (-792 "PADEPAC.spad" 1384785 1384804 1386096 1386101) (-791 "PADE.spad" 1383525 1383541 1384775 1384780) (-790 "OWP.spad" 1382509 1382539 1383383 1383450) (-789 "OVAR.spad" 1382290 1382313 1382499 1382504) (-788 "OUT.spad" 1381374 1381382 1382280 1382285) (-787 "OUTFORM.spad" 1370788 1370796 1381364 1381369) (-786 "OSI.spad" 1370263 1370271 1370778 1370783) (-785 "ORTHPOL.spad" 1368724 1368734 1370180 1370185) (-784 "OREUP.spad" 1368084 1368112 1368406 1368445) (-783 "ORESUP.spad" 1367385 1367409 1367766 1367805) (-782 "OREPCTO.spad" 1365204 1365216 1367305 1367310) (-781 "OREPCAT.spad" 1359261 1359271 1365160 1365199) (-780 "OREPCAT.spad" 1353208 1353220 1359109 1359114) (-779 "ORDSET.spad" 1352374 1352382 1353198 1353203) (-778 "ORDSET.spad" 1351538 1351548 1352364 1352369) (-777 "ORDRING.spad" 1350928 1350936 1351518 1351533) (-776 "ORDRING.spad" 1350326 1350336 1350918 1350923) (-775 "ORDMON.spad" 1350181 1350189 1350316 1350321) (-774 "ORDFUNS.spad" 1349307 1349323 1350171 1350176) (-773 "ORDFIN.spad" 1349241 1349249 1349297 1349302) (-772 "ORDCOMP.spad" 1347709 1347719 1348791 1348820) (-771 "ORDCOMP2.spad" 1346994 1347006 1347699 1347704) (-770 "OPTPROB.spad" 1345574 1345582 1346984 1346989) (-769 "OPTPACK.spad" 1337959 1337967 1345564 1345569) (-768 "OPTCAT.spad" 1335634 1335642 1337949 1337954) (-767 "OPQUERY.spad" 1335183 1335191 1335624 1335629) (-766 "OP.spad" 1334925 1334935 1335005 1335072) (-765 "ONECOMP.spad" 1333673 1333683 1334475 1334504) (-764 "ONECOMP2.spad" 1333091 1333103 1333663 1333668) (-763 "OMSERVER.spad" 1332093 1332101 1333081 1333086) (-762 "OMSAGG.spad" 1331869 1331879 1332037 1332088) (-761 "OMPKG.spad" 1330481 1330489 1331859 1331864) (-760 "OM.spad" 1329446 1329454 1330471 1330476) (-759 "OMLO.spad" 1328871 1328883 1329332 1329371) (-758 "OMEXPR.spad" 1328705 1328715 1328861 1328866) (-757 "OMERR.spad" 1328248 1328256 1328695 1328700) (-756 "OMERRK.spad" 1327282 1327290 1328238 1328243) (-755 "OMENC.spad" 1326626 1326634 1327272 1327277) (-754 "OMDEV.spad" 1320915 1320923 1326616 1326621) (-753 "OMCONN.spad" 1320324 1320332 1320905 1320910) (-752 "OINTDOM.spad" 1320087 1320095 1320250 1320319) (-751 "OFMONOID.spad" 1316274 1316284 1320077 1320082) (-750 "ODVAR.spad" 1315535 1315545 1316264 1316269) (-749 "ODR.spad" 1314983 1315009 1315347 1315496) (-748 "ODPOL.spad" 1312332 1312342 1312672 1312799) (-747 "ODP.spad" 1304574 1304594 1304947 1305076) (-746 "ODETOOLS.spad" 1303157 1303176 1304564 1304569) (-745 "ODESYS.spad" 1300807 1300824 1303147 1303152) (-744 "ODERTRIC.spad" 1296748 1296765 1300764 1300769) (-743 "ODERED.spad" 1296135 1296159 1296738 1296743) (-742 "ODERAT.spad" 1293686 1293703 1296125 1296130) (-741 "ODEPRRIC.spad" 1290577 1290599 1293676 1293681) (-740 "ODEPROB.spad" 1289776 1289784 1290567 1290572) (-739 "ODEPRIM.spad" 1287050 1287072 1289766 1289771) (-738 "ODEPAL.spad" 1286426 1286450 1287040 1287045) (-737 "ODEPACK.spad" 1273028 1273036 1286416 1286421) (-736 "ODEINT.spad" 1272459 1272475 1273018 1273023) (-735 "ODEIFTBL.spad" 1269854 1269862 1272449 1272454) (-734 "ODEEF.spad" 1265221 1265237 1269844 1269849) (-733 "ODECONST.spad" 1264740 1264758 1265211 1265216) (-732 "ODECAT.spad" 1263336 1263344 1264730 1264735) (-731 "OCT.spad" 1261483 1261493 1262199 1262238) (-730 "OCTCT2.spad" 1261127 1261148 1261473 1261478) (-729 "OC.spad" 1258901 1258911 1261083 1261122) (-728 "OC.spad" 1256401 1256413 1258585 1258590) (-727 "OCAMON.spad" 1256249 1256257 1256391 1256396) (-726 "OASGP.spad" 1256064 1256072 1256239 1256244) (-725 "OAMONS.spad" 1255584 1255592 1256054 1256059) (-724 "OAMON.spad" 1255445 1255453 1255574 1255579) (-723 "OAGROUP.spad" 1255307 1255315 1255435 1255440) (-722 "NUMTUBE.spad" 1254894 1254910 1255297 1255302) (-721 "NUMQUAD.spad" 1242756 1242764 1254884 1254889) (-720 "NUMODE.spad" 1233892 1233900 1242746 1242751) (-719 "NUMINT.spad" 1231450 1231458 1233882 1233887) (-718 "NUMFMT.spad" 1230290 1230298 1231440 1231445) (-717 "NUMERIC.spad" 1222363 1222373 1230096 1230101) (-716 "NTSCAT.spad" 1220853 1220869 1222319 1222358) (-715 "NTPOLFN.spad" 1220398 1220408 1220770 1220775) (-714 "NSUP.spad" 1213416 1213426 1217956 1218109) (-713 "NSUP2.spad" 1212808 1212820 1213406 1213411) (-712 "NSMP.spad" 1209007 1209026 1209315 1209442) (-711 "NREP.spad" 1207379 1207393 1208997 1209002) (-710 "NPCOEF.spad" 1206625 1206645 1207369 1207374) (-709 "NORMRETR.spad" 1206223 1206262 1206615 1206620) (-708 "NORMPK.spad" 1204125 1204144 1206213 1206218) (-707 "NORMMA.spad" 1203813 1203839 1204115 1204120) (-706 "NONE.spad" 1203554 1203562 1203803 1203808) (-705 "NONE1.spad" 1203230 1203240 1203544 1203549) (-704 "NODE1.spad" 1202699 1202715 1203220 1203225) (-703 "NNI.spad" 1201586 1201594 1202673 1202694) (-702 "NLINSOL.spad" 1200208 1200218 1201576 1201581) (-701 "NIPROB.spad" 1198691 1198699 1200198 1200203) (-700 "NFINTBAS.spad" 1196151 1196168 1198681 1198686) (-699 "NCODIV.spad" 1194349 1194365 1196141 1196146) (-698 "NCNTFRAC.spad" 1193991 1194005 1194339 1194344) (-697 "NCEP.spad" 1192151 1192165 1193981 1193986) (-696 "NASRING.spad" 1191747 1191755 1192141 1192146) (-695 "NASRING.spad" 1191341 1191351 1191737 1191742) (-694 "NARNG.spad" 1190685 1190693 1191331 1191336) (-693 "NARNG.spad" 1190027 1190037 1190675 1190680) (-692 "NAGSP.spad" 1189100 1189108 1190017 1190022) (-691 "NAGS.spad" 1178625 1178633 1189090 1189095) (-690 "NAGF07.spad" 1177018 1177026 1178615 1178620) (-689 "NAGF04.spad" 1171250 1171258 1177008 1177013) (-688 "NAGF02.spad" 1165059 1165067 1171240 1171245) (-687 "NAGF01.spad" 1160662 1160670 1165049 1165054) (-686 "NAGE04.spad" 1154122 1154130 1160652 1160657) (-685 "NAGE02.spad" 1144464 1144472 1154112 1154117) (-684 "NAGE01.spad" 1140348 1140356 1144454 1144459) (-683 "NAGD03.spad" 1138268 1138276 1140338 1140343) (-682 "NAGD02.spad" 1130799 1130807 1138258 1138263) (-681 "NAGD01.spad" 1124912 1124920 1130789 1130794) (-680 "NAGC06.spad" 1120699 1120707 1124902 1124907) (-679 "NAGC05.spad" 1119168 1119176 1120689 1120694) (-678 "NAGC02.spad" 1118423 1118431 1119158 1119163) (-677 "NAALG.spad" 1117958 1117968 1118391 1118418) (-676 "NAALG.spad" 1117513 1117525 1117948 1117953) (-675 "MULTSQFR.spad" 1114471 1114488 1117503 1117508) (-674 "MULTFACT.spad" 1113854 1113871 1114461 1114466) (-673 "MTSCAT.spad" 1111888 1111909 1113752 1113849) (-672 "MTHING.spad" 1111545 1111555 1111878 1111883) (-671 "MSYSCMD.spad" 1110979 1110987 1111535 1111540) (-670 "MSET.spad" 1108977 1108987 1110741 1110780) (-669 "MSETAGG.spad" 1108810 1108820 1108933 1108972) (-668 "MRING.spad" 1105781 1105793 1108518 1108585) (-667 "MRF2.spad" 1105349 1105363 1105771 1105776) (-666 "MRATFAC.spad" 1104895 1104912 1105339 1105344) (-665 "MPRFF.spad" 1102925 1102944 1104885 1104890) (-664 "MPOLY.spad" 1100363 1100378 1100722 1100849) (-663 "MPCPF.spad" 1099627 1099646 1100353 1100358) (-662 "MPC3.spad" 1099442 1099482 1099617 1099622) (-661 "MPC2.spad" 1099084 1099117 1099432 1099437) (-660 "MONOTOOL.spad" 1097419 1097436 1099074 1099079) (-659 "MONOID.spad" 1096593 1096601 1097409 1097414) (-658 "MONOID.spad" 1095765 1095775 1096583 1096588) (-657 "MONOGEN.spad" 1094511 1094524 1095625 1095760) (-656 "MONOGEN.spad" 1093279 1093294 1094395 1094400) (-655 "MONADWU.spad" 1091293 1091301 1093269 1093274) (-654 "MONADWU.spad" 1089305 1089315 1091283 1091288) (-653 "MONAD.spad" 1088449 1088457 1089295 1089300) (-652 "MONAD.spad" 1087591 1087601 1088439 1088444) (-651 "MOEBIUS.spad" 1086277 1086291 1087571 1087586) (-650 "MODULE.spad" 1086147 1086157 1086245 1086272) (-649 "MODULE.spad" 1086037 1086049 1086137 1086142) (-648 "MODRING.spad" 1085368 1085407 1086017 1086032) (-647 "MODOP.spad" 1084027 1084039 1085190 1085257) (-646 "MODMONOM.spad" 1083559 1083577 1084017 1084022) (-645 "MODMON.spad" 1080269 1080285 1081045 1081198) (-644 "MODFIELD.spad" 1079627 1079666 1080171 1080264) (-643 "MMAP.spad" 1079367 1079401 1079617 1079622) (-642 "MLO.spad" 1077794 1077804 1079323 1079362) (-641 "MLIFT.spad" 1076366 1076383 1077784 1077789) (-640 "MKUCFUNC.spad" 1075899 1075917 1076356 1076361) (-639 "MKRECORD.spad" 1075501 1075514 1075889 1075894) (-638 "MKFUNC.spad" 1074882 1074892 1075491 1075496) (-637 "MKFLCFN.spad" 1073838 1073848 1074872 1074877) (-636 "MKCHSET.spad" 1073614 1073624 1073828 1073833) (-635 "MKBCFUNC.spad" 1073099 1073117 1073604 1073609) (-634 "MINT.spad" 1072538 1072546 1073001 1073094) (-633 "MHROWRED.spad" 1071039 1071049 1072528 1072533) (-632 "MFLOAT.spad" 1069484 1069492 1070929 1071034) (-631 "MFINFACT.spad" 1068884 1068906 1069474 1069479) (-630 "MESH.spad" 1066616 1066624 1068874 1068879) (-629 "MDDFACT.spad" 1064809 1064819 1066606 1066611) (-628 "MDAGG.spad" 1064084 1064094 1064777 1064804) (-627 "MCMPLX.spad" 1060064 1060072 1060678 1060879) (-626 "MCDEN.spad" 1059272 1059284 1060054 1060059) (-625 "MCALCFN.spad" 1056374 1056400 1059262 1059267) (-624 "MATSTOR.spad" 1053650 1053660 1056364 1056369) (-623 "MATRIX.spad" 1052577 1052587 1053061 1053088) (-622 "MATLIN.spad" 1049903 1049927 1052461 1052466) (-621 "MATCAT.spad" 1041476 1041498 1049859 1049898) (-620 "MATCAT.spad" 1032933 1032957 1041318 1041323) (-619 "MATCAT2.spad" 1032201 1032249 1032923 1032928) (-618 "MAPPKG3.spad" 1031100 1031114 1032191 1032196) (-617 "MAPPKG2.spad" 1030434 1030446 1031090 1031095) (-616 "MAPPKG1.spad" 1029252 1029262 1030424 1030429) (-615 "MAPHACK3.spad" 1029060 1029074 1029242 1029247) (-614 "MAPHACK2.spad" 1028825 1028837 1029050 1029055) (-613 "MAPHACK1.spad" 1028455 1028465 1028815 1028820) (-612 "MAGMA.spad" 1026245 1026262 1028445 1028450) (-611 "M3D.spad" 1024166 1024176 1025848 1025853) (-610 "LZSTAGG.spad" 1021384 1021394 1024146 1024161) (-609 "LZSTAGG.spad" 1018610 1018622 1021374 1021379) (-608 "LWORD.spad" 1015315 1015332 1018600 1018605) (-607 "LSQM.spad" 1013599 1013613 1013997 1014048) (-606 "LSPP.spad" 1013132 1013149 1013589 1013594) (-605 "LSMP.spad" 1011972 1012000 1013122 1013127) (-604 "LSMP1.spad" 1009776 1009790 1011962 1011967) (-603 "LSAGG.spad" 1009433 1009443 1009732 1009771) (-602 "LSAGG.spad" 1009122 1009134 1009423 1009428) (-601 "LPOLY.spad" 1008076 1008095 1008978 1009047) (-600 "LPEFRAC.spad" 1007333 1007343 1008066 1008071) (-599 "LO.spad" 1006734 1006748 1007267 1007294) (-598 "LOGIC.spad" 1006336 1006344 1006724 1006729) (-597 "LOGIC.spad" 1005936 1005946 1006326 1006331) (-596 "LODOOPS.spad" 1004854 1004866 1005926 1005931) (-595 "LODO.spad" 1004240 1004256 1004536 1004575) (-594 "LODOF.spad" 1003284 1003301 1004197 1004202) (-593 "LODOCAT.spad" 1001942 1001952 1003240 1003279) (-592 "LODOCAT.spad" 1000598 1000610 1001898 1001903) (-591 "LODO2.spad" 999873 999885 1000280 1000319) (-590 "LODO1.spad" 999275 999285 999555 999594) (-589 "LODEEF.spad" 998047 998065 999265 999270) (-588 "LNAGG.spad" 993839 993849 998027 998042) (-587 "LNAGG.spad" 989605 989617 993795 993800) (-586 "LMOPS.spad" 986341 986358 989595 989600) (-585 "LMODULE.spad" 985983 985993 986331 986336) (-584 "LMDICT.spad" 985489 985499 985757 985784) (-583 "LIST.spad" 983207 983217 984636 984663) (-582 "LIST3.spad" 982498 982512 983197 983202) (-581 "LIST2.spad" 981138 981150 982488 982493) (-580 "LIST2MAP.spad" 978015 978027 981128 981133) (-579 "LINEXP.spad" 977447 977457 977995 978010) (-578 "LINDEP.spad" 976224 976236 977359 977364) (-577 "LIMITRF.spad" 974138 974148 976214 976219) (-576 "LIMITPS.spad" 973021 973034 974128 974133) (-575 "LIE.spad" 971035 971047 972311 972456) (-574 "LIECAT.spad" 970511 970521 970961 971030) (-573 "LIECAT.spad" 970015 970027 970467 970472) (-572 "LIB.spad" 968645 968653 969256 969271) (-571 "LGROBP.spad" 965998 966017 968635 968640) (-570 "LF.spad" 964917 964933 965988 965993) (-569 "LFCAT.spad" 963936 963944 964907 964912) (-568 "LEXTRIPK.spad" 959439 959454 963926 963931) (-567 "LEXP.spad" 957442 957469 959419 959434) (-566 "LEADCDET.spad" 955826 955843 957432 957437) (-565 "LAZM3PK.spad" 954530 954552 955816 955821) (-564 "LAUPOL.spad" 953221 953234 954125 954194) (-563 "LAPLACE.spad" 952794 952810 953211 953216) (-562 "LA.spad" 952234 952248 952716 952755) (-561 "LALG.spad" 952010 952020 952214 952229) (-560 "LALG.spad" 951794 951806 952000 952005) (-559 "KOVACIC.spad" 950507 950524 951784 951789) (-558 "KONVERT.spad" 950229 950239 950497 950502) (-557 "KOERCE.spad" 949966 949976 950219 950224) (-556 "KERNEL.spad" 948501 948511 949750 949755) (-555 "KERNEL2.spad" 948204 948216 948491 948496) (-554 "KDAGG.spad" 947295 947317 948172 948199) (-553 "KDAGG.spad" 946406 946430 947285 947290) (-552 "KAFILE.spad" 945518 945534 945753 945780) (-551 "JORDAN.spad" 943345 943357 944808 944953) (-550 "IXAGG.spad" 941458 941482 943325 943340) (-549 "IXAGG.spad" 939436 939462 941305 941310) (-548 "IVECTOR.spad" 938432 938447 938587 938614) (-547 "ITUPLE.spad" 937577 937587 938422 938427) (-546 "ITRIGMNP.spad" 936388 936407 937567 937572) (-545 "ITFUN3.spad" 935882 935896 936378 936383) (-544 "ITFUN2.spad" 935612 935624 935872 935877) (-543 "ITAYLOR.spad" 933404 933419 935448 935573) (-542 "ISUPS.spad" 925815 925830 932378 932475) (-541 "ISUMP.spad" 925312 925328 925805 925810) (-540 "ISTRING.spad" 924315 924328 924481 924508) (-539 "IRURPK.spad" 923028 923047 924305 924310) (-538 "IRSN.spad" 920988 920996 923018 923023) (-537 "IRRF2F.spad" 919463 919473 920944 920949) (-536 "IRREDFFX.spad" 919064 919075 919453 919458) (-535 "IROOT.spad" 917395 917405 919054 919059) (-534 "IR.spad" 915185 915199 917251 917278) (-533 "IR2.spad" 914205 914221 915175 915180) (-532 "IR2F.spad" 913405 913421 914195 914200) (-531 "IPRNTPK.spad" 913165 913173 913395 913400) (-530 "IPF.spad" 912730 912742 912970 913063) (-529 "IPADIC.spad" 912491 912517 912656 912725) (-528 "INVLAPLA.spad" 912136 912152 912481 912486) (-527 "INTTR.spad" 905382 905399 912126 912131) (-526 "INTTOOLS.spad" 903094 903110 904957 904962) (-525 "INTSLPE.spad" 902400 902408 903084 903089) (-524 "INTRVL.spad" 901966 901976 902314 902395) (-523 "INTRF.spad" 900330 900344 901956 901961) (-522 "INTRET.spad" 899762 899772 900320 900325) (-521 "INTRAT.spad" 898437 898454 899752 899757) (-520 "INTPM.spad" 896800 896816 898080 898085) (-519 "INTPAF.spad" 894568 894586 896732 896737) (-518 "INTPACK.spad" 884878 884886 894558 894563) (-517 "INT.spad" 884239 884247 884732 884873) (-516 "INTHERTR.spad" 883505 883522 884229 884234) (-515 "INTHERAL.spad" 883171 883195 883495 883500) (-514 "INTHEORY.spad" 879584 879592 883161 883166) (-513 "INTG0.spad" 873047 873065 879516 879521) (-512 "INTFTBL.spad" 867076 867084 873037 873042) (-511 "INTFACT.spad" 866135 866145 867066 867071) (-510 "INTEF.spad" 864450 864466 866125 866130) (-509 "INTDOM.spad" 863065 863073 864376 864445) (-508 "INTDOM.spad" 861742 861752 863055 863060) (-507 "INTCAT.spad" 859995 860005 861656 861737) (-506 "INTBIT.spad" 859498 859506 859985 859990) (-505 "INTALG.spad" 858680 858707 859488 859493) (-504 "INTAF.spad" 858172 858188 858670 858675) (-503 "INTABL.spad" 857252 857283 857415 857442) (-502 "INS.spad" 854648 854656 857154 857247) (-501 "INS.spad" 852130 852140 854638 854643) (-500 "INPSIGN.spad" 851564 851577 852120 852125) (-499 "INPRODPF.spad" 850630 850649 851554 851559) (-498 "INPRODFF.spad" 849688 849712 850620 850625) (-497 "INNMFACT.spad" 848659 848676 849678 849683) (-496 "INMODGCD.spad" 848143 848173 848649 848654) (-495 "INFSP.spad" 846428 846450 848133 848138) (-494 "INFPROD0.spad" 845478 845497 846418 846423) (-493 "INFORM.spad" 842746 842754 845468 845473) (-492 "INFORM1.spad" 842371 842381 842736 842741) (-491 "INFINITY.spad" 841923 841931 842361 842366) (-490 "INEP.spad" 840455 840477 841913 841918) (-489 "INDE.spad" 840361 840378 840445 840450) (-488 "INCRMAPS.spad" 839782 839792 840351 840356) (-487 "INBFF.spad" 835552 835563 839772 839777) (-486 "IMATRIX.spad" 834720 834746 835232 835259) (-485 "IMATQF.spad" 833814 833858 834676 834681) (-484 "IMATLIN.spad" 832419 832443 833770 833775) (-483 "ILIST.spad" 831075 831090 831602 831629) (-482 "IIARRAY2.spad" 830686 830724 830905 830932) (-481 "IFF.spad" 830096 830112 830367 830460) (-480 "IFARRAY.spad" 827806 827821 829502 829529) (-479 "IFAMON.spad" 827668 827685 827762 827767) (-478 "IEVALAB.spad" 827057 827069 827658 827663) (-477 "IEVALAB.spad" 826444 826458 827047 827052) (-476 "IDPO.spad" 826242 826254 826434 826439) (-475 "IDPOAMS.spad" 825998 826010 826232 826237) (-474 "IDPOAM.spad" 825718 825730 825988 825993) (-473 "IDPC.spad" 824652 824664 825708 825713) (-472 "IDPAM.spad" 824397 824409 824642 824647) (-471 "IDPAG.spad" 824144 824156 824387 824392) (-470 "IDECOMP.spad" 821381 821399 824134 824139) (-469 "IDEAL.spad" 816304 816343 821316 821321) (-468 "ICDEN.spad" 815455 815471 816294 816299) (-467 "ICARD.spad" 814644 814652 815445 815450) (-466 "IBPTOOLS.spad" 813237 813254 814634 814639) (-465 "IBITS.spad" 812494 812507 812931 812958) (-464 "IBATOOL.spad" 809369 809388 812484 812489) (-463 "IBACHIN.spad" 807856 807871 809359 809364) (-462 "IARRAY2.spad" 807067 807093 807686 807713) (-461 "IARRAY1.spad" 806335 806350 806473 806500) (-460 "IAN.spad" 804550 804558 806153 806246) (-459 "IALGFACT.spad" 804151 804184 804540 804545) (-458 "HYPCAT.spad" 803575 803583 804141 804146) (-457 "HYPCAT.spad" 802997 803007 803565 803570) (-456 "HOAGG.spad" 800255 800265 802977 802992) (-455 "HOAGG.spad" 797298 797310 800022 800027) (-454 "HEXADEC.spad" 795170 795178 795768 795861) (-453 "HEUGCD.spad" 794185 794196 795160 795165) (-452 "HELLFDIV.spad" 793775 793799 794175 794180) (-451 "HEAP.spad" 793390 793400 793605 793632) (-450 "HDP.spad" 785628 785644 786005 786134) (-449 "HDMP.spad" 782807 782822 783425 783552) (-448 "HB.spad" 781044 781052 782797 782802) (-447 "HASHTBL.spad" 780076 780107 780287 780314) (-446 "HACKPI.spad" 779559 779567 779978 780071) (-445 "GTSET.spad" 778554 778570 779261 779288) (-444 "GSTBL.spad" 777635 777670 777809 777824) (-443 "GSERIES.spad" 774802 774829 775767 775916) (-442 "GROUP.spad" 773976 773984 774782 774797) (-441 "GROUP.spad" 773158 773168 773966 773971) (-440 "GROEBSOL.spad" 771646 771667 773148 773153) (-439 "GRMOD.spad" 770217 770229 771636 771641) (-438 "GRMOD.spad" 768786 768800 770207 770212) (-437 "GRIMAGE.spad" 761391 761399 768776 768781) (-436 "GRDEF.spad" 759770 759778 761381 761386) (-435 "GRAY.spad" 758229 758237 759760 759765) (-434 "GRALG.spad" 757276 757288 758219 758224) (-433 "GRALG.spad" 756321 756335 757266 757271) (-432 "GPOLSET.spad" 755831 755854 756059 756086) (-431 "GOSPER.spad" 755096 755114 755821 755826) (-430 "GMODPOL.spad" 754234 754261 755064 755091) (-429 "GHENSEL.spad" 753303 753317 754224 754229) (-428 "GENUPS.spad" 749404 749417 753293 753298) (-427 "GENUFACT.spad" 748981 748991 749394 749399) (-426 "GENPGCD.spad" 748565 748582 748971 748976) (-425 "GENMFACT.spad" 748017 748036 748555 748560) (-424 "GENEEZ.spad" 745956 745969 748007 748012) (-423 "GDMP.spad" 742977 742994 743753 743880) (-422 "GCNAALG.spad" 736872 736899 742771 742838) (-421 "GCDDOM.spad" 736044 736052 736798 736867) (-420 "GCDDOM.spad" 735278 735288 736034 736039) (-419 "GB.spad" 732796 732834 735234 735239) (-418 "GBINTERN.spad" 728816 728854 732786 732791) (-417 "GBF.spad" 724573 724611 728806 728811) (-416 "GBEUCLID.spad" 722447 722485 724563 724568) (-415 "GAUSSFAC.spad" 721744 721752 722437 722442) (-414 "GALUTIL.spad" 720066 720076 721700 721705) (-413 "GALPOLYU.spad" 718512 718525 720056 720061) (-412 "GALFACTU.spad" 716677 716696 718502 718507) (-411 "GALFACT.spad" 706810 706821 716667 716672) (-410 "FVFUN.spad" 703823 703831 706790 706805) (-409 "FVC.spad" 702865 702873 703803 703818) (-408 "FUNCTION.spad" 702714 702726 702855 702860) (-407 "FT.spad" 700926 700934 702704 702709) (-406 "FTEM.spad" 700089 700097 700916 700921) (-405 "FSUPFACT.spad" 698990 699009 700026 700031) (-404 "FST.spad" 697076 697084 698980 698985) (-403 "FSRED.spad" 696554 696570 697066 697071) (-402 "FSPRMELT.spad" 695378 695394 696511 696516) (-401 "FSPECF.spad" 693455 693471 695368 695373) (-400 "FS.spad" 687506 687516 693219 693450) (-399 "FS.spad" 681348 681360 687063 687068) (-398 "FSINT.spad" 681006 681022 681338 681343) (-397 "FSERIES.spad" 680193 680205 680826 680925) (-396 "FSCINT.spad" 679506 679522 680183 680188) (-395 "FSAGG.spad" 678611 678621 679450 679501) (-394 "FSAGG.spad" 677690 677702 678531 678536) (-393 "FSAGG2.spad" 676389 676405 677680 677685) (-392 "FS2UPS.spad" 670778 670812 676379 676384) (-391 "FS2.spad" 670423 670439 670768 670773) (-390 "FS2EXPXP.spad" 669546 669569 670413 670418) (-389 "FRUTIL.spad" 668488 668498 669536 669541) (-388 "FR.spad" 662185 662195 667515 667584) (-387 "FRNAALG.spad" 657272 657282 662127 662180) (-386 "FRNAALG.spad" 652371 652383 657228 657233) (-385 "FRNAAF2.spad" 651825 651843 652361 652366) (-384 "FRMOD.spad" 651220 651250 651757 651762) (-383 "FRIDEAL.spad" 650415 650436 651200 651215) (-382 "FRIDEAL2.spad" 650017 650049 650405 650410) (-381 "FRETRCT.spad" 649528 649538 650007 650012) (-380 "FRETRCT.spad" 648907 648919 649388 649393) (-379 "FRAMALG.spad" 647235 647248 648863 648902) (-378 "FRAMALG.spad" 645595 645610 647225 647230) (-377 "FRAC.spad" 642698 642708 643101 643274) (-376 "FRAC2.spad" 642301 642313 642688 642693) (-375 "FR2.spad" 641635 641647 642291 642296) (-374 "FPS.spad" 638444 638452 641525 641630) (-373 "FPS.spad" 635281 635291 638364 638369) (-372 "FPC.spad" 634323 634331 635183 635276) (-371 "FPC.spad" 633451 633461 634313 634318) (-370 "FPATMAB.spad" 633203 633213 633431 633446) (-369 "FPARFRAC.spad" 631676 631693 633193 633198) (-368 "FORTRAN.spad" 630176 630225 631666 631671) (-367 "FORT.spad" 629105 629113 630166 630171) (-366 "FORTFN.spad" 626265 626273 629085 629100) (-365 "FORTCAT.spad" 625939 625947 626245 626260) (-364 "FORMULA.spad" 623277 623285 625929 625934) (-363 "FORMULA1.spad" 622756 622766 623267 623272) (-362 "FORDER.spad" 622447 622471 622746 622751) (-361 "FOP.spad" 621648 621656 622437 622442) (-360 "FNLA.spad" 621072 621094 621616 621643) (-359 "FNCAT.spad" 619400 619408 621062 621067) (-358 "FNAME.spad" 619292 619300 619390 619395) (-357 "FMTC.spad" 619090 619098 619218 619287) (-356 "FMONOID.spad" 616145 616155 619046 619051) (-355 "FM.spad" 615840 615852 616079 616106) (-354 "FMFUN.spad" 612860 612868 615820 615835) (-353 "FMC.spad" 611902 611910 612840 612855) (-352 "FMCAT.spad" 609556 609574 611870 611897) (-351 "FM1.spad" 608913 608925 609490 609517) (-350 "FLOATRP.spad" 606634 606648 608903 608908) (-349 "FLOAT.spad" 599798 599806 606500 606629) (-348 "FLOATCP.spad" 597215 597229 599788 599793) (-347 "FLINEXP.spad" 596927 596937 597195 597210) (-346 "FLINEXP.spad" 596593 596605 596863 596868) (-345 "FLASORT.spad" 595913 595925 596583 596588) (-344 "FLALG.spad" 593559 593578 595839 595908) (-343 "FLAGG.spad" 590565 590575 593527 593554) (-342 "FLAGG.spad" 587484 587496 590448 590453) (-341 "FLAGG2.spad" 586165 586181 587474 587479) (-340 "FINRALG.spad" 584194 584207 586121 586160) (-339 "FINRALG.spad" 582149 582164 584078 584083) (-338 "FINITE.spad" 581301 581309 582139 582144) (-337 "FINAALG.spad" 570282 570292 581243 581296) (-336 "FINAALG.spad" 559275 559287 570238 570243) (-335 "FILE.spad" 558858 558868 559265 559270) (-334 "FILECAT.spad" 557376 557393 558848 558853) (-333 "FIELD.spad" 556782 556790 557278 557371) (-332 "FIELD.spad" 556274 556284 556772 556777) (-331 "FGROUP.spad" 554883 554893 556254 556269) (-330 "FGLMICPK.spad" 553670 553685 554873 554878) (-329 "FFX.spad" 553045 553060 553386 553479) (-328 "FFSLPE.spad" 552534 552555 553035 553040) (-327 "FFPOLY.spad" 543786 543797 552524 552529) (-326 "FFPOLY2.spad" 542846 542863 543776 543781) (-325 "FFP.spad" 542243 542263 542562 542655) (-324 "FF.spad" 541691 541707 541924 542017) (-323 "FFNBX.spad" 540203 540223 541407 541500) (-322 "FFNBP.spad" 538716 538733 539919 540012) (-321 "FFNB.spad" 537181 537202 538397 538490) (-320 "FFINTBAS.spad" 534595 534614 537171 537176) (-319 "FFIELDC.spad" 532170 532178 534497 534590) (-318 "FFIELDC.spad" 529831 529841 532160 532165) (-317 "FFHOM.spad" 528579 528596 529821 529826) (-316 "FFF.spad" 526014 526025 528569 528574) (-315 "FFCGX.spad" 524861 524881 525730 525823) (-314 "FFCGP.spad" 523750 523770 524577 524670) (-313 "FFCG.spad" 522542 522563 523431 523524) (-312 "FFCAT.spad" 515443 515465 522381 522537) (-311 "FFCAT.spad" 508423 508447 515363 515368) (-310 "FFCAT2.spad" 508168 508208 508413 508418) (-309 "FEXPR.spad" 499881 499927 507928 507967) (-308 "FEVALAB.spad" 499587 499597 499871 499876) (-307 "FEVALAB.spad" 499078 499090 499364 499369) (-306 "FDIV.spad" 498520 498544 499068 499073) (-305 "FDIVCAT.spad" 496562 496586 498510 498515) (-304 "FDIVCAT.spad" 494602 494628 496552 496557) (-303 "FDIV2.spad" 494256 494296 494592 494597) (-302 "FCPAK1.spad" 492809 492817 494246 494251) (-301 "FCOMP.spad" 492188 492198 492799 492804) (-300 "FC.spad" 482013 482021 492178 492183) (-299 "FAXF.spad" 474948 474962 481915 482008) (-298 "FAXF.spad" 467935 467951 474904 474909) (-297 "FARRAY.spad" 466304 466314 467341 467368) (-296 "FAMR.spad" 464424 464436 466202 466299) (-295 "FAMR.spad" 462528 462542 464308 464313) (-294 "FAMONOID.spad" 462178 462188 462482 462487) (-293 "FAMONC.spad" 460400 460412 462168 462173) (-292 "FAGROUP.spad" 460006 460016 460296 460323) (-291 "FACUTIL.spad" 458202 458219 459996 460001) (-290 "FACTFUNC.spad" 457378 457388 458192 458197) (-289 "EXPUPXS.spad" 454211 454234 455510 455659) (-288 "EXPRTUBE.spad" 451439 451447 454201 454206) (-287 "EXPRODE.spad" 448311 448327 451429 451434) (-286 "EXPR.spad" 443613 443623 444327 444730) (-285 "EXPR2UPS.spad" 439705 439718 443603 443608) (-284 "EXPR2.spad" 439408 439420 439695 439700) (-283 "EXPEXPAN.spad" 436349 436374 436983 437076) (-282 "EXIT.spad" 436020 436028 436339 436344) (-281 "EVALCYC.spad" 435478 435492 436010 436015) (-280 "EVALAB.spad" 435042 435052 435468 435473) (-279 "EVALAB.spad" 434604 434616 435032 435037) (-278 "EUCDOM.spad" 432146 432154 434530 434599) (-277 "EUCDOM.spad" 429750 429760 432136 432141) (-276 "ESTOOLS.spad" 421590 421598 429740 429745) (-275 "ESTOOLS2.spad" 421191 421205 421580 421585) (-274 "ESTOOLS1.spad" 420876 420887 421181 421186) (-273 "ES.spad" 413423 413431 420866 420871) (-272 "ES.spad" 405878 405888 413323 413328) (-271 "ESCONT.spad" 402651 402659 405868 405873) (-270 "ESCONT1.spad" 402400 402412 402641 402646) (-269 "ES2.spad" 401895 401911 402390 402395) (-268 "ES1.spad" 401461 401477 401885 401890) (-267 "ERROR.spad" 398782 398790 401451 401456) (-266 "EQTBL.spad" 397816 397838 398025 398052) (-265 "EQ.spad" 392700 392710 395499 395608) (-264 "EQ2.spad" 392416 392428 392690 392695) (-263 "EP.spad" 388730 388740 392406 392411) (-262 "ENTIRER.spad" 388398 388406 388674 388725) (-261 "EMR.spad" 387599 387640 388324 388393) (-260 "ELTAGG.spad" 385839 385858 387589 387594) (-259 "ELTAGG.spad" 384043 384064 385795 385800) (-258 "ELTAB.spad" 383490 383508 384033 384038) (-257 "ELFUTS.spad" 382869 382888 383480 383485) (-256 "ELEMFUN.spad" 382558 382566 382859 382864) (-255 "ELEMFUN.spad" 382245 382255 382548 382553) (-254 "ELAGG.spad" 380176 380186 382213 382240) (-253 "ELAGG.spad" 378056 378068 380095 380100) (-252 "EFUPXS.spad" 374832 374862 378012 378017) (-251 "EFULS.spad" 371668 371691 374788 374793) (-250 "EFSTRUC.spad" 369623 369639 371658 371663) (-249 "EF.spad" 364389 364405 369613 369618) (-248 "EAB.spad" 362665 362673 364379 364384) (-247 "E04UCFA.spad" 362201 362209 362655 362660) (-246 "E04NAFA.spad" 361778 361786 362191 362196) (-245 "E04MBFA.spad" 361358 361366 361768 361773) (-244 "E04JAFA.spad" 360894 360902 361348 361353) (-243 "E04GCFA.spad" 360430 360438 360884 360889) (-242 "E04FDFA.spad" 359966 359974 360420 360425) (-241 "E04DGFA.spad" 359502 359510 359956 359961) (-240 "E04AGNT.spad" 355344 355352 359492 359497) (-239 "DVARCAT.spad" 352029 352039 355334 355339) (-238 "DVARCAT.spad" 348712 348724 352019 352024) (-237 "DSMP.spad" 346146 346160 346451 346578) (-236 "DROPT.spad" 340091 340099 346136 346141) (-235 "DROPT1.spad" 339754 339764 340081 340086) (-234 "DROPT0.spad" 334581 334589 339744 339749) (-233 "DRAWPT.spad" 332736 332744 334571 334576) (-232 "DRAW.spad" 325336 325349 332726 332731) (-231 "DRAWHACK.spad" 324644 324654 325326 325331) (-230 "DRAWCX.spad" 322086 322094 324634 324639) (-229 "DRAWCURV.spad" 321623 321638 322076 322081) (-228 "DRAWCFUN.spad" 310795 310803 321613 321618) (-227 "DQAGG.spad" 308951 308961 310751 310790) (-226 "DPOLCAT.spad" 304292 304308 308819 308946) (-225 "DPOLCAT.spad" 299719 299737 304248 304253) (-224 "DPMO.spad" 293762 293778 293900 294196) (-223 "DPMM.spad" 287818 287836 287943 288239) (-222 "domain.spad" 287458 287466 287808 287813) (-221 "DMP.spad" 284683 284698 285255 285382) (-220 "DLP.spad" 284031 284041 284673 284678) (-219 "DLIST.spad" 282666 282676 283437 283464) (-218 "DLAGG.spad" 281067 281077 282646 282661) (-217 "DIVRING.spad" 280514 280522 281011 281062) (-216 "DIVRING.spad" 280005 280015 280504 280509) (-215 "DISPLAY.spad" 278185 278193 279995 280000) (-214 "DIRPROD.spad" 270160 270176 270800 270929) (-213 "DIRPROD2.spad" 268968 268986 270150 270155) (-212 "DIRPCAT.spad" 267900 267916 268822 268963) (-211 "DIRPCAT.spad" 266572 266590 267496 267501) (-210 "DIOSP.spad" 265397 265405 266562 266567) (-209 "DIOPS.spad" 264369 264379 265365 265392) (-208 "DIOPS.spad" 263327 263339 264325 264330) (-207 "DIFRING.spad" 262619 262627 263307 263322) (-206 "DIFRING.spad" 261919 261929 262609 262614) (-205 "DIFEXT.spad" 261078 261088 261899 261914) (-204 "DIFEXT.spad" 260154 260166 260977 260982) (-203 "DIAGG.spad" 259772 259782 260122 260149) (-202 "DIAGG.spad" 259410 259422 259762 259767) (-201 "DHMATRIX.spad" 257937 257947 259090 259117) (-200 "DFSFUN.spad" 251345 251353 257927 257932) (-199 "DFLOAT.spad" 247868 247876 251235 251340) (-198 "DFINTTLS.spad" 246077 246093 247858 247863) (-197 "DERHAM.spad" 243987 244019 246057 246072) (-196 "DEQUEUE.spad" 243528 243538 243817 243844) (-195 "DEGRED.spad" 243143 243157 243518 243523) (-194 "DEFINTRF.spad" 240668 240678 243133 243138) (-193 "DEFINTEF.spad" 239164 239180 240658 240663) (-192 "DECIMAL.spad" 237048 237056 237634 237727) (-191 "DDFACT.spad" 234847 234864 237038 237043) (-190 "DBLRESP.spad" 234445 234469 234837 234842) (-189 "DBASE.spad" 233017 233027 234435 234440) (-188 "D03FAFA.spad" 232845 232853 233007 233012) (-187 "D03EEFA.spad" 232665 232673 232835 232840) (-186 "D03AGNT.spad" 231745 231753 232655 232660) (-185 "D02EJFA.spad" 231207 231215 231735 231740) (-184 "D02CJFA.spad" 230685 230693 231197 231202) (-183 "D02BHFA.spad" 230175 230183 230675 230680) (-182 "D02BBFA.spad" 229665 229673 230165 230170) (-181 "D02AGNT.spad" 224469 224477 229655 229660) (-180 "D01WGTS.spad" 222788 222796 224459 224464) (-179 "D01TRNS.spad" 222765 222773 222778 222783) (-178 "D01GBFA.spad" 222287 222295 222755 222760) (-177 "D01FCFA.spad" 221809 221817 222277 222282) (-176 "D01ASFA.spad" 221277 221285 221799 221804) (-175 "D01AQFA.spad" 220723 220731 221267 221272) (-174 "D01APFA.spad" 220147 220155 220713 220718) (-173 "D01ANFA.spad" 219641 219649 220137 220142) (-172 "D01AMFA.spad" 219151 219159 219631 219636) (-171 "D01ALFA.spad" 218691 218699 219141 219146) (-170 "D01AKFA.spad" 218217 218225 218681 218686) (-169 "D01AJFA.spad" 217740 217748 218207 218212) (-168 "D01AGNT.spad" 213799 213807 217730 217735) (-167 "CYCLOTOM.spad" 213305 213313 213789 213794) (-166 "CYCLES.spad" 210137 210145 213295 213300) (-165 "CVMP.spad" 209554 209564 210127 210132) (-164 "CTRIGMNP.spad" 208044 208060 209544 209549) (-163 "CSTTOOLS.spad" 207287 207300 208034 208039) (-162 "CRFP.spad" 200991 201004 207277 207282) (-161 "CRAPACK.spad" 200034 200044 200981 200986) (-160 "CPMATCH.spad" 199534 199549 199959 199964) (-159 "CPIMA.spad" 199239 199258 199524 199529) (-158 "COORDSYS.spad" 194132 194142 199229 199234) (-157 "CONTFRAC.spad" 189744 189754 194034 194127) (-156 "COMRING.spad" 189418 189426 189682 189739) (-155 "COMPPROP.spad" 188932 188940 189408 189413) (-154 "COMPLPAT.spad" 188699 188714 188922 188927) (-153 "COMPLEX.spad" 182732 182742 182976 183237) (-152 "COMPLEX2.spad" 182445 182457 182722 182727) (-151 "COMPFACT.spad" 182047 182061 182435 182440) (-150 "COMPCAT.spad" 180103 180113 181769 182042) (-149 "COMPCAT.spad" 177866 177878 179534 179539) (-148 "COMMUPC.spad" 177612 177630 177856 177861) (-147 "COMMONOP.spad" 177145 177153 177602 177607) (-146 "COMM.spad" 176954 176962 177135 177140) (-145 "COMBOPC.spad" 175859 175867 176944 176949) (-144 "COMBINAT.spad" 174604 174614 175849 175854) (-143 "COMBF.spad" 171972 171988 174594 174599) (-142 "COLOR.spad" 170809 170817 171962 171967) (-141 "CMPLXRT.spad" 170518 170535 170799 170804) (-140 "CLIP.spad" 166610 166618 170508 170513) (-139 "CLIF.spad" 165249 165265 166566 166605) (-138 "CLAGG.spad" 161724 161734 165229 165244) (-137 "CLAGG.spad" 158080 158092 161587 161592) (-136 "CINTSLPE.spad" 157405 157418 158070 158075) (-135 "CHVAR.spad" 155483 155505 157395 157400) (-134 "CHARZ.spad" 155398 155406 155463 155478) (-133 "CHARPOL.spad" 154906 154916 155388 155393) (-132 "CHARNZ.spad" 154659 154667 154886 154901) (-131 "CHAR.spad" 152549 152557 154649 154654) (-130 "CFCAT.spad" 151865 151873 152539 152544) (-129 "CDEN.spad" 151023 151037 151855 151860) (-128 "CCLASS.spad" 149230 149238 150492 150531) (-127 "CARTEN.spad" 144333 144357 149220 149225) (-126 "CARTEN2.spad" 143719 143746 144323 144328) (-125 "CARD.spad" 141008 141016 143693 143714) (-124 "CACHSET.spad" 140630 140638 140998 141003) (-123 "CABMON.spad" 140183 140191 140620 140625) (-122 "BTREE.spad" 139475 139485 140013 140040) (-121 "BTOURN.spad" 138701 138711 139305 139332) (-120 "BTCAT.spad" 138077 138087 138657 138696) (-119 "BTCAT.spad" 137485 137497 138067 138072) (-118 "BTAGG.spad" 136501 136509 137441 137480) (-117 "BTAGG.spad" 135549 135559 136491 136496) (-116 "BSTREE.spad" 134507 134517 135379 135406) (-115 "BRILL.spad" 132702 132713 134497 134502) (-114 "BRAGG.spad" 131616 131626 132682 132697) (-113 "BRAGG.spad" 130504 130516 131572 131577) (-112 "BPADICRT.spad" 128488 128500 128743 128836) (-111 "BPADIC.spad" 128152 128164 128414 128483) (-110 "BOUNDZRO.spad" 127808 127825 128142 128147) (-109 "BOP.spad" 123272 123280 127798 127803) (-108 "BOP1.spad" 120658 120668 123228 123233) (-107 "BOOLEAN.spad" 119516 119524 120648 120653) (-106 "BMODULE.spad" 119228 119240 119484 119511) (-105 "BITS.spad" 118705 118713 118922 118949) (-104 "BINFILE.spad" 118048 118056 118695 118700) (-103 "BINARY.spad" 115941 115949 116518 116611) (-102 "BGAGG.spad" 115126 115136 115909 115936) (-101 "BGAGG.spad" 114331 114343 115116 115121) (-100 "BFUNCT.spad" 113895 113903 114311 114326) (-99 "BEZOUT.spad" 113030 113056 113845 113850) (-98 "BBTREE.spad" 110073 110082 112860 112887) (-97 "BASTYPE.spad" 109746 109753 110063 110068) (-96 "BASTYPE.spad" 109417 109426 109736 109741) (-95 "BALFACT.spad" 108857 108869 109407 109412) (-94 "AUTOMOR.spad" 108304 108313 108837 108852) (-93 "ATTREG.spad" 105023 105030 108056 108299) (-92 "ATTRBUT.spad" 101046 101053 105003 105018) (-91 "ATRIG.spad" 100516 100523 101036 101041) (-90 "ATRIG.spad" 99984 99993 100506 100511) (-89 "ASTACK.spad" 99540 99549 99814 99841) (-88 "ASSOCEQ.spad" 98340 98351 99496 99501) (-87 "ASP9.spad" 97421 97434 98330 98335) (-86 "ASP8.spad" 96464 96477 97411 97416) (-85 "ASP80.spad" 95786 95799 96454 96459) (-84 "ASP7.spad" 94946 94959 95776 95781) (-83 "ASP78.spad" 94397 94410 94936 94941) (-82 "ASP77.spad" 93766 93779 94387 94392) (-81 "ASP74.spad" 92858 92871 93756 93761) (-80 "ASP73.spad" 92129 92142 92848 92853) (-79 "ASP6.spad" 90761 90774 92119 92124) (-78 "ASP55.spad" 89270 89283 90751 90756) (-77 "ASP50.spad" 87087 87100 89260 89265) (-76 "ASP4.spad" 86382 86395 87077 87082) (-75 "ASP49.spad" 85381 85394 86372 86377) (-74 "ASP42.spad" 83788 83827 85371 85376) (-73 "ASP41.spad" 82367 82406 83778 83783) (-72 "ASP35.spad" 81355 81368 82357 82362) (-71 "ASP34.spad" 80656 80669 81345 81350) (-70 "ASP33.spad" 80216 80229 80646 80651) (-69 "ASP31.spad" 79356 79369 80206 80211) (-68 "ASP30.spad" 78248 78261 79346 79351) (-67 "ASP29.spad" 77714 77727 78238 78243) (-66 "ASP28.spad" 68987 69000 77704 77709) (-65 "ASP27.spad" 67884 67897 68977 68982) (-64 "ASP24.spad" 66971 66984 67874 67879) (-63 "ASP20.spad" 66187 66200 66961 66966) (-62 "ASP1.spad" 65568 65581 66177 66182) (-61 "ASP19.spad" 60254 60267 65558 65563) (-60 "ASP12.spad" 59668 59681 60244 60249) (-59 "ASP10.spad" 58939 58952 59658 59663) (-58 "ARRAY2.spad" 58522 58531 58769 58796) (-57 "ARRAY1.spad" 57580 57589 57928 57955) (-56 "ARRAY12.spad" 56249 56260 57570 57575) (-55 "ARR2CAT.spad" 51899 51920 56205 56244) (-54 "ARR2CAT.spad" 47581 47604 51889 51894) (-53 "APPRULE.spad" 46825 46847 47571 47576) (-52 "APPLYORE.spad" 46440 46453 46815 46820) (-51 "ANY.spad" 44782 44789 46430 46435) (-50 "ANY1.spad" 43853 43862 44772 44777) (-49 "ANTISYM.spad" 42292 42308 43833 43848) (-48 "ANON.spad" 42205 42212 42282 42287) (-47 "AN.spad" 40508 40515 42023 42116) (-46 "AMR.spad" 38687 38698 40406 40503) (-45 "AMR.spad" 36703 36716 38424 38429) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 8812be8f..d73ba07d 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,14 +1,14 @@
-(143833 . 3403927931)
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(143833 . 3404130415)
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
(((|#2| |#2|) . T))
((((-517)) . T))
-((($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+((($ $) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
-((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
(|has| |#1| (-831))
((((-787)) . T))
((((-787)) . T))
@@ -18,33 +18,33 @@
((($) . T))
(((|#2| |#2|) . T))
((((-131)) . T))
-((((-493)) . T) (((-1056)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
+((((-493)) . T) (((-1057)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
(((|#1|) . T))
((((-199)) . T) (((-787)) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
-(-3807 (|has| |#1| (-752)) (|has| |#1| (-779)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
+(-3763 (|has| |#1| (-752)) (|has| |#1| (-779)))
((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-777))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-787)) . T))
((((-787)) |has| |#1| (-1003)))
(((|#1|) . T) ((|#2|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(((|#2| (-450 (-2296 |#1|) (-703))) . T))
-(((|#1| (-489 (-1073))) . T))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#2| (-450 (-2210 |#1|) (-703))) . T))
+(((|#1| (-489 (-1074))) . T))
((((-794 |#1|) (-794 |#1|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(|has| |#4| (-338))
(|has| |#3| (-338))
(((|#1|) . T))
@@ -54,10 +54,10 @@
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-509))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
((($) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T))
@@ -66,64 +66,64 @@
((((-787)) . T))
((((-787)) . T))
((((-377 (-517))) . T) (($) . T))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+(((|#1|) . T) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1| |#2|) . T))
((((-787)) . T))
(((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
(((|#1|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
((($ $) . T))
(((|#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
((($) . T))
(|has| |#1| (-338))
(((|#1|) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
(((|#1| |#1|) . T))
(|has| |#1| (-509))
-(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1073) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1073) |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1074) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1074) |#2|))))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-777)))
((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(|has| |#1| (-1003))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(|has| |#1| (-1003))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(|has| |#1| (-777))
((($) . T) (((-377 (-517))) . T))
(((|#1|) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3807 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3807 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
-(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3763 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3763 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3763 (|has| |#3| (-725)) (|has| |#3| (-777)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-1003))
(|has| |#1| (-1003))
-(((|#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) . T))
+(((|#1| (-1074) (-993 (-1074)) (-489 (-993 (-1074)))) . T))
((((-517) |#1|) . T))
((((-517)) . T))
((((-517)) . T))
@@ -132,32 +132,32 @@
((((-517)) . T))
((((-517)) . T))
(((|#1|) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#1| (-703)) . T))
(|has| |#2| (-725))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
(|has| |#2| (-777))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1056) |#1|) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-1057) |#1|) . T))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#3| (-703)) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-1003))
((((-377 (-517))) . T) (((-517)) . T))
-((((-1073) |#2|) |has| |#2| (-478 (-1073) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|)))
+((((-1074) |#2|) |has| |#2| (-478 (-1074) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|)))
((((-377 (-517))) . T) (((-517)) . T))
(((|#1|) . T) (($) . T))
((((-517)) . T))
((((-517)) . T))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
((((-517)) . T))
((((-517)) . T))
-((((-632) (-1069 (-632))) . T))
+((((-632) (-1070 (-632))) . T))
((((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
((((-517) |#1|) . T))
@@ -168,17 +168,17 @@
(((|#1| |#2|) . T))
((((-787)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1056) |#1|) . T))
+((((-1057) |#1|) . T))
(((|#3| |#3|) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -186,42 +186,42 @@
((((-787)) . T))
((((-517) |#1|) . T))
((((-787)) . T))
-((((-153 (-199))) |has| |#1| (-937)) (((-153 (-349))) |has| |#1| (-937)) (((-493)) |has| |#1| (-558 (-493))) (((-1069 |#1|)) . T) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))))
+((((-153 (-199))) |has| |#1| (-937)) (((-153 (-349))) |has| |#1| (-937)) (((-493)) |has| |#1| (-558 (-493))) (((-1070 |#1|)) . T) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))))
(|has| |#1| (-333))
(-12 (|has| |#4| (-207)) (|has| |#4| (-961)))
(-12 (|has| |#3| (-207)) (|has| |#3| (-961)))
-(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
((((-787)) . T))
(((|#1|) . T))
((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1|) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
(|has| |#1| (-509))
((((-632)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-918)) (|has| |#1| (-1094)))
+(-12 (|has| |#1| (-918)) (|has| |#1| (-1095)))
(((|#2|) . T) (($) . T) (((-377 (-517))) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(((|#4| |#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($ $) |has| |#4| (-156)))
-(((|#3| |#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156)))
+(((|#4| |#4|) -3763 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($ $) |has| |#4| (-156)))
+(((|#3| |#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156)))
(((|#1|) . T))
(((|#2|) . T))
((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
@@ -230,21 +230,21 @@
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
((((-787)) . T))
-(((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($) |has| |#4| (-156)))
-(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156)))
+(((|#4|) -3763 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($) |has| |#4| (-156)))
+(((|#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156)))
((((-787)) . T))
((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
((((-377 $) (-377 $)) |has| |#2| (-509)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) . T))
(((|#1|) . T))
(|has| |#2| (-831))
-((((-1056) (-51)) . T))
+((((-1057) (-51)) . T))
((((-517)) |has| (-377 |#2|) (-579 (-517))) (((-377 |#2|)) . T))
((((-493)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
((((-787)) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
(((|#1|) |has| |#1| (-156)))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
((((-787)) . T))
@@ -255,31 +255,31 @@
(|has| |#1| (-779))
(|has| |#1| (-1003))
(((|#1|) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#1| (-207))
-((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1| (-489 (-750 (-1073)))) . T))
+((($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| (-489 (-750 (-1074)))) . T))
(((|#1| (-888)) . T))
((((-794 |#1|) $) |has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))
((((-517) |#4|) . T))
((((-517) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1049))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
-(|has| (-1140 |#1| |#2| |#3| |#4|) (-132))
-(|has| (-1140 |#1| |#2| |#3| |#4|) (-134))
+(|has| |#1| (-1050))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
+(|has| (-1141 |#1| |#2| |#3| |#4|) (-132))
+(|has| (-1141 |#1| |#2| |#3| |#4|) (-134))
(|has| |#1| (-132))
(|has| |#1| (-134))
(((|#1|) |has| |#1| (-156)))
-((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))))
+((((-1074)) -12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961))))
(((|#2|) . T))
(|has| |#1| (-1003))
-((((-1056) |#1|) . T))
+((((-1057) |#1|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(|has| |#2| (-338))
@@ -287,39 +287,39 @@
((($) . T) ((|#1|) . T))
(((|#2|) |has| |#2| (-961)))
((((-787)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) |has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))))
((((-517) |#1|) . T))
((((-787)) . T))
((((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517))))))
((((-787)) . T))
((((-787)) . T))
((($) . T))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
((((-787)) . T))
-(|has| (-1139 |#2| |#3| |#4|) (-134))
-(|has| (-1139 |#2| |#3| |#4|) (-132))
+(|has| (-1140 |#2| |#3| |#4|) (-134))
+(|has| (-1140 |#2| |#3| |#4|) (-132))
(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
(((|#1|) . T))
(|has| |#1| (-1003))
(((|#1|) . T))
(((|#1|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
(((|#1|) . T))
((((-517) |#1|) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-777)))
((((-787)) |has| |#1| (-1003)))
-(-3807 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)) (|has| |#1| (-1015)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
((((-832 |#1|)) . T))
((((-377 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-517) |#1|)))
@@ -330,43 +330,43 @@
(((|#1|) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
(|has| |#1| (-333))
-(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
+(-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(|has| |#1| (-15 * (|#1| (-703) |#1|)))
((((-517)) . T))
-((((-1040 |#2| (-377 (-874 |#1|)))) . T) (((-377 (-874 |#1|))) . T))
+((((-1041 |#2| (-377 (-874 |#1|)))) . T) (((-377 (-874 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
(((|#1|) . T))
((((-517) |#1|) . T))
(((|#2|) . T))
-(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
(((|#1|) . T))
-((((-1073)) -12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961))))
+((((-1074)) -12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+(-3763 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($ $) |has| |#1| (-509)))
-((((-632) (-1069 (-632))) . T))
+((((-632) (-1070 (-632))) . T))
((((-787)) . T))
-((((-787)) . T) (((-1153 |#4|)) . T))
-((((-787)) . T) (((-1153 |#3|)) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((((-787)) . T) (((-1154 |#4|)) . T))
+((((-787)) . T) (((-1154 |#3|)) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)))
((((-787)) . T))
((($) . T))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
-(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
+(((|#1|) . T) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
(((|#3|) |has| |#3| (-961)))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#1| (-1003))
(((|#2| (-751 |#1|)) . T))
(((|#1|) . T))
@@ -378,49 +378,49 @@
((((-131)) . T))
(((|#3|) |has| |#3| (-1003)) (((-517)) -12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (((-377 (-517))) -12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))
((((-787)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1|) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
(|has| |#1| (-333))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
(|has| |#2| (-752))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-777))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
((((-787)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((((-493)) |has| |#1| (-558 (-493))))
(((|#1| |#2|) . T))
-((((-1073)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073)))))
-((((-1056) |#1|) . T))
+((((-1074)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074)))))
+((((-1057) |#1|) . T))
(((|#1| |#2| |#3| (-489 |#3|)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
((((-787)) . T))
(((|#1|) . T))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
(|has| |#1| (-338))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
((((-517)) . T))
((((-517)) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
((((-787)) . T))
((((-787)) . T))
(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
-((((-1073) (-794 |#1|)) |has| (-794 |#1|) (-478 (-1073) (-794 |#1|))) (((-794 |#1|) (-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|))))
+((((-1074) (-794 |#1|)) |has| (-794 |#1|) (-478 (-1074) (-794 |#1|))) (((-794 |#1|) (-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|))))
(((|#1|) . T))
((((-517) |#4|) . T))
((((-517) |#3|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-1140 |#1| |#2| |#3| |#4|)) . T))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-1141 |#1| |#2| |#3| |#4|)) . T))
((((-377 (-517))) . T) (((-517)) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
@@ -447,39 +447,39 @@
(((|#1|) . T))
((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
((($) . T))
-((($ $) . T) (((-1073) $) . T) (((-1073) |#1|) . T))
+((($ $) . T) (((-1074) $) . T) (((-1074) |#1|) . T))
(((|#2|) |has| |#2| (-156)))
-((($) -3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
-(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
+((($) -3763 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+(((|#2| |#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
((((-131)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-338)) (|has| |#2| (-338)))
((((-787)) . T))
-(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
+(((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
(((|#1|) . T))
((((-787)) . T))
(|has| |#1| (-1003))
(|has| $ (-134))
((((-517) |#1|) . T))
-((($) -3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
-((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
+((($) -3763 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
(|has| |#1| (-333))
-(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
+(-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(|has| |#1| (-15 * (|#1| (-703) |#1|)))
(((|#1|) . T))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
((((-787)) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
(((|#2| (-489 (-789 |#1|))) . T))
((((-787)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
((((-530 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
@@ -487,7 +487,7 @@
(((|#4|) . T))
(((|#3|) . T))
((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))))
+((((-1074)) -12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961))))
(((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
@@ -496,28 +496,28 @@
((((-787)) . T))
((((-787)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) |has| |#2| (-961)))
(|has| |#1| (-1003))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
-(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
+(((|#1|) . T) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) |has| |#1| (-156)) (($) . T))
(((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
((((-787)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
((($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#2|) |has| |#1| (-333)))
(((|#1|) . T))
(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
@@ -531,30 +531,30 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-132))
(|has| |#1| (-134))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
(((|#2| |#3| (-789 |#1|)) . T))
-((((-1073)) |has| |#2| (-822 (-1073))))
+((((-1074)) |has| |#2| (-822 (-1074))))
(((|#1|) . T))
(((|#1| (-489 |#2|) |#2|) . T))
(((|#1| (-703) (-989)) . T))
((((-377 (-517))) |has| |#2| (-333)) (($) . T))
-(((|#1| (-489 (-993 (-1073))) (-993 (-1073))) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1| (-489 (-993 (-1074))) (-993 (-1074))) . T))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#1|) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(|has| |#2| (-725))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#2| (-777))
((((-815 |#1|)) . T) (((-751 |#1|)) . T))
-((((-751 (-1073))) . T))
+((((-751 (-1074))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -572,99 +572,99 @@
((($ $) . T))
(((|#1| |#1|) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1146 |#1| |#2| |#3|) $) -12 (|has| (-1146 |#1| |#2| |#3|) (-258 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
+((((-1147 |#1| |#2| |#3|) $) -12 (|has| (-1147 |#1| |#2| |#3|) (-258 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1038 |#1| |#2|)) |has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))))
+((((-1039 |#1| |#2|)) |has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))))
(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
(((|#2|) . T))
-((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T))
+((((-787)) -3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1154 |#2|)) . T))
(((|#1|) |has| |#1| (-156)))
((((-517)) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-517) (-131)) . T))
-((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+((($) -3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
(((|#1|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
(((|#2|) |has| |#1| (-333)))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1| (-489 (-1073)) (-1073)) . T))
+(((|#1| (-489 (-1074)) (-1074)) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-156))
(|has| |#3| (-156))
((((-377 (-874 |#1|)) (-377 (-874 |#1|))) . T))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(|has| |#1| (-1003))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(|has| |#1| (-1003))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1| |#1|) |has| |#1| (-156)))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
((((-377 (-874 |#1|))) . T))
(((|#1|) |has| |#1| (-156)))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
((((-787)) . T))
-((((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) |has| |#1| (-961)) (((-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))
(((|#1| |#2|) . T))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
(|has| |#3| (-725))
-(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3763 (|has| |#3| (-725)) (|has| |#3| (-777)))
(|has| |#3| (-777))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))))
(((|#2|) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
-(((|#1| (-1054 |#1|)) |has| |#1| (-777)))
+(((|#1| (-1055 |#1|)) |has| |#1| (-777)))
((((-517) |#2|) . T))
(|has| |#1| (-1003))
(((|#1|) . T))
-(-12 (|has| |#1| (-333)) (|has| |#2| (-1049)))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-1050)))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(|has| |#1| (-1003))
(((|#2|) . T))
((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
-(((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333))))
-(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(((|#4|) -3763 (|has| |#4| (-156)) (|has| |#4| (-333))))
+(((|#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333))))
((((-787)) . T))
(((|#1|) . T))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-831)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
-((($ $) . T) (((-1073) $) |has| |#1| (-207)) (((-1073) |#1|) |has| |#1| (-207)) (((-750 (-1073)) |#1|) . T) (((-750 (-1073)) $) . T))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
+((($ $) . T) (((-1074) $) |has| |#1| (-207)) (((-1074) |#1|) |has| |#1| (-207)) (((-750 (-1074)) |#1|) . T) (((-750 (-1074)) $) . T))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-831)))
((((-517) |#2|) . T))
((((-787)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((($) -3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))))
+((($) -3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))))
((((-517) |#1|) . T))
(|has| (-377 |#2|) (-134))
(|has| (-377 |#2|) (-132))
@@ -677,26 +677,26 @@
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((((-787)) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
(|has| |#1| (-37 (-377 (-517))))
-((((-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-358) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
(|has| |#1| (-37 (-377 (-517))))
-(|has| |#2| (-1049))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#2| (-1050))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
(((|#1|) . T))
-((((-358) (-1056)) . T))
+((((-358) (-1057)) . T))
(|has| |#1| (-509))
((((-111 |#1|)) . T))
((((-517) |#1|) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#2|) . T))
((((-787)) . T))
((((-751 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
(((|#1|) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
@@ -704,17 +704,17 @@
(((|#1|) |has| |#1| (-156)))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#2|) |has| |#2| (-280 |#2|)))
((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1069 |#1|)) . T))
+(((|#1| (-1070 |#1|)) . T))
(|has| $ (-134))
(((|#2|) . T))
((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
((($) . T) (((-517)) . T) (((-377 (-517))) . T))
(|has| |#2| (-338))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
@@ -722,26 +722,26 @@
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
((((-517)) . T) (((-377 (-517))) . T) (($) . T))
-((((-1071 |#1| |#2| |#3|) $) -12 (|has| (-1071 |#1| |#2| |#3|) (-258 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
+((((-1072 |#1| |#2| |#3|) $) -12 (|has| (-1072 |#1| |#2| |#3|) (-258 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
((((-787)) . T))
((((-787)) . T))
-((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
((($ $) . T))
((($ $) . T))
((((-787)) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1073) (-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) -12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1074) (-1147 |#1| |#2| |#3|)) -12 (|has| (-1147 |#1| |#2| |#3|) (-478 (-1074) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-377 (-517))) . T) (((-517)) . T))
((((-517) (-131)) . T))
((((-131)) . T))
(((|#1|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
((((-107)) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((((-107)) . T))
@@ -749,38 +749,38 @@
((((-493)) |has| |#1| (-558 (-493))) (((-199)) |has| |#1| (-937)) (((-349)) |has| |#1| (-937)))
((((-787)) . T))
(|has| |#1| (-752))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(|has| |#1| (-779))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-509)))
(|has| |#1| (-509))
(|has| |#1| (-831))
(((|#1|) . T))
(|has| |#1| (-1003))
((((-787)) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-509)))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
-(((|#1| (-1153 |#1|) (-1153 |#1|)) . T))
+(((|#1| (-1154 |#1|) (-1154 |#1|)) . T))
((((-517) (-131)) . T))
((($) . T))
-(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
((((-787)) . T))
(|has| |#1| (-1003))
(((|#1| (-888)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
(-12 (|has| |#1| (-442)) (|has| |#2| (-442)))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
(((|#1|) . T))
(|has| |#2| (-725))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
(((|#1| |#2|) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(|has| |#2| (-777))
@@ -795,7 +795,7 @@
(((|#1|) . T))
(((|#1|) . T))
((((-377 (-517))) . T) (($) . T))
-((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
(|has| |#1| (-760))
((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
(|has| |#1| (-1003))
@@ -806,8 +806,8 @@
(((|#3|) |has| |#3| (-1003)))
(|has| |#3| (-338))
(((|#1|) . T) (((-787)) . T))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))))
((((-787)) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
@@ -817,30 +817,30 @@
(((|#1|) . T))
(((|#1|) |has| |#1| (-156)))
((((-377 (-517))) . T) (((-517)) . T))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
((((-131)) . T))
(((|#1|) . T))
((((-131)) . T))
-((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
+((($) -3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
((((-131)) . T))
(((|#1| |#2| |#3|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
(|has| $ (-134))
(|has| $ (-134))
(|has| |#1| (-1003))
((((-787)) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015)))
((($ $) |has| |#1| (-258 $ $)) ((|#1| $) |has| |#1| (-258 |#1| |#1|)))
(((|#1| (-377 (-517))) . T))
(((|#1|) . T))
-((((-1073)) . T))
+((((-1074)) . T))
(|has| |#1| (-509))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
@@ -851,7 +851,7 @@
(|has| |#1| (-134))
(|has| |#1| (-132))
(|has| |#4| (-777))
-(((|#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) . T))
+(((|#2| (-214 (-2210 |#1|) (-703)) (-789 |#1|)) . T))
(|has| |#3| (-777))
(((|#1| (-489 |#3|) |#3|) . T))
(|has| |#1| (-134))
@@ -865,21 +865,21 @@
(|has| |#1| (-132))
((((-377 (-517))) |has| |#2| (-333)) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3807 (|has| |#1| (-319)) (|has| |#1| (-338)))
-((((-1040 |#2| |#1|)) . T) ((|#1|) . T))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#1| (-319)) (|has| |#1| (-338)))
+((((-1041 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-156))
(((|#1| |#2|) . T))
(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
-(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
-(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(((|#2|) . T) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+(-3763 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3763 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
((((-632)) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(|has| |#1| (-509))
(((|#1|) . T))
(((|#1|) . T))
@@ -887,7 +887,7 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
((((-787)) . T))
((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1|) . T))
@@ -901,33 +901,33 @@
(((|#1| (-377 (-517))) . T))
(((|#3|) . T) (((-556 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((((-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1073) (-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) -12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1074) (-1072 |#1| |#2| |#3|)) -12 (|has| (-1072 |#1| |#2| |#3|) (-478 (-1074) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) |has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))))
((((-787)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
(((|#3|) . T))
((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
(|has| |#1| (-760))
(|has| |#1| (-1003))
-(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
-(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333))))
-((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
+(((|#2| |#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
+(((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333))))
+((((-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
((((-703)) . T))
((((-517)) . T))
(|has| |#1| (-509))
@@ -940,100 +940,100 @@
((((-111 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-134))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
-((((-814 (-517))) . T) (((-814 (-349))) . T) (((-493)) . T) (((-1073)) . T))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-509)))
+((((-814 (-517))) . T) (((-814 (-349))) . T) (((-493)) . T) (((-1074)) . T))
((((-787)) . T))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
((($) . T))
((((-787)) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
(((|#2|) |has| |#2| (-156)))
-((($) -3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
((((-794 |#1|)) . T))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
(-12 (|has| |#3| (-207)) (|has| |#3| (-961)))
-(|has| |#2| (-1049))
-((((-51)) . T) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+(|has| |#2| (-1050))
+((((-51)) . T) (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
(((|#1| |#2|) . T))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
(((|#1| (-517) (-989)) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| (-377 (-517)) (-989)) . T))
-((($) -3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) -3763 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-517) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-338))
(-12 (|has| |#1| (-338)) (|has| |#2| (-338)))
((((-787)) . T))
-((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
(((|#1|) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
(|has| |#1| (-319))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
(|has| |#1| (-509))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((((-787)) . T))
(((|#1| |#2|) . T))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-831)))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-831)))
((((-377 (-517))) . T) (((-517)) . T))
((((-517)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
((($) . T))
((((-787)) . T))
(((|#1|) . T))
((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
-(((|#3| |#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156)))
+(((|#3| |#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156)))
(|has| |#1| (-937))
((((-787)) . T))
-(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156)))
+(((|#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156)))
((((-517) (-107)) . T))
(((|#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
-((((-1073) $) |has| |#1| (-478 (-1073) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)))
-((((-1073)) |has| |#1| (-822 (-1073))))
-(-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))
+((((-1074) $) |has| |#1| (-478 (-1074) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)))
+((((-1074)) |has| |#1| (-822 (-1074))))
+(-3763 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))
((((-358) (-1021)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-358) |#1|) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-1003))
((((-787)) . T))
((((-787)) . T))
((((-832 |#1|)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
((((-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|))))
(((|#1| |#2|) . T))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
(((|#1|) . T))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-(|has| |#1| (-1094))
+(((|#2|) . T) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+(|has| |#1| (-1095))
((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
((((-377 (-517))) . T) (($) . T))
(((|#4|) |has| |#4| (-961)))
@@ -1043,8 +1043,8 @@
(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(|has| |#1| (-333))
((((-517)) . T) (((-377 (-517))) . T) (($) . T))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
((((-787)) . T))
@@ -1059,25 +1059,25 @@
(((|#1| |#2|) . T))
(|has| |#1| (-777))
(|has| |#1| (-777))
-((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))))
+((($) . T) (((-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-509)))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) |has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))))
((($) . T))
(|has| |#2| (-779))
((($) . T))
(((|#2|) |has| |#2| (-1003)))
-((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T))
+((((-787)) -3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1154 |#2|)) . T))
(|has| |#1| (-779))
(|has| |#1| (-779))
-((((-1056) (-51)) . T))
+((((-1057) (-51)) . T))
(|has| |#1| (-779))
((((-787)) . T))
((((-517)) |has| (-377 |#2|) (-579 (-517))) (((-377 |#2|)) . T))
((((-517) (-131)) . T))
-((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T))
+((((-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((|#1| |#2|) . T))
((((-377 (-517))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((((-787)) . T))
((((-832 |#1|)) . T))
(|has| |#1| (-333))
@@ -1089,44 +1089,44 @@
(|has| |#1| (-777))
(((|#1|) . T) (($) . T))
(|has| |#1| (-777))
-((((-1073)) |has| |#1| (-822 (-1073))))
-(((|#1| (-1073)) . T))
-(((|#1| (-1153 |#1|) (-1153 |#1|)) . T))
+((((-1074)) |has| |#1| (-822 (-1074))))
+(((|#1| (-1074)) . T))
+(((|#1| (-1154 |#1|) (-1154 |#1|)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
(|has| |#1| (-1003))
-(((|#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) . T))
+(((|#1| (-1074) (-750 (-1074)) (-489 (-750 (-1074)))) . T))
((((-377 (-874 |#1|))) . T))
((((-493)) . T))
((((-787)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-156)))
-((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T))
+((((-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-156)))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
(((|#1|) . T))
((((-493)) |has| |#1| (-558 (-493))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
((((-787)) . T))
-(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(|has| |#2| (-777))
(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
(|has| |#1| (-509))
-(|has| |#1| (-1049))
-((((-1056) |#1|) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
-((((-377 (-517))) |has| |#1| (-952 (-517))) (((-517)) |has| |#1| (-952 (-517))) (((-1073)) |has| |#1| (-952 (-1073))) ((|#1|) . T))
+(|has| |#1| (-1050))
+((((-1057) |#1|) . T))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
+((((-377 (-517))) |has| |#1| (-952 (-517))) (((-517)) |has| |#1| (-952 (-517))) (((-1074)) |has| |#1| (-952 (-1074))) ((|#1|) . T))
((((-517) |#2|) . T))
((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
(((|#1|) . T))
((((-583 |#4|)) . T) (((-787)) . T))
((((-493)) |has| |#4| (-558 (-493))))
@@ -1138,21 +1138,21 @@
((((-493)) |has| |#4| (-558 (-493))))
(((|#1|) . T))
(((|#2|) . T))
-((((-1073)) |has| (-377 |#2|) (-822 (-1073))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+((((-1074)) |has| (-377 |#2|) (-822 (-1074))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-787)) -3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003))) (((-1153 |#3|)) . T))
+((((-787)) -3763 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003))) (((-1154 |#3|)) . T))
((((-517) |#2|) . T))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#2| |#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((|#2|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-1056) (-1073) (-517) (-199) (-787)) . T))
+((((-1057) (-1074) (-517) (-199) (-787)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -1184,8 +1184,8 @@
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
(|has| $ (-134))
((((-377 |#2|)) . T))
((((-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) (((-517)) |has| (-377 |#2|) (-952 (-517))) (((-377 |#2|)) . T))
@@ -1196,19 +1196,19 @@
(((|#3|) |has| |#3| (-156)))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-207))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-((((-1073)) |has| |#2| (-822 (-1073))))
+((((-1074)) |has| |#2| (-822 (-1074))))
((((-517) (-107)) . T))
(|has| |#1| (-509))
(((|#2|) . T))
@@ -1231,23 +1231,23 @@
((((-915 |#1|)) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1069 |#1|)) . T))
+(((|#1| (-1070 |#1|)) . T))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(((|#3|) . T) (($) . T))
(|has| |#1| (-779))
(((|#2|) . T))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
((((-517) |#2|) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#2|) . T))
((((-517) |#3|) . T))
(((|#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
@@ -1256,12 +1256,12 @@
(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#2| (-333))
(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
(((|#2|) . T))
-((((-1056) (-51)) . T))
+((((-1057) (-51)) . T))
(((|#2|) |has| |#2| (-156)))
((((-517) |#3|) . T))
((((-517) (-131)) . T))
@@ -1281,27 +1281,27 @@
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
-((((-1056) (-51)) . T))
+((((-1057) (-51)) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#2|) . T))
((((-517) (-131)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
-((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+((($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#1| (-779))
(((|#2| (-703) (-989)) . T))
(((|#1| |#2|) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-509)))
(|has| |#1| (-723))
(((|#1|) |has| |#1| (-156)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3807 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134))))
-(-3807 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132))))
+(-3763 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134))))
+(-3763 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132))))
(((|#4|) . T))
(|has| |#1| (-132))
-((((-1056) |#1|) . T))
+((((-1057) |#1|) . T))
(|has| |#1| (-134))
(((|#1|) . T))
((((-517)) . T))
@@ -1310,25 +1310,25 @@
((((-787)) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#3|) . T))
-((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1|) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))) (((-879 |#1|)) . T))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))) (((-879 |#1|)) . T))
(|has| |#1| (-777))
(|has| |#1| (-777))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(|has| |#2| (-333))
(((|#1|) |has| |#1| (-156)))
(((|#2|) |has| |#2| (-961)))
-((((-1056) |#1|) . T))
+((((-1057) |#1|) . T))
(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
(((|#2| (-815 |#1|)) . T))
((($) . T))
-((((-358) (-1056)) . T))
+((((-358) (-1057)) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T))
-((((-51)) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
+((((-787)) -3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1154 |#2|)) . T))
+((((-51)) . T) (((-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) . T))
(((|#1|) . T))
((((-787)) . T))
(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
@@ -1336,7 +1336,7 @@
(|has| |#2| (-132))
(|has| |#2| (-134))
(|has| |#1| (-442))
-(-3807 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
(|has| |#1| (-333))
((((-787)) . T))
(|has| |#1| (-37 (-377 (-517))))
@@ -1345,18 +1345,18 @@
(|has| |#1| (-777))
(|has| |#1| (-777))
((((-787)) . T))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1| |#2|) . T))
-((((-1073)) |has| |#1| (-822 (-1073))))
+((((-1074)) |has| |#1| (-822 (-1074))))
((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
((((-787)) . T))
((((-787)) . T))
(|has| |#1| (-1003))
-(((|#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) . T))
+(((|#2| (-450 (-2210 |#1|) (-703)) (-789 |#1|)) . T))
((((-377 (-517))) |has| |#2| (-333)) (($) |has| |#2| (-333)))
-(((|#1| (-489 (-1073)) (-1073)) . T))
+(((|#1| (-489 (-1074)) (-1074)) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-787)) . T))
@@ -1374,22 +1374,22 @@
(|has| |#1| (-134))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
-((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-1073) (-51)) . T))
+(((|#1|) . T) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
+((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-1074) (-51)) . T))
((($ $) . T))
(((|#1| (-517)) . T))
((((-832 |#1|)) . T))
-(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))) (($) -3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))))
+(((|#1|) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))) (($) -3763 (|has| |#1| (-822 (-1074))) (|has| |#1| (-961))))
(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
(|has| |#1| (-779))
(|has| |#1| (-779))
((((-517) |#2|) . T))
((((-517)) . T))
-((((-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-1147 |#1| |#2| |#3|)) -12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))))
(|has| |#1| (-779))
((((-623 |#2|)) . T) (((-787)) . T))
(((|#1| |#2|) . T))
@@ -1398,13 +1398,13 @@
(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
(((|#1|) |has| |#1| (-156)))
(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(((|#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333))))
(|has| |#2| (-779))
(|has| |#1| (-779))
-(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-831)))
((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
((((-517) |#2|) . T))
-(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333))))
+(((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333))))
(|has| |#1| (-319))
(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
((($) . T) (((-377 (-517))) . T))
@@ -1412,7 +1412,7 @@
(|has| |#1| (-752))
(|has| |#1| (-752))
(((|#1|) . T))
-(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-777))
(|has| |#1| (-777))
(|has| |#1| (-777))
@@ -1421,13 +1421,13 @@
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-1074)) |has| |#1| (-822 (-1074))) (((-989)) . T))
(((|#1|) . T))
(|has| |#1| (-777))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) |has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(|has| |#1| (-1003))
(((|#1|) . T))
@@ -1445,7 +1445,7 @@
(((|#1|) . T))
((((-131)) . T))
(((|#2|) |has| |#2| (-156)))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
(((|#1|) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
@@ -1455,43 +1455,43 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-333)))
(((|#2|) . T))
-(((|#1| (-1069 |#1|)) . T))
+(((|#1| (-1070 |#1|)) . T))
((((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
((($) . T) ((|#1|) . T) (((-377 (-517))) . T))
(((|#2|) . T))
-((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
((($) |has| |#1| (-777)))
(|has| |#1| (-831))
((((-787)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-831)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) |has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-831)))
(((|#1|) . T) (($) . T))
(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(((|#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333))))
(|has| |#1| (-779))
(|has| |#1| (-509))
((((-530 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779))))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779))))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
((((-832 |#1|)) . T))
(((|#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-703)) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
((((-608 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -1499,19 +1499,19 @@
((((-787)) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((((-787)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#2|) . T))
-(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003)))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
-(|has| |#1| (-1094))
-(|has| |#1| (-1094))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
-(|has| |#1| (-1094))
-(|has| |#1| (-1094))
+(|has| |#1| (-1095))
+(|has| |#1| (-1095))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(|has| |#1| (-1095))
+(|has| |#1| (-1095))
(((|#3| |#3|) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
((($ $) . T) (((-377 (-517)) (-377 (-517))) . T) (((-377 |#1|) (-377 |#1|)) . T) ((|#1| |#1|) . T))
@@ -1520,45 +1520,45 @@
((($) . T) (((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((((-1056) (-51)) . T))
+((((-1057) (-51)) . T))
(|has| |#1| (-1003))
-(-3807 (|has| |#2| (-752)) (|has| |#2| (-779)))
+(-3763 (|has| |#2| (-752)) (|has| |#2| (-779)))
(((|#1|) . T))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
((($) . T))
-((((-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-1072 |#1| |#2| |#3|)) -12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))))
((((-787)) . T))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
((($) . T))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((((-787)) . T))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-831)))
(|has| |#2| (-831))
(|has| |#1| (-333))
(((|#2|) |has| |#2| (-1003)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
((($) . T) ((|#2|) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
(|has| |#1| (-831))
(|has| |#1| (-831))
-((((-493)) . T) (((-377 (-1069 (-517)))) . T) (((-199)) . T) (((-349)) . T))
+((((-493)) . T) (((-377 (-1070 (-517)))) . T) (((-199)) . T) (((-349)) . T))
((((-349)) . T) (((-199)) . T) (((-787)) . T))
(|has| |#1| (-831))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
((($ $) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((($ $) . T))
((((-517) (-107)) . T))
((($) . T))
(((|#1|) . T))
((((-517)) . T))
((((-107)) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-37 (-377 (-517))))
(((|#1| (-517)) . T))
((($) . T))
@@ -1567,29 +1567,29 @@
(((|#1|) . T))
((((-517)) . T))
(((|#1| |#2|) . T))
-((((-1073)) |has| |#1| (-961)))
+((((-1074)) |has| |#1| (-961)))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
((((-787)) . T))
(((|#1| (-517)) . T))
-(((|#1| (-1146 |#1| |#2| |#3|)) . T))
+(((|#1| (-1147 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-377 (-517))) . T))
-(((|#1| (-1118 |#1| |#2| |#3|)) . T))
+(((|#1| (-1119 |#1| |#2| |#3|)) . T))
(((|#1| (-703)) . T))
(((|#1|) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((((-787)) . T))
(|has| |#1| (-1003))
-((((-1056) |#1|) . T))
+((((-1057) |#1|) . T))
((($) . T))
(|has| |#2| (-134))
(|has| |#2| (-132))
-(((|#1| (-489 (-750 (-1073))) (-750 (-1073))) . T))
-((((-1140 |#1| |#2| |#3| |#4|)) . T))
-((((-1140 |#1| |#2| |#3| |#4|)) . T))
+(((|#1| (-489 (-750 (-1074))) (-750 (-1074))) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) |has| |#1| (-961)))
((((-517) (-107)) . T))
((((-787)) |has| |#1| (-1003)))
@@ -1599,34 +1599,34 @@
(((|#1|) . T))
((((-517)) . T))
((((-787)) . T))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-319)))
((((-787)) . T))
(|has| |#1| (-134))
(((|#3|) . T))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
((((-787)) . T))
-((((-1139 |#2| |#3| |#4|)) . T) (((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-1140 |#2| |#3| |#4|)) . T) (((-1141 |#1| |#2| |#3| |#4|)) . T))
((((-787)) . T))
-((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) -3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))) (((-377 (-874 |#1|))) |has| |#1| (-509)) (((-874 |#1|)) |has| |#1| (-961)) (((-1073)) . T))
+((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) -3763 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))) (((-377 (-874 |#1|))) |has| |#1| (-509)) (((-874 |#1|)) |has| |#1| (-961)) (((-1074)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-703)) . T))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
(((|#1|) |has| |#1| (-280 |#1|)))
-((((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T))
((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
(((|#1|) . T))
(|has| |#1| (-509))
(((|#1|) . T))
((((-787)) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
(((|#1|) |has| |#1| (-156)))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#1|) . T))
(((|#3|) |has| |#3| (-1003)))
-(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333))))
-((((-1139 |#2| |#3| |#4|)) . T))
+(((|#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-333))))
+((((-1140 |#2| |#3| |#4|)) . T))
((((-107)) . T))
(|has| |#1| (-752))
(|has| |#1| (-752))
@@ -1635,8 +1635,8 @@
(|has| |#1| (-777))
(|has| |#1| (-777))
(((|#1| (-517) (-989)) . T))
-(-3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(-3763 (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1| (-377 (-517)) (-989)) . T))
(((|#1| (-703) (-989)) . T))
(|has| |#1| (-779))
@@ -1652,28 +1652,28 @@
(((|#1|) . T))
(|has| |#1| (-1003))
((((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((|#2|) |has| |#1| (-333)))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
((((-787)) . T))
(|has| |#3| (-777))
((((-787)) . T))
-((((-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
+((((-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
((((-787)) . T))
-(((|#1| |#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))))
+(((|#1| |#1|) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))))
(((|#1|) . T))
((((-517)) . T))
((((-517)) . T))
-(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))))
+(((|#1|) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))))
(((|#2|) |has| |#2| (-333)))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
(|has| |#1| (-779))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) |has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-831)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
((((-787)) . T))
((((-787)) . T))
@@ -1686,13 +1686,13 @@
(((|#1|) . T))
(((|#1| (-517)) . T))
(|has| |#1| (-777))
-(((|#1| (-1071 |#1| |#2| |#3|)) . T))
+(((|#1| (-1072 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| (-377 (-517))) . T))
-(((|#1| (-1064 |#1| |#2| |#3|)) . T))
+(((|#1| (-1065 |#1| |#2| |#3|)) . T))
(((|#1| (-703)) . T))
(((|#1|) . T))
(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
@@ -1707,18 +1707,18 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
((((-787)) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| (-377 |#2|) (-207))
(|has| |#1| (-831))
(((|#2|) |has| |#2| (-961)))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
(|has| |#1| (-333))
(((|#1|) |has| |#1| (-156)))
(((|#1| |#1|) . T))
@@ -1743,7 +1743,7 @@
(((|#1| (-377 (-517)) (-989)) . T))
(((|#1| (-703) (-989)) . T))
((((-377 |#2|) (-377 |#2|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-(((|#1|) . T) (((-517)) -3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) . T))
+(((|#1|) . T) (((-517)) -3763 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) . T))
(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
@@ -1762,24 +1762,24 @@
((((-632)) . T))
(((|#2|) |has| |#2| (-156)))
(|has| |#2| (-777))
-((((-107)) |has| |#1| (-1003)) (((-787)) -3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003))))
+((((-107)) |has| |#1| (-1003)) (((-787)) -3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) . T))
((((-787)) . T))
((((-517) |#1|) . T))
((((-632)) . T) (((-377 (-517))) . T) (((-517)) . T))
(((|#1| |#1|) |has| |#1| (-156)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
((((-349)) . T))
((((-632)) . T))
((((-377 (-517))) |has| |#2| (-333)) (($) |has| |#2| (-333)))
(((|#1|) |has| |#1| (-156)))
((((-377 (-874 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#2|) . T))
(|has| |#2| (-779))
(((|#3|) |has| |#3| (-961)))
@@ -1787,16 +1787,16 @@
(|has| |#1| (-831))
(|has| |#1| (-333))
(|has| |#1| (-779))
-((((-1073)) |has| |#2| (-822 (-1073))))
+((((-1074)) |has| |#2| (-822 (-1074))))
((((-787)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((((-377 (-517))) . T) (($) . T))
(|has| |#1| (-442))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-333))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015)))
(|has| |#1| (-37 (-377 (-517))))
((((-111 |#1|)) . T))
((((-111 |#1|)) . T))
@@ -1817,11 +1817,11 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-779))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#2|) . T))
(((|#3|) . T))
((((-111 |#1|)) . T))
@@ -1839,11 +1839,11 @@
((((-493)) |has| |#1| (-558 (-493))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-349)) |has| |#1| (-937)) (((-199)) |has| |#1| (-937)))
(((|#1|) |has| |#1| (-333)))
((((-787)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((($ $) . T) (((-556 $) $) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
-((($) . T) (((-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T))
-((($) -3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((($) . T) (((-1141 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T))
+((($) -3763 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-333))
@@ -1854,11 +1854,11 @@
((((-349)) . T))
(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
((((-787)) . T))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-831)))
(((|#1|) . T))
(|has| |#1| (-779))
(|has| |#1| (-779))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(|has| |#1| (-1003))
@@ -1867,13 +1867,13 @@
(|has| |#1| (-132))
(|has| |#1| (-134))
((((-517)) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
-((((-1139 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))) (($) . T))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((((-1140 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))) (($) . T))
((((-517)) . T))
(|has| |#1| (-333))
-(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
-(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
+(-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
+(-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
(|has| |#1| (-333))
(|has| |#1| (-132))
(|has| |#1| (-134))
@@ -1890,18 +1890,18 @@
(((|#1| |#2|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
(((|#3|) |has| |#3| (-156)))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
((((-517)) . T))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T))
((((-787)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517)) (-377 (-517))) |has| |#1| (-333)))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+(((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517)) (-377 (-517))) |has| |#1| (-333)))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
((($) . T))
((((-517) |#1|) . T))
-((((-1073)) |has| (-377 |#2|) (-822 (-1073))))
-(((|#1|) . T) (($) -3807 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333)))
+((((-1074)) |has| (-377 |#2|) (-822 (-1074))))
+(((|#1|) . T) (($) -3763 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333)))
((((-493)) |has| |#2| (-558 (-493))))
((((-623 |#2|)) . T) (((-787)) . T))
(((|#1|) . T))
@@ -1909,8 +1909,8 @@
(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
((((-794 |#1|)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3807 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3763 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3763 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
((((-787)) . T))
(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
@@ -1926,17 +1926,17 @@
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-1112)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-1113)))
((($) . T))
((((-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) (((-517)) |has| (-377 |#2|) (-952 (-517))) (((-377 |#2|)) . T))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(((|#1| (-703)) . T))
(|has| |#1| (-779))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-517)) . T))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) |has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(|has| |#1| (-777))
(|has| |#1| (-37 (-377 (-517))))
@@ -1961,24 +1961,24 @@
(((|#1| |#2|) . T))
((((-131)) . T))
((((-712 |#1| (-789 |#2|))) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-(|has| |#1| (-1094))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(|has| |#1| (-1095))
(((|#1|) . T))
-(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003)))
-((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)))
+(-3763 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003)))
+((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)))
(((|#2|) . T))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-832 |#1|)) . T))
((($) . T))
((((-377 (-874 |#1|))) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((((-493)) |has| |#4| (-558 (-493))))
((((-787)) . T) (((-583 |#4|)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-777))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) |has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))))
(|has| |#1| (-1003))
(|has| |#1| (-333))
(|has| |#1| (-779))
@@ -1986,17 +1986,17 @@
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-377 (-517))) . T))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
-(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
+(-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
+(-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-777))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
@@ -2018,9 +2018,9 @@
((((-787)) . T))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
-(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333))))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(((|#1|) -3763 (|has| |#1| (-156)) (|has| |#1| (-333))))
((((-286 |#1|)) . T))
(((|#2|) |has| |#2| (-333)))
(((|#2|) . T))
@@ -2031,8 +2031,8 @@
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
(((|#2|) . T))
-((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T))
-((((-1073)) |has| |#1| (-822 (-1073))) (((-993 (-1073))) . T))
+((((-1074)) |has| |#1| (-822 (-1074))) (((-989)) . T))
+((((-1074)) |has| |#1| (-822 (-1074))) (((-993 (-1074))) . T))
(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(|has| |#1| (-37 (-377 (-517))))
@@ -2041,14 +2041,14 @@
(|has| |#1| (-132))
(|has| |#1| (-134))
((($ $) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))
(|has| |#1| (-509))
(((|#2|) . T))
((((-517)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
((((-530 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
@@ -2056,7 +2056,7 @@
((($) . T))
(((|#1|) . T))
((((-787)) . T))
-(((|#2|) |has| |#2| (-6 (-4182 "*"))))
+(((|#2|) |has| |#2| (-6 (-4185 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2064,26 +2064,26 @@
((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
((($) . T) (((-111 |#1|)) . T) (((-377 (-517))) . T))
((((-1026 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-((((-1069 |#1|)) . T) (((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-((((-1026 |#1| (-1073))) . T) (((-993 (-1073))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1073)) . T))
+((((-1070 |#1|)) . T) (((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((((-1026 |#1| (-1074))) . T) (((-993 (-1074))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1074)) . T))
(|has| |#1| (-1003))
((($) . T))
(|has| |#1| (-1003))
((((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))) (((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349)))))
(((|#1| |#2|) . T))
-((((-1073) |#1|) . T))
+((((-1074) |#1|) . T))
(((|#4|) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-1073) (-51)) . T))
-((((-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-1074) (-51)) . T))
+((((-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
((((-787)) . T))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
-((((-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+((((-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-156)) (((-377 (-517)) (-377 (-517))) |has| |#1| (-509)) (($ $) |has| |#1| (-509)))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
-((((-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)) (($) |has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-132))
@@ -2093,33 +2093,33 @@
((((-377 (-517))) . T) (($) . T))
(((|#3|) |has| |#3| (-333)))
(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
-((((-1073)) . T))
+((((-1074)) . T))
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#2| |#3|) . T))
-(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
(((|#1| (-489 |#2|)) . T))
(((|#1| (-703)) . T))
-(((|#1| (-489 (-993 (-1073)))) . T))
+(((|#1| (-489 (-993 (-1074)))) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
(|has| |#2| (-831))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
((((-787)) . T))
-((($ $) . T) (((-1139 |#2| |#3| |#4|) (-1139 |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+((($ $) . T) (((-1140 |#2| |#3| |#4|) (-1140 |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))
((((-832 |#1|)) . T))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
(|has| |#1| (-333))
-(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
(|has| |#1| (-333))
-((($) . T) (((-1139 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+((($) . T) (((-1140 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))
(((|#1| |#2|) . T))
-((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
-(-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
@@ -2147,31 +2147,31 @@
((($ $) . T))
((($) . T))
((((-787)) . T))
-(((|#1| (-489 (-1073))) . T))
+(((|#1| (-489 (-1074))) . T))
(((|#1|) |has| |#1| (-156)))
((((-787)) . T))
(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#2|) -3807 (|has| |#2| (-6 (-4182 "*"))) (|has| |#2| (-156))))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#2|) -3763 (|has| |#2| (-6 (-4185 "*"))) (|has| |#2| (-156))))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(|has| |#2| (-779))
(|has| |#2| (-831))
(|has| |#1| (-831))
(((|#2|) |has| |#2| (-156)))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
((((-787)) . T))
((((-787)) . T))
((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) . T))
(((|#1|) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
(((|#1| (-377 (-517))) . T))
(((|#1|) . T))
-(-3807 (|has| |#1| (-262)) (|has| |#1| (-333)))
+(-3763 (|has| |#1| (-262)) (|has| |#1| (-333)))
((((-131)) . T))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
(|has| |#1| (-777))
@@ -2186,19 +2186,19 @@
((((-377 (-517))) . T) (($) . T))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-787)) . T))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-583 (-131))) . T) (((-1056)) . T))
+((((-583 (-131))) . T) (((-1057)) . T))
((((-787)) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
-((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
+((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-779))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
@@ -2209,16 +2209,16 @@
((((-787)) . T) (((-583 |#4|)) . T))
(((|#2|) . T))
((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
-((((-1073) (-51)) . T))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+((((-1074) (-51)) . T))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(|has| |#1| (-831))
(|has| |#1| (-831))
(((|#2|) . T))
@@ -2233,12 +2233,12 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(|has| |#1| (-752))
((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
((((-377 |#2|)) . T))
(|has| |#1| (-777))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) . T) (((-517) (-517)) . T) (($ $) . T))
((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
@@ -2247,33 +2247,33 @@
(|has| |#1| (-134))
(|has| |#1| (-132))
(((|#2|) . T))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
-((((-51)) . T) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
+((((-51)) . T) (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
(|has| |#1| (-319))
((((-517)) . T))
((((-787)) . T))
-((((-1140 |#1| |#2| |#3| |#4|) $) |has| (-1140 |#1| |#2| |#3| |#4|) (-258 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))))
+((((-1141 |#1| |#2| |#3| |#4|) $) |has| (-1141 |#1| |#2| |#3| |#4|) (-258 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|))))
(|has| |#1| (-333))
((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
((((-377 (-517)) (-377 (-517))) . T) (((-632) (-632)) . T) (($ $) . T))
((((-286 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
(|has| |#1| (-1003))
(((|#1|) . T))
-(((|#1|) -3807 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
-(((|#1|) -3807 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
+(((|#1|) -3763 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
+(((|#1|) -3763 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
(((|#2|) . T))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-207))
((((-789 |#1|)) . T))
-((((-1073)) |has| |#1| (-822 (-1073))) ((|#3|) . T))
+((((-1074)) |has| |#1| (-822 (-1074))) ((|#3|) . T))
(-12 (|has| |#1| (-333)) (|has| |#2| (-937)))
-((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
((((-787)) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
@@ -2284,7 +2284,7 @@
(((|#2|) . T))
(((|#1|) . T))
((((-517)) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2292,7 +2292,7 @@
((($) . T) (((-377 (-517))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1153 |#1|) (-1153 |#1|)) . T))
+(((|#1| (-1154 |#1|) (-1154 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-787)) . T))
((((-787)) . T))
@@ -2321,7 +2321,7 @@
(|has| |#2| (-937))
((($) . T))
(|has| |#1| (-831))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
@@ -2329,24 +2329,24 @@
((($) . T))
(|has| |#1| (-333))
((((-832 |#1|)) . T))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-(-3807 (|has| |#1| (-338)) (|has| |#1| (-779)))
+(-3763 (|has| |#1| (-338)) (|has| |#1| (-779)))
(((|#1|) . T))
((((-787)) . T))
-((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
+((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
((((-377 |#2|) |#3|) . T))
((($) . T) (((-377 (-517))) . T))
((((-703) |#1|) . T))
-(((|#2| (-214 (-2296 |#1|) (-703))) . T))
+(((|#2| (-214 (-2210 |#1|) (-703))) . T))
(((|#1| (-489 |#3|)) . T))
((((-377 (-517))) . T))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
((((-787)) . T))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) |has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))))
(|has| |#1| (-831))
(|has| |#2| (-333))
-(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T))
((((-787)) . T))
(((|#1|) . T))
@@ -2363,13 +2363,13 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-37 (-377 (-517))))
(-12 (|has| |#1| (-502)) (|has| |#1| (-760)))
((((-787)) . T))
-((((-1073)) -3807 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1073))))))
+((((-1074)) -3763 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1074))))))
(|has| |#1| (-333))
-((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
+((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
(|has| |#1| (-333))
((((-377 (-517))) . T) (($) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
@@ -2377,22 +2377,22 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-333)))
(((|#2|) |has| |#1| (-333)))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(((|#2|) . T) (((-1073)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1073)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))))
+(((|#2|) . T) (((-1074)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1074)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))))
(((|#2|) . T))
-((((-1073) (-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|))) (((-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|))))
+((((-1074) (-1141 |#1| |#2| |#3| |#4|)) |has| (-1141 |#1| |#2| |#3| |#4|) (-478 (-1074) (-1141 |#1| |#2| |#3| |#4|))) (((-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) |has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|))))
((((-556 $) $) . T) (($ $) . T))
-((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1069 (-632))) . T) (((-814 (-349))) . T))
+((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1070 (-632))) . T) (((-814 (-349))) . T))
((((-787)) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
(|has| (-377 |#2|) (-207))
(((|#1| (-377 (-517))) . T))
((($ $) . T))
-((((-1073)) |has| |#2| (-822 (-1073))))
+((((-1074)) |has| |#2| (-822 (-1074))))
((($) . T))
((((-787)) . T))
((((-377 (-517))) . T) (($) . T))
@@ -2400,31 +2400,31 @@
(((|#2|) |has| |#1| (-333)))
((((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517)))))
(|has| |#1| (-333))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-333))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-509))
(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
(((|#3|) . T))
(((|#1|) . T))
-(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#2|) . T))
(((|#2|) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(|has| |#1| (-37 (-377 (-517))))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-((((-1056) |#1|) . T))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-1057) |#1|) . T))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
((((-530 |#1|)) . T))
((($) . T))
@@ -2432,13 +2432,13 @@
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-319)))
(|has| |#1| (-134))
((((-787)) . T))
((($) . T))
-((((-377 (-517))) |has| |#2| (-952 (-517))) (((-517)) |has| |#2| (-952 (-517))) (((-1073)) |has| |#2| (-952 (-1073))) ((|#2|) . T))
+((((-377 (-517))) |has| |#2| (-952 (-517))) (((-517)) |has| |#2| (-952 (-517))) (((-1074)) |has| |#2| (-952 (-1074))) ((|#2|) . T))
((((-377 |#2|) (-377 |#2|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-((((-1038 |#1| |#2|)) . T))
+((((-1039 |#1| |#2|)) . T))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
((((-517)) |has| |#2| (-808 (-517))) (((-349)) |has| |#2| (-808 (-349))))
@@ -2449,7 +2449,7 @@
(((|#2|) . T))
((((-787)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
((((-377 |#2|)) . T))
((((-787)) . T))
(((|#1|) . T))
@@ -2457,13 +2457,13 @@
(|has| |#1| (-723))
(|has| |#1| (-723))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-109)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
((((-787)) . T))
-((((-1140 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509)))
((((-787)) . T))
(((|#2|) . T))
@@ -2476,22 +2476,22 @@
(((|#2|) . T))
((((-517)) . T))
((((-517)) . T))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T))
((((-787)) . T))
((((-787)) . T))
-((((-1056)) . T) (((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-1057)) . T) (((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
((((-787)) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((($) . T) (((-1139 |#2| |#3| |#4|)) |has| (-1139 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+((($) . T) (((-1140 |#2| |#3| |#4|)) |has| (-1140 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))
-(|has| |#1| (-1049))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))
+(|has| |#1| (-1050))
((((-517) |#1|) . T))
(((|#1|) . T))
((((-111 |#1|) $) |has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))
@@ -2500,7 +2500,7 @@
((((-109)) . T) ((|#1|) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
-((((-1073) |#1|) . T))
+((((-1074) |#1|) . T))
(((|#1|) |has| |#1| (-280 |#1|)))
((((-517) |#1|) . T))
(((|#1|) . T))
@@ -2508,8 +2508,8 @@
(((|#1|) . T))
(|has| |#1| (-509))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
((((-349)) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2518,7 +2518,7 @@
(|has| |#1| (-509))
(|has| |#1| (-1003))
((((-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(|has| |#2| (-831))
@@ -2526,14 +2526,14 @@
(((|#1| (-489 |#2|)) . T))
(((|#1| (-703)) . T))
(|has| |#1| (-207))
-(((|#1| (-489 (-993 (-1073)))) . T))
+(((|#1| (-489 (-993 (-1074)))) . T))
(|has| |#2| (-333))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((((-787)) . T))
((((-787)) . T))
-(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3763 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
@@ -2542,41 +2542,41 @@
((((-517)) . T))
(((|#3|) . T))
((((-787)) . T))
-(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3763 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
((((-530 |#1|) (-530 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(((|#1|) |has| |#1| (-156)))
-(((|#1| (-1153 |#1|) (-1153 |#1|)) . T))
+(((|#1| (-1154 |#1|) (-1154 |#1|)) . T))
((((-530 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
((($) . T) (((-377 (-517))) . T))
((($) . T) (((-377 (-517))) . T))
-(((|#2|) |has| |#2| (-6 (-4182 "*"))))
+(((|#2|) |has| |#2| (-6 (-4185 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((((-265 |#3|)) . T))
(((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#2| (-831))
(|has| |#1| (-831))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
@@ -2584,41 +2584,41 @@
(((|#1|) . T))
(|has| |#1| (-1003))
(((|#1|) . T))
-((((-1073)) . T) ((|#1|) . T))
+((((-1074)) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
((((-377 (-517)) (-377 (-517))) . T))
((((-377 (-517))) . T))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#1|) . T))
(((|#1|) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
((((-493)) . T))
((((-787)) . T))
-((((-1073)) |has| |#2| (-822 (-1073))) (((-989)) . T))
-((((-1139 |#2| |#3| |#4|)) . T))
+((((-1074)) |has| |#2| (-822 (-1074))) (((-989)) . T))
+((((-1140 |#2| |#3| |#4|)) . T))
((((-832 |#1|)) . T))
((($) . T) (((-377 (-517))) . T))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-(|has| |#1| (-1112))
+(|has| |#1| (-1113))
(((|#2|) . T))
((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-((((-1073)) |has| |#1| (-822 (-1073))))
+((((-1074)) |has| |#1| (-822 (-1074))))
((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($) . T) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-509))))
(|has| |#1| (-509))
(((|#1|) |has| |#1| (-333)))
((((-517)) . T))
(|has| |#1| (-723))
(|has| |#1| (-723))
-((((-1073) (-111 |#1|)) |has| (-111 |#1|) (-478 (-1073) (-111 |#1|))) (((-111 |#1|) (-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|))))
+((((-1074) (-111 |#1|)) |has| (-111 |#1|) (-478 (-1074) (-111 |#1|))) (((-111 |#1|) (-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|))))
(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
((((-989)) . T) ((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
(((|#1|) . T))
@@ -2631,8 +2631,8 @@
((((-787)) . T))
(|has| |#2| (-752))
(|has| |#2| (-752))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
@@ -2656,14 +2656,14 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#2| (-703)) . T))
-((((-1073)) . T))
+((((-1074)) . T))
((((-794 |#1|)) . T))
-(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-961)))
((((-787)) . T))
(((|#1|) . T))
-(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))
+(-3763 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3763 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))
((((-794 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-338))
@@ -2689,18 +2689,18 @@
(((|#1|) . T))
((((-787)) . T))
(|has| |#2| (-831))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
((((-787)) . T))
((((-787)) . T))
(((|#3|) |has| |#3| (-961)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))
-((((-1026 |#1| |#2|)) . T) (((-874 |#1|)) |has| |#2| (-558 (-1073))) (((-787)) . T))
-((((-874 |#1|)) |has| |#2| (-558 (-1073))) (((-1056)) -12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1073)))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))
-((((-1069 |#1|)) . T) (((-787)) . T))
+((((-1026 |#1| |#2|)) . T) (((-874 |#1|)) |has| |#2| (-558 (-1074))) (((-787)) . T))
+((((-874 |#1|)) |has| |#2| (-558 (-1074))) (((-1057)) -12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1074)))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))
+((((-1070 |#1|)) . T) (((-787)) . T))
((((-787)) . T))
((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) (((-1073)) . T))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) (((-1074)) . T))
((((-787)) . T))
((((-517)) . T))
((($) . T))
@@ -2722,23 +2722,23 @@
((((-377 |#2|) |#3|) . T))
(((|#1|) . T))
(|has| |#1| (-1003))
-(((|#2| (-450 (-2296 |#1|) (-703))) . T))
+(((|#2| (-450 (-2210 |#1|) (-703))) . T))
((((-517) |#1|) . T))
(((|#2| |#2|) . T))
-(((|#1| (-489 (-1073))) . T))
-(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(((|#1| (-489 (-1074))) . T))
+(-3763 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
((((-517)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T))
+((((-1074)) |has| |#1| (-822 (-1074))) (((-989)) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
(|has| |#1| (-509))
((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1|) . T))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
((((-131)) . T))
(((|#1|) . T) (((-377 (-517))) . T))
@@ -2746,7 +2746,7 @@
(((|#1|) . T))
((((-787)) . T))
(((|#1|) . T))
-(|has| |#1| (-1049))
+(|has| |#1| (-1050))
(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
(((|#1|) . T))
((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
@@ -2754,7 +2754,7 @@
((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) ((|#2|) . T))
((((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
((((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349)))) (((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))
-((((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T))
((((-517) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
@@ -2771,33 +2771,33 @@
(|has| |#1| (-333))
(|has| |#1| (-37 (-377 (-517))))
((((-517)) . T))
-((((-1073)) -12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961))))
-((((-1073)) -12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961))))
+((((-1074)) -12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961))))
+((((-1074)) -12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961))))
(((|#1|) . T))
(|has| |#1| (-207))
(((|#1| (-489 |#3|)) . T))
(|has| |#1| (-338))
-(((|#2| (-214 (-2296 |#1|) (-703))) . T))
+(((|#2| (-214 (-2210 |#1|) (-703))) . T))
(|has| |#1| (-338))
(|has| |#1| (-338))
(((|#1|) . T) (($) . T))
(((|#1| (-489 |#2|)) . T))
-(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#1| (-703)) . T))
(|has| |#1| (-509))
-(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-787)) . T))
-(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
-(-3807 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+(-3763 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#1|) |has| |#1| (-156)))
(((|#4|) |has| |#4| (-961)))
(((|#3|) |has| |#3| (-961)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
@@ -2810,21 +2810,21 @@
(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
(((|#1|) . T))
(|has| |#2| (-333))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(((|#2| |#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#2|) . T))
((($) . T))
((((-787)) |has| |#1| (-1003)))
-((((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#2| (-752))
@@ -2836,66 +2836,66 @@
(((|#1|) |has| |#2| (-387 |#1|)))
(((|#1|) |has| |#2| (-387 |#1|)))
((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
((((-787)) . T))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) |has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
((((-517) |#1|) . T))
(((|#1|) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-((((-1073)) |has| |#1| (-822 (-1073))) (((-750 (-1073))) . T))
-(-3807 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((((-1074)) |has| |#1| (-822 (-1074))) (((-750 (-1074))) . T))
+(-3763 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
((((-751 |#1|)) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
-((((-1140 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-1141 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(|has| |#1| (-333))
-(-3807 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207))))
+(-3763 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
+((((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
((((-517) |#1|) . T))
((((-286 |#1|)) . T))
-((((-632) (-1069 (-632))) . T))
-((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
+((((-632) (-1070 (-632))) . T))
+((((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-777))
((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
-((((-1026 |#1| (-1073))) . T) (((-750 (-1073))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1073)) . T))
+((((-1026 |#1| (-1074))) . T) (((-750 (-1074))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1074)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
-((($ $) . T) (((-1073) $) |has| |#1| (-207)) (((-1073) |#1|) |has| |#1| (-207)) (((-993 (-1073)) |#1|) . T) (((-993 (-1073)) $) . T))
+((($ $) . T) (((-1074) $) |has| |#1| (-207)) (((-1074) |#1|) |has| |#1| (-207)) (((-993 (-1074)) |#1|) . T) (((-993 (-1074)) $) . T))
((($) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
(|has| |#2| (-831))
-((($) . T) (((-1139 |#2| |#3| |#4|)) |has| (-1139 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+((($) . T) (((-1140 |#2| |#3| |#4|)) |has| (-1140 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))
((((-517) |#1|) . T))
-((((-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|))))
+((((-1141 |#1| |#2| |#3| |#4|)) |has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|))))
((($) . T))
(((|#1|) . T))
-((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
(|has| |#2| (-207))
(|has| $ (-134))
((((-787)) . T))
-((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-787)) . T))
(|has| |#1| (-777))
-((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))
+((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))
((((-377 |#2|) |#3|) . T))
(((|#1|) . T))
((((-787)) . T))
@@ -2904,40 +2904,40 @@
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#4|) . T))
(|has| |#1| (-509))
-((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T))
-((((-1073)) -3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))
-(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
-((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073)))))
+((($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T))
+((((-1074)) -3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))
+(((|#1|) . T) (($) -3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
+((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074)))))
(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
((((-517) |#1|) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
(((|#1|) . T))
-(((|#1| (-489 (-750 (-1073)))) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1| (-489 (-750 (-1074)))) . T))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#1|) . T))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#1|) . T))
-(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
-((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3763 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
((($) . T) (((-794 |#1|)) . T) (((-377 (-517))) . T))
-((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-509))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-377 |#2|)) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
((((-517)) . T))
@@ -2948,9 +2948,9 @@
((((-377 (-517))) . T) (($) . T))
((((-517) |#1|) . T))
((((-787)) . T))
-((($ $) . T) (((-1073) $) . T))
-((((-1146 |#1| |#2| |#3|)) . T))
-((((-1146 |#1| |#2| |#3|)) . T) (((-1118 |#1| |#2| |#3|)) . T))
+((($ $) . T) (((-1074) $) . T))
+((((-1147 |#1| |#2| |#3|)) . T))
+((((-1147 |#1| |#2| |#3|)) . T) (((-1119 |#1| |#2| |#3|)) . T))
(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
@@ -2963,35 +2963,35 @@
((((-787)) . T))
(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
((((-787)) . T))
-((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1073)) . T) (((-787)) . T))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1074)) . T) (((-787)) . T))
(|has| |#1| (-333))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
-((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-1007)) . T))
((((-787)) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T))
-((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#2| (-831))
(|has| |#1| (-831))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
((((-632)) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1|) |has| |#1| (-156)))
(((|#1|) |has| |#1| (-156)))
((((-377 (-517))) . T) (($) . T))
(((|#1| (-517)) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-333))
(|has| |#1| (-333))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-156)) (|has| |#1| (-509)))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
(((|#1| (-703)) . T))
@@ -3003,19 +3003,19 @@
((((-517) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-814 (-349))) . T) (((-814 (-517))) . T) (((-1073)) . T) (((-493)) . T))
+((((-814 (-349))) . T) (((-814 (-517))) . T) (((-1074)) . T) (((-493)) . T))
(((|#1|) . T))
((((-787)) . T))
-(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+(-3763 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
((((-517)) . T))
((((-517)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))))
-(-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
+(-3763 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-1074)) -12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961))))
+(-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-333))
@@ -3036,10 +3036,10 @@
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
((((-517)) . T))
((((-517)) . T))
-((((-1056) (-1073) (-517) (-199) (-787)) . T))
+((((-1057) (-1074) (-517) (-199) (-787)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-3807 (|has| |#1| (-319)) (|has| |#1| (-338)))
+(-3763 (|has| |#1| (-319)) (|has| |#1| (-338)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
((((-787)) . T))
@@ -3047,7 +3047,7 @@
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
((($) . T) (((-377 (-517))) . T))
(|has| |#1| (-831))
(|has| |#1| (-831))
@@ -3056,10 +3056,10 @@
((((-787)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-777)))
(((|#2|) . T))
-(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3763 (|has| |#1| (-21)) (|has| |#1| (-777)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
(((|#1|) . T))
@@ -3074,19 +3074,19 @@
(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
((((-517) (-517)) . T))
((($) . T) (((-377 (-517))) . T))
-(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
-(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3763 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
+(-3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
(|has| |#4| (-725))
-(-3807 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3763 (|has| |#4| (-725)) (|has| |#4| (-777)))
(|has| |#4| (-777))
(|has| |#3| (-725))
-(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3763 (|has| |#3| (-725)) (|has| |#3| (-777)))
(|has| |#3| (-777))
((((-517)) . T))
(((|#2|) . T))
-((((-1073)) -3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))
-((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
-((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073)))))
+((((-1074)) -3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))
+((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
+((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074)))))
(((|#1| |#1|) . T) (($ $) . T))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
@@ -3096,34 +3096,34 @@
(((|#1|) . T) (($) . T))
(((|#1|) . T))
((((-789 |#1|)) . T))
-((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1038 |#1| |#2|)) . T))
-(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1039 |#1| |#2|)) . T))
+(((|#2|) . T) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
((($) . T))
(|has| |#1| (-937))
-(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
((((-787)) . T))
((((-493)) |has| |#2| (-558 (-493))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-349)) |has| |#2| (-937)) (((-199)) |has| |#2| (-937)))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#2|) . T))
((($ $) . T))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
-((((-1071 |#1| |#2| |#3|)) . T))
-((((-1071 |#1| |#2| |#3|)) . T) (((-1064 |#1| |#2| |#3|)) . T))
+((((-1072 |#1| |#2| |#3|)) . T))
+((((-1072 |#1| |#2| |#3|)) . T) (((-1065 |#1| |#2| |#3|)) . T))
((((-787)) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
((((-517) |#1|) . T))
-((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-333))
-(((|#3|) . T) ((|#2|) . T) (($) -3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) ((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))))
-(((|#2|) . T) (($) -3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))))
+(((|#3|) . T) ((|#2|) . T) (($) -3763 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) ((|#4|) -3763 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))))
+(((|#2|) . T) (($) -3763 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3763 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-333))
@@ -3135,37 +3135,37 @@
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
((((-517) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| (-489 |#2|)) . T))
-((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) . T))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
(((|#1| (-703)) . T))
((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3763 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3763 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
((($) . T))
(((|#2| (-489 (-789 |#1|))) . T))
((((-517) |#1|) . T))
(((|#2|) . T))
(((|#2| (-703)) . T))
-((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3763 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1056) |#1|) . T))
+((((-1057) |#1|) . T))
((((-377 |#2|)) . T))
-((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
((($) . T) ((|#2|) . T))
@@ -3173,26 +3173,26 @@
(((|#1| |#2|) . T))
(((|#2| $) |has| |#2| (-258 |#2| |#2|)))
(((|#1| (-583 |#1|)) |has| |#1| (-777)))
-(-3807 (|has| |#1| (-207)) (|has| |#1| (-319)))
-(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-207)) (|has| |#1| (-319)))
+(-3763 (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-1003))
(((|#1|) . T))
((((-377 (-517))) . T) (($) . T))
-((((-915 |#1|)) . T) ((|#1|) . T) (((-517)) -3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) -3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))
+((((-915 |#1|)) . T) ((|#1|) . T) (((-517)) -3763 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) -3763 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1073)) |has| |#1| (-822 (-1073))))
+((((-1074)) |has| |#1| (-822 (-1074))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-1038 |#1| |#2|) (-1038 |#1| |#2|)) |has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+((((-1039 |#1| |#2|) (-1039 |#1| |#2|)) |has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))))
((((-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|))))
-(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3763 (|has| |#1| (-779)) (|has| |#1| (-1003)))
((($ $) . T))
((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-207)) ((|#2| |#1|) |has| |#1| (-207)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-599 . -1003) T) ((-237 . -478) 143724) ((-221 . -478) 143662) ((-524 . -106) 143647) ((-489 . -23) T) ((-219 . -1003) 143597) ((-112 . -280) 143541) ((-447 . -478) 143301) ((-627 . -97) T) ((-1039 . -478) 143209) ((-360 . -123) T) ((-1164 . -893) 143178) ((-548 . -456) 143162) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 143112) ((-57 . -478) 143045) ((-482 . -478) 142978) ((-388 . -822) 142937) ((-153 . -961) T) ((-480 . -478) 142870) ((-462 . -478) 142803) ((-461 . -478) 142736) ((-731 . -952) 142523) ((-632 . -37) 142488) ((-313 . -319) T) ((-998 . -997) 142472) ((-998 . -1003) 142450) ((-153 . -217) 142401) ((-153 . -207) 142352) ((-998 . -999) 142310) ((-796 . -258) 142268) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1048 . -1085) 142247) ((-377 . -909) 142231) ((-634 . -21) T) ((-634 . -25) T) ((-1166 . -585) 142205) ((-286 . -145) 142184) ((-286 . -130) 142163) ((-1048 . -102) 142113) ((-125 . -25) T) ((-39 . -205) 142090) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 142066) ((-444 . -260) 142045) ((-1127 . -961) T) ((-784 . -961) T) ((-731 . -308) 142029) ((-112 . -1049) NIL) ((-89 . -557) 141961) ((-446 . -123) T) ((-540 . -1108) T) ((-1127 . -296) 141938) ((-524 . -961) T) ((-1127 . -207) T) ((-599 . -650) 141922) ((-879 . -260) 141899) ((-58 . -33) T) ((-972 . -727) T) ((-972 . -724) T) ((-748 . -659) T) ((-664 . -46) 141864) ((-564 . -37) 141851) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 141782) ((-221 . -262) 141713) ((-939 . -97) T) ((-383 . -659) T) ((-112 . -37) 141658) ((-383 . -442) T) ((-324 . -97) T) ((-1103 . -968) T) ((-644 . -968) T) ((-1071 . -46) 141635) ((-1070 . -46) 141605) ((-1064 . -46) 141582) ((-950 . -138) 141528) ((-832 . -262) T) ((-1027 . -46) 141500) ((-627 . -280) NIL) ((-479 . -557) 141482) ((-474 . -557) 141464) ((-472 . -557) 141446) ((-297 . -1003) 141396) ((-645 . -421) 141327) ((-47 . -97) T) ((-1138 . -258) 141312) ((-1117 . -258) 141232) ((-583 . -603) 141216) ((-583 . -588) 141200) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 141184) ((-548 . -258) 141161) ((-358 . -97) T) ((-1021 . -130) T) ((-121 . -557) 141093) ((-797 . -1003) T) ((-595 . -381) 141077) ((-647 . -557) 141059) ((-146 . -557) 141041) ((-142 . -557) 141023) ((-1166 . -659) T) ((-1005 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -808) NIL) ((-1175 . -123) T) ((-351 . -123) T) ((-826 . -97) T) ((-664 . -952) 140901) ((-489 . -123) T) ((-992 . -381) 140885) ((-916 . -456) 140869) ((-112 . -370) 140846) ((-1064 . -1108) 140825) ((-714 . -381) 140809) ((-712 . -381) 140793) ((-865 . -33) T) ((-627 . -1049) NIL) ((-224 . -585) 140630) ((-223 . -585) 140454) ((-749 . -842) 140433) ((-423 . -381) 140417) ((-548 . -19) 140401) ((-1044 . -1102) 140370) ((-1064 . -808) NIL) ((-1064 . -806) 140322) ((-548 . -550) 140299) ((-1095 . -557) 140231) ((-1072 . -557) 140213) ((-60 . -365) T) ((-1070 . -952) 140148) ((-1064 . -952) 140114) ((-627 . -37) 140064) ((-443 . -258) 140049) ((-664 . -347) 140033) ((-595 . -968) T) ((-1138 . -918) 139999) ((-1117 . -918) 139965) ((-973 . -1085) 139940) ((-796 . -558) 139743) ((-796 . -557) 139725) ((-1082 . -456) 139662) ((-388 . -937) 139641) ((-47 . -280) 139628) ((-973 . -102) 139574) ((-447 . -456) 139511) ((-483 . -1108) T) ((-1039 . -456) 139482) ((-1064 . -308) 139434) ((-1064 . -347) 139386) ((-407 . -97) T) ((-992 . -968) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -968) T) ((-712 . -968) T) ((-664 . -822) 139363) ((-423 . -968) T) ((-57 . -456) 139347) ((-949 . -967) 139321) ((-482 . -456) 139305) ((-480 . -456) 139289) ((-462 . -456) 139273) ((-461 . -456) 139257) ((-219 . -478) 139190) ((-949 . -106) 139157) ((-1071 . -822) 139070) ((-607 . -1015) T) ((-1070 . -822) 138976) ((-1064 . -822) 138809) ((-1027 . -822) 138793) ((-324 . -1049) T) ((-292 . -967) 138775) ((-224 . -723) 138754) ((-224 . -726) 138705) ((-224 . -725) 138684) ((-223 . -723) 138663) ((-223 . -726) 138614) ((-223 . -725) 138593) ((-49 . -968) T) ((-224 . -659) 138524) ((-223 . -659) 138455) ((-1103 . -1003) T) ((-607 . -23) T) ((-530 . -968) T) ((-481 . -968) T) ((-349 . -967) 138420) ((-292 . -106) 138395) ((-71 . -353) T) ((-71 . -365) T) ((-939 . -37) 138332) ((-627 . -370) 138314) ((-94 . -97) T) ((-644 . -1003) T) ((-919 . -132) 138286) ((-349 . -106) 138235) ((-289 . -1112) 138214) ((-443 . -918) 138180) ((-324 . -37) 138145) ((-39 . -340) 138117) ((-919 . -134) 138089) ((-122 . -120) 138073) ((-116 . -120) 138057) ((-766 . -967) 138027) ((-765 . -21) 137979) ((-759 . -967) 137963) ((-765 . -25) 137915) ((-289 . -509) 137866) ((-517 . -760) T) ((-214 . -1108) T) ((-766 . -106) 137831) ((-759 . -106) 137810) ((-1138 . -557) 137792) ((-1117 . -557) 137774) ((-1117 . -558) 137447) ((-1069 . -831) 137426) ((-1026 . -831) 137405) ((-47 . -37) 137370) ((-1173 . -1015) T) ((-548 . -557) 137282) ((-548 . -558) 137243) ((-1171 . -1015) T) ((-214 . -952) 137072) ((-1069 . -585) 136997) ((-1026 . -585) 136922) ((-651 . -557) 136904) ((-783 . -585) 136878) ((-1173 . -23) T) ((-1171 . -23) T) ((-949 . -961) T) ((-1082 . -258) 136857) ((-153 . -338) 136808) ((-920 . -1108) T) ((-43 . -23) T) ((-447 . -258) 136787) ((-534 . -1003) T) ((-1044 . -1012) 136756) ((-1007 . -1006) 136708) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1015) T) ((-1179 . -97) T) ((-920 . -806) 136690) ((-920 . -808) 136672) ((-1103 . -650) 136569) ((-564 . -205) 136553) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1089 . -1003) T) ((-644 . -650) 136518) ((-214 . -347) 136488) ((-920 . -952) 136448) ((-349 . -961) T) ((-197 . -968) T) ((-112 . -205) 136425) ((-57 . -258) 136402) ((-139 . -23) T) ((-480 . -258) 136379) ((-297 . -478) 136312) ((-461 . -258) 136289) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -961) T) ((-759 . -961) T) ((-645 . -871) 136259) ((-634 . -779) T) ((-443 . -557) 136241) ((-759 . -207) 136220) ((-125 . -779) T) ((-595 . -1003) T) ((-1082 . -550) 136199) ((-503 . -1085) 136178) ((-306 . -1003) T) ((-289 . -333) 136157) ((-377 . -134) 136136) ((-377 . -132) 136115) ((-885 . -1015) 136014) ((-214 . -822) 135947) ((-747 . -1015) 135878) ((-591 . -781) 135862) ((-447 . -550) 135841) ((-503 . -102) 135791) ((-920 . -347) 135773) ((-920 . -308) 135755) ((-92 . -1003) T) ((-885 . -23) 135566) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 135437) ((-1073 . -557) 135419) ((-57 . -19) 135403) ((-1073 . -558) 135325) ((-1069 . -659) T) ((-1026 . -659) T) ((-480 . -19) 135309) ((-461 . -19) 135293) ((-57 . -550) 135270) ((-992 . -1003) T) ((-823 . -97) 135248) ((-783 . -659) T) ((-714 . -1003) T) ((-480 . -550) 135225) ((-461 . -550) 135202) ((-712 . -1003) T) ((-712 . -975) 135169) ((-430 . -1003) T) ((-423 . -1003) T) ((-534 . -650) 135144) ((-586 . -1003) T) ((-920 . -822) NIL) ((-1146 . -46) 135121) ((-567 . -1015) T) ((-607 . -123) T) ((-1140 . -97) T) ((-1139 . -46) 135091) ((-1118 . -46) 135068) ((-1103 . -156) 135019) ((-987 . -1112) 134970) ((-248 . -1003) T) ((-83 . -410) T) ((-83 . -365) T) ((-1070 . -278) 134949) ((-1064 . -278) 134928) ((-49 . -1003) T) ((-987 . -509) 134879) ((-644 . -156) T) ((-542 . -46) 134856) ((-199 . -585) 134821) ((-530 . -1003) T) ((-481 . -1003) T) ((-329 . -1112) T) ((-323 . -1112) T) ((-315 . -1112) T) ((-454 . -752) T) ((-454 . -842) T) ((-289 . -1015) T) ((-103 . -1112) T) ((-309 . -779) T) ((-192 . -842) T) ((-192 . -752) T) ((-647 . -967) 134791) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 134761) ((-1064 . -937) NIL) ((-289 . -23) T) ((-65 . -1108) T) ((-916 . -557) 134693) ((-627 . -205) 134675) ((-647 . -106) 134640) ((-583 . -33) T) ((-219 . -456) 134624) ((-1005 . -1001) 134608) ((-155 . -1003) T) ((-874 . -831) 134587) ((-449 . -831) 134566) ((-1175 . -21) T) ((-1175 . -25) T) ((-1173 . -123) T) ((-1171 . -123) T) ((-992 . -650) 134415) ((-972 . -585) 134402) ((-874 . -585) 134327) ((-493 . -557) 134309) ((-493 . -558) 134290) ((-714 . -650) 134119) ((-712 . -650) 133968) ((-1164 . -97) T) ((-984 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 133893) ((-430 . -650) 133864) ((-423 . -650) 133713) ((-904 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1118 . -1108) 133692) ((-1149 . -557) 133658) ((-1118 . -808) NIL) ((-1118 . -806) 133610) ((-128 . -97) T) ((-43 . -123) T) ((-1082 . -558) NIL) ((-1082 . -557) 133592) ((-1040 . -1024) 133537) ((-313 . -968) T) ((-601 . -557) 133519) ((-261 . -1015) T) ((-325 . -557) 133501) ((-322 . -557) 133483) ((-314 . -557) 133465) ((-237 . -558) 133213) ((-237 . -557) 133195) ((-221 . -557) 133177) ((-221 . -558) 133038) ((-958 . -1102) 132967) ((-823 . -280) 132905) ((-1179 . -1049) T) ((-1139 . -952) 132840) ((-1118 . -952) 132806) ((-1103 . -478) 132773) ((-1039 . -557) 132755) ((-751 . -659) T) ((-548 . -260) 132732) ((-530 . -650) 132697) ((-447 . -558) NIL) ((-447 . -557) 132679) ((-481 . -650) 132624) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -967) 132576) ((-832 . -557) 132558) ((-832 . -558) 132540) ((-796 . -106) 132471) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1130) 132455) ((-647 . -961) T) ((-627 . -319) NIL) ((-482 . -557) 132387) ((-349 . -727) T) ((-197 . -1003) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 132348) ((-57 . -557) 132260) ((-199 . -659) T) ((-480 . -558) 132221) ((-480 . -557) 132133) ((-462 . -557) 132065) ((-461 . -558) 132026) ((-461 . -557) 131938) ((-987 . -333) 131889) ((-39 . -381) 131866) ((-75 . -1108) T) ((-795 . -831) NIL) ((-329 . -299) 131850) ((-329 . -333) T) ((-323 . -299) 131834) ((-323 . -333) T) ((-315 . -299) 131818) ((-315 . -333) T) ((-286 . -256) 131797) ((-103 . -333) T) ((-68 . -1108) T) ((-1118 . -308) 131749) ((-795 . -585) 131694) ((-1118 . -347) 131646) ((-885 . -123) 131501) ((-747 . -123) 131372) ((-879 . -588) 131356) ((-992 . -156) 131267) ((-879 . -343) 131251) ((-972 . -726) T) ((-972 . -723) T) ((-714 . -156) 131142) ((-712 . -156) 131053) ((-748 . -46) 131015) ((-972 . -659) T) ((-297 . -456) 130999) ((-874 . -659) T) ((-423 . -156) 130910) ((-219 . -258) 130887) ((-449 . -659) T) ((-1164 . -280) 130825) ((-1146 . -822) 130738) ((-1139 . -822) 130644) ((-1138 . -967) 130479) ((-1118 . -822) 130312) ((-1117 . -967) 130120) ((-1103 . -262) 130099) ((-1044 . -138) 130083) ((-982 . -97) T) ((-849 . -876) T) ((-73 . -1108) T) ((-670 . -280) 130021) ((-153 . -831) 129974) ((-601 . -352) 129946) ((-30 . -876) T) ((-1 . -557) 129928) ((-1021 . -97) T) ((-987 . -23) T) ((-49 . -561) 129912) ((-987 . -1015) T) ((-919 . -379) 129884) ((-542 . -822) 129797) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -961) T) ((-765 . -779) 129776) ((-79 . -1108) T) ((-644 . -262) T) ((-39 . -968) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 129758) ((-153 . -585) 129668) ((-471 . -557) 129650) ((-321 . -134) 129632) ((-321 . -132) T) ((-329 . -1015) T) ((-323 . -1015) T) ((-315 . -1015) T) ((-920 . -278) T) ((-836 . -278) T) ((-796 . -217) T) ((-103 . -1015) T) ((-796 . -207) 129611) ((-1138 . -106) 129425) ((-1117 . -106) 129207) ((-219 . -1142) 129191) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 129178) ((-283 . -280) 129074) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-920 . -937) T) ((-103 . -23) T) ((-219 . -550) 129051) ((-1140 . -37) 128908) ((-1127 . -831) 128887) ((-107 . -1003) T) ((-950 . -97) T) ((-1127 . -585) 128812) ((-795 . -726) NIL) ((-784 . -585) 128786) ((-795 . -723) NIL) ((-748 . -808) NIL) ((-795 . -659) T) ((-992 . -478) 128651) ((-714 . -478) 128599) ((-712 . -478) 128551) ((-524 . -585) 128538) ((-748 . -952) 128368) ((-423 . -478) 128306) ((-358 . -359) T) ((-58 . -1108) T) ((-562 . -779) 128285) ((-465 . -598) T) ((-1044 . -893) 128254) ((-919 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -967) 128089) ((-313 . -1003) T) ((-283 . -1049) NIL) ((-261 . -123) T) ((-364 . -1003) T) ((-627 . -340) 128056) ((-794 . -968) T) ((-197 . -561) 128033) ((-297 . -258) 128010) ((-443 . -106) 127824) ((-1138 . -961) T) ((-1117 . -961) T) ((-748 . -347) 127808) ((-153 . -659) T) ((-591 . -97) T) ((-1138 . -217) 127787) ((-1138 . -207) 127739) ((-1117 . -207) 127644) ((-1117 . -217) 127623) ((-919 . -372) NIL) ((-607 . -579) 127571) ((-286 . -37) 127481) ((-283 . -37) 127410) ((-67 . -557) 127392) ((-289 . -458) 127358) ((-1082 . -260) 127337) ((-1016 . -1015) 127268) ((-81 . -1108) T) ((-59 . -557) 127250) ((-447 . -260) 127229) ((-1166 . -952) 127206) ((-1062 . -1003) T) ((-1016 . -23) 127077) ((-748 . -822) 127013) ((-1127 . -659) T) ((-1005 . -1108) T) ((-992 . -262) 126944) ((-815 . -97) T) ((-714 . -262) 126855) ((-297 . -19) 126839) ((-57 . -260) 126816) ((-712 . -262) 126747) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 126724) ((-297 . -550) 126701) ((-461 . -260) 126678) ((-423 . -262) 126609) ((-950 . -280) 126460) ((-524 . -659) T) ((-599 . -557) 126442) ((-219 . -558) 126403) ((-219 . -557) 126315) ((-1045 . -33) T) ((-865 . -1108) T) ((-313 . -650) 126260) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -961) T) ((-575 . -387) 126225) ((-551 . -387) 126190) ((-1021 . -1049) T) ((-530 . -262) T) ((-481 . -262) T) ((-1139 . -278) 126169) ((-443 . -207) 126121) ((-443 . -217) 126100) ((-1118 . -278) 126079) ((-987 . -123) T) ((-796 . -727) 126058) ((-131 . -97) T) ((-39 . -1003) T) ((-796 . -724) 126037) ((-583 . -926) 126021) ((-529 . -968) T) ((-517 . -968) T) ((-460 . -968) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 126005) ((-283 . -370) 125966) ((-323 . -123) T) ((-315 . -123) T) ((-1118 . -937) NIL) ((-998 . -557) 125933) ((-103 . -123) T) ((-1021 . -37) 125920) ((-843 . -1003) T) ((-703 . -1003) T) ((-608 . -1003) T) ((-634 . -134) T) ((-111 . -134) T) ((-1173 . -21) T) ((-1173 . -25) T) ((-1171 . -21) T) ((-1171 . -25) T) ((-601 . -967) 125904) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -967) 125856) ((-322 . -967) 125808) ((-314 . -967) 125760) ((-224 . -1108) T) ((-223 . -1108) T) ((-237 . -967) 125603) ((-221 . -967) 125446) ((-601 . -106) 125425) ((-325 . -106) 125356) ((-322 . -106) 125287) ((-314 . -106) 125218) ((-237 . -106) 125040) ((-221 . -106) 124862) ((-749 . -1112) 124841) ((-564 . -381) 124825) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 124733) ((-749 . -509) 124712) ((-224 . -952) 124541) ((-223 . -952) 124370) ((-121 . -114) 124354) ((-832 . -967) 124319) ((-632 . -968) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 124301) ((-832 . -106) 124250) ((-39 . -650) 124195) ((-794 . -1003) T) ((-297 . -558) 124156) ((-297 . -557) 124068) ((-1117 . -724) 124021) ((-1117 . -727) 123974) ((-224 . -347) 123944) ((-223 . -347) 123914) ((-591 . -37) 123884) ((-552 . -33) T) ((-450 . -1015) 123815) ((-444 . -33) T) ((-1016 . -123) 123686) ((-885 . -25) 123497) ((-797 . -557) 123479) ((-885 . -21) 123434) ((-747 . -21) 123345) ((-747 . -25) 123197) ((-564 . -968) T) ((-1075 . -509) 123176) ((-1069 . -46) 123153) ((-325 . -961) T) ((-322 . -961) T) ((-450 . -23) 123024) ((-314 . -961) T) ((-237 . -961) T) ((-221 . -961) T) ((-1026 . -46) 122996) ((-112 . -968) T) ((-949 . -585) 122970) ((-879 . -33) T) ((-325 . -207) 122949) ((-325 . -217) T) ((-322 . -207) 122928) ((-221 . -296) 122885) ((-322 . -217) T) ((-314 . -207) 122864) ((-314 . -217) T) ((-237 . -296) 122836) ((-237 . -207) 122815) ((-1054 . -138) 122799) ((-224 . -822) 122732) ((-223 . -822) 122665) ((-989 . -779) T) ((-1121 . -1108) T) ((-384 . -1015) T) ((-965 . -23) T) ((-832 . -961) T) ((-292 . -585) 122647) ((-939 . -777) T) ((-1103 . -918) 122613) ((-1070 . -842) 122592) ((-1064 . -842) 122571) ((-832 . -217) T) ((-749 . -333) 122550) ((-355 . -23) T) ((-122 . -1003) 122528) ((-116 . -1003) 122506) ((-832 . -207) T) ((-1064 . -752) NIL) ((-349 . -585) 122471) ((-794 . -650) 122458) ((-958 . -138) 122423) ((-39 . -156) T) ((-627 . -381) 122405) ((-645 . -280) 122392) ((-766 . -585) 122352) ((-759 . -585) 122326) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 122305) ((-529 . -1003) T) ((-517 . -1003) T) ((-460 . -1003) T) ((-219 . -260) 122282) ((-283 . -205) 122243) ((-1069 . -808) NIL) ((-1026 . -808) 122102) ((-1069 . -952) 121985) ((-1026 . -952) 121870) ((-783 . -952) 121768) ((-714 . -258) 121695) ((-749 . -1015) T) ((-949 . -659) T) ((-548 . -588) 121679) ((-958 . -893) 121608) ((-915 . -97) T) ((-749 . -23) T) ((-645 . -1049) 121586) ((-627 . -968) T) ((-548 . -343) 121570) ((-321 . -421) T) ((-313 . -262) T) ((-1154 . -1003) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1003) T) ((-331 . -442) T) ((-1103 . -557) 121552) ((-1069 . -347) 121536) ((-1026 . -347) 121520) ((-939 . -381) 121482) ((-128 . -203) 121464) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 121446) ((-645 . -37) 121275) ((-1153 . -1151) 121259) ((-321 . -372) T) ((-1153 . -1003) 121209) ((-529 . -650) 121196) ((-517 . -650) 121183) ((-460 . -650) 121148) ((-286 . -569) 121127) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1108) T) ((-987 . -579) 121075) ((-1069 . -822) 121019) ((-1026 . -822) 121003) ((-599 . -967) 120987) ((-103 . -579) 120969) ((-450 . -123) 120840) ((-1075 . -1015) T) ((-874 . -46) 120809) ((-564 . -1003) T) ((-599 . -106) 120788) ((-297 . -260) 120765) ((-449 . -46) 120722) ((-1075 . -23) T) ((-112 . -1003) T) ((-98 . -97) 120700) ((-1163 . -1015) T) ((-965 . -123) T) ((-939 . -968) T) ((-751 . -952) 120684) ((-919 . -657) 120656) ((-1163 . -23) T) ((-632 . -650) 120621) ((-534 . -557) 120603) ((-356 . -952) 120587) ((-324 . -968) T) ((-355 . -123) T) ((-294 . -952) 120571) ((-199 . -808) 120553) ((-920 . -842) T) ((-89 . -33) T) ((-920 . -752) T) ((-836 . -842) T) ((-454 . -1112) T) ((-1089 . -557) 120535) ((-1008 . -1003) T) ((-192 . -1112) T) ((-915 . -280) 120500) ((-199 . -952) 120460) ((-39 . -262) T) ((-987 . -21) T) ((-987 . -25) T) ((-1021 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 120420) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -968) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 120402) ((-670 . -669) 120386) ((-306 . -557) 120368) ((-66 . -353) T) ((-66 . -365) T) ((-1005 . -102) 120352) ((-972 . -808) 120334) ((-874 . -808) 120259) ((-590 . -1015) T) ((-564 . -650) 120246) ((-449 . -808) NIL) ((-1044 . -97) T) ((-972 . -952) 120228) ((-92 . -557) 120210) ((-446 . -134) T) ((-874 . -952) 120092) ((-112 . -650) 120037) ((-590 . -23) T) ((-449 . -952) 119915) ((-992 . -558) NIL) ((-992 . -557) 119897) ((-714 . -558) NIL) ((-714 . -557) 119858) ((-712 . -558) 119493) ((-712 . -557) 119407) ((-1016 . -579) 119315) ((-430 . -557) 119297) ((-423 . -557) 119279) ((-423 . -558) 119140) ((-950 . -203) 119086) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -831) 119065) ((-586 . -557) 119047) ((-325 . -1170) 119031) ((-322 . -1170) 119015) ((-314 . -1170) 118999) ((-122 . -478) 118932) ((-116 . -478) 118865) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 118803) ((-196 . -97) 118781) ((-627 . -1003) T) ((-632 . -156) T) ((-796 . -585) 118733) ((-63 . -354) T) ((-248 . -557) 118715) ((-63 . -365) T) ((-874 . -347) 118699) ((-794 . -262) T) ((-49 . -557) 118681) ((-915 . -37) 118629) ((-530 . -557) 118611) ((-449 . -347) 118595) ((-530 . -558) 118577) ((-481 . -557) 118559) ((-832 . -1170) 118546) ((-795 . -1108) T) ((-634 . -421) T) ((-460 . -478) 118512) ((-454 . -333) T) ((-325 . -338) 118491) ((-322 . -338) 118470) ((-314 . -338) 118449) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1174 . -1165) 118433) ((-795 . -806) 118410) ((-795 . -808) NIL) ((-885 . -779) 118309) ((-747 . -779) 118260) ((-591 . -593) 118244) ((-1095 . -33) T) ((-155 . -557) 118226) ((-1016 . -21) 118137) ((-1016 . -25) 117989) ((-795 . -952) 117966) ((-874 . -822) 117947) ((-1127 . -46) 117924) ((-832 . -338) T) ((-57 . -588) 117908) ((-480 . -588) 117892) ((-449 . -822) 117869) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 117853) ((-57 . -343) 117837) ((-564 . -156) T) ((-480 . -343) 117821) ((-461 . -343) 117805) ((-759 . -642) 117789) ((-1069 . -278) 117768) ((-1075 . -123) T) ((-112 . -156) T) ((-1044 . -280) 117706) ((-153 . -1108) T) ((-575 . -677) 117690) ((-551 . -677) 117674) ((-1163 . -123) T) ((-1139 . -842) 117653) ((-1118 . -842) 117632) ((-1118 . -752) NIL) ((-627 . -650) 117582) ((-1117 . -831) 117535) ((-939 . -1003) T) ((-795 . -347) 117512) ((-795 . -308) 117489) ((-827 . -1015) T) ((-153 . -806) 117473) ((-153 . -808) 117398) ((-454 . -1015) T) ((-324 . -1003) T) ((-192 . -1015) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -952) 117296) ((-289 . -779) T) ((-1153 . -478) 117229) ((-1138 . -585) 117126) ((-1117 . -585) 116996) ((-796 . -726) 116975) ((-796 . -723) 116954) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 116936) ((-157 . -421) T) ((-196 . -280) 116874) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1175 . -1168) 116853) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -952) 116837) ((-460 . -262) T) ((-127 . -439) 116792) ((-47 . -1003) T) ((-645 . -205) 116776) ((-795 . -822) NIL) ((-1127 . -808) NIL) ((-811 . -97) T) ((-807 . -97) T) ((-358 . -1003) T) ((-153 . -347) 116760) ((-153 . -308) 116744) ((-1127 . -952) 116627) ((-784 . -952) 116525) ((-1040 . -97) T) ((-590 . -123) T) ((-112 . -478) 116388) ((-599 . -724) 116367) ((-599 . -727) 116346) ((-524 . -952) 116328) ((-265 . -1160) 116298) ((-790 . -97) T) ((-884 . -509) 116277) ((-1103 . -967) 116160) ((-450 . -579) 116068) ((-826 . -1003) T) ((-939 . -650) 116005) ((-644 . -967) 115970) ((-548 . -33) T) ((-1045 . -1108) T) ((-1103 . -106) 115832) ((-443 . -585) 115729) ((-324 . -650) 115674) ((-153 . -822) 115633) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 115582) ((-1179 . -968) T) ((-1127 . -347) 115566) ((-388 . -1112) 115544) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1117 . -723) 115497) ((-1117 . -726) 115450) ((-1138 . -659) T) ((-1117 . -659) T) ((-47 . -650) 115415) ((-199 . -937) T) ((-321 . -1160) 115392) ((-1140 . -381) 115358) ((-651 . -659) T) ((-1127 . -822) 115302) ((-107 . -557) 115284) ((-107 . -558) 115266) ((-651 . -442) T) ((-450 . -21) 115177) ((-122 . -456) 115161) ((-116 . -456) 115145) ((-450 . -25) 114997) ((-564 . -262) T) ((-534 . -967) 114972) ((-407 . -1003) T) ((-972 . -278) T) ((-112 . -262) T) ((-1007 . -97) T) ((-919 . -97) T) ((-534 . -106) 114933) ((-1040 . -280) 114871) ((-1103 . -961) T) ((-972 . -937) T) ((-64 . -1108) T) ((-965 . -25) T) ((-965 . -21) T) ((-644 . -961) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-939 . -156) T) ((-644 . -217) T) ((-972 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 114853) ((-364 . -557) 114835) ((-443 . -659) T) ((-1021 . -777) T) ((-814 . -952) 114803) ((-103 . -779) T) ((-595 . -967) 114787) ((-454 . -123) T) ((-1140 . -968) T) ((-192 . -123) T) ((-1054 . -97) 114765) ((-94 . -1003) T) ((-219 . -603) 114749) ((-219 . -588) 114733) ((-595 . -106) 114712) ((-286 . -381) 114696) ((-219 . -343) 114680) ((-1057 . -209) 114627) ((-915 . -205) 114611) ((-72 . -1108) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1174 . -97) T) ((-992 . -967) 114454) ((-237 . -831) 114433) ((-221 . -831) 114412) ((-714 . -967) 114235) ((-712 . -967) 114078) ((-552 . -1108) T) ((-1062 . -557) 114060) ((-992 . -106) 113882) ((-958 . -97) T) ((-444 . -1108) T) ((-430 . -967) 113853) ((-423 . -967) 113696) ((-601 . -585) 113680) ((-795 . -278) T) ((-714 . -106) 113482) ((-712 . -106) 113304) ((-325 . -585) 113256) ((-322 . -585) 113208) ((-314 . -585) 113160) ((-237 . -585) 113085) ((-221 . -585) 113010) ((-1056 . -779) T) ((-430 . -106) 112971) ((-423 . -106) 112793) ((-993 . -952) 112777) ((-983 . -952) 112754) ((-916 . -33) T) ((-879 . -1108) T) ((-121 . -926) 112738) ((-884 . -1015) T) ((-795 . -937) NIL) ((-668 . -1015) T) ((-648 . -1015) T) ((-1153 . -456) 112722) ((-1040 . -37) 112682) ((-884 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-832 . -585) 112647) ((-530 . -967) 112612) ((-481 . -967) 112557) ((-201 . -55) 112515) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 112485) ((-530 . -106) 112434) ((-481 . -106) 112351) ((-388 . -1015) T) ((-286 . -968) 112242) ((-283 . -968) T) ((-595 . -961) T) ((-1179 . -1003) T) ((-153 . -278) 112173) ((-388 . -23) T) ((-39 . -557) 112155) ((-39 . -558) 112139) ((-103 . -909) 112121) ((-111 . -793) 112105) ((-47 . -478) 112071) ((-1095 . -926) 112055) ((-1078 . -557) 112037) ((-1082 . -33) T) ((-843 . -557) 112019) ((-1016 . -779) 111970) ((-703 . -557) 111952) ((-608 . -557) 111934) ((-1054 . -280) 111872) ((-447 . -33) T) ((-996 . -1108) T) ((-446 . -421) T) ((-992 . -961) T) ((-1039 . -33) T) ((-714 . -961) T) ((-712 . -961) T) ((-584 . -209) 111856) ((-572 . -209) 111802) ((-1127 . -278) 111781) ((-992 . -296) 111743) ((-423 . -961) T) ((-1075 . -21) T) ((-992 . -207) 111722) ((-714 . -296) 111699) ((-714 . -207) T) ((-712 . -296) 111671) ((-297 . -588) 111655) ((-664 . -1112) 111634) ((-1075 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 111613) ((-297 . -343) 111597) ((-462 . -33) T) ((-461 . -33) T) ((-919 . -1049) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 111528) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-958 . -280) 111436) ((-823 . -1003) 111414) ((-49 . -961) T) ((-1163 . -21) T) ((-1163 . -25) T) ((-1071 . -509) 111393) ((-1070 . -1112) 111372) ((-530 . -961) T) ((-481 . -961) T) ((-1064 . -1112) 111351) ((-331 . -952) 111335) ((-292 . -952) 111319) ((-939 . -262) T) ((-349 . -808) 111301) ((-1070 . -509) 111252) ((-1064 . -509) 111203) ((-919 . -37) 111148) ((-731 . -1015) T) ((-832 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1027 . -509) 111127) ((-324 . -262) T) ((-584 . -628) 111111) ((-349 . -952) 111071) ((-1021 . -968) T) ((-98 . -120) 111055) ((-731 . -23) T) ((-1153 . -258) 111032) ((-377 . -280) 110997) ((-1173 . -1168) 110973) ((-1171 . -1168) 110952) ((-1140 . -1003) T) ((-794 . -557) 110934) ((-766 . -952) 110903) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -918) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 110887) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1174 . -37) 110857) ((-112 . -258) 110787) ((-1153 . -19) 110771) ((-1153 . -550) 110748) ((-1164 . -1003) T) ((-984 . -1003) T) ((-904 . -1003) T) ((-884 . -123) T) ((-670 . -1003) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1049) 110726) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -961) T) ((-265 . -97) 110509) ((-128 . -1003) T) ((-632 . -918) T) ((-89 . -1108) T) ((-122 . -557) 110441) ((-116 . -557) 110373) ((-1179 . -156) T) ((-1070 . -333) 110352) ((-1064 . -333) 110331) ((-286 . -1003) T) ((-388 . -123) T) ((-283 . -1003) T) ((-377 . -37) 110283) ((-1034 . -97) T) ((-1140 . -650) 110140) ((-591 . -968) T) ((-289 . -132) 110119) ((-289 . -134) 110098) ((-127 . -1003) T) ((-109 . -1003) T) ((-786 . -97) T) ((-529 . -557) 110080) ((-517 . -558) 109979) ((-517 . -557) 109961) ((-460 . -557) 109943) ((-460 . -558) 109888) ((-452 . -23) T) ((-450 . -779) 109839) ((-454 . -579) 109821) ((-192 . -579) 109803) ((-199 . -374) T) ((-599 . -585) 109787) ((-1069 . -842) 109766) ((-664 . -1015) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -967) 109711) ((-1056 . -1055) T) ((-1045 . -102) 109695) ((-1071 . -1015) T) ((-1070 . -1015) T) ((-479 . -952) 109679) ((-1064 . -1015) T) ((-1027 . -1015) T) ((-313 . -106) 109596) ((-920 . -1112) T) ((-121 . -1108) T) ((-836 . -1112) T) ((-627 . -258) NIL) ((-1154 . -557) 109578) ((-1071 . -23) T) ((-1070 . -23) T) ((-920 . -509) T) ((-1064 . -23) T) ((-836 . -509) T) ((-1040 . -205) 109562) ((-222 . -557) 109544) ((-1027 . -23) T) ((-982 . -1003) T) ((-731 . -123) T) ((-286 . -650) 109454) ((-283 . -650) 109383) ((-632 . -557) 109365) ((-632 . -558) 109310) ((-377 . -370) 109294) ((-408 . -1003) T) ((-454 . -25) T) ((-454 . -21) T) ((-1021 . -1003) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 109278) ((-647 . -952) 109247) ((-1153 . -557) 109159) ((-1153 . -558) 109120) ((-1140 . -156) T) ((-219 . -33) T) ((-848 . -891) T) ((-1095 . -1108) T) ((-599 . -723) 109099) ((-599 . -726) 109078) ((-368 . -365) T) ((-486 . -97) 109056) ((-950 . -1003) T) ((-196 . -911) 109040) ((-469 . -97) T) ((-564 . -557) 109022) ((-44 . -779) NIL) ((-564 . -558) 108999) ((-950 . -554) 108974) ((-823 . -478) 108907) ((-313 . -961) T) ((-112 . -558) NIL) ((-112 . -557) 108889) ((-796 . -1108) T) ((-607 . -387) 108873) ((-607 . -1024) 108818) ((-465 . -138) 108800) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -967) 108745) ((-796 . -806) 108729) ((-796 . -808) 108654) ((-645 . -968) T) ((-627 . -918) NIL) ((-1138 . -46) 108624) ((-1117 . -46) 108601) ((-1039 . -926) 108572) ((-199 . -842) T) ((-39 . -106) 108489) ((-796 . -952) 108356) ((-1021 . -650) 108343) ((-1008 . -557) 108325) ((-987 . -134) 108304) ((-987 . -132) 108255) ((-920 . -333) T) ((-289 . -1097) 108221) ((-349 . -278) T) ((-289 . -1094) 108187) ((-286 . -156) 108166) ((-283 . -156) T) ((-919 . -205) 108143) ((-836 . -333) T) ((-530 . -1170) 108130) ((-481 . -1170) 108107) ((-329 . -134) 108086) ((-329 . -132) 108037) ((-323 . -134) 108016) ((-323 . -132) 107967) ((-552 . -1085) 107943) ((-315 . -134) 107922) ((-315 . -132) 107873) ((-289 . -34) 107839) ((-444 . -1085) 107818) ((0 . |EnumerationCategory|) T) ((-289 . -91) 107784) ((-349 . -937) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 107734) ((-591 . -1003) T) ((-552 . -102) 107681) ((-452 . -123) T) ((-444 . -102) 107631) ((-214 . -1015) 107562) ((-796 . -347) 107546) ((-796 . -308) 107530) ((-214 . -23) 107401) ((-972 . -842) T) ((-972 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1049) T) ((-297 . -33) T) ((-43 . -387) 107385) ((-360 . -677) 107369) ((-1164 . -478) 107302) ((-664 . -123) T) ((-1146 . -509) 107281) ((-1139 . -1112) 107260) ((-1139 . -509) 107211) ((-670 . -478) 107144) ((-1118 . -1112) 107123) ((-1118 . -509) 107074) ((-815 . -1003) T) ((-131 . -773) T) ((-1117 . -1108) 107053) ((-1117 . -808) 106926) ((-1117 . -806) 106896) ((-486 . -280) 106834) ((-1071 . -123) T) ((-128 . -478) NIL) ((-1070 . -123) T) ((-1064 . -123) T) ((-1027 . -123) T) ((-939 . -918) T) ((-321 . -37) 106799) ((-920 . -1015) T) ((-836 . -1015) T) ((-80 . -557) 106781) ((-39 . -961) T) ((-794 . -967) 106768) ((-920 . -23) T) ((-796 . -822) 106727) ((-634 . -97) T) ((-919 . -319) NIL) ((-548 . -1108) T) ((-888 . -23) T) ((-836 . -23) T) ((-794 . -106) 106712) ((-397 . -1015) T) ((-443 . -46) 106682) ((-125 . -97) T) ((-39 . -207) 106654) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 106633) ((-542 . -509) 106612) ((-627 . -557) 106594) ((-627 . -558) 106502) ((-286 . -478) 106468) ((-283 . -478) 106219) ((-1138 . -952) 106203) ((-1117 . -952) 105992) ((-915 . -381) 105976) ((-397 . -23) T) ((-1021 . -156) T) ((-1140 . -262) T) ((-591 . -650) 105946) ((-131 . -1003) T) ((-47 . -918) T) ((-377 . -205) 105930) ((-266 . -209) 105880) ((-795 . -842) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1117 . -308) 105850) ((-1117 . -347) 105820) ((-196 . -1022) 105804) ((-1153 . -260) 105781) ((-1103 . -585) 105706) ((-884 . -21) T) ((-884 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 105671) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-915 . -968) T) ((-794 . -961) T) ((-706 . -97) T) ((-1139 . -333) 105650) ((-1138 . -822) 105556) ((-1118 . -333) 105535) ((-1117 . -822) 105386) ((-939 . -557) 105368) ((-377 . -760) 105321) ((-1071 . -458) 105287) ((-153 . -842) 105218) ((-1070 . -458) 105184) ((-1064 . -458) 105150) ((-645 . -1003) T) ((-1027 . -458) 105116) ((-529 . -967) 105103) ((-517 . -967) 105090) ((-460 . -967) 105055) ((-286 . -262) 105034) ((-283 . -262) T) ((-324 . -557) 105016) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 104995) ((-529 . -106) 104980) ((-517 . -106) 104965) ((-460 . -106) 104914) ((-1073 . -808) 104881) ((-823 . -456) 104865) ((-47 . -557) 104847) ((-47 . -558) 104792) ((-214 . -123) 104663) ((-1127 . -842) 104642) ((-748 . -1112) 104621) ((-950 . -478) 104429) ((-358 . -557) 104411) ((-748 . -509) 104342) ((-534 . -585) 104317) ((-237 . -46) 104289) ((-221 . -46) 104246) ((-489 . -473) 104223) ((-916 . -1108) T) ((-632 . -967) 104188) ((-1146 . -1015) T) ((-1139 . -1015) T) ((-1118 . -1015) T) ((-919 . -340) 104160) ((-107 . -338) T) ((-443 . -822) 104066) ((-1146 . -23) T) ((-1139 . -23) T) ((-826 . -557) 104048) ((-89 . -102) 104032) ((-1103 . -659) T) ((-827 . -779) 103983) ((-634 . -1049) T) ((-632 . -106) 103932) ((-1118 . -23) T) ((-543 . -1015) T) ((-542 . -1015) T) ((-645 . -650) 103761) ((-644 . -659) T) ((-1021 . -262) T) ((-920 . -123) T) ((-454 . -779) T) ((-888 . -123) T) ((-836 . -123) T) ((-529 . -961) T) ((-192 . -779) T) ((-517 . -961) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -961) T) ((-543 . -23) T) ((-313 . -1170) 103738) ((-289 . -421) 103717) ((-309 . -280) 103704) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 103678) ((-219 . -926) 103662) ((-796 . -278) T) ((-1175 . -1165) 103646) ((-634 . -37) 103633) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1048 . -209) 103583) ((-992 . -831) 103562) ((-111 . -37) 103549) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -937) 103528) ((-1164 . -456) 103512) ((-714 . -831) 103491) ((-712 . -831) 103470) ((-1082 . -1108) T) ((-423 . -831) 103449) ((-670 . -456) 103433) ((-992 . -585) 103358) ((-714 . -585) 103283) ((-564 . -967) 103270) ((-447 . -1108) T) ((-313 . -338) T) ((-128 . -456) 103252) ((-712 . -585) 103177) ((-1039 . -1108) T) ((-430 . -585) 103148) ((-237 . -808) 103007) ((-221 . -808) NIL) ((-112 . -967) 102952) ((-423 . -585) 102877) ((-601 . -952) 102854) ((-564 . -106) 102839) ((-325 . -952) 102823) ((-322 . -952) 102807) ((-314 . -952) 102791) ((-237 . -952) 102637) ((-221 . -952) 102515) ((-112 . -106) 102432) ((-57 . -1108) T) ((-482 . -1108) T) ((-480 . -1108) T) ((-462 . -1108) T) ((-461 . -1108) T) ((-407 . -557) 102414) ((-404 . -557) 102396) ((-3 . -97) T) ((-942 . -1102) 102365) ((-765 . -97) T) ((-623 . -55) 102323) ((-632 . -961) T) ((-49 . -585) 102297) ((-261 . -421) T) ((-445 . -1102) 102266) ((0 . -97) T) ((-530 . -585) 102231) ((-481 . -585) 102176) ((-48 . -97) T) ((-832 . -952) 102163) ((-632 . -217) T) ((-987 . -379) 102142) ((-664 . -579) 102090) ((-915 . -1003) T) ((-645 . -156) 101981) ((-454 . -909) 101963) ((-237 . -347) 101947) ((-221 . -347) 101931) ((-369 . -1003) T) ((-309 . -37) 101915) ((-941 . -97) 101893) ((-192 . -909) 101875) ((-157 . -37) 101807) ((-1138 . -278) 101786) ((-1117 . -278) 101765) ((-595 . -659) T) ((-94 . -557) 101747) ((-1064 . -579) 101699) ((-452 . -25) T) ((-452 . -21) T) ((-1117 . -937) 101652) ((-564 . -961) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -822) 101598) ((-221 . -822) 101575) ((-112 . -961) T) ((-748 . -1015) T) ((-992 . -659) T) ((-564 . -207) 101554) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1015) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-984 . -258) 101533) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -967) 101483) ((-1146 . -123) T) ((-1139 . -123) T) ((-1118 . -123) T) ((-1040 . -381) 101467) ((-575 . -337) 101399) ((-551 . -337) 101331) ((-1054 . -1047) 101315) ((-98 . -1003) 101293) ((-1071 . -25) T) ((-1071 . -21) T) ((-1070 . -21) T) ((-915 . -650) 101241) ((-197 . -585) 101208) ((-627 . -106) 101135) ((-49 . -659) T) ((-1070 . -25) T) ((-321 . -319) T) ((-1064 . -21) T) ((-987 . -421) 101086) ((-1064 . -25) T) ((-645 . -478) 101034) ((-530 . -659) T) ((-481 . -659) T) ((-1027 . -21) T) ((-1027 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 101013) ((-283 . -258) 100879) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1179 . -557) 100861) ((-1179 . -558) 100843) ((-987 . -372) 100822) ((-950 . -456) 100754) ((-517 . -727) T) ((-517 . -724) T) ((-973 . -209) 100700) ((-329 . -372) 100651) ((-323 . -372) 100602) ((-315 . -372) 100553) ((-1166 . -1015) T) ((-1166 . -23) T) ((-1155 . -97) T) ((-1040 . -968) T) ((-607 . -677) 100537) ((-1075 . -132) 100516) ((-1075 . -134) 100495) ((-1044 . -1003) T) ((-1044 . -980) 100464) ((-67 . -1108) T) ((-939 . -967) 100401) ((-790 . -968) T) ((-214 . -579) 100309) ((-627 . -961) T) ((-324 . -967) 100254) ((-59 . -1108) T) ((-939 . -106) 100163) ((-823 . -557) 100095) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 100074) ((-632 . -727) T) ((-632 . -724) T) ((-919 . -381) 100051) ((-324 . -106) 99968) ((-349 . -842) T) ((-377 . -777) 99947) ((-645 . -262) 99858) ((-197 . -659) T) ((-1146 . -458) 99824) ((-1139 . -458) 99790) ((-1118 . -458) 99756) ((-286 . -918) 99735) ((-196 . -1003) 99713) ((-289 . -890) 99676) ((-100 . -97) T) ((-47 . -967) 99641) ((-1175 . -97) T) ((-351 . -97) T) ((-47 . -106) 99590) ((-920 . -579) 99572) ((-1140 . -557) 99554) ((-489 . -97) T) ((-465 . -97) T) ((-1034 . -1035) 99538) ((-139 . -1160) 99522) ((-219 . -1108) T) ((-1069 . -1112) 99501) ((-1026 . -1112) 99480) ((-214 . -21) 99391) ((-214 . -25) 99243) ((-122 . -114) 99227) ((-116 . -114) 99211) ((-43 . -677) 99195) ((-1069 . -509) 99106) ((-1026 . -509) 99037) ((-950 . -258) 99012) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-998 . -1108) T) ((-224 . -1015) 98943) ((-223 . -1015) 98874) ((-939 . -961) T) ((-919 . -968) T) ((-313 . -585) 98819) ((-562 . -37) 98803) ((-1164 . -557) 98765) ((-1164 . -558) 98726) ((-984 . -557) 98708) ((-939 . -217) T) ((-324 . -961) T) ((-747 . -1160) 98678) ((-224 . -23) T) ((-223 . -23) T) ((-904 . -557) 98660) ((-670 . -558) 98621) ((-670 . -557) 98603) ((-731 . -779) 98582) ((-915 . -478) 98494) ((-324 . -207) T) ((-324 . -217) T) ((-1057 . -138) 98441) ((-920 . -25) T) ((-128 . -557) 98423) ((-128 . -558) 98382) ((-832 . -278) T) ((-920 . -21) T) ((-888 . -25) T) ((-836 . -21) T) ((-836 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 98366) ((-47 . -961) T) ((-1173 . -1165) 98350) ((-1171 . -1165) 98334) ((-950 . -550) 98309) ((-286 . -558) 98170) ((-286 . -557) 98152) ((-283 . -558) NIL) ((-283 . -557) 98134) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 98095) ((-503 . -209) 98045) ((-127 . -557) 98027) ((-109 . -557) 98009) ((-446 . -37) 97974) ((-1175 . -1172) 97953) ((-1166 . -123) T) ((-1174 . -968) T) ((-989 . -97) T) ((-86 . -1108) T) ((-465 . -280) NIL) ((-916 . -102) 97937) ((-811 . -1003) T) ((-807 . -1003) T) ((-1153 . -588) 97921) ((-1153 . -343) 97905) ((-297 . -1108) T) ((-540 . -779) T) ((-1040 . -1003) T) ((-1040 . -964) 97845) ((-98 . -478) 97778) ((-849 . -557) 97760) ((-313 . -659) T) ((-30 . -557) 97742) ((-790 . -1003) T) ((-772 . -968) 97721) ((-39 . -585) 97666) ((-199 . -1112) T) ((-377 . -968) T) ((-1056 . -138) 97648) ((-915 . -262) 97599) ((-199 . -509) T) ((-289 . -1135) 97583) ((-289 . -1132) 97553) ((-1082 . -1085) 97532) ((-982 . -557) 97514) ((-584 . -138) 97498) ((-572 . -138) 97444) ((-1082 . -102) 97394) ((-447 . -1085) 97373) ((-454 . -134) T) ((-454 . -132) NIL) ((-1021 . -558) 97288) ((-408 . -557) 97270) ((-192 . -134) T) ((-192 . -132) NIL) ((-1021 . -557) 97252) ((-51 . -97) T) ((-1118 . -579) 97204) ((-447 . -102) 97154) ((-910 . -23) T) ((-1175 . -37) 97124) ((-1069 . -1015) T) ((-1026 . -1015) T) ((-972 . -1112) T) ((-783 . -1015) T) ((-874 . -1112) 97103) ((-449 . -1112) 97082) ((-664 . -779) 97061) ((-972 . -509) T) ((-874 . -509) 96992) ((-1069 . -23) T) ((-1026 . -23) T) ((-783 . -23) T) ((-449 . -509) 96923) ((-1040 . -650) 96855) ((-1044 . -478) 96788) ((-950 . -558) NIL) ((-950 . -557) 96770) ((-790 . -650) 96740) ((-1103 . -46) 96709) ((-224 . -123) T) ((-223 . -123) T) ((-1007 . -1003) T) ((-919 . -1003) T) ((-60 . -557) 96691) ((-1064 . -779) NIL) ((-939 . -724) T) ((-939 . -727) T) ((-1179 . -967) 96678) ((-1179 . -106) 96663) ((-794 . -585) 96650) ((-1146 . -25) T) ((-1146 . -21) T) ((-1139 . -21) T) ((-1139 . -25) T) ((-1118 . -21) T) ((-1118 . -25) T) ((-942 . -138) 96634) ((-796 . -752) 96613) ((-796 . -842) T) ((-645 . -258) 96540) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 96473) ((-542 . -25) T) ((-445 . -138) 96457) ((-432 . -138) 96441) ((-843 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1003) T) ((-703 . -659) T) ((-199 . -333) T) ((-1054 . -1003) 96419) ((-795 . -1112) T) ((-591 . -557) 96401) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1160) 96385) ((-607 . -97) T) ((-323 . -1160) 96369) ((-315 . -1160) 96353) ((-1174 . -1003) T) ((-483 . -779) 96332) ((-749 . -421) 96311) ((-958 . -1003) T) ((-958 . -980) 96240) ((-942 . -893) 96209) ((-751 . -1015) T) ((-919 . -650) 96154) ((-356 . -1015) T) ((-445 . -893) 96123) ((-432 . -893) 96092) ((-105 . -138) 96074) ((-71 . -557) 96056) ((-815 . -557) 96038) ((-987 . -657) 96017) ((-1179 . -961) T) ((-748 . -579) 95965) ((-265 . -968) 95908) ((-153 . -1112) 95813) ((-199 . -1015) T) ((-294 . -23) T) ((-1064 . -909) 95765) ((-772 . -1003) T) ((-1027 . -673) 95744) ((-1140 . -967) 95633) ((-1138 . -842) 95612) ((-794 . -659) T) ((-153 . -509) 95523) ((-1117 . -842) 95502) ((-529 . -585) 95489) ((-377 . -1003) T) ((-517 . -585) 95476) ((-236 . -1003) T) ((-460 . -585) 95441) ((-199 . -23) T) ((-1117 . -752) 95394) ((-1173 . -97) T) ((-324 . -1170) 95371) ((-1171 . -97) T) ((-1140 . -106) 95221) ((-131 . -557) 95203) ((-910 . -123) T) ((-43 . -97) T) ((-214 . -779) 95154) ((-1127 . -1112) 95133) ((-98 . -456) 95117) ((-1174 . -650) 95087) ((-992 . -46) 95049) ((-972 . -1015) T) ((-874 . -1015) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 95026) ((-712 . -46) 94998) ((-1127 . -509) 94909) ((-324 . -338) T) ((-449 . -1015) T) ((-1069 . -123) T) ((-1026 . -123) T) ((-423 . -46) 94888) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-972 . -23) T) ((-874 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1040 . -478) 94821) ((-534 . -952) 94805) ((-449 . -23) T) ((-321 . -968) T) ((-1103 . -822) 94786) ((-607 . -280) 94724) ((-1016 . -1160) 94694) ((-632 . -585) 94659) ((-919 . -156) T) ((-884 . -132) 94638) ((-575 . -1003) T) ((-551 . -1003) T) ((-884 . -134) 94617) ((-920 . -779) T) ((-668 . -134) 94596) ((-668 . -132) 94575) ((-888 . -779) T) ((-443 . -842) 94554) ((-286 . -967) 94464) ((-283 . -967) 94393) ((-915 . -258) 94351) ((-377 . -650) 94303) ((-634 . -777) T) ((-1140 . -961) T) ((-286 . -106) 94192) ((-283 . -106) 94077) ((-885 . -97) T) ((-747 . -97) 93888) ((-645 . -558) NIL) ((-645 . -557) 93870) ((-595 . -952) 93768) ((-1140 . -296) 93712) ((-950 . -260) 93687) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 93638) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1044 . -456) 93622) ((-992 . -808) NIL) ((-795 . -1015) T) ((-112 . -831) NIL) ((-1173 . -1172) 93598) ((-1171 . -1172) 93577) ((-714 . -808) NIL) ((-712 . -808) 93436) ((-1166 . -25) T) ((-1166 . -21) T) ((-1106 . -97) 93414) ((-1009 . -365) T) ((-564 . -585) 93401) ((-423 . -808) NIL) ((-611 . -97) 93379) ((-992 . -952) 93209) ((-795 . -23) T) ((-714 . -952) 93071) ((-712 . -952) 92930) ((-112 . -585) 92875) ((-423 . -952) 92753) ((-586 . -952) 92737) ((-567 . -97) T) ((-196 . -456) 92721) ((-1153 . -33) T) ((-575 . -650) 92705) ((-551 . -650) 92689) ((-607 . -37) 92649) ((-289 . -97) T) ((-83 . -557) 92631) ((-49 . -952) 92615) ((-1021 . -967) 92602) ((-992 . -347) 92586) ((-58 . -55) 92548) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -952) 92535) ((-481 . -952) 92512) ((-632 . -659) T) ((-286 . -961) 92403) ((-294 . -123) T) ((-283 . -961) T) ((-153 . -1015) T) ((-714 . -347) 92387) ((-712 . -347) 92371) ((-44 . -138) 92321) ((-920 . -909) 92303) ((-423 . -347) 92287) ((-377 . -156) T) ((-286 . -217) 92266) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1003) 92049) ((-199 . -123) T) ((-1021 . -106) 92034) ((-153 . -23) T) ((-731 . -134) 92013) ((-731 . -132) 91992) ((-224 . -579) 91900) ((-223 . -579) 91808) ((-289 . -256) 91774) ((-1054 . -478) 91707) ((-1034 . -1003) T) ((-199 . -970) T) ((-747 . -280) 91645) ((-992 . -822) 91581) ((-714 . -822) 91525) ((-712 . -822) 91509) ((-1173 . -37) 91479) ((-1171 . -37) 91449) ((-1127 . -1015) T) ((-784 . -1015) T) ((-423 . -822) 91426) ((-786 . -1003) T) ((-1127 . -23) T) ((-524 . -1015) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -842) T) ((-322 . -842) T) ((-261 . -97) T) ((-314 . -842) T) ((-972 . -123) T) ((-874 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -831) NIL) ((-958 . -478) 91310) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 91248) ((-575 . -694) T) ((-551 . -694) T) ((-1118 . -779) NIL) ((-919 . -262) T) ((-224 . -21) T) ((-627 . -585) 91198) ((-321 . -1003) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 91182) ((-2 . -97) T) ((-832 . -842) T) ((-450 . -1160) 91152) ((-197 . -952) 91129) ((-1021 . -961) T) ((-644 . -278) T) ((-265 . -650) 91071) ((-634 . -968) T) ((-454 . -421) T) ((-377 . -478) 90983) ((-192 . -421) T) ((-1021 . -207) T) ((-266 . -138) 90933) ((-915 . -558) 90894) ((-915 . -557) 90876) ((-906 . -557) 90858) ((-111 . -968) T) ((-591 . -967) 90842) ((-199 . -458) T) ((-369 . -557) 90824) ((-369 . -558) 90801) ((-965 . -1160) 90771) ((-591 . -106) 90750) ((-1040 . -456) 90734) ((-747 . -37) 90704) ((-61 . -410) T) ((-61 . -365) T) ((-1057 . -97) T) ((-795 . -123) T) ((-451 . -97) 90682) ((-1179 . -338) T) ((-987 . -97) T) ((-971 . -97) T) ((-321 . -650) 90627) ((-664 . -134) 90606) ((-664 . -132) 90585) ((-939 . -585) 90522) ((-486 . -1003) 90500) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1003) T) ((-324 . -585) 90445) ((-1069 . -579) 90393) ((-1026 . -579) 90341) ((-355 . -473) 90320) ((-765 . -777) 90299) ((-349 . -1112) T) ((-627 . -659) T) ((-309 . -968) T) ((-1118 . -909) 90251) ((-157 . -968) T) ((-98 . -557) 90183) ((-1071 . -132) 90162) ((-1071 . -134) 90141) ((-349 . -509) T) ((-1070 . -134) 90120) ((-1070 . -132) 90099) ((-1064 . -132) 90006) ((-377 . -262) T) ((-1064 . -134) 89913) ((-1027 . -134) 89892) ((-1027 . -132) 89871) ((-289 . -37) 89712) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -961) T) ((-47 . -585) 89677) ((-910 . -21) T) ((-122 . -926) 89661) ((-116 . -926) 89645) ((-910 . -25) T) ((-823 . -114) 89629) ((-1056 . -97) T) ((-748 . -779) 89608) ((-1127 . -123) T) ((-1069 . -25) T) ((-1069 . -21) T) ((-784 . -123) T) ((-1026 . -25) T) ((-1026 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 89587) ((-584 . -97) 89565) ((-572 . -97) T) ((-1057 . -280) 89360) ((-524 . -123) T) ((-562 . -777) 89339) ((-1054 . -456) 89323) ((-1048 . -138) 89273) ((-1044 . -557) 89235) ((-1044 . -558) 89196) ((-939 . -723) T) ((-939 . -726) T) ((-939 . -659) T) ((-451 . -280) 89134) ((-422 . -387) 89104) ((-321 . -156) T) ((-261 . -37) 89091) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -952) 89068) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -967) 88891) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 88693) ((-607 . -205) 88677) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 88626) ((-103 . -280) NIL) ((-70 . -365) T) ((-1016 . -97) 88437) ((-765 . -381) 88421) ((-1021 . -727) T) ((-1021 . -724) T) ((-634 . -1003) T) ((-349 . -333) T) ((-153 . -458) 88399) ((-196 . -557) 88331) ((-125 . -1003) T) ((-111 . -1003) T) ((-47 . -659) T) ((-958 . -456) 88296) ((-128 . -395) 88278) ((-128 . -338) T) ((-942 . -97) T) ((-476 . -473) 88257) ((-445 . -97) T) ((-432 . -97) T) ((-949 . -1015) T) ((-1071 . -34) 88223) ((-1071 . -91) 88189) ((-1071 . -1097) 88155) ((-1071 . -1094) 88121) ((-1056 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-987 . -1049) 88100) ((-1070 . -1094) 88066) ((-1070 . -1097) 88032) ((-949 . -23) T) ((-1070 . -91) 87998) ((-524 . -458) T) ((-1070 . -34) 87964) ((-1064 . -1094) 87930) ((-1064 . -1097) 87896) ((-1064 . -91) 87862) ((-331 . -1015) T) ((-329 . -1049) 87841) ((-323 . -1049) 87820) ((-315 . -1049) 87799) ((-1064 . -34) 87765) ((-1027 . -34) 87731) ((-1027 . -91) 87697) ((-103 . -1049) T) ((-1027 . -1097) 87663) ((-765 . -968) 87642) ((-584 . -280) 87580) ((-572 . -280) 87431) ((-1027 . -1094) 87397) ((-645 . -961) T) ((-972 . -579) 87379) ((-987 . -37) 87247) ((-874 . -579) 87195) ((-920 . -134) T) ((-920 . -132) NIL) ((-349 . -1015) T) ((-294 . -25) T) ((-292 . -23) T) ((-865 . -779) 87174) ((-645 . -296) 87151) ((-449 . -579) 87099) ((-39 . -952) 86976) ((-634 . -650) 86963) ((-645 . -207) T) ((-309 . -1003) T) ((-157 . -1003) T) ((-301 . -779) T) ((-388 . -421) 86913) ((-349 . -23) T) ((-329 . -37) 86878) ((-323 . -37) 86843) ((-315 . -37) 86808) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1015) T) ((-103 . -37) 86758) ((-759 . -1015) T) ((-706 . -1003) T) ((-111 . -650) 86745) ((-608 . -952) 86729) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1054 . -258) 86706) ((-1016 . -280) 86644) ((-1005 . -209) 86628) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 86605) ((-590 . -781) 86589) ((-972 . -21) T) ((-972 . -25) T) ((-747 . -205) 86559) ((-874 . -25) T) ((-874 . -21) T) ((-562 . -968) T) ((-449 . -25) T) ((-449 . -21) T) ((-942 . -280) 86497) ((-811 . -557) 86479) ((-807 . -557) 86461) ((-224 . -779) 86412) ((-223 . -779) 86363) ((-486 . -478) 86296) ((-795 . -579) 86273) ((-445 . -280) 86211) ((-432 . -280) 86149) ((-321 . -262) T) ((-1054 . -1142) 86133) ((-1040 . -557) 86095) ((-1040 . -558) 86056) ((-1038 . -97) T) ((-915 . -967) 85952) ((-39 . -822) 85904) ((-1054 . -550) 85881) ((-1179 . -585) 85868) ((-973 . -138) 85814) ((-796 . -1112) T) ((-915 . -106) 85689) ((-309 . -650) 85673) ((-790 . -557) 85655) ((-157 . -650) 85587) ((-377 . -258) 85545) ((-796 . -509) T) ((-103 . -370) 85527) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 85338) ((-94 . -442) T) ((-111 . -156) T) ((-1016 . -37) 85308) ((-153 . -579) 85256) ((-965 . -97) T) ((-795 . -25) T) ((-747 . -212) 85235) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 85213) ((-122 . -1108) T) ((-116 . -1108) T) ((-949 . -123) T) ((-607 . -337) 85197) ((-915 . -961) T) ((-1127 . -579) 85145) ((-1007 . -557) 85127) ((-919 . -557) 85109) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1003) T) ((-919 . -558) 85093) ((-915 . -217) 85072) ((-915 . -207) 85051) ((-1179 . -659) T) ((-1146 . -132) 85030) ((-765 . -1003) T) ((-1146 . -134) 85009) ((-1139 . -134) 84988) ((-1139 . -132) 84967) ((-1138 . -1112) 84946) ((-1118 . -132) 84853) ((-1118 . -134) 84760) ((-1117 . -1112) 84739) ((-349 . -123) T) ((-517 . -808) 84721) ((0 . -1003) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1003) T) ((-1140 . -585) 84610) ((-1138 . -509) 84561) ((-647 . -1015) T) ((-1117 . -509) 84512) ((-517 . -952) 84494) ((-542 . -134) 84473) ((-542 . -132) 84452) ((-460 . -952) 84395) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 84377) ((-1175 . -968) T) ((-349 . -970) T) ((-941 . -1003) 84355) ((-823 . -33) T) ((-450 . -280) 84293) ((-1054 . -558) 84254) ((-1054 . -557) 84186) ((-1069 . -779) 84165) ((-44 . -97) T) ((-1026 . -779) 84144) ((-749 . -97) T) ((-1127 . -25) T) ((-1127 . -21) T) ((-784 . -25) T) ((-43 . -337) 84128) ((-784 . -21) T) ((-664 . -421) 84079) ((-1174 . -557) 84061) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1003) T) ((-965 . -280) 83999) ((-562 . -1003) T) ((-632 . -808) 83981) ((-1153 . -1108) T) ((-201 . -280) 83919) ((-131 . -338) T) ((-958 . -558) 83861) ((-958 . -557) 83804) ((-283 . -831) NIL) ((-632 . -952) 83749) ((-644 . -842) T) ((-443 . -1112) 83728) ((-1070 . -421) 83707) ((-1064 . -421) 83686) ((-300 . -97) T) ((-796 . -1015) T) ((-286 . -585) 83508) ((-283 . -585) 83437) ((-443 . -509) 83388) ((-309 . -478) 83354) ((-503 . -138) 83304) ((-39 . -278) T) ((-772 . -557) 83286) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-987 . -205) 83256) ((-476 . -97) T) ((-377 . -558) 83059) ((-377 . -557) 83041) ((-236 . -557) 83023) ((-111 . -262) T) ((-1140 . -659) T) ((-1138 . -333) 83002) ((-1117 . -333) 82981) ((-1164 . -33) T) ((-112 . -1108) T) ((-103 . -205) 82963) ((-1075 . -97) T) ((-446 . -1003) T) ((-486 . -456) 82947) ((-670 . -33) T) ((-450 . -37) 82917) ((-128 . -33) T) ((-112 . -806) 82894) ((-112 . -808) NIL) ((-564 . -952) 82779) ((-583 . -779) 82758) ((-1163 . -97) T) ((-266 . -97) T) ((-645 . -338) 82737) ((-112 . -952) 82714) ((-360 . -650) 82698) ((-562 . -650) 82682) ((-44 . -280) 82486) ((-748 . -132) 82465) ((-748 . -134) 82444) ((-1174 . -352) 82423) ((-751 . -779) T) ((-1155 . -1003) T) ((-1057 . -203) 82370) ((-356 . -779) 82349) ((-1146 . -1097) 82315) ((-1146 . -1094) 82281) ((-1139 . -1094) 82247) ((-479 . -123) T) ((-1139 . -1097) 82213) ((-1118 . -1094) 82179) ((-1118 . -1097) 82145) ((-1146 . -34) 82111) ((-1146 . -91) 82077) ((-575 . -557) 82046) ((-551 . -557) 82015) ((-199 . -779) T) ((-1139 . -91) 81981) ((-1139 . -34) 81947) ((-1138 . -1015) T) ((-1021 . -585) 81934) ((-1118 . -91) 81900) ((-1117 . -1015) T) ((-540 . -138) 81882) ((-987 . -319) 81861) ((-112 . -347) 81838) ((-112 . -308) 81815) ((-157 . -262) T) ((-1118 . -34) 81781) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 81631) ((-283 . -659) T) ((-443 . -333) 81610) ((-329 . -319) 81589) ((-323 . -319) 81568) ((-315 . -319) 81547) ((-286 . -442) 81526) ((-1138 . -23) T) ((-1117 . -23) T) ((-651 . -1015) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 81491) ((-44 . -254) 81441) ((-100 . -1003) T) ((-66 . -557) 81423) ((-789 . -97) T) ((-564 . -822) 81382) ((-1175 . -1003) T) ((-351 . -1003) T) ((-80 . -1108) T) ((-972 . -779) T) ((-874 . -779) 81361) ((-112 . -822) NIL) ((-714 . -842) 81340) ((-646 . -779) T) ((-489 . -1003) T) ((-465 . -1003) T) ((-325 . -1112) T) ((-322 . -1112) T) ((-314 . -1112) T) ((-237 . -1112) 81319) ((-221 . -1112) 81298) ((-1016 . -205) 81268) ((-449 . -779) 81247) ((-1040 . -967) 81231) ((-360 . -694) T) ((-1056 . -760) T) ((-627 . -1108) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 81162) ((-221 . -509) 81093) ((-1040 . -106) 81072) ((-422 . -677) 81042) ((-790 . -967) 81012) ((-749 . -37) 80949) ((-627 . -806) 80931) ((-627 . -808) 80913) ((-266 . -280) 80717) ((-832 . -1112) T) ((-607 . -381) 80701) ((-790 . -106) 80666) ((-627 . -952) 80611) ((-920 . -421) T) ((-832 . -509) T) ((-530 . -842) T) ((-443 . -1015) T) ((-481 . -842) T) ((-1054 . -260) 80588) ((-836 . -421) T) ((-63 . -557) 80570) ((-572 . -203) 80516) ((-443 . -23) T) ((-1021 . -726) T) ((-796 . -123) T) ((-1021 . -723) T) ((-1166 . -1168) 80495) ((-1021 . -659) T) ((-591 . -585) 80469) ((-265 . -557) 80211) ((-950 . -33) T) ((-747 . -777) 80190) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1175 . -650) 80160) ((-627 . -347) 80142) ((-627 . -308) 80124) ((-446 . -156) T) ((-351 . -650) 80094) ((-795 . -779) NIL) ((-517 . -937) T) ((-460 . -937) T) ((-1034 . -557) 80076) ((-1016 . -212) 80055) ((-189 . -97) T) ((-1048 . -97) T) ((-69 . -557) 80037) ((-1040 . -961) T) ((-1075 . -37) 79934) ((-786 . -557) 79916) ((-517 . -502) T) ((-607 . -968) T) ((-664 . -871) 79869) ((-1040 . -207) 79848) ((-989 . -1003) T) ((-949 . -25) T) ((-949 . -21) T) ((-919 . -967) 79793) ((-827 . -97) T) ((-790 . -961) T) ((-627 . -822) NIL) ((-325 . -299) 79777) ((-325 . -333) T) ((-322 . -299) 79761) ((-322 . -333) T) ((-314 . -299) 79745) ((-314 . -333) T) ((-454 . -97) T) ((-1163 . -37) 79715) ((-486 . -621) 79665) ((-192 . -97) T) ((-939 . -952) 79547) ((-919 . -106) 79464) ((-1071 . -890) 79434) ((-1070 . -890) 79397) ((-483 . -138) 79381) ((-987 . -340) 79360) ((-321 . -557) 79342) ((-292 . -21) T) ((-324 . -952) 79319) ((-292 . -25) T) ((-1064 . -890) 79289) ((-1027 . -890) 79256) ((-74 . -557) 79238) ((-632 . -278) T) ((-153 . -779) 79217) ((-832 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-832 . -299) 79204) ((-84 . -557) 79186) ((-632 . -937) T) ((-612 . -779) T) ((-1138 . -123) T) ((-1117 . -123) T) ((-823 . -926) 79170) ((-766 . -21) T) ((-47 . -952) 79113) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1173 . -968) T) ((-1171 . -968) T) ((-591 . -659) T) ((-1174 . -967) 79097) ((-1127 . -779) 79076) ((-747 . -381) 79045) ((-98 . -114) 79029) ((-51 . -1003) T) ((-848 . -557) 79011) ((-795 . -909) 78988) ((-755 . -97) T) ((-1174 . -106) 78967) ((-590 . -37) 78937) ((-524 . -779) T) ((-325 . -1015) T) ((-322 . -1015) T) ((-314 . -1015) T) ((-237 . -1015) T) ((-221 . -1015) T) ((-564 . -278) 78916) ((-1048 . -280) 78720) ((-601 . -23) T) ((-450 . -205) 78690) ((-139 . -968) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-919 . -961) T) ((-645 . -831) 78669) ((-919 . -207) 78641) ((-919 . -217) T) ((-112 . -937) NIL) ((-832 . -1015) T) ((-1139 . -421) 78620) ((-1118 . -421) 78599) ((-486 . -557) 78531) ((-645 . -585) 78456) ((-377 . -967) 78408) ((-469 . -557) 78390) ((-832 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 78321) ((-747 . -968) 78252) ((-670 . -1001) 78236) ((-1138 . -458) 78202) ((-1117 . -458) 78168) ((-128 . -1001) 78150) ((-446 . -262) T) ((-1174 . -961) T) ((-973 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 78129) ((-1069 . -132) 78108) ((-1069 . -134) 78087) ((-1026 . -134) 78066) ((-1026 . -132) 78045) ((-575 . -967) 78029) ((-551 . -967) 78013) ((-607 . -1003) T) ((-607 . -964) 77953) ((-1071 . -1145) 77937) ((-1071 . -1132) 77914) ((-454 . -1049) T) ((-1070 . -1137) 77875) ((-1070 . -1132) 77845) ((-1070 . -1135) 77829) ((-192 . -1049) T) ((-313 . -842) T) ((-750 . -239) 77813) ((-575 . -106) 77792) ((-551 . -106) 77771) ((-1064 . -1116) 77732) ((-772 . -961) 77711) ((-1064 . -1132) 77688) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1064 . -1114) 77672) ((-377 . -961) T) ((-289 . -968) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 77651) ((-645 . -659) T) ((-454 . -37) 77601) ((-192 . -37) 77551) ((-443 . -458) 77517) ((-1056 . -1042) T) ((-1004 . -97) T) ((-634 . -557) 77499) ((-634 . -558) 77414) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 77396) ((-111 . -557) 77378) ((-142 . -25) T) ((-1173 . -1003) T) ((-796 . -579) 77326) ((-1171 . -1003) T) ((-884 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 77277) ((-43 . -1003) T) ((-993 . -779) T) ((-601 . -123) T) ((-973 . -280) 77128) ((-607 . -650) 77112) ((-261 . -968) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1003) T) ((-44 . -203) 77062) ((-879 . -779) 77041) ((-915 . -585) 76979) ((-214 . -1160) 76949) ((-939 . -278) T) ((-265 . -967) 76871) ((-832 . -123) T) ((-39 . -842) T) ((-454 . -370) 76853) ((-324 . -278) T) ((-192 . -370) 76835) ((-987 . -381) 76819) ((-265 . -106) 76736) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 76718) ((-1140 . -46) 76662) ((-199 . -134) T) ((-157 . -557) 76644) ((-1016 . -777) 76623) ((-706 . -557) 76605) ((-552 . -209) 76552) ((-444 . -209) 76502) ((-1173 . -650) 76472) ((-47 . -278) T) ((-1171 . -650) 76442) ((-885 . -1003) T) ((-747 . -1003) 76253) ((-282 . -97) T) ((-823 . -1108) T) ((-47 . -937) T) ((-1117 . -579) 76161) ((-623 . -97) 76139) ((-43 . -650) 76123) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1106 . -1003) 76101) ((-321 . -967) 76046) ((-611 . -1003) 76024) ((-972 . -134) T) ((-874 . -134) 76003) ((-874 . -132) 75982) ((-731 . -97) T) ((-139 . -650) 75966) ((-449 . -134) 75945) ((-449 . -132) 75924) ((-321 . -106) 75841) ((-987 . -968) T) ((-292 . -779) 75820) ((-1146 . -890) 75790) ((-567 . -1003) T) ((-1139 . -890) 75753) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 75703) ((-329 . -968) T) ((-323 . -968) T) ((-315 . -968) T) ((-265 . -961) 75646) ((-1118 . -890) 75616) ((-349 . -779) T) ((-103 . -968) T) ((-915 . -659) T) ((-794 . -842) T) ((-772 . -727) 75595) ((-772 . -724) 75574) ((-388 . -280) 75513) ((-437 . -97) T) ((-542 . -890) 75483) ((-289 . -1003) T) ((-377 . -727) 75462) ((-377 . -724) 75441) ((-465 . -456) 75423) ((-1140 . -952) 75389) ((-1138 . -21) T) ((-1138 . -25) T) ((-1117 . -21) T) ((-1117 . -25) T) ((-747 . -650) 75331) ((-632 . -374) T) ((-1164 . -1108) T) ((-1016 . -381) 75300) ((-919 . -338) NIL) ((-98 . -33) T) ((-670 . -1108) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 75284) ((-128 . -1108) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -961) T) ((-68 . -353) T) ((-68 . -365) T) ((-1063 . -97) T) ((-607 . -478) 75217) ((-623 . -280) 75155) ((-884 . -37) 75052) ((-668 . -37) 75022) ((-503 . -280) 74826) ((-286 . -1108) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1108) T) ((-261 . -1003) T) ((-1077 . -557) 74808) ((-644 . -1112) T) ((-1054 . -588) 74792) ((-1103 . -509) 74771) ((-644 . -509) T) ((-286 . -806) 74755) ((-286 . -808) 74680) ((-283 . -806) 74641) ((-283 . -808) NIL) ((-731 . -280) 74606) ((-289 . -650) 74447) ((-294 . -293) 74424) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 74398) ((-286 . -952) 74066) ((-199 . -1094) T) ((-199 . -1097) T) ((-3 . -557) 74048) ((-283 . -952) 73978) ((-2 . -1003) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73960) ((-1016 . -968) 73891) ((-529 . -842) T) ((-517 . -752) T) ((-517 . -842) T) ((-460 . -842) T) ((-127 . -952) 73875) ((-199 . -91) T) ((-153 . -134) 73854) ((-73 . -410) T) ((0 . -557) 73836) ((-73 . -365) T) ((-153 . -132) 73787) ((-199 . -34) T) ((-48 . -557) 73769) ((-446 . -968) T) ((-454 . -205) 73751) ((-451 . -886) 73735) ((-450 . -777) 73714) ((-192 . -205) 73696) ((-79 . -410) T) ((-79 . -365) T) ((-1044 . -33) T) ((-747 . -156) 73675) ((-664 . -97) T) ((-941 . -557) 73642) ((-465 . -258) 73617) ((-286 . -347) 73587) ((-283 . -347) 73548) ((-283 . -308) 73509) ((-748 . -871) 73456) ((-599 . -123) T) ((-1127 . -132) 73435) ((-1127 . -134) 73414) ((-1071 . -97) T) ((-1070 . -97) T) ((-1064 . -97) T) ((-1057 . -1003) T) ((-1027 . -97) T) ((-196 . -33) T) ((-261 . -650) 73401) ((-1057 . -554) 73377) ((-540 . -280) NIL) ((-451 . -1003) 73355) ((-360 . -557) 73337) ((-474 . -779) T) ((-1048 . -203) 73287) ((-1146 . -1145) 73271) ((-1146 . -1132) 73248) ((-1139 . -1137) 73209) ((-1139 . -1132) 73179) ((-1139 . -1135) 73163) ((-1118 . -1116) 73124) ((-1118 . -1132) 73101) ((-562 . -557) 73083) ((-1118 . -1114) 73067) ((-632 . -842) T) ((-1071 . -256) 73033) ((-1070 . -256) 72999) ((-1064 . -256) 72965) ((-987 . -1003) T) ((-971 . -1003) T) ((-47 . -273) T) ((-286 . -822) 72932) ((-283 . -822) NIL) ((-971 . -977) 72911) ((-1021 . -808) 72893) ((-731 . -37) 72877) ((-237 . -579) 72825) ((-221 . -579) 72773) ((-634 . -967) 72760) ((-542 . -1132) 72737) ((-1027 . -256) 72703) ((-289 . -156) 72634) ((-329 . -1003) T) ((-323 . -1003) T) ((-315 . -1003) T) ((-465 . -19) 72616) ((-1021 . -952) 72598) ((-1005 . -138) 72582) ((-103 . -1003) T) ((-111 . -967) 72569) ((-644 . -333) T) ((-465 . -550) 72544) ((-634 . -106) 72529) ((-406 . -97) T) ((-44 . -1047) 72479) ((-111 . -106) 72464) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 72397) ((-950 . -1108) T) ((-865 . -138) 72381) ((-483 . -97) 72331) ((-992 . -1112) 72310) ((-446 . -557) 72262) ((-446 . -558) 72184) ((-60 . -1108) T) ((-714 . -1112) 72163) ((-712 . -1112) 72142) ((-1069 . -421) 72073) ((-1056 . -1003) T) ((-1040 . -585) 72047) ((-992 . -509) 71978) ((-450 . -381) 71947) ((-564 . -842) 71926) ((-423 . -1112) 71905) ((-1026 . -421) 71856) ((-368 . -557) 71838) ((-611 . -478) 71771) ((-714 . -509) 71682) ((-712 . -509) 71613) ((-664 . -280) 71600) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 71531) ((-112 . -842) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1155 . -557) 71513) ((-1103 . -1015) T) ((-1103 . -23) T) ((-1064 . -280) 71398) ((-1027 . -280) 71385) ((-790 . -585) 71345) ((-987 . -650) 71213) ((-865 . -897) 71197) ((-261 . -156) T) ((-832 . -21) T) ((-832 . -25) T) ((-796 . -779) 71148) ((-644 . -1015) T) ((-644 . -23) T) ((-584 . -1003) 71126) ((-572 . -554) 71101) ((-572 . -1003) T) ((-530 . -1112) T) ((-481 . -1112) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 71053) ((-323 . -650) 71005) ((-157 . -967) 70937) ((-309 . -967) 70921) ((-103 . -650) 70871) ((-157 . -106) 70770) ((-315 . -650) 70722) ((-309 . -106) 70701) ((-247 . -1003) T) ((-246 . -1003) T) ((-245 . -1003) T) ((-244 . -1003) T) ((-634 . -961) T) ((-243 . -1003) T) ((-242 . -1003) T) ((-241 . -1003) T) ((-188 . -1003) T) ((-187 . -1003) T) ((-185 . -1003) T) ((-153 . -1097) 70679) ((-153 . -1094) 70657) ((-184 . -1003) T) ((-183 . -1003) T) ((-111 . -961) T) ((-182 . -1003) T) ((-179 . -1003) T) ((-634 . -207) T) ((-178 . -1003) T) ((-177 . -1003) T) ((-176 . -1003) T) ((-175 . -1003) T) ((-174 . -1003) T) ((-173 . -1003) T) ((-172 . -1003) T) ((-171 . -1003) T) ((-170 . -1003) T) ((-169 . -1003) T) ((-214 . -97) 70468) ((-153 . -34) 70446) ((-153 . -91) 70424) ((-591 . -952) 70322) ((-450 . -968) 70253) ((-1016 . -1003) 70064) ((-1040 . -33) T) ((-607 . -456) 70048) ((-71 . -1108) T) ((-100 . -557) 70030) ((-1175 . -557) 70012) ((-351 . -557) 69994) ((-524 . -1097) T) ((-524 . -1094) T) ((-664 . -37) 69843) ((-489 . -557) 69825) ((-483 . -280) 69763) ((-465 . -557) 69745) ((-465 . -558) 69727) ((-1064 . -1049) NIL) ((-942 . -980) 69696) ((-942 . -1003) T) ((-920 . -97) T) ((-888 . -97) T) ((-836 . -97) T) ((-815 . -952) 69673) ((-1040 . -659) T) ((-919 . -585) 69618) ((-445 . -1003) T) ((-432 . -1003) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-973 . -203) 69564) ((-1071 . -37) 69461) ((-790 . -659) T) ((-627 . -842) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1070 . -37) 69302) ((-309 . -961) T) ((-1064 . -37) 69098) ((-987 . -156) T) ((-157 . -961) T) ((-1027 . -37) 68995) ((-645 . -46) 68972) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68946) ((-462 . -55) 68896) ((-321 . -1170) 68873) ((-199 . -421) T) ((-289 . -262) 68824) ((-315 . -156) T) ((-157 . -217) T) ((-1117 . -779) 68723) ((-103 . -156) T) ((-796 . -909) 68707) ((-595 . -1015) T) ((-530 . -333) T) ((-530 . -299) 68694) ((-481 . -299) 68671) ((-481 . -333) T) ((-286 . -278) 68650) ((-283 . -278) T) ((-548 . -779) 68629) ((-1016 . -650) 68571) ((-483 . -254) 68555) ((-595 . -23) T) ((-388 . -205) 68539) ((-283 . -937) NIL) ((-306 . -23) T) ((-98 . -926) 68523) ((-44 . -35) 68502) ((-556 . -1003) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 68440) ((-992 . -1015) T) ((-1174 . -585) 68414) ((-714 . -1015) T) ((-712 . -1015) T) ((-423 . -1015) T) ((-972 . -421) T) ((-874 . -421) 68365) ((-105 . -1003) T) ((-992 . -23) T) ((-749 . -968) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 68316) ((-1057 . -478) 68064) ((-351 . -352) 68043) ((-1075 . -381) 68027) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67960) ((-261 . -262) T) ((-989 . -557) 67942) ((-377 . -831) 67921) ((-49 . -1015) T) ((-939 . -842) T) ((-919 . -659) T) ((-645 . -808) NIL) ((-530 . -1015) T) ((-481 . -1015) T) ((-772 . -585) 67894) ((-1103 . -123) T) ((-1064 . -370) 67846) ((-920 . -280) NIL) ((-747 . -456) 67830) ((-324 . -842) T) ((-1054 . -33) T) ((-377 . -585) 67782) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -952) 67665) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 67636) ((-1038 . -1003) T) ((-1166 . -1165) 67620) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1021 . -278) T) ((-1117 . -909) 67590) ((-47 . -842) T) ((-611 . -456) 67574) ((-224 . -1160) 67544) ((-223 . -1160) 67514) ((-1073 . -779) T) ((-1016 . -156) 67493) ((-1021 . -937) T) ((-958 . -33) T) ((-766 . -134) 67472) ((-766 . -132) 67451) ((-670 . -102) 67435) ((-556 . -124) T) ((-450 . -1003) 67246) ((-1075 . -968) T) ((-795 . -421) T) ((-83 . -1108) T) ((-214 . -37) 67216) ((-128 . -102) 67198) ((-645 . -347) 67182) ((-1021 . -502) T) ((-360 . -967) 67166) ((-1174 . -659) T) ((-1069 . -871) 67136) ((-51 . -557) 67118) ((-1026 . -871) 67085) ((-590 . -381) 67069) ((-1163 . -968) T) ((-562 . -967) 67053) ((-599 . -25) T) ((-599 . -21) T) ((-1056 . -478) NIL) ((-1146 . -97) T) ((-1139 . -97) T) ((-360 . -106) 67032) ((-196 . -227) 67016) ((-1118 . -97) T) ((-965 . -1003) T) ((-920 . -1049) T) ((-965 . -964) 66956) ((-750 . -1003) T) ((-313 . -1112) T) ((-575 . -585) 66940) ((-562 . -106) 66919) ((-551 . -585) 66903) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1003) T) ((-355 . -1003) T) ((-201 . -1003) 66881) ((-584 . -478) 66814) ((-572 . -478) 66622) ((-765 . -961) 66601) ((-583 . -138) 66585) ((-313 . -509) T) ((-645 . -822) 66529) ((-503 . -203) 66479) ((-1146 . -256) 66445) ((-987 . -262) 66396) ((-454 . -777) T) ((-197 . -1015) T) ((-1139 . -256) 66362) ((-1118 . -256) 66328) ((-920 . -37) 66278) ((-192 . -777) T) ((-1103 . -458) 66244) ((-836 . -37) 66196) ((-772 . -726) 66175) ((-772 . -723) 66154) ((-772 . -659) 66133) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 66064) ((-397 . -37) 66048) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 66027) ((-377 . -723) 66006) ((-377 . -659) T) ((-465 . -260) 65981) ((-446 . -967) 65946) ((-595 . -123) T) ((-1016 . -478) 65879) ((-306 . -123) T) ((-153 . -372) 65858) ((-450 . -650) 65800) ((-747 . -258) 65777) ((-446 . -106) 65726) ((-590 . -968) T) ((-1127 . -421) 65657) ((-992 . -123) T) ((-237 . -779) 65636) ((-221 . -779) 65615) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-965 . -650) 65557) ((-562 . -961) T) ((-942 . -478) 65490) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1003) T) ((-355 . -650) 65460) ((-749 . -1003) T) ((-445 . -478) 65393) ((-432 . -478) 65326) ((-422 . -337) 65296) ((-44 . -554) 65275) ((-286 . -273) T) ((-607 . -557) 65237) ((-57 . -779) 65216) ((-1118 . -280) 65101) ((-920 . -370) 65083) ((-747 . -550) 65060) ((-480 . -779) 65039) ((-461 . -779) 65018) ((-39 . -1112) T) ((-915 . -952) 64916) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64778) ((-313 . -299) 64755) ((-313 . -333) T) ((-292 . -293) 64732) ((-289 . -258) 64717) ((-39 . -509) T) ((-349 . -1094) T) ((-349 . -1097) T) ((-950 . -1085) 64692) ((-1082 . -209) 64642) ((-1064 . -205) 64594) ((-300 . -1003) T) ((-349 . -91) T) ((-349 . -34) T) ((-950 . -102) 64540) ((-446 . -961) T) ((-447 . -209) 64490) ((-1057 . -456) 64424) ((-1175 . -967) 64408) ((-351 . -967) 64392) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 64371) ((-647 . -132) 64350) ((-451 . -456) 64334) ((-452 . -305) 64303) ((-1175 . -106) 64282) ((-476 . -1003) T) ((-450 . -156) 64261) ((-915 . -347) 64245) ((-383 . -97) T) ((-351 . -106) 64224) ((-915 . -308) 64208) ((-252 . -900) 64192) ((-251 . -900) 64176) ((-1173 . -557) 64158) ((-1171 . -557) 64140) ((-105 . -478) NIL) ((-1069 . -1130) 64124) ((-783 . -781) 64108) ((-1075 . -1003) T) ((-98 . -1108) T) ((-874 . -871) 64069) ((-749 . -650) 64006) ((-1118 . -1049) NIL) ((-449 . -871) 63951) ((-972 . -130) T) ((-58 . -97) 63929) ((-43 . -557) 63911) ((-76 . -557) 63893) ((-321 . -585) 63838) ((-1163 . -1003) T) ((-475 . -779) T) ((-313 . -1015) T) ((-266 . -1003) T) ((-915 . -822) 63797) ((-266 . -554) 63776) ((-1146 . -37) 63673) ((-1139 . -37) 63514) ((-454 . -968) T) ((-1118 . -37) 63310) ((-192 . -968) T) ((-313 . -23) T) ((-139 . -557) 63292) ((-765 . -727) 63271) ((-765 . -724) 63250) ((-543 . -37) 63223) ((-542 . -37) 63120) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -918) 63086) ((-77 . -557) 63068) ((-645 . -278) 63047) ((-265 . -659) 62950) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62929) ((-1166 . -97) T) ((-39 . -333) T) ((-796 . -134) 62908) ((-796 . -132) 62887) ((-1056 . -456) 62869) ((-1175 . -961) T) ((-450 . -478) 62802) ((-1044 . -1108) T) ((-885 . -557) 62784) ((-584 . -456) 62768) ((-572 . -456) 62700) ((-747 . -557) 62452) ((-47 . -27) T) ((-1075 . -650) 62349) ((-590 . -1003) T) ((-406 . -334) 62323) ((-1005 . -97) T) ((-748 . -280) 62310) ((-789 . -1003) T) ((-1171 . -352) 62282) ((-965 . -478) 62215) ((-1057 . -258) 62191) ((-214 . -205) 62161) ((-1163 . -650) 62131) ((-749 . -156) 62110) ((-201 . -478) 62043) ((-562 . -727) 62022) ((-562 . -724) 62001) ((-1106 . -557) 61913) ((-196 . -1108) T) ((-611 . -557) 61845) ((-1054 . -926) 61829) ((-321 . -659) T) ((-865 . -97) 61779) ((-1118 . -370) 61731) ((-1016 . -456) 61715) ((-58 . -280) 61653) ((-301 . -97) T) ((-1103 . -21) T) ((-1103 . -25) T) ((-39 . -1015) T) ((-644 . -21) T) ((-567 . -557) 61635) ((-479 . -293) 61614) ((-644 . -25) T) ((-103 . -258) NIL) ((-843 . -1015) T) ((-39 . -23) T) ((-703 . -1015) T) ((-517 . -1112) T) ((-460 . -1112) T) ((-289 . -557) 61596) ((-920 . -205) 61578) ((-153 . -150) 61562) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1138 . -134) 61541) ((-1057 . -550) 61517) ((-1138 . -132) 61496) ((-942 . -456) 61480) ((-1117 . -132) 61405) ((-1117 . -134) 61330) ((-1166 . -1172) 61309) ((-445 . -456) 61293) ((-432 . -456) 61277) ((-486 . -33) T) ((-590 . -650) 61247) ((-599 . -779) 61226) ((-1075 . -156) 61177) ((-335 . -97) T) ((-214 . -212) 61156) ((-224 . -97) T) ((-223 . -97) T) ((-1127 . -871) 61126) ((-104 . -97) T) ((-219 . -779) 61105) ((-748 . -37) 60954) ((-44 . -478) 60714) ((-1056 . -258) 60689) ((-189 . -1003) T) ((-1048 . -1003) T) ((-1048 . -554) 60668) ((-534 . -25) T) ((-534 . -21) T) ((-1005 . -280) 60606) ((-884 . -381) 60590) ((-632 . -1112) T) ((-572 . -258) 60565) ((-992 . -579) 60513) ((-714 . -579) 60461) ((-712 . -579) 60409) ((-313 . -123) T) ((-261 . -557) 60391) ((-632 . -509) T) ((-827 . -1003) T) ((-794 . -1015) T) ((-423 . -579) 60339) ((-827 . -825) 60323) ((-349 . -421) T) ((-454 . -1003) T) ((-634 . -585) 60310) ((-865 . -280) 60248) ((-192 . -1003) T) ((-286 . -842) 60227) ((-283 . -842) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 60214) ((-443 . -132) 60193) ((-388 . -381) 60177) ((-443 . -134) 60156) ((-105 . -456) 60138) ((-2 . -557) 60120) ((-1056 . -19) 60102) ((-1056 . -550) 60077) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1042) T) ((-1016 . -258) 60054) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1166 . -37) 60024) ((-1040 . -1108) T) ((-572 . -550) 59999) ((-992 . -25) T) ((-992 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1112) T) ((-884 . -968) T) ((-564 . -509) T) ((-668 . -968) T) ((-648 . -968) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -967) 59983) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1040 . -952) 59881) ((-749 . -262) 59860) ((-755 . -1003) T) ((-607 . -106) 59839) ((-266 . -478) 59599) ((-1173 . -967) 59583) ((-1171 . -967) 59567) ((-224 . -280) 59505) ((-223 . -280) 59443) ((-1121 . -97) 59421) ((-1057 . -558) NIL) ((-1057 . -557) 59403) ((-1138 . -1094) 59369) ((-1138 . -1097) 59335) ((-1118 . -205) 59287) ((-1117 . -1094) 59253) ((-1117 . -1097) 59219) ((-1040 . -347) 59203) ((-1021 . -752) T) ((-1021 . -842) T) ((-1016 . -550) 59180) ((-987 . -558) 59164) ((-451 . -557) 59096) ((-747 . -260) 59073) ((-552 . -138) 59020) ((-388 . -968) T) ((-454 . -650) 58970) ((-450 . -456) 58954) ((-297 . -779) 58933) ((-309 . -585) 58907) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58857) ((-153 . -657) 58828) ((-157 . -585) 58760) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58710) ((-987 . -557) 58692) ((-971 . -557) 58674) ((-910 . -97) T) ((-787 . -97) T) ((-731 . -381) 58638) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -817) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1015) T) ((-517 . -1015) T) ((-460 . -1015) T) ((-634 . -659) T) ((-329 . -557) 58620) ((-323 . -557) 58602) ((-315 . -557) 58584) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 58514) ((-103 . -557) 58496) ((-187 . -817) T) ((-879 . -138) 58480) ((-1138 . -91) 58446) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1138 . -34) 58412) ((-965 . -456) 58396) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1117 . -91) 58362) ((-1117 . -34) 58328) ((-1069 . -97) T) ((-1026 . -97) T) ((-783 . -97) T) ((-201 . -456) 58312) ((-1173 . -106) 58291) ((-1171 . -106) 58270) ((-43 . -967) 58254) ((-1127 . -1130) 58238) ((-784 . -781) 58222) ((-1075 . -262) 58201) ((-105 . -258) 58176) ((-1040 . -822) 58135) ((-43 . -106) 58114) ((-607 . -961) T) ((-1056 . -558) NIL) ((-1056 . -557) 58096) ((-973 . -554) 58071) ((-973 . -1003) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 58050) ((-139 . -967) 58034) ((-524 . -507) 58018) ((-325 . -134) 57997) ((-325 . -132) 57948) ((-322 . -134) 57927) ((-636 . -1003) T) ((-322 . -132) 57878) ((-314 . -134) 57857) ((-314 . -132) 57808) ((-237 . -132) 57787) ((-237 . -134) 57766) ((-224 . -37) 57736) ((-221 . -134) 57715) ((-112 . -333) T) ((-221 . -132) 57694) ((-223 . -37) 57664) ((-139 . -106) 57643) ((-919 . -952) 57520) ((-1064 . -777) NIL) ((-627 . -1112) T) ((-731 . -968) T) ((-632 . -1015) T) ((-1173 . -961) T) ((-1171 . -961) T) ((-1054 . -1108) T) ((-919 . -347) 57497) ((-832 . -132) T) ((-832 . -134) 57479) ((-794 . -123) T) ((-747 . -967) 57377) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 57309) ((-584 . -558) 57270) ((-572 . -558) NIL) ((-572 . -557) 57252) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1097) 57218) ((-443 . -1094) 57184) ((-247 . -557) 57166) ((-246 . -557) 57148) ((-245 . -557) 57130) ((-244 . -557) 57112) ((-243 . -557) 57094) ((-465 . -588) 57076) ((-242 . -557) 57058) ((-309 . -659) T) ((-241 . -557) 57040) ((-105 . -19) 57022) ((-157 . -659) T) ((-465 . -343) 57004) ((-188 . -557) 56986) ((-483 . -1047) 56970) ((-465 . -118) T) ((-105 . -550) 56945) ((-187 . -557) 56927) ((-443 . -34) 56893) ((-443 . -91) 56859) ((-185 . -557) 56841) ((-184 . -557) 56823) ((-183 . -557) 56805) ((-182 . -557) 56787) ((-179 . -557) 56769) ((-178 . -557) 56751) ((-177 . -557) 56733) ((-176 . -557) 56715) ((-175 . -557) 56697) ((-174 . -557) 56679) ((-173 . -557) 56661) ((-493 . -1006) 56613) ((-172 . -557) 56595) ((-171 . -557) 56577) ((-44 . -456) 56514) ((-170 . -557) 56496) ((-169 . -557) 56478) ((-747 . -106) 56369) ((-583 . -97) 56319) ((-450 . -258) 56296) ((-1016 . -557) 56048) ((-1004 . -1003) T) ((-958 . -1108) T) ((-564 . -1015) T) ((-1174 . -952) 56032) ((-1069 . -280) 56019) ((-1026 . -280) 56006) ((-112 . -1015) T) ((-751 . -97) T) ((-564 . -23) T) ((-1048 . -478) 55766) ((-356 . -97) T) ((-294 . -97) T) ((-919 . -822) 55718) ((-884 . -1003) T) ((-139 . -961) T) ((-112 . -23) T) ((-664 . -381) 55702) ((-668 . -1003) T) ((-648 . -1003) T) ((-636 . -124) T) ((-422 . -1003) T) ((-286 . -400) 55686) ((-377 . -1108) T) ((-942 . -558) 55647) ((-939 . -1112) T) ((-199 . -97) T) ((-942 . -557) 55609) ((-748 . -205) 55593) ((-939 . -509) T) ((-765 . -585) 55566) ((-324 . -1112) T) ((-445 . -557) 55528) ((-445 . -558) 55489) ((-432 . -558) 55450) ((-432 . -557) 55412) ((-377 . -806) 55396) ((-289 . -967) 55231) ((-377 . -808) 55156) ((-772 . -952) 55054) ((-454 . -478) NIL) ((-450 . -550) 55031) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1003) T) ((-377 . -952) 54898) ((-289 . -106) 54712) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1112) T) ((-747 . -961) 54643) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1057 . -260) 54619) ((-1069 . -1049) 54597) ((-286 . -27) 54576) ((-972 . -97) T) ((-747 . -207) 54529) ((-214 . -777) 54508) ((-874 . -97) T) ((-646 . -97) T) ((-266 . -456) 54445) ((-449 . -97) T) ((-664 . -968) T) ((-556 . -557) 54427) ((-556 . -558) 54288) ((-377 . -347) 54272) ((-377 . -308) 54256) ((-1069 . -37) 54085) ((-1026 . -37) 53934) ((-783 . -37) 53904) ((-360 . -585) 53888) ((-583 . -280) 53826) ((-884 . -650) 53723) ((-196 . -102) 53707) ((-44 . -258) 53632) ((-668 . -650) 53602) ((-562 . -585) 53576) ((-282 . -1003) T) ((-261 . -967) 53563) ((-105 . -557) 53545) ((-105 . -558) 53527) ((-422 . -650) 53497) ((-748 . -226) 53436) ((-623 . -1003) 53414) ((-503 . -1003) T) ((-1071 . -968) T) ((-1070 . -968) T) ((-261 . -106) 53399) ((-1064 . -968) T) ((-1027 . -968) T) ((-503 . -554) 53378) ((-920 . -777) T) ((-201 . -621) 53336) ((-627 . -1015) T) ((-1103 . -673) 53312) ((-289 . -961) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -822) 53271) ((-66 . -1108) T) ((-765 . -726) 53250) ((-388 . -650) 53224) ((-731 . -1003) T) ((-765 . -723) 53203) ((-632 . -123) T) ((-645 . -842) 53182) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 53161) ((-289 . -207) 53113) ((-289 . -217) 53092) ((-192 . -262) T) ((-939 . -333) T) ((-1138 . -421) 53071) ((-1117 . -421) 53050) ((-324 . -299) 53027) ((-324 . -333) T) ((-1038 . -557) 53009) ((-44 . -1142) 52959) ((-795 . -97) T) ((-583 . -254) 52943) ((-632 . -970) T) ((-446 . -585) 52908) ((-437 . -1003) T) ((-44 . -550) 52833) ((-1056 . -260) 52808) ((-39 . -579) 52742) ((-47 . -333) T) ((-1009 . -557) 52724) ((-992 . -779) 52703) ((-572 . -260) 52678) ((-714 . -779) 52657) ((-712 . -779) 52636) ((-450 . -557) 52388) ((-214 . -381) 52357) ((-874 . -280) 52344) ((-423 . -779) 52323) ((-63 . -1108) T) ((-564 . -123) T) ((-449 . -280) 52310) ((-973 . -478) 52118) ((-261 . -961) T) ((-112 . -123) T) ((-422 . -694) T) ((-884 . -156) 52069) ((-987 . -967) 51979) ((-562 . -726) 51958) ((-540 . -1003) T) ((-562 . -723) 51937) ((-562 . -659) T) ((-266 . -258) 51916) ((-265 . -1108) T) ((-965 . -557) 51878) ((-965 . -558) 51839) ((-939 . -1015) T) ((-153 . -97) T) ((-248 . -779) T) ((-1063 . -1003) T) ((-750 . -557) 51821) ((-1016 . -260) 51798) ((-1005 . -203) 51782) ((-919 . -278) T) ((-731 . -650) 51766) ((-329 . -967) 51718) ((-324 . -1015) T) ((-323 . -967) 51670) ((-384 . -557) 51652) ((-355 . -557) 51634) ((-315 . -967) 51586) ((-201 . -557) 51518) ((-987 . -106) 51407) ((-939 . -23) T) ((-103 . -967) 51357) ((-820 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 51336) ((-388 . -156) T) ((-329 . -106) 51267) ((-323 . -106) 51198) ((-315 . -106) 51129) ((-224 . -205) 51099) ((-223 . -205) 51069) ((-324 . -23) T) ((-69 . -1108) T) ((-199 . -37) 51034) ((-103 . -106) 50961) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50939) ((-47 . -1015) T) ((-843 . -25) T) ((-703 . -25) T) ((-1048 . -456) 50876) ((-452 . -1003) T) ((-1175 . -585) 50850) ((-1127 . -97) T) ((-784 . -97) T) ((-214 . -968) 50781) ((-972 . -1049) T) ((-885 . -724) 50734) ((-351 . -585) 50718) ((-47 . -23) T) ((-885 . -727) 50671) ((-747 . -727) 50622) ((-747 . -724) 50573) ((-266 . -550) 50552) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 50496) ((-590 . -258) 50475) ((-107 . -598) T) ((-74 . -1108) T) ((-972 . -37) 50462) ((-601 . -344) 50441) ((-874 . -37) 50290) ((-664 . -1003) T) ((-449 . -37) 50139) ((-84 . -1108) T) ((-524 . -256) T) ((-1118 . -777) NIL) ((-1071 . -1003) T) ((-1070 . -1003) T) ((-1064 . -1003) T) ((-321 . -952) 50116) ((-987 . -961) T) ((-920 . -968) T) ((-44 . -557) 50098) ((-44 . -558) NIL) ((-836 . -968) T) ((-749 . -557) 50080) ((-1045 . -97) 50058) ((-987 . -217) 50009) ((-397 . -968) T) ((-329 . -961) T) ((-323 . -961) T) ((-335 . -334) 49986) ((-315 . -961) T) ((-224 . -212) 49965) ((-223 . -212) 49944) ((-104 . -334) 49918) ((-987 . -207) 49843) ((-1027 . -1003) T) ((-265 . -822) 49802) ((-103 . -961) T) ((-627 . -123) T) ((-388 . -478) 49644) ((-329 . -207) 49623) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49602) ((-323 . -217) T) ((-315 . -207) 49581) ((-315 . -217) T) ((-153 . -280) 49546) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49521) ((-1016 . -967) 49419) ((-795 . -1049) NIL) ((-300 . -557) 49401) ((-377 . -937) 49380) ((-1016 . -106) 49271) ((-406 . -1003) T) ((-1175 . -659) T) ((-61 . -557) 49253) ((-795 . -37) 49198) ((-486 . -1108) T) ((-548 . -138) 49182) ((-476 . -557) 49164) ((-1127 . -280) 49151) ((-664 . -650) 49000) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48982) ((-460 . -579) 48942) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48893) ((-483 . -1003) 48843) ((-221 . -421) 48794) ((-1048 . -258) 48773) ((-1075 . -557) 48755) ((-623 . -478) 48688) ((-884 . -262) 48667) ((-503 . -478) 48427) ((-1069 . -205) 48411) ((-153 . -1049) 48390) ((-1163 . -557) 48372) ((-1071 . -650) 48269) ((-1070 . -650) 48110) ((-814 . -97) T) ((-1064 . -650) 47906) ((-1027 . -650) 47803) ((-1054 . -610) 47787) ((-325 . -372) 47738) ((-322 . -372) 47689) ((-314 . -372) 47640) ((-939 . -123) T) ((-731 . -478) 47552) ((-266 . -558) NIL) ((-266 . -557) 47534) ((-832 . -421) T) ((-885 . -338) 47487) ((-747 . -338) 47466) ((-474 . -473) 47445) ((-472 . -473) 47424) ((-454 . -258) NIL) ((-450 . -260) 47401) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1015) T) ((-153 . -37) 47229) ((-1138 . -890) 47192) ((-1045 . -280) 47130) ((-1117 . -890) 47100) ((-832 . -372) T) ((-1016 . -961) 47031) ((-1140 . -509) T) ((-1048 . -550) 47010) ((-107 . -779) T) ((-973 . -456) 46942) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1127 . -1049) 46920) ((-1016 . -207) 46873) ((-47 . -123) T) ((-1090 . -97) T) ((-214 . -1003) 46684) ((-795 . -370) 46661) ((-993 . -97) T) ((-983 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1127 . -37) 46490) ((-784 . -37) 46460) ((-664 . -156) 46371) ((-590 . -557) 46353) ((-524 . -37) 46340) ((-879 . -97) 46290) ((-789 . -557) 46272) ((-789 . -558) 46194) ((-540 . -478) NIL) ((-1146 . -968) T) ((-1139 . -968) T) ((-1118 . -968) T) ((-543 . -968) T) ((-542 . -968) T) ((-1179 . -1015) T) ((-1071 . -156) 46145) ((-1070 . -156) 46076) ((-1064 . -156) 46007) ((-1027 . -156) 45958) ((-920 . -1003) T) ((-888 . -1003) T) ((-836 . -1003) T) ((-1103 . -134) 45937) ((-731 . -729) 45921) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45898) ((-634 . -808) 45880) ((-397 . -1003) T) ((-286 . -1112) 45859) ((-283 . -1112) T) ((-153 . -370) 45843) ((-1103 . -132) 45822) ((-443 . -890) 45785) ((-70 . -557) 45767) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45746) ((-634 . -952) 45728) ((-283 . -509) T) ((-1179 . -23) T) ((-125 . -952) 45710) ((-450 . -967) 45608) ((-44 . -260) 45533) ((-214 . -650) 45475) ((-450 . -106) 45366) ((-996 . -97) 45344) ((-949 . -97) T) ((-583 . -760) 45323) ((-664 . -478) 45261) ((-965 . -967) 45245) ((-564 . -21) T) ((-564 . -25) T) ((-973 . -258) 45220) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 45194) ((-355 . -967) 45178) ((-965 . -106) 45157) ((-748 . -381) 45141) ((-112 . -25) T) ((-87 . -557) 45123) ((-112 . -21) T) ((-552 . -280) 44918) ((-444 . -280) 44722) ((-1048 . -558) NIL) ((-355 . -106) 44701) ((-349 . -97) T) ((-189 . -557) 44683) ((-1048 . -557) 44665) ((-920 . -650) 44615) ((-1064 . -478) 44349) ((-836 . -650) 44301) ((-1027 . -478) 44271) ((-321 . -278) T) ((-1082 . -138) 44221) ((-879 . -280) 44159) ((-766 . -97) T) ((-397 . -650) 44143) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 44093) ((-1138 . -1137) 44072) ((-1021 . -1112) T) ((-309 . -952) 44039) ((-1138 . -1132) 44009) ((-1138 . -1135) 43993) ((-1117 . -1116) 43972) ((-78 . -557) 43954) ((-827 . -557) 43936) ((-1117 . -1132) 43913) ((-1021 . -509) T) ((-843 . -779) T) ((-454 . -558) 43843) ((-454 . -557) 43825) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1117 . -1114) 43809) ((-1140 . -1015) T) ((-192 . -558) 43739) ((-192 . -557) 43721) ((-973 . -550) 43696) ((-57 . -138) 43680) ((-480 . -138) 43664) ((-461 . -138) 43648) ((-329 . -1170) 43632) ((-323 . -1170) 43616) ((-315 . -1170) 43600) ((-286 . -333) 43579) ((-283 . -333) T) ((-450 . -961) 43510) ((-627 . -579) 43492) ((-1173 . -585) 43466) ((-1171 . -585) 43440) ((-1140 . -23) T) ((-623 . -456) 43424) ((-62 . -557) 43406) ((-1016 . -727) 43357) ((-1016 . -724) 43308) ((-503 . -456) 43245) ((-607 . -33) T) ((-450 . -207) 43198) ((-266 . -260) 43177) ((-214 . -156) 43156) ((-748 . -968) T) ((-43 . -585) 43114) ((-987 . -338) 43065) ((-664 . -262) 42996) ((-483 . -478) 42929) ((-749 . -967) 42880) ((-992 . -132) 42859) ((-329 . -338) 42838) ((-323 . -338) 42817) ((-315 . -338) 42796) ((-992 . -134) 42775) ((-795 . -205) 42752) ((-749 . -106) 42687) ((-714 . -132) 42666) ((-714 . -134) 42645) ((-237 . -871) 42612) ((-224 . -777) 42591) ((-221 . -871) 42536) ((-223 . -777) 42515) ((-712 . -132) 42494) ((-712 . -134) 42473) ((-139 . -585) 42447) ((-423 . -134) 42426) ((-423 . -132) 42405) ((-607 . -659) T) ((-755 . -557) 42387) ((-1146 . -1003) T) ((-1139 . -1003) T) ((-1118 . -1003) T) ((-1103 . -1097) 42353) ((-1103 . -1094) 42319) ((-1071 . -262) 42298) ((-1070 . -262) 42249) ((-1064 . -262) 42200) ((-1027 . -262) 42179) ((-309 . -822) 42160) ((-920 . -156) T) ((-836 . -156) T) ((-543 . -1003) T) ((-542 . -1003) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1135) 42144) ((-443 . -1132) 42114) ((-388 . -258) 42042) ((-286 . -1015) 41892) ((-283 . -1015) T) ((-1103 . -34) 41858) ((-1103 . -91) 41824) ((-82 . -557) 41806) ((-89 . -97) 41784) ((-1179 . -123) T) ((-530 . -132) T) ((-530 . -134) 41766) ((-481 . -134) 41748) ((-481 . -132) T) ((-286 . -23) 41601) ((-39 . -312) 41575) ((-283 . -23) T) ((-1056 . -588) 41557) ((-747 . -585) 41407) ((-1166 . -968) T) ((-1056 . -343) 41389) ((-153 . -205) 41373) ((-540 . -456) 41355) ((-214 . -478) 41288) ((-1173 . -659) T) ((-1171 . -659) T) ((-1075 . -967) 41171) ((-1075 . -106) 41033) ((-749 . -961) T) ((-479 . -97) T) ((-47 . -579) 40993) ((-474 . -97) T) ((-472 . -97) T) ((-1163 . -967) 40963) ((-949 . -37) 40947) ((-749 . -207) T) ((-749 . -217) 40926) ((-503 . -258) 40905) ((-1163 . -106) 40870) ((-1127 . -205) 40854) ((-1146 . -650) 40751) ((-973 . -558) NIL) ((-973 . -557) 40733) ((-1139 . -650) 40574) ((-1118 . -650) 40370) ((-919 . -842) T) ((-636 . -557) 40339) ((-139 . -659) T) ((-1016 . -338) 40318) ((-920 . -478) NIL) ((-224 . -381) 40287) ((-223 . -381) 40256) ((-939 . -25) T) ((-939 . -21) T) ((-543 . -650) 40229) ((-542 . -650) 40126) ((-731 . -258) 40084) ((-121 . -97) 40062) ((-765 . -952) 39960) ((-153 . -760) 39939) ((-289 . -585) 39836) ((-747 . -33) T) ((-647 . -97) T) ((-1021 . -1015) T) ((-941 . -1108) T) ((-349 . -37) 39801) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1160) 39785) ((-322 . -1160) 39769) ((-314 . -1160) 39753) ((-153 . -319) 39732) ((-517 . -779) T) ((-460 . -779) T) ((-1021 . -23) T) ((-85 . -557) 39714) ((-634 . -278) T) ((-766 . -37) 39684) ((-759 . -37) 39654) ((-1140 . -123) T) ((-1048 . -260) 39633) ((-885 . -725) 39586) ((-885 . -726) 39539) ((-747 . -723) 39518) ((-111 . -278) T) ((-89 . -280) 39456) ((-611 . -33) T) ((-503 . -550) 39435) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 39386) ((-747 . -725) 39365) ((-634 . -937) T) ((-590 . -967) 39349) ((-885 . -659) 39248) ((-747 . -659) 39179) ((-885 . -442) 39132) ((-450 . -727) 39083) ((-450 . -724) 39034) ((-832 . -1160) 39021) ((-1075 . -961) T) ((-590 . -106) 39000) ((-1075 . -296) 38977) ((-1095 . -97) 38955) ((-1004 . -557) 38937) ((-634 . -502) T) ((-748 . -1003) T) ((-1163 . -961) T) ((-383 . -1003) T) ((-224 . -968) 38868) ((-223 . -968) 38799) ((-261 . -585) 38786) ((-540 . -258) 38761) ((-623 . -621) 38719) ((-884 . -557) 38701) ((-796 . -97) T) ((-668 . -557) 38683) ((-648 . -557) 38665) ((-1146 . -156) 38616) ((-1139 . -156) 38547) ((-1118 . -156) 38478) ((-632 . -779) T) ((-920 . -262) T) ((-422 . -557) 38460) ((-567 . -659) T) ((-58 . -1003) 38438) ((-219 . -138) 38422) ((-836 . -262) T) ((-939 . -928) T) ((-567 . -442) T) ((-645 . -1112) 38401) ((-543 . -156) 38380) ((-542 . -156) 38331) ((-1153 . -779) 38310) ((-645 . -509) 38221) ((-377 . -842) T) ((-377 . -752) 38200) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 38182) ((-388 . -558) 38085) ((-583 . -1047) 38069) ((-105 . -588) 38051) ((-121 . -280) 37989) ((-105 . -343) 37971) ((-157 . -278) T) ((-368 . -1108) T) ((-286 . -123) 37843) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37827) ((-591 . -1015) T) ((-540 . -19) 37809) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1003) T) ((-540 . -550) 37784) ((-446 . -952) 37744) ((-590 . -961) T) ((-591 . -23) T) ((-1166 . -1003) T) ((-748 . -650) 37593) ((-112 . -779) NIL) ((-1069 . -381) 37577) ((-1026 . -381) 37561) ((-783 . -381) 37545) ((-1138 . -97) T) ((-1118 . -478) 37279) ((-1095 . -280) 37217) ((-282 . -557) 37199) ((-1117 . -97) T) ((-1005 . -1003) T) ((-1071 . -258) 37184) ((-1070 . -258) 37169) ((-261 . -659) T) ((-103 . -831) NIL) ((-623 . -557) 37101) ((-623 . -558) 37062) ((-987 . -585) 36972) ((-547 . -557) 36954) ((-503 . -558) NIL) ((-503 . -557) 36936) ((-1064 . -258) 36784) ((-454 . -967) 36734) ((-644 . -421) T) ((-475 . -473) 36713) ((-471 . -473) 36692) ((-192 . -967) 36642) ((-329 . -585) 36594) ((-323 . -585) 36546) ((-199 . -777) T) ((-315 . -585) 36498) ((-548 . -97) 36448) ((-450 . -338) 36427) ((-103 . -585) 36377) ((-454 . -106) 36304) ((-214 . -456) 36288) ((-313 . -134) 36270) ((-313 . -132) T) ((-153 . -340) 36241) ((-865 . -1151) 36225) ((-192 . -106) 36152) ((-796 . -280) 36117) ((-865 . -1003) 36067) ((-731 . -558) 36028) ((-731 . -557) 36010) ((-651 . -97) T) ((-301 . -1003) T) ((-1021 . -123) T) ((-647 . -37) 35980) ((-286 . -458) 35959) ((-465 . -1108) T) ((-1138 . -256) 35925) ((-1117 . -256) 35891) ((-297 . -138) 35875) ((-973 . -260) 35850) ((-1166 . -650) 35820) ((-1057 . -33) T) ((-1175 . -952) 35797) ((-437 . -557) 35779) ((-451 . -33) T) ((-351 . -952) 35763) ((-1069 . -968) T) ((-1026 . -968) T) ((-783 . -968) T) ((-972 . -777) T) ((-748 . -156) 35674) ((-483 . -258) 35651) ((-112 . -909) 35628) ((-1146 . -262) 35607) ((-1090 . -334) 35581) ((-993 . -239) 35565) ((-443 . -97) T) ((-335 . -1003) T) ((-224 . -1003) T) ((-223 . -1003) T) ((-1139 . -262) 35516) ((-104 . -1003) T) ((-1118 . -262) 35467) ((-796 . -1049) 35445) ((-1071 . -918) 35411) ((-552 . -334) 35351) ((-1070 . -918) 35317) ((-552 . -203) 35264) ((-540 . -557) 35246) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 35196) ((-454 . -961) T) ((-1064 . -918) 35162) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -961) T) ((-1027 . -918) 35128) ((-987 . -659) T) ((-645 . -1015) T) ((-543 . -262) 35107) ((-542 . -262) 35086) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1063 . -557) 35068) ((-796 . -37) 35020) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1142) 35004) ((-103 . -659) T) ((-645 . -23) T) ((-1179 . -25) T) ((-443 . -256) 34970) ((-1179 . -21) T) ((-1117 . -280) 34909) ((-1073 . -97) T) ((-39 . -132) 34881) ((-39 . -134) 34853) ((-483 . -550) 34830) ((-1016 . -585) 34680) ((-548 . -280) 34618) ((-44 . -588) 34568) ((-44 . -603) 34518) ((-44 . -343) 34468) ((-1056 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34450) ((-214 . -258) 34427) ((-584 . -33) T) ((-572 . -33) T) ((-992 . -421) 34378) ((-748 . -478) 34243) ((-714 . -421) 34174) ((-712 . -421) 34125) ((-423 . -421) 34076) ((-874 . -381) 34060) ((-664 . -557) 34042) ((-224 . -650) 33984) ((-223 . -650) 33926) ((-664 . -558) 33787) ((-449 . -381) 33771) ((-309 . -273) T) ((-321 . -842) T) ((-916 . -97) 33749) ((-939 . -779) T) ((-58 . -478) 33682) ((-1117 . -1049) 33634) ((-920 . -258) NIL) ((-199 . -968) T) ((-349 . -760) T) ((-1016 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1121 . -997) 33618) ((-1121 . -1003) 33596) ((-214 . -550) 33573) ((-1121 . -999) 33530) ((-1071 . -557) 33512) ((-1070 . -557) 33494) ((-1064 . -557) 33476) ((-1064 . -558) NIL) ((-1027 . -557) 33458) ((-796 . -370) 33442) ((-493 . -97) T) ((-1138 . -37) 33283) ((-1117 . -37) 33097) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1140 . -21) T) ((-1140 . -25) T) ((-1016 . -723) 33076) ((-1016 . -726) 33027) ((-1016 . -725) 33006) ((-910 . -1003) T) ((-942 . -33) T) ((-787 . -1003) T) ((-1149 . -97) T) ((-1016 . -659) 32937) ((-601 . -97) T) ((-503 . -260) 32916) ((-1082 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-972 . -968) T) ((-874 . -968) T) ((-286 . -579) 32824) ((-283 . -579) 32785) ((-449 . -968) T) ((-447 . -97) T) ((-406 . -557) 32767) ((-1069 . -1003) T) ((-1026 . -1003) T) ((-783 . -1003) T) ((-1039 . -97) T) ((-748 . -262) 32698) ((-884 . -967) 32581) ((-446 . -937) T) ((-668 . -967) 32551) ((-422 . -967) 32521) ((-1045 . -1022) 32505) ((-1005 . -478) 32438) ((-884 . -106) 32300) ((-832 . -97) T) ((-668 . -106) 32265) ((-57 . -97) 32215) ((-483 . -558) 32176) ((-483 . -557) 32088) ((-482 . -97) 32066) ((-480 . -97) 32016) ((-462 . -97) 31994) ((-461 . -97) 31944) ((-422 . -106) 31895) ((-224 . -156) 31874) ((-223 . -156) 31853) ((-388 . -967) 31827) ((-1103 . -890) 31788) ((-915 . -1015) T) ((-865 . -478) 31721) ((-454 . -727) T) ((-443 . -37) 31562) ((-388 . -106) 31529) ((-454 . -724) T) ((-916 . -280) 31467) ((-192 . -727) T) ((-192 . -724) T) ((-915 . -23) T) ((-645 . -123) T) ((-1117 . -370) 31437) ((-286 . -25) 31290) ((-153 . -381) 31274) ((-286 . -21) 31146) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30996) ((-795 . -968) T) ((-540 . -260) 30971) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1069 . -650) 30800) ((-1026 . -650) 30649) ((-1021 . -579) 30631) ((-783 . -650) 30601) ((-607 . -1108) T) ((-1 . -97) T) ((-214 . -557) 30353) ((-1127 . -381) 30337) ((-1082 . -280) 30141) ((-884 . -961) T) ((-668 . -961) T) ((-648 . -961) T) ((-583 . -1003) 30091) ((-965 . -585) 30075) ((-784 . -381) 30059) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 30046) ((-237 . -280) 30033) ((-884 . -296) 30012) ((-355 . -585) 29996) ((-447 . -280) 29800) ((-224 . -478) 29733) ((-607 . -952) 29631) ((-223 . -478) 29564) ((-1039 . -280) 29490) ((-751 . -1003) T) ((-731 . -967) 29474) ((-1146 . -258) 29459) ((-1139 . -258) 29444) ((-1118 . -258) 29292) ((-356 . -1003) T) ((-294 . -1003) T) ((-388 . -961) T) ((-153 . -968) T) ((-57 . -280) 29230) ((-731 . -106) 29209) ((-542 . -258) 29194) ((-482 . -280) 29132) ((-480 . -280) 29070) ((-462 . -280) 29008) ((-461 . -280) 28946) ((-388 . -207) 28925) ((-450 . -33) T) ((-920 . -558) 28855) ((-199 . -1003) T) ((-920 . -557) 28837) ((-888 . -557) 28819) ((-888 . -558) 28794) ((-836 . -557) 28776) ((-632 . -134) T) ((-634 . -842) T) ((-634 . -752) T) ((-397 . -557) 28758) ((-1021 . -21) T) ((-1021 . -25) T) ((-607 . -347) 28742) ((-111 . -842) T) ((-796 . -205) 28726) ((-76 . -1108) T) ((-121 . -120) 28710) ((-965 . -33) T) ((-1173 . -952) 28684) ((-1171 . -952) 28641) ((-1127 . -968) T) ((-784 . -968) T) ((-450 . -723) 28620) ((-325 . -1049) 28599) ((-322 . -1049) 28578) ((-314 . -1049) 28557) ((-450 . -726) 28508) ((-450 . -725) 28487) ((-201 . -33) T) ((-450 . -659) 28418) ((-58 . -456) 28402) ((-524 . -968) T) ((-1069 . -156) 28293) ((-1026 . -156) 28204) ((-972 . -1003) T) ((-992 . -871) 28151) ((-874 . -1003) T) ((-749 . -585) 28102) ((-714 . -871) 28072) ((-646 . -1003) T) ((-712 . -871) 28039) ((-480 . -254) 28023) ((-607 . -822) 27982) ((-449 . -1003) T) ((-423 . -871) 27949) ((-77 . -1108) T) ((-325 . -37) 27914) ((-322 . -37) 27879) ((-314 . -37) 27844) ((-237 . -37) 27693) ((-221 . -37) 27542) ((-832 . -1049) T) ((-564 . -134) 27521) ((-564 . -132) 27500) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -961) T) ((-313 . -421) T) ((-1146 . -918) 27466) ((-1139 . -918) 27432) ((-1118 . -918) 27398) ((-832 . -37) 27363) ((-199 . -650) 27328) ((-39 . -379) 27300) ((-289 . -46) 27270) ((-915 . -123) T) ((-747 . -1108) T) ((-157 . -842) T) ((-313 . -372) T) ((-483 . -260) 27247) ((-44 . -33) T) ((-747 . -952) 27076) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1005 . -456) 27060) ((-1117 . -205) 27030) ((-611 . -1108) T) ((-219 . -97) 26980) ((-795 . -1003) T) ((-1075 . -585) 26905) ((-972 . -650) 26892) ((-664 . -967) 26735) ((-1069 . -478) 26683) ((-874 . -650) 26532) ((-1026 . -478) 26484) ((-449 . -650) 26333) ((-65 . -557) 26315) ((-664 . -106) 26137) ((-865 . -456) 26121) ((-1163 . -585) 26081) ((-749 . -659) T) ((-1071 . -967) 25964) ((-1070 . -967) 25799) ((-1064 . -967) 25589) ((-1027 . -967) 25472) ((-919 . -1112) T) ((-998 . -97) 25450) ((-747 . -347) 25420) ((-919 . -509) T) ((-1071 . -106) 25282) ((-1070 . -106) 25096) ((-1064 . -106) 24842) ((-1027 . -106) 24704) ((-1008 . -1006) 24668) ((-349 . -777) T) ((-1146 . -557) 24650) ((-1139 . -557) 24632) ((-1118 . -557) 24614) ((-1118 . -558) NIL) ((-214 . -260) 24591) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1003) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24573) ((-542 . -557) 24555) ((-820 . -1003) T) ((-770 . -1003) T) ((-740 . -1003) T) ((-701 . -1003) T) ((-595 . -781) 24539) ((-612 . -1003) T) ((-747 . -822) 24472) ((-39 . -372) NIL) ((-1021 . -598) T) ((-795 . -650) 24417) ((-224 . -456) 24401) ((-223 . -456) 24385) ((-645 . -579) 24333) ((-590 . -585) 24307) ((-266 . -33) T) ((-664 . -961) T) ((-530 . -1160) 24294) ((-481 . -1160) 24271) ((-1127 . -1003) T) ((-1069 . -262) 24182) ((-1026 . -262) 24113) ((-972 . -156) T) ((-784 . -1003) T) ((-874 . -156) 24024) ((-714 . -1130) 24008) ((-583 . -478) 23941) ((-75 . -557) 23923) ((-664 . -296) 23888) ((-1075 . -659) T) ((-524 . -1003) T) ((-449 . -156) 23799) ((-219 . -280) 23737) ((-1040 . -1015) T) ((-68 . -557) 23719) ((-1163 . -659) T) ((-1071 . -961) T) ((-1070 . -961) T) ((-297 . -97) 23669) ((-1064 . -961) T) ((-1040 . -23) T) ((-1027 . -961) T) ((-89 . -1022) 23653) ((-790 . -1015) T) ((-1071 . -207) 23612) ((-1070 . -217) 23591) ((-1070 . -207) 23543) ((-1064 . -207) 23430) ((-1064 . -217) 23409) ((-289 . -822) 23315) ((-790 . -23) T) ((-153 . -650) 23143) ((-377 . -1112) T) ((-1004 . -338) T) ((-939 . -134) T) ((-919 . -333) T) ((-794 . -421) T) ((-865 . -258) 23120) ((-286 . -779) T) ((-283 . -779) NIL) ((-797 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 23102) ((-324 . -132) T) ((-1045 . -1003) 23080) ((-422 . -653) T) ((-73 . -557) 23062) ((-109 . -779) T) ((-219 . -254) 23046) ((-214 . -967) 22944) ((-79 . -557) 22926) ((-668 . -338) 22879) ((-1073 . -760) T) ((-670 . -209) 22863) ((-1057 . -1108) T) ((-128 . -209) 22845) ((-214 . -106) 22736) ((-1127 . -650) 22565) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22535) ((-451 . -1108) T) ((-874 . -478) 22481) ((-590 . -659) T) ((-524 . -650) 22468) ((-949 . -968) T) ((-449 . -478) 22406) ((-865 . -19) 22390) ((-865 . -550) 22367) ((-748 . -558) NIL) ((-748 . -557) 22349) ((-920 . -967) 22299) ((-383 . -557) 22281) ((-224 . -258) 22258) ((-223 . -258) 22235) ((-454 . -831) NIL) ((-286 . -29) 22205) ((-103 . -1108) T) ((-919 . -1015) T) ((-192 . -831) NIL) ((-836 . -967) 22157) ((-987 . -952) 22055) ((-920 . -106) 21982) ((-237 . -205) 21966) ((-670 . -628) 21950) ((-397 . -967) 21934) ((-349 . -968) T) ((-919 . -23) T) ((-836 . -106) 21865) ((-627 . -1097) NIL) ((-454 . -585) 21815) ((-103 . -806) 21797) ((-103 . -808) 21779) ((-627 . -1094) NIL) ((-192 . -585) 21729) ((-329 . -952) 21713) ((-323 . -952) 21697) ((-297 . -280) 21635) ((-315 . -952) 21619) ((-199 . -262) T) ((-397 . -106) 21598) ((-58 . -557) 21530) ((-153 . -156) T) ((-1021 . -779) T) ((-103 . -952) 21490) ((-814 . -1003) T) ((-766 . -968) T) ((-759 . -968) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -909) 21451) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -961) 21382) ((-1048 . -33) T) ((-446 . -842) T) ((-915 . -579) 21330) ((-224 . -550) 21307) ((-223 . -550) 21284) ((-987 . -347) 21268) ((-795 . -478) 21131) ((-214 . -207) 21084) ((-1056 . -1108) T) ((-756 . -557) 21066) ((-1174 . -1015) T) ((-1166 . -557) 21048) ((-1127 . -156) 20939) ((-103 . -347) 20921) ((-103 . -308) 20903) ((-972 . -262) T) ((-874 . -262) 20834) ((-731 . -338) 20813) ((-584 . -1108) T) ((-572 . -1108) T) ((-449 . -262) 20744) ((-524 . -156) T) ((-297 . -254) 20728) ((-1174 . -23) T) ((-1103 . -97) T) ((-1090 . -1003) T) ((-993 . -1003) T) ((-983 . -1003) T) ((-81 . -557) 20710) ((-644 . -97) T) ((-325 . -319) 20689) ((-552 . -1003) T) ((-322 . -319) 20668) ((-314 . -319) 20647) ((-444 . -1003) T) ((-1082 . -203) 20597) ((-237 . -226) 20559) ((-1040 . -123) T) ((-552 . -554) 20535) ((-987 . -822) 20468) ((-920 . -961) T) ((-836 . -961) T) ((-444 . -554) 20447) ((-1064 . -724) NIL) ((-1064 . -727) NIL) ((-1005 . -558) 20408) ((-447 . -203) 20358) ((-1005 . -557) 20340) ((-920 . -217) T) ((-920 . -207) T) ((-397 . -961) T) ((-879 . -1003) 20290) ((-836 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1015) 20269) ((-103 . -822) NIL) ((-1103 . -256) 20235) ((-796 . -777) 20214) ((-1016 . -1108) T) ((-827 . -659) T) ((-153 . -478) 20126) ((-915 . -25) T) ((-827 . -442) T) ((-377 . -1015) T) ((-454 . -726) T) ((-454 . -723) T) ((-832 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-915 . -21) T) ((-192 . -659) T) ((-772 . -23) 20078) ((-289 . -278) 20057) ((-950 . -209) 20003) ((-377 . -23) T) ((-865 . -558) 19964) ((-865 . -557) 19876) ((-583 . -456) 19860) ((-44 . -926) 19810) ((-301 . -557) 19792) ((-1016 . -952) 19621) ((-540 . -588) 19603) ((-540 . -343) 19585) ((-313 . -1160) 19562) ((-942 . -1108) T) ((-795 . -262) T) ((-1127 . -478) 19510) ((-445 . -1108) T) ((-432 . -1108) T) ((-534 . -97) T) ((-1069 . -258) 19437) ((-564 . -421) 19416) ((-916 . -911) 19400) ((-1166 . -352) 19372) ((-112 . -421) T) ((-1089 . -97) T) ((-996 . -1003) 19350) ((-949 . -1003) T) ((-815 . -779) T) ((-321 . -1112) T) ((-1146 . -967) 19233) ((-1016 . -347) 19203) ((-1139 . -967) 19038) ((-1118 . -967) 18828) ((-1146 . -106) 18690) ((-1139 . -106) 18504) ((-1118 . -106) 18250) ((-1103 . -280) 18237) ((-321 . -509) T) ((-335 . -557) 18219) ((-261 . -278) T) ((-543 . -967) 18192) ((-542 . -967) 18075) ((-331 . -1003) T) ((-292 . -1003) T) ((-224 . -557) 18036) ((-223 . -557) 17997) ((-919 . -123) T) ((-104 . -557) 17979) ((-575 . -23) T) ((-627 . -379) 17946) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17917) ((-542 . -106) 17779) ((-349 . -1003) T) ((-306 . -97) T) ((-153 . -262) 17690) ((-1117 . -777) 17643) ((-647 . -968) T) ((-1045 . -478) 17576) ((-1016 . -822) 17509) ((-766 . -1003) T) ((-759 . -1003) T) ((-757 . -1003) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -806) 17493) ((-105 . -1108) T) ((-992 . -97) T) ((-973 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17444) ((-214 . -724) 17395) ((-586 . -97) T) ((-1127 . -262) 17306) ((-601 . -574) 17290) ((-583 . -258) 17267) ((-949 . -650) 17251) ((-524 . -262) T) ((-884 . -585) 17176) ((-1174 . -123) T) ((-668 . -585) 17136) ((-648 . -585) 17123) ((-248 . -97) T) ((-422 . -585) 17053) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1146 . -961) T) ((-1139 . -961) T) ((-1118 . -961) T) ((-292 . -650) 17035) ((-1146 . -207) 16994) ((-1139 . -217) 16973) ((-1139 . -207) 16925) ((-1118 . -207) 16812) ((-1118 . -217) 16791) ((-1103 . -37) 16688) ((-543 . -961) T) ((-542 . -961) T) ((-920 . -727) T) ((-920 . -724) T) ((-888 . -727) T) ((-888 . -724) T) ((-796 . -968) T) ((-794 . -793) 16672) ((-627 . -421) T) ((-349 . -650) 16637) ((-388 . -585) 16611) ((-645 . -779) 16590) ((-644 . -37) 16555) ((-542 . -207) 16514) ((-39 . -657) 16486) ((-321 . -299) 16463) ((-321 . -333) T) ((-987 . -278) 16414) ((-265 . -1015) 16296) ((-1009 . -1108) T) ((-155 . -97) T) ((-1121 . -557) 16263) ((-772 . -123) 16215) ((-583 . -1142) 16199) ((-766 . -650) 16169) ((-759 . -650) 16139) ((-450 . -1108) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 16116) ((-377 . -123) T) ((-483 . -603) 16100) ((-103 . -278) T) ((-265 . -23) 15984) ((-483 . -588) 15968) ((-627 . -372) NIL) ((-483 . -343) 15952) ((-89 . -1003) 15930) ((-103 . -937) T) ((-517 . -130) T) ((-1153 . -138) 15914) ((-450 . -952) 15743) ((-1140 . -132) 15704) ((-1140 . -134) 15665) ((-965 . -1108) T) ((-910 . -557) 15647) ((-787 . -557) 15629) ((-748 . -967) 15472) ((-992 . -280) 15459) ((-201 . -1108) T) ((-714 . -280) 15446) ((-712 . -280) 15433) ((-748 . -106) 15255) ((-423 . -280) 15242) ((-1069 . -558) NIL) ((-1069 . -557) 15224) ((-1026 . -557) 15206) ((-1026 . -558) 14954) ((-949 . -156) T) ((-783 . -557) 14936) ((-865 . -260) 14913) ((-552 . -478) 14661) ((-750 . -952) 14645) ((-444 . -478) 14405) ((-884 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1015) T) ((-1076 . -557) 14387) ((-197 . -97) T) ((-450 . -347) 14357) ((-479 . -1003) T) ((-474 . -1003) T) ((-472 . -1003) T) ((-731 . -585) 14331) ((-939 . -421) T) ((-879 . -478) 14264) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14243) ((-349 . -156) T) ((-1138 . -968) T) ((-1117 . -968) T) ((-199 . -918) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1112) T) ((-1040 . -579) 14191) ((-529 . -793) 14175) ((-1057 . -1085) 14151) ((-634 . -509) T) ((-121 . -1003) 14129) ((-1166 . -967) 14113) ((-647 . -1003) T) ((-450 . -822) 14046) ((-595 . -37) 14016) ((-324 . -372) T) ((-286 . -134) 13995) ((-286 . -132) 13974) ((-111 . -509) T) ((-283 . -134) 13930) ((-283 . -132) 13886) ((-47 . -421) T) ((-146 . -1003) T) ((-142 . -1003) T) ((-1057 . -102) 13833) ((-714 . -1049) 13811) ((-623 . -33) T) ((-1166 . -106) 13790) ((-503 . -33) T) ((-451 . -102) 13774) ((-224 . -260) 13751) ((-223 . -260) 13728) ((-795 . -258) 13658) ((-44 . -1108) T) ((-748 . -961) T) ((-1075 . -46) 13635) ((-748 . -296) 13597) ((-992 . -37) 13446) ((-748 . -207) 13425) ((-714 . -37) 13254) ((-712 . -37) 13103) ((-423 . -37) 12952) ((-583 . -558) 12913) ((-583 . -557) 12825) ((-530 . -1049) T) ((-481 . -1049) T) ((-1045 . -456) 12809) ((-1095 . -1003) 12787) ((-1040 . -25) T) ((-1040 . -21) T) ((-443 . -968) T) ((-1118 . -724) NIL) ((-1118 . -727) NIL) ((-915 . -779) 12766) ((-751 . -557) 12748) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1112) T) ((-530 . -37) 12713) ((-481 . -37) 12678) ((-356 . -557) 12660) ((-294 . -557) 12642) ((-153 . -258) 12600) ((-61 . -1108) T) ((-107 . -97) T) ((-796 . -1003) T) ((-157 . -509) T) ((-647 . -650) 12570) ((-265 . -123) 12454) ((-199 . -557) 12436) ((-199 . -558) 12366) ((-919 . -579) 12300) ((-1166 . -961) T) ((-1021 . -134) T) ((-572 . -1085) 12275) ((-664 . -831) 12254) ((-540 . -33) T) ((-584 . -102) 12238) ((-572 . -102) 12184) ((-1127 . -258) 12111) ((-664 . -585) 12036) ((-266 . -1108) T) ((-1075 . -952) 11934) ((-1064 . -831) NIL) ((-972 . -558) 11849) ((-972 . -557) 11831) ((-313 . -97) T) ((-224 . -967) 11729) ((-223 . -967) 11627) ((-364 . -97) T) ((-874 . -557) 11609) ((-874 . -558) 11470) ((-646 . -557) 11452) ((-1164 . -1102) 11421) ((-449 . -557) 11403) ((-449 . -558) 11264) ((-221 . -381) 11248) ((-237 . -381) 11232) ((-224 . -106) 11123) ((-223 . -106) 11014) ((-1071 . -585) 10939) ((-1070 . -585) 10836) ((-1064 . -585) 10688) ((-1027 . -585) 10613) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-919 . -25) T) ((-919 . -21) T) ((-796 . -650) 10565) ((-349 . -262) T) ((-153 . -918) 10517) ((-627 . -357) T) ((-915 . -913) 10501) ((-634 . -1015) T) ((-627 . -150) 10483) ((-1138 . -1003) T) ((-1117 . -1003) T) ((-286 . -1094) 10462) ((-286 . -1097) 10441) ((-1062 . -97) T) ((-286 . -880) 10420) ((-125 . -1015) T) ((-111 . -1015) T) ((-548 . -1151) 10404) ((-634 . -23) T) ((-548 . -1003) 10354) ((-89 . -478) 10287) ((-157 . -333) T) ((-286 . -91) 10266) ((-286 . -34) 10245) ((-552 . -456) 10179) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1003) T) ((-444 . -456) 10116) ((-377 . -579) 10064) ((-590 . -952) 9962) ((-879 . -456) 9946) ((-325 . -968) T) ((-322 . -968) T) ((-314 . -968) T) ((-237 . -968) T) ((-221 . -968) T) ((-795 . -558) NIL) ((-795 . -557) 9928) ((-1174 . -21) T) ((-524 . -918) T) ((-664 . -659) T) ((-1174 . -25) T) ((-224 . -961) 9859) ((-223 . -961) 9790) ((-70 . -1108) T) ((-224 . -207) 9743) ((-223 . -207) 9696) ((-39 . -97) T) ((-832 . -968) T) ((-1071 . -659) T) ((-1070 . -659) T) ((-1064 . -659) T) ((-1064 . -723) NIL) ((-1064 . -726) NIL) ((-843 . -97) T) ((-1027 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1003) T) ((-309 . -1015) T) ((-157 . -1015) T) ((-289 . -842) 9675) ((-1138 . -650) 9516) ((-796 . -156) T) ((-1117 . -650) 9330) ((-772 . -21) 9282) ((-772 . -25) 9234) ((-219 . -1047) 9218) ((-121 . -478) 9151) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8919) ((-153 . -557) 8901) ((-157 . -23) T) ((-583 . -260) 8878) ((-483 . -33) T) ((-820 . -557) 8860) ((-87 . -1108) T) ((-770 . -557) 8842) ((-740 . -557) 8824) ((-701 . -557) 8806) ((-612 . -557) 8788) ((-214 . -585) 8638) ((-1073 . -1003) T) ((-1069 . -967) 8461) ((-1048 . -1108) T) ((-1026 . -967) 8304) ((-783 . -967) 8288) ((-1069 . -106) 8090) ((-1026 . -106) 7912) ((-783 . -106) 7891) ((-1127 . -558) NIL) ((-1127 . -557) 7873) ((-313 . -1049) T) ((-784 . -557) 7855) ((-983 . -258) 7834) ((-78 . -1108) T) ((-920 . -831) NIL) ((-552 . -258) 7810) ((-1095 . -478) 7743) ((-454 . -1108) T) ((-524 . -557) 7725) ((-444 . -258) 7704) ((-192 . -1108) T) ((-992 . -205) 7688) ((-261 . -842) T) ((-749 . -278) 7667) ((-794 . -97) T) ((-714 . -205) 7651) ((-920 . -585) 7601) ((-879 . -258) 7578) ((-836 . -585) 7530) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7495) ((-627 . -657) 7462) ((-454 . -806) 7444) ((-454 . -808) 7426) ((-443 . -650) 7267) ((-192 . -806) 7249) ((-62 . -1108) T) ((-192 . -808) 7231) ((-551 . -25) T) ((-397 . -585) 7205) ((-454 . -952) 7165) ((-796 . -478) 7077) ((-192 . -952) 7037) ((-214 . -33) T) ((-916 . -1003) 7015) ((-1138 . -156) 6946) ((-1117 . -156) 6877) ((-645 . -132) 6856) ((-645 . -134) 6835) ((-634 . -123) T) ((-127 . -434) 6812) ((-595 . -593) 6796) ((-1045 . -557) 6728) ((-111 . -123) T) ((-446 . -1112) T) ((-552 . -550) 6704) ((-444 . -550) 6683) ((-306 . -305) 6652) ((-493 . -1003) T) ((-446 . -509) T) ((-1069 . -961) T) ((-1026 . -961) T) ((-783 . -961) T) ((-214 . -723) 6631) ((-214 . -726) 6582) ((-214 . -725) 6561) ((-1069 . -296) 6538) ((-214 . -659) 6469) ((-879 . -19) 6453) ((-454 . -347) 6435) ((-454 . -308) 6417) ((-1026 . -296) 6389) ((-324 . -1160) 6366) ((-192 . -347) 6348) ((-192 . -308) 6330) ((-879 . -550) 6307) ((-1069 . -207) T) ((-601 . -1003) T) ((-1149 . -1003) T) ((-1082 . -1003) T) ((-992 . -226) 6246) ((-325 . -1003) T) ((-322 . -1003) T) ((-314 . -1003) T) ((-237 . -1003) T) ((-221 . -1003) T) ((-82 . -1108) T) ((-122 . -97) 6224) ((-116 . -97) 6202) ((-1082 . -554) 6181) ((-447 . -1003) T) ((-1039 . -1003) T) ((-447 . -554) 6160) ((-224 . -727) 6111) ((-224 . -724) 6062) ((-223 . -727) 6013) ((-39 . -1049) NIL) ((-223 . -724) 5964) ((-987 . -842) 5915) ((-920 . -726) T) ((-920 . -723) T) ((-920 . -659) T) ((-888 . -726) T) ((-836 . -659) T) ((-89 . -456) 5899) ((-454 . -822) NIL) ((-832 . -1003) T) ((-199 . -967) 5864) ((-796 . -262) T) ((-192 . -822) NIL) ((-765 . -1015) 5843) ((-57 . -1003) 5793) ((-482 . -1003) 5771) ((-480 . -1003) 5721) ((-462 . -1003) 5699) ((-461 . -1003) 5649) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5580) ((-329 . -842) T) ((-323 . -842) T) ((-315 . -842) T) ((-199 . -106) 5529) ((-765 . -23) 5481) ((-397 . -659) T) ((-103 . -842) T) ((-39 . -37) 5426) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1117 . -478) 5286) ((-286 . -421) 5265) ((-283 . -421) T) ((-766 . -258) 5244) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5109) ((-265 . -21) 4993) ((-44 . -1085) 4972) ((-64 . -557) 4954) ((-814 . -557) 4936) ((-548 . -478) 4869) ((-44 . -102) 4819) ((-1005 . -395) 4803) ((-1005 . -338) 4782) ((-973 . -1108) T) ((-972 . -967) 4769) ((-874 . -967) 4612) ((-449 . -967) 4455) ((-601 . -650) 4439) ((-972 . -106) 4424) ((-874 . -106) 4246) ((-446 . -333) T) ((-325 . -650) 4198) ((-322 . -650) 4150) ((-314 . -650) 4102) ((-237 . -650) 3951) ((-221 . -650) 3800) ((-865 . -588) 3784) ((-449 . -106) 3606) ((-1154 . -97) T) ((-865 . -343) 3590) ((-1118 . -831) NIL) ((-72 . -557) 3572) ((-884 . -46) 3551) ((-562 . -1015) T) ((-1 . -1003) T) ((-632 . -97) T) ((-1153 . -97) 3501) ((-1146 . -585) 3426) ((-1139 . -585) 3323) ((-121 . -456) 3307) ((-1090 . -557) 3289) ((-993 . -557) 3271) ((-360 . -23) T) ((-983 . -557) 3253) ((-85 . -1108) T) ((-1118 . -585) 3105) ((-832 . -650) 3070) ((-562 . -23) T) ((-552 . -557) 3052) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 3034) ((-475 . -1003) T) ((-471 . -1003) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2972) ((-116 . -280) 2910) ((-543 . -585) 2897) ((-199 . -961) T) ((-542 . -585) 2822) ((-349 . -918) T) ((-199 . -217) T) ((-199 . -207) T) ((-879 . -558) 2783) ((-879 . -557) 2695) ((-794 . -37) 2682) ((-1138 . -262) 2633) ((-1117 . -262) 2584) ((-1021 . -421) T) ((-467 . -779) T) ((-286 . -1037) 2563) ((-915 . -134) 2542) ((-915 . -132) 2521) ((-460 . -280) 2508) ((-266 . -1085) 2487) ((-446 . -1015) T) ((-795 . -967) 2432) ((-564 . -97) T) ((-1095 . -456) 2416) ((-224 . -338) 2395) ((-223 . -338) 2374) ((-266 . -102) 2324) ((-972 . -961) T) ((-112 . -97) T) ((-874 . -961) T) ((-795 . -106) 2241) ((-446 . -23) T) ((-449 . -961) T) ((-972 . -207) T) ((-874 . -296) 2210) ((-449 . -296) 2167) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2078) ((-221 . -156) 1989) ((-884 . -952) 1887) ((-668 . -952) 1858) ((-1008 . -97) T) ((-996 . -557) 1825) ((-949 . -557) 1807) ((-1146 . -659) T) ((-1139 . -659) T) ((-1118 . -723) NIL) ((-153 . -967) 1717) ((-1118 . -726) NIL) ((-832 . -156) T) ((-1118 . -659) T) ((-1164 . -138) 1701) ((-919 . -312) 1675) ((-916 . -478) 1608) ((-772 . -779) 1587) ((-517 . -1049) T) ((-443 . -262) 1538) ((-543 . -659) T) ((-331 . -557) 1520) ((-292 . -557) 1502) ((-388 . -952) 1400) ((-542 . -659) T) ((-377 . -779) 1351) ((-153 . -106) 1240) ((-765 . -123) 1192) ((-670 . -138) 1176) ((-1153 . -280) 1114) ((-454 . -278) T) ((-349 . -557) 1081) ((-483 . -926) 1065) ((-349 . -558) 979) ((-192 . -278) T) ((-128 . -138) 961) ((-647 . -258) 940) ((-454 . -937) T) ((-529 . -37) 927) ((-517 . -37) 914) ((-460 . -37) 879) ((-192 . -937) T) ((-795 . -961) T) ((-766 . -557) 861) ((-759 . -557) 843) ((-757 . -557) 825) ((-748 . -831) 804) ((-1175 . -1015) T) ((-1127 . -967) 627) ((-784 . -967) 611) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1108) T) ((-1175 . -23) T) ((-748 . -585) 536) ((-503 . -1108) T) ((-388 . -308) 520) ((-524 . -967) 507) ((-1127 . -106) 309) ((-634 . -579) 291) ((-784 . -106) 270) ((-351 . -23) T) ((-1082 . -478) 30)) \ No newline at end of file
+(((-599 . -1003) T) ((-237 . -478) 143724) ((-221 . -478) 143662) ((-524 . -106) 143647) ((-489 . -23) T) ((-219 . -1003) 143597) ((-112 . -280) 143541) ((-447 . -478) 143301) ((-627 . -97) T) ((-1040 . -478) 143209) ((-360 . -123) T) ((-1165 . -893) 143178) ((-548 . -456) 143162) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 143112) ((-57 . -478) 143045) ((-482 . -478) 142978) ((-388 . -822) 142937) ((-153 . -961) T) ((-480 . -478) 142870) ((-462 . -478) 142803) ((-461 . -478) 142736) ((-731 . -952) 142523) ((-632 . -37) 142488) ((-313 . -319) T) ((-998 . -997) 142472) ((-998 . -1003) 142450) ((-153 . -217) 142401) ((-153 . -207) 142352) ((-998 . -999) 142310) ((-796 . -258) 142268) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1049 . -1086) 142247) ((-377 . -909) 142231) ((-634 . -21) T) ((-634 . -25) T) ((-1167 . -585) 142205) ((-286 . -145) 142184) ((-286 . -130) 142163) ((-1049 . -102) 142113) ((-125 . -25) T) ((-39 . -205) 142090) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 142066) ((-444 . -260) 142045) ((-1128 . -961) T) ((-784 . -961) T) ((-731 . -308) 142029) ((-112 . -1050) NIL) ((-89 . -557) 141961) ((-446 . -123) T) ((-540 . -1109) T) ((-1128 . -296) 141938) ((-524 . -961) T) ((-1128 . -207) T) ((-599 . -650) 141922) ((-879 . -260) 141899) ((-58 . -33) T) ((-972 . -727) T) ((-972 . -724) T) ((-748 . -659) T) ((-664 . -46) 141864) ((-564 . -37) 141851) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 141782) ((-221 . -262) 141713) ((-939 . -97) T) ((-383 . -659) T) ((-112 . -37) 141658) ((-383 . -442) T) ((-324 . -97) T) ((-1104 . -968) T) ((-644 . -968) T) ((-1072 . -46) 141635) ((-1071 . -46) 141605) ((-1065 . -46) 141582) ((-950 . -138) 141528) ((-832 . -262) T) ((-1027 . -46) 141500) ((-627 . -280) NIL) ((-479 . -557) 141482) ((-474 . -557) 141464) ((-472 . -557) 141446) ((-297 . -1003) 141396) ((-645 . -421) 141327) ((-47 . -97) T) ((-1139 . -258) 141312) ((-1118 . -258) 141232) ((-583 . -603) 141216) ((-583 . -588) 141200) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 141184) ((-548 . -258) 141161) ((-358 . -97) T) ((-1021 . -130) T) ((-121 . -557) 141093) ((-797 . -1003) T) ((-595 . -381) 141077) ((-647 . -557) 141059) ((-146 . -557) 141041) ((-142 . -557) 141023) ((-1167 . -659) T) ((-1005 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -808) NIL) ((-1176 . -123) T) ((-351 . -123) T) ((-826 . -97) T) ((-664 . -952) 140901) ((-489 . -123) T) ((-992 . -381) 140885) ((-916 . -456) 140869) ((-112 . -370) 140846) ((-1065 . -1109) 140825) ((-714 . -381) 140809) ((-712 . -381) 140793) ((-865 . -33) T) ((-627 . -1050) NIL) ((-224 . -585) 140630) ((-223 . -585) 140454) ((-749 . -842) 140433) ((-423 . -381) 140417) ((-548 . -19) 140401) ((-1045 . -1103) 140370) ((-1065 . -808) NIL) ((-1065 . -806) 140322) ((-548 . -550) 140299) ((-1096 . -557) 140231) ((-1073 . -557) 140213) ((-60 . -365) T) ((-1071 . -952) 140148) ((-1065 . -952) 140114) ((-627 . -37) 140064) ((-443 . -258) 140049) ((-664 . -347) 140033) ((-595 . -968) T) ((-1139 . -918) 139999) ((-1118 . -918) 139965) ((-973 . -1086) 139940) ((-796 . -558) 139743) ((-796 . -557) 139725) ((-1083 . -456) 139662) ((-388 . -937) 139641) ((-47 . -280) 139628) ((-973 . -102) 139574) ((-447 . -456) 139511) ((-483 . -1109) T) ((-1040 . -456) 139482) ((-1065 . -308) 139434) ((-1065 . -347) 139386) ((-407 . -97) T) ((-992 . -968) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -968) T) ((-712 . -968) T) ((-664 . -822) 139363) ((-423 . -968) T) ((-57 . -456) 139347) ((-949 . -967) 139321) ((-482 . -456) 139305) ((-480 . -456) 139289) ((-462 . -456) 139273) ((-461 . -456) 139257) ((-219 . -478) 139190) ((-949 . -106) 139157) ((-1072 . -822) 139070) ((-607 . -1015) T) ((-1071 . -822) 138976) ((-1065 . -822) 138809) ((-1027 . -822) 138793) ((-324 . -1050) T) ((-292 . -967) 138775) ((-224 . -723) 138754) ((-224 . -726) 138705) ((-224 . -725) 138684) ((-223 . -723) 138663) ((-223 . -726) 138614) ((-223 . -725) 138593) ((-49 . -968) T) ((-224 . -659) 138524) ((-223 . -659) 138455) ((-1104 . -1003) T) ((-607 . -23) T) ((-530 . -968) T) ((-481 . -968) T) ((-349 . -967) 138420) ((-292 . -106) 138395) ((-71 . -353) T) ((-71 . -365) T) ((-939 . -37) 138332) ((-627 . -370) 138314) ((-94 . -97) T) ((-644 . -1003) T) ((-919 . -132) 138286) ((-349 . -106) 138235) ((-289 . -1113) 138214) ((-443 . -918) 138180) ((-324 . -37) 138145) ((-39 . -340) 138117) ((-919 . -134) 138089) ((-122 . -120) 138073) ((-116 . -120) 138057) ((-766 . -967) 138027) ((-765 . -21) 137979) ((-759 . -967) 137963) ((-765 . -25) 137915) ((-289 . -509) 137866) ((-517 . -760) T) ((-214 . -1109) T) ((-766 . -106) 137831) ((-759 . -106) 137810) ((-1139 . -557) 137792) ((-1118 . -557) 137774) ((-1118 . -558) 137447) ((-1070 . -831) 137426) ((-1026 . -831) 137405) ((-47 . -37) 137370) ((-1174 . -1015) T) ((-548 . -557) 137282) ((-548 . -558) 137243) ((-1172 . -1015) T) ((-214 . -952) 137072) ((-1070 . -585) 136997) ((-1026 . -585) 136922) ((-651 . -557) 136904) ((-783 . -585) 136878) ((-1174 . -23) T) ((-1172 . -23) T) ((-949 . -961) T) ((-1083 . -258) 136857) ((-153 . -338) 136808) ((-920 . -1109) T) ((-43 . -23) T) ((-447 . -258) 136787) ((-534 . -1003) T) ((-1045 . -1012) 136756) ((-1007 . -1006) 136708) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1015) T) ((-1180 . -97) T) ((-920 . -806) 136690) ((-920 . -808) 136672) ((-1104 . -650) 136569) ((-564 . -205) 136553) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1090 . -1003) T) ((-644 . -650) 136518) ((-214 . -347) 136488) ((-920 . -952) 136448) ((-349 . -961) T) ((-197 . -968) T) ((-112 . -205) 136425) ((-57 . -258) 136402) ((-139 . -23) T) ((-480 . -258) 136379) ((-297 . -478) 136312) ((-461 . -258) 136289) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -961) T) ((-759 . -961) T) ((-645 . -871) 136259) ((-634 . -779) T) ((-443 . -557) 136241) ((-759 . -207) 136220) ((-125 . -779) T) ((-595 . -1003) T) ((-1083 . -550) 136199) ((-503 . -1086) 136178) ((-306 . -1003) T) ((-289 . -333) 136157) ((-377 . -134) 136136) ((-377 . -132) 136115) ((-885 . -1015) 136014) ((-214 . -822) 135947) ((-747 . -1015) 135878) ((-591 . -781) 135862) ((-447 . -550) 135841) ((-503 . -102) 135791) ((-920 . -347) 135773) ((-920 . -308) 135755) ((-92 . -1003) T) ((-885 . -23) 135566) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 135437) ((-1074 . -557) 135419) ((-57 . -19) 135403) ((-1074 . -558) 135325) ((-1070 . -659) T) ((-1026 . -659) T) ((-480 . -19) 135309) ((-461 . -19) 135293) ((-57 . -550) 135270) ((-992 . -1003) T) ((-823 . -97) 135248) ((-783 . -659) T) ((-714 . -1003) T) ((-480 . -550) 135225) ((-461 . -550) 135202) ((-712 . -1003) T) ((-712 . -975) 135169) ((-430 . -1003) T) ((-423 . -1003) T) ((-534 . -650) 135144) ((-586 . -1003) T) ((-920 . -822) NIL) ((-1147 . -46) 135121) ((-567 . -1015) T) ((-607 . -123) T) ((-1141 . -97) T) ((-1140 . -46) 135091) ((-1119 . -46) 135068) ((-1104 . -156) 135019) ((-987 . -1113) 134970) ((-248 . -1003) T) ((-83 . -410) T) ((-83 . -365) T) ((-1071 . -278) 134949) ((-1065 . -278) 134928) ((-49 . -1003) T) ((-987 . -509) 134879) ((-644 . -156) T) ((-542 . -46) 134856) ((-199 . -585) 134821) ((-530 . -1003) T) ((-481 . -1003) T) ((-329 . -1113) T) ((-323 . -1113) T) ((-315 . -1113) T) ((-454 . -752) T) ((-454 . -842) T) ((-289 . -1015) T) ((-103 . -1113) T) ((-309 . -779) T) ((-192 . -842) T) ((-192 . -752) T) ((-647 . -967) 134791) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 134761) ((-1065 . -937) NIL) ((-289 . -23) T) ((-65 . -1109) T) ((-916 . -557) 134693) ((-627 . -205) 134675) ((-647 . -106) 134640) ((-583 . -33) T) ((-219 . -456) 134624) ((-1005 . -1001) 134608) ((-155 . -1003) T) ((-874 . -831) 134587) ((-449 . -831) 134566) ((-1176 . -21) T) ((-1176 . -25) T) ((-1174 . -123) T) ((-1172 . -123) T) ((-992 . -650) 134415) ((-972 . -585) 134402) ((-874 . -585) 134327) ((-493 . -557) 134309) ((-493 . -558) 134290) ((-714 . -650) 134119) ((-712 . -650) 133968) ((-1165 . -97) T) ((-984 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 133893) ((-430 . -650) 133864) ((-423 . -650) 133713) ((-904 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1119 . -1109) 133692) ((-1150 . -557) 133658) ((-1119 . -808) NIL) ((-1119 . -806) 133610) ((-128 . -97) T) ((-43 . -123) T) ((-1083 . -558) NIL) ((-1083 . -557) 133592) ((-1041 . -1024) 133537) ((-313 . -968) T) ((-601 . -557) 133519) ((-261 . -1015) T) ((-325 . -557) 133501) ((-322 . -557) 133483) ((-314 . -557) 133465) ((-237 . -558) 133213) ((-237 . -557) 133195) ((-221 . -557) 133177) ((-221 . -558) 133038) ((-958 . -1103) 132967) ((-823 . -280) 132905) ((-1180 . -1050) T) ((-1140 . -952) 132840) ((-1119 . -952) 132806) ((-1104 . -478) 132773) ((-1040 . -557) 132755) ((-751 . -659) T) ((-548 . -260) 132732) ((-530 . -650) 132697) ((-447 . -558) NIL) ((-447 . -557) 132679) ((-481 . -650) 132624) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -967) 132576) ((-832 . -557) 132558) ((-832 . -558) 132540) ((-796 . -106) 132471) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1131) 132455) ((-647 . -961) T) ((-627 . -319) NIL) ((-482 . -557) 132387) ((-349 . -727) T) ((-197 . -1003) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 132348) ((-57 . -557) 132260) ((-199 . -659) T) ((-480 . -558) 132221) ((-480 . -557) 132133) ((-462 . -557) 132065) ((-461 . -558) 132026) ((-461 . -557) 131938) ((-987 . -333) 131889) ((-39 . -381) 131866) ((-75 . -1109) T) ((-795 . -831) NIL) ((-329 . -299) 131850) ((-329 . -333) T) ((-323 . -299) 131834) ((-323 . -333) T) ((-315 . -299) 131818) ((-315 . -333) T) ((-286 . -256) 131797) ((-103 . -333) T) ((-68 . -1109) T) ((-1119 . -308) 131749) ((-795 . -585) 131694) ((-1119 . -347) 131646) ((-885 . -123) 131501) ((-747 . -123) 131372) ((-879 . -588) 131356) ((-992 . -156) 131267) ((-879 . -343) 131251) ((-972 . -726) T) ((-972 . -723) T) ((-714 . -156) 131142) ((-712 . -156) 131053) ((-748 . -46) 131015) ((-972 . -659) T) ((-297 . -456) 130999) ((-874 . -659) T) ((-423 . -156) 130910) ((-219 . -258) 130887) ((-449 . -659) T) ((-1165 . -280) 130825) ((-1147 . -822) 130738) ((-1140 . -822) 130644) ((-1139 . -967) 130479) ((-1119 . -822) 130312) ((-1118 . -967) 130120) ((-1104 . -262) 130099) ((-1045 . -138) 130083) ((-982 . -97) T) ((-849 . -876) T) ((-73 . -1109) T) ((-670 . -280) 130021) ((-153 . -831) 129974) ((-601 . -352) 129946) ((-30 . -876) T) ((-1 . -557) 129928) ((-1021 . -97) T) ((-987 . -23) T) ((-49 . -561) 129912) ((-987 . -1015) T) ((-919 . -379) 129884) ((-542 . -822) 129797) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -961) T) ((-765 . -779) 129776) ((-79 . -1109) T) ((-644 . -262) T) ((-39 . -968) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 129758) ((-153 . -585) 129668) ((-471 . -557) 129650) ((-321 . -134) 129632) ((-321 . -132) T) ((-329 . -1015) T) ((-323 . -1015) T) ((-315 . -1015) T) ((-920 . -278) T) ((-836 . -278) T) ((-796 . -217) T) ((-103 . -1015) T) ((-796 . -207) 129611) ((-1139 . -106) 129425) ((-1118 . -106) 129207) ((-219 . -1143) 129191) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 129178) ((-283 . -280) 129074) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-920 . -937) T) ((-103 . -23) T) ((-219 . -550) 129051) ((-1141 . -37) 128908) ((-1128 . -831) 128887) ((-107 . -1003) T) ((-950 . -97) T) ((-1128 . -585) 128812) ((-795 . -726) NIL) ((-784 . -585) 128786) ((-795 . -723) NIL) ((-748 . -808) NIL) ((-795 . -659) T) ((-992 . -478) 128651) ((-714 . -478) 128599) ((-712 . -478) 128551) ((-524 . -585) 128538) ((-748 . -952) 128368) ((-423 . -478) 128306) ((-358 . -359) T) ((-58 . -1109) T) ((-562 . -779) 128285) ((-465 . -598) T) ((-1045 . -893) 128254) ((-919 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -967) 128089) ((-313 . -1003) T) ((-283 . -1050) NIL) ((-261 . -123) T) ((-364 . -1003) T) ((-627 . -340) 128056) ((-794 . -968) T) ((-197 . -561) 128033) ((-297 . -258) 128010) ((-443 . -106) 127824) ((-1139 . -961) T) ((-1118 . -961) T) ((-748 . -347) 127808) ((-153 . -659) T) ((-591 . -97) T) ((-1139 . -217) 127787) ((-1139 . -207) 127739) ((-1118 . -207) 127644) ((-1118 . -217) 127623) ((-919 . -372) NIL) ((-607 . -579) 127571) ((-286 . -37) 127481) ((-283 . -37) 127410) ((-67 . -557) 127392) ((-289 . -458) 127358) ((-1083 . -260) 127337) ((-1016 . -1015) 127268) ((-81 . -1109) T) ((-59 . -557) 127250) ((-447 . -260) 127229) ((-1167 . -952) 127206) ((-1063 . -1003) T) ((-1016 . -23) 127077) ((-748 . -822) 127013) ((-1128 . -659) T) ((-1005 . -1109) T) ((-992 . -262) 126944) ((-815 . -97) T) ((-714 . -262) 126855) ((-297 . -19) 126839) ((-57 . -260) 126816) ((-712 . -262) 126747) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 126724) ((-297 . -550) 126701) ((-461 . -260) 126678) ((-423 . -262) 126609) ((-950 . -280) 126460) ((-524 . -659) T) ((-599 . -557) 126442) ((-219 . -558) 126403) ((-219 . -557) 126315) ((-1046 . -33) T) ((-865 . -1109) T) ((-313 . -650) 126260) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -961) T) ((-575 . -387) 126225) ((-551 . -387) 126190) ((-1021 . -1050) T) ((-530 . -262) T) ((-481 . -262) T) ((-1140 . -278) 126169) ((-443 . -207) 126121) ((-443 . -217) 126100) ((-1119 . -278) 126079) ((-987 . -123) T) ((-796 . -727) 126058) ((-131 . -97) T) ((-39 . -1003) T) ((-796 . -724) 126037) ((-583 . -926) 126021) ((-529 . -968) T) ((-517 . -968) T) ((-460 . -968) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 126005) ((-283 . -370) 125966) ((-323 . -123) T) ((-315 . -123) T) ((-1119 . -937) NIL) ((-998 . -557) 125933) ((-103 . -123) T) ((-1021 . -37) 125920) ((-843 . -1003) T) ((-703 . -1003) T) ((-608 . -1003) T) ((-634 . -134) T) ((-111 . -134) T) ((-1174 . -21) T) ((-1174 . -25) T) ((-1172 . -21) T) ((-1172 . -25) T) ((-601 . -967) 125904) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -967) 125856) ((-322 . -967) 125808) ((-314 . -967) 125760) ((-224 . -1109) T) ((-223 . -1109) T) ((-237 . -967) 125603) ((-221 . -967) 125446) ((-601 . -106) 125425) ((-325 . -106) 125356) ((-322 . -106) 125287) ((-314 . -106) 125218) ((-237 . -106) 125040) ((-221 . -106) 124862) ((-749 . -1113) 124841) ((-564 . -381) 124825) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 124733) ((-749 . -509) 124712) ((-224 . -952) 124541) ((-223 . -952) 124370) ((-121 . -114) 124354) ((-832 . -967) 124319) ((-632 . -968) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 124301) ((-832 . -106) 124250) ((-39 . -650) 124195) ((-794 . -1003) T) ((-297 . -558) 124156) ((-297 . -557) 124068) ((-1118 . -724) 124021) ((-1118 . -727) 123974) ((-224 . -347) 123944) ((-223 . -347) 123914) ((-591 . -37) 123884) ((-552 . -33) T) ((-450 . -1015) 123815) ((-444 . -33) T) ((-1016 . -123) 123686) ((-885 . -25) 123497) ((-797 . -557) 123479) ((-885 . -21) 123434) ((-747 . -21) 123345) ((-747 . -25) 123197) ((-564 . -968) T) ((-1076 . -509) 123176) ((-1070 . -46) 123153) ((-325 . -961) T) ((-322 . -961) T) ((-450 . -23) 123024) ((-314 . -961) T) ((-237 . -961) T) ((-221 . -961) T) ((-1026 . -46) 122996) ((-112 . -968) T) ((-949 . -585) 122970) ((-879 . -33) T) ((-325 . -207) 122949) ((-325 . -217) T) ((-322 . -207) 122928) ((-221 . -296) 122885) ((-322 . -217) T) ((-314 . -207) 122864) ((-314 . -217) T) ((-237 . -296) 122836) ((-237 . -207) 122815) ((-1055 . -138) 122799) ((-224 . -822) 122732) ((-223 . -822) 122665) ((-989 . -779) T) ((-1122 . -1109) T) ((-384 . -1015) T) ((-965 . -23) T) ((-832 . -961) T) ((-292 . -585) 122647) ((-939 . -777) T) ((-1104 . -918) 122613) ((-1071 . -842) 122592) ((-1065 . -842) 122571) ((-832 . -217) T) ((-749 . -333) 122550) ((-355 . -23) T) ((-122 . -1003) 122528) ((-116 . -1003) 122506) ((-832 . -207) T) ((-1065 . -752) NIL) ((-349 . -585) 122471) ((-794 . -650) 122458) ((-958 . -138) 122423) ((-39 . -156) T) ((-627 . -381) 122405) ((-645 . -280) 122392) ((-766 . -585) 122352) ((-759 . -585) 122326) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 122305) ((-529 . -1003) T) ((-517 . -1003) T) ((-460 . -1003) T) ((-219 . -260) 122282) ((-283 . -205) 122243) ((-1070 . -808) NIL) ((-1026 . -808) 122102) ((-1070 . -952) 121985) ((-1026 . -952) 121870) ((-783 . -952) 121768) ((-714 . -258) 121695) ((-749 . -1015) T) ((-949 . -659) T) ((-548 . -588) 121679) ((-958 . -893) 121608) ((-915 . -97) T) ((-749 . -23) T) ((-645 . -1050) 121586) ((-627 . -968) T) ((-548 . -343) 121570) ((-321 . -421) T) ((-313 . -262) T) ((-1155 . -1003) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1003) T) ((-331 . -442) T) ((-1104 . -557) 121552) ((-1070 . -347) 121536) ((-1026 . -347) 121520) ((-939 . -381) 121482) ((-128 . -203) 121464) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 121446) ((-645 . -37) 121275) ((-1154 . -1152) 121259) ((-321 . -372) T) ((-1154 . -1003) 121209) ((-529 . -650) 121196) ((-517 . -650) 121183) ((-460 . -650) 121148) ((-286 . -569) 121127) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1109) T) ((-987 . -579) 121075) ((-1070 . -822) 121019) ((-1026 . -822) 121003) ((-599 . -967) 120987) ((-103 . -579) 120969) ((-450 . -123) 120840) ((-1076 . -1015) T) ((-874 . -46) 120809) ((-564 . -1003) T) ((-599 . -106) 120788) ((-297 . -260) 120765) ((-449 . -46) 120722) ((-1076 . -23) T) ((-112 . -1003) T) ((-98 . -97) 120700) ((-1164 . -1015) T) ((-965 . -123) T) ((-939 . -968) T) ((-751 . -952) 120684) ((-919 . -657) 120656) ((-1164 . -23) T) ((-632 . -650) 120621) ((-534 . -557) 120603) ((-356 . -952) 120587) ((-324 . -968) T) ((-355 . -123) T) ((-294 . -952) 120571) ((-199 . -808) 120553) ((-920 . -842) T) ((-89 . -33) T) ((-920 . -752) T) ((-836 . -842) T) ((-454 . -1113) T) ((-1090 . -557) 120535) ((-1008 . -1003) T) ((-192 . -1113) T) ((-915 . -280) 120500) ((-199 . -952) 120460) ((-39 . -262) T) ((-987 . -21) T) ((-987 . -25) T) ((-1021 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 120420) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -968) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 120402) ((-670 . -669) 120386) ((-306 . -557) 120368) ((-66 . -353) T) ((-66 . -365) T) ((-1005 . -102) 120352) ((-972 . -808) 120334) ((-874 . -808) 120259) ((-590 . -1015) T) ((-564 . -650) 120246) ((-449 . -808) NIL) ((-1045 . -97) T) ((-972 . -952) 120228) ((-92 . -557) 120210) ((-446 . -134) T) ((-874 . -952) 120092) ((-112 . -650) 120037) ((-590 . -23) T) ((-449 . -952) 119915) ((-992 . -558) NIL) ((-992 . -557) 119897) ((-714 . -558) NIL) ((-714 . -557) 119858) ((-712 . -558) 119493) ((-712 . -557) 119407) ((-1016 . -579) 119315) ((-430 . -557) 119297) ((-423 . -557) 119279) ((-423 . -558) 119140) ((-950 . -203) 119086) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -831) 119065) ((-586 . -557) 119047) ((-325 . -1171) 119031) ((-322 . -1171) 119015) ((-314 . -1171) 118999) ((-122 . -478) 118932) ((-116 . -478) 118865) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 118803) ((-196 . -97) 118781) ((-627 . -1003) T) ((-632 . -156) T) ((-796 . -585) 118733) ((-63 . -354) T) ((-248 . -557) 118715) ((-63 . -365) T) ((-874 . -347) 118699) ((-794 . -262) T) ((-49 . -557) 118681) ((-915 . -37) 118629) ((-530 . -557) 118611) ((-449 . -347) 118595) ((-530 . -558) 118577) ((-481 . -557) 118559) ((-832 . -1171) 118546) ((-795 . -1109) T) ((-634 . -421) T) ((-460 . -478) 118512) ((-454 . -333) T) ((-325 . -338) 118491) ((-322 . -338) 118470) ((-314 . -338) 118449) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1175 . -1166) 118433) ((-795 . -806) 118410) ((-795 . -808) NIL) ((-885 . -779) 118309) ((-747 . -779) 118260) ((-591 . -593) 118244) ((-1096 . -33) T) ((-155 . -557) 118226) ((-1016 . -21) 118137) ((-1016 . -25) 117989) ((-795 . -952) 117966) ((-874 . -822) 117947) ((-1128 . -46) 117924) ((-832 . -338) T) ((-57 . -588) 117908) ((-480 . -588) 117892) ((-449 . -822) 117869) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 117853) ((-57 . -343) 117837) ((-564 . -156) T) ((-480 . -343) 117821) ((-461 . -343) 117805) ((-759 . -642) 117789) ((-1070 . -278) 117768) ((-1076 . -123) T) ((-112 . -156) T) ((-1045 . -280) 117706) ((-153 . -1109) T) ((-575 . -677) 117690) ((-551 . -677) 117674) ((-1164 . -123) T) ((-1140 . -842) 117653) ((-1119 . -842) 117632) ((-1119 . -752) NIL) ((-627 . -650) 117582) ((-1118 . -831) 117535) ((-939 . -1003) T) ((-795 . -347) 117512) ((-795 . -308) 117489) ((-827 . -1015) T) ((-153 . -806) 117473) ((-153 . -808) 117398) ((-454 . -1015) T) ((-324 . -1003) T) ((-192 . -1015) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -952) 117296) ((-289 . -779) T) ((-1154 . -478) 117229) ((-1139 . -585) 117126) ((-1118 . -585) 116996) ((-796 . -726) 116975) ((-796 . -723) 116954) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 116936) ((-157 . -421) T) ((-196 . -280) 116874) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1176 . -1169) 116853) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -952) 116837) ((-460 . -262) T) ((-127 . -439) 116792) ((-47 . -1003) T) ((-645 . -205) 116776) ((-795 . -822) NIL) ((-1128 . -808) NIL) ((-811 . -97) T) ((-807 . -97) T) ((-358 . -1003) T) ((-153 . -347) 116760) ((-153 . -308) 116744) ((-1128 . -952) 116627) ((-784 . -952) 116525) ((-1041 . -97) T) ((-590 . -123) T) ((-112 . -478) 116388) ((-599 . -724) 116367) ((-599 . -727) 116346) ((-524 . -952) 116328) ((-265 . -1161) 116298) ((-790 . -97) T) ((-884 . -509) 116277) ((-1104 . -967) 116160) ((-450 . -579) 116068) ((-826 . -1003) T) ((-939 . -650) 116005) ((-644 . -967) 115970) ((-548 . -33) T) ((-1046 . -1109) T) ((-1104 . -106) 115832) ((-443 . -585) 115729) ((-324 . -650) 115674) ((-153 . -822) 115633) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 115582) ((-1180 . -968) T) ((-1128 . -347) 115566) ((-388 . -1113) 115544) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1118 . -723) 115497) ((-1118 . -726) 115450) ((-1139 . -659) T) ((-1118 . -659) T) ((-47 . -650) 115415) ((-199 . -937) T) ((-321 . -1161) 115392) ((-1141 . -381) 115358) ((-651 . -659) T) ((-1128 . -822) 115302) ((-107 . -557) 115284) ((-107 . -558) 115266) ((-651 . -442) T) ((-450 . -21) 115177) ((-122 . -456) 115161) ((-116 . -456) 115145) ((-450 . -25) 114997) ((-564 . -262) T) ((-534 . -967) 114972) ((-407 . -1003) T) ((-972 . -278) T) ((-112 . -262) T) ((-1007 . -97) T) ((-919 . -97) T) ((-534 . -106) 114933) ((-1041 . -280) 114871) ((-1104 . -961) T) ((-972 . -937) T) ((-64 . -1109) T) ((-965 . -25) T) ((-965 . -21) T) ((-644 . -961) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-939 . -156) T) ((-644 . -217) T) ((-972 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 114853) ((-364 . -557) 114835) ((-443 . -659) T) ((-1021 . -777) T) ((-814 . -952) 114803) ((-103 . -779) T) ((-595 . -967) 114787) ((-454 . -123) T) ((-1141 . -968) T) ((-192 . -123) T) ((-1055 . -97) 114765) ((-94 . -1003) T) ((-219 . -603) 114749) ((-219 . -588) 114733) ((-595 . -106) 114712) ((-286 . -381) 114696) ((-219 . -343) 114680) ((-1058 . -209) 114627) ((-915 . -205) 114611) ((-72 . -1109) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1175 . -97) T) ((-992 . -967) 114454) ((-237 . -831) 114433) ((-221 . -831) 114412) ((-714 . -967) 114235) ((-712 . -967) 114078) ((-552 . -1109) T) ((-1063 . -557) 114060) ((-992 . -106) 113882) ((-958 . -97) T) ((-444 . -1109) T) ((-430 . -967) 113853) ((-423 . -967) 113696) ((-601 . -585) 113680) ((-795 . -278) T) ((-714 . -106) 113482) ((-712 . -106) 113304) ((-325 . -585) 113256) ((-322 . -585) 113208) ((-314 . -585) 113160) ((-237 . -585) 113085) ((-221 . -585) 113010) ((-1057 . -779) T) ((-430 . -106) 112971) ((-423 . -106) 112793) ((-993 . -952) 112777) ((-983 . -952) 112754) ((-916 . -33) T) ((-879 . -1109) T) ((-121 . -926) 112738) ((-884 . -1015) T) ((-795 . -937) NIL) ((-668 . -1015) T) ((-648 . -1015) T) ((-1154 . -456) 112722) ((-1041 . -37) 112682) ((-884 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-832 . -585) 112647) ((-530 . -967) 112612) ((-481 . -967) 112557) ((-201 . -55) 112515) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 112485) ((-530 . -106) 112434) ((-481 . -106) 112351) ((-388 . -1015) T) ((-286 . -968) 112242) ((-283 . -968) T) ((-595 . -961) T) ((-1180 . -1003) T) ((-153 . -278) 112173) ((-388 . -23) T) ((-39 . -557) 112155) ((-39 . -558) 112139) ((-103 . -909) 112121) ((-111 . -793) 112105) ((-47 . -478) 112071) ((-1096 . -926) 112055) ((-1079 . -557) 112037) ((-1083 . -33) T) ((-843 . -557) 112019) ((-1016 . -779) 111970) ((-703 . -557) 111952) ((-608 . -557) 111934) ((-1055 . -280) 111872) ((-447 . -33) T) ((-996 . -1109) T) ((-446 . -421) T) ((-992 . -961) T) ((-1040 . -33) T) ((-714 . -961) T) ((-712 . -961) T) ((-584 . -209) 111856) ((-572 . -209) 111802) ((-1128 . -278) 111781) ((-992 . -296) 111743) ((-423 . -961) T) ((-1076 . -21) T) ((-992 . -207) 111722) ((-714 . -296) 111699) ((-714 . -207) T) ((-712 . -296) 111671) ((-297 . -588) 111655) ((-664 . -1113) 111634) ((-1076 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 111613) ((-297 . -343) 111597) ((-462 . -33) T) ((-461 . -33) T) ((-919 . -1050) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 111528) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-958 . -280) 111436) ((-823 . -1003) 111414) ((-49 . -961) T) ((-1164 . -21) T) ((-1164 . -25) T) ((-1072 . -509) 111393) ((-1071 . -1113) 111372) ((-530 . -961) T) ((-481 . -961) T) ((-1065 . -1113) 111351) ((-331 . -952) 111335) ((-292 . -952) 111319) ((-939 . -262) T) ((-349 . -808) 111301) ((-1071 . -509) 111252) ((-1065 . -509) 111203) ((-919 . -37) 111148) ((-731 . -1015) T) ((-832 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1027 . -509) 111127) ((-324 . -262) T) ((-584 . -628) 111111) ((-349 . -952) 111071) ((-1021 . -968) T) ((-98 . -120) 111055) ((-731 . -23) T) ((-1154 . -258) 111032) ((-377 . -280) 110997) ((-1174 . -1169) 110973) ((-1172 . -1169) 110952) ((-1141 . -1003) T) ((-794 . -557) 110934) ((-766 . -952) 110903) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -918) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 110887) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1175 . -37) 110857) ((-112 . -258) 110787) ((-1154 . -19) 110771) ((-1154 . -550) 110748) ((-1165 . -1003) T) ((-984 . -1003) T) ((-904 . -1003) T) ((-884 . -123) T) ((-670 . -1003) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1050) 110726) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -961) T) ((-265 . -97) 110509) ((-128 . -1003) T) ((-632 . -918) T) ((-89 . -1109) T) ((-122 . -557) 110441) ((-116 . -557) 110373) ((-1180 . -156) T) ((-1071 . -333) 110352) ((-1065 . -333) 110331) ((-286 . -1003) T) ((-388 . -123) T) ((-283 . -1003) T) ((-377 . -37) 110283) ((-1034 . -97) T) ((-1141 . -650) 110140) ((-591 . -968) T) ((-289 . -132) 110119) ((-289 . -134) 110098) ((-127 . -1003) T) ((-109 . -1003) T) ((-786 . -97) T) ((-529 . -557) 110080) ((-517 . -558) 109979) ((-517 . -557) 109961) ((-460 . -557) 109943) ((-460 . -558) 109888) ((-452 . -23) T) ((-450 . -779) 109839) ((-454 . -579) 109821) ((-192 . -579) 109803) ((-199 . -374) T) ((-599 . -585) 109787) ((-1070 . -842) 109766) ((-664 . -1015) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -967) 109711) ((-1057 . -1056) T) ((-1046 . -102) 109695) ((-1072 . -1015) T) ((-1071 . -1015) T) ((-479 . -952) 109679) ((-1065 . -1015) T) ((-1027 . -1015) T) ((-313 . -106) 109596) ((-920 . -1113) T) ((-121 . -1109) T) ((-836 . -1113) T) ((-627 . -258) NIL) ((-1155 . -557) 109578) ((-1072 . -23) T) ((-1071 . -23) T) ((-920 . -509) T) ((-1065 . -23) T) ((-836 . -509) T) ((-1041 . -205) 109562) ((-222 . -557) 109544) ((-1027 . -23) T) ((-982 . -1003) T) ((-731 . -123) T) ((-286 . -650) 109454) ((-283 . -650) 109383) ((-632 . -557) 109365) ((-632 . -558) 109310) ((-377 . -370) 109294) ((-408 . -1003) T) ((-454 . -25) T) ((-454 . -21) T) ((-1021 . -1003) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 109278) ((-647 . -952) 109247) ((-1154 . -557) 109159) ((-1154 . -558) 109120) ((-1141 . -156) T) ((-219 . -33) T) ((-848 . -891) T) ((-1096 . -1109) T) ((-599 . -723) 109099) ((-599 . -726) 109078) ((-368 . -365) T) ((-486 . -97) 109056) ((-950 . -1003) T) ((-196 . -911) 109040) ((-469 . -97) T) ((-564 . -557) 109022) ((-44 . -779) NIL) ((-564 . -558) 108999) ((-950 . -554) 108974) ((-823 . -478) 108907) ((-313 . -961) T) ((-112 . -558) NIL) ((-112 . -557) 108889) ((-796 . -1109) T) ((-607 . -387) 108873) ((-607 . -1024) 108818) ((-465 . -138) 108800) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -967) 108745) ((-796 . -806) 108729) ((-796 . -808) 108654) ((-645 . -968) T) ((-627 . -918) NIL) ((-1139 . -46) 108624) ((-1118 . -46) 108601) ((-1040 . -926) 108572) ((-199 . -842) T) ((-39 . -106) 108489) ((-796 . -952) 108356) ((-1021 . -650) 108343) ((-1008 . -557) 108325) ((-987 . -134) 108304) ((-987 . -132) 108255) ((-920 . -333) T) ((-289 . -1098) 108221) ((-349 . -278) T) ((-289 . -1095) 108187) ((-286 . -156) 108166) ((-283 . -156) T) ((-919 . -205) 108143) ((-836 . -333) T) ((-530 . -1171) 108130) ((-481 . -1171) 108107) ((-329 . -134) 108086) ((-329 . -132) 108037) ((-323 . -134) 108016) ((-323 . -132) 107967) ((-552 . -1086) 107943) ((-315 . -134) 107922) ((-315 . -132) 107873) ((-289 . -34) 107839) ((-444 . -1086) 107818) ((0 . |EnumerationCategory|) T) ((-289 . -91) 107784) ((-349 . -937) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 107734) ((-591 . -1003) T) ((-552 . -102) 107681) ((-452 . -123) T) ((-444 . -102) 107631) ((-214 . -1015) 107562) ((-796 . -347) 107546) ((-796 . -308) 107530) ((-214 . -23) 107401) ((-972 . -842) T) ((-972 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1050) T) ((-297 . -33) T) ((-43 . -387) 107385) ((-360 . -677) 107369) ((-1165 . -478) 107302) ((-664 . -123) T) ((-1147 . -509) 107281) ((-1140 . -1113) 107260) ((-1140 . -509) 107211) ((-670 . -478) 107144) ((-1119 . -1113) 107123) ((-1119 . -509) 107074) ((-815 . -1003) T) ((-131 . -773) T) ((-1118 . -1109) 107053) ((-1118 . -808) 106926) ((-1118 . -806) 106896) ((-486 . -280) 106834) ((-1072 . -123) T) ((-128 . -478) NIL) ((-1071 . -123) T) ((-1065 . -123) T) ((-1027 . -123) T) ((-939 . -918) T) ((-321 . -37) 106799) ((-920 . -1015) T) ((-836 . -1015) T) ((-80 . -557) 106781) ((-39 . -961) T) ((-794 . -967) 106768) ((-920 . -23) T) ((-796 . -822) 106727) ((-634 . -97) T) ((-919 . -319) NIL) ((-548 . -1109) T) ((-888 . -23) T) ((-836 . -23) T) ((-794 . -106) 106712) ((-397 . -1015) T) ((-443 . -46) 106682) ((-125 . -97) T) ((-39 . -207) 106654) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 106633) ((-542 . -509) 106612) ((-627 . -557) 106594) ((-627 . -558) 106502) ((-286 . -478) 106468) ((-283 . -478) 106219) ((-1139 . -952) 106203) ((-1118 . -952) 105992) ((-915 . -381) 105976) ((-397 . -23) T) ((-1021 . -156) T) ((-1141 . -262) T) ((-591 . -650) 105946) ((-131 . -1003) T) ((-47 . -918) T) ((-377 . -205) 105930) ((-266 . -209) 105880) ((-795 . -842) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1118 . -308) 105850) ((-1118 . -347) 105820) ((-196 . -1022) 105804) ((-1154 . -260) 105781) ((-1104 . -585) 105706) ((-884 . -21) T) ((-884 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 105671) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-915 . -968) T) ((-794 . -961) T) ((-706 . -97) T) ((-1140 . -333) 105650) ((-1139 . -822) 105556) ((-1119 . -333) 105535) ((-1118 . -822) 105386) ((-939 . -557) 105368) ((-377 . -760) 105321) ((-1072 . -458) 105287) ((-153 . -842) 105218) ((-1071 . -458) 105184) ((-1065 . -458) 105150) ((-645 . -1003) T) ((-1027 . -458) 105116) ((-529 . -967) 105103) ((-517 . -967) 105090) ((-460 . -967) 105055) ((-286 . -262) 105034) ((-283 . -262) T) ((-324 . -557) 105016) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 104995) ((-529 . -106) 104980) ((-517 . -106) 104965) ((-460 . -106) 104914) ((-1074 . -808) 104881) ((-823 . -456) 104865) ((-47 . -557) 104847) ((-47 . -558) 104792) ((-214 . -123) 104663) ((-1128 . -842) 104642) ((-748 . -1113) 104621) ((-950 . -478) 104429) ((-358 . -557) 104411) ((-748 . -509) 104342) ((-534 . -585) 104317) ((-237 . -46) 104289) ((-221 . -46) 104246) ((-489 . -473) 104223) ((-916 . -1109) T) ((-632 . -967) 104188) ((-1147 . -1015) T) ((-1140 . -1015) T) ((-1119 . -1015) T) ((-919 . -340) 104160) ((-107 . -338) T) ((-443 . -822) 104066) ((-1147 . -23) T) ((-1140 . -23) T) ((-826 . -557) 104048) ((-89 . -102) 104032) ((-1104 . -659) T) ((-827 . -779) 103983) ((-634 . -1050) T) ((-632 . -106) 103932) ((-1119 . -23) T) ((-543 . -1015) T) ((-542 . -1015) T) ((-645 . -650) 103761) ((-644 . -659) T) ((-1021 . -262) T) ((-920 . -123) T) ((-454 . -779) T) ((-888 . -123) T) ((-836 . -123) T) ((-529 . -961) T) ((-192 . -779) T) ((-517 . -961) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -961) T) ((-543 . -23) T) ((-313 . -1171) 103738) ((-289 . -421) 103717) ((-309 . -280) 103704) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 103678) ((-219 . -926) 103662) ((-796 . -278) T) ((-1176 . -1166) 103646) ((-634 . -37) 103633) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1049 . -209) 103583) ((-992 . -831) 103562) ((-111 . -37) 103549) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -937) 103528) ((-1165 . -456) 103512) ((-714 . -831) 103491) ((-712 . -831) 103470) ((-1083 . -1109) T) ((-423 . -831) 103449) ((-670 . -456) 103433) ((-992 . -585) 103358) ((-714 . -585) 103283) ((-564 . -967) 103270) ((-447 . -1109) T) ((-313 . -338) T) ((-128 . -456) 103252) ((-712 . -585) 103177) ((-1040 . -1109) T) ((-430 . -585) 103148) ((-237 . -808) 103007) ((-221 . -808) NIL) ((-112 . -967) 102952) ((-423 . -585) 102877) ((-601 . -952) 102854) ((-564 . -106) 102839) ((-325 . -952) 102823) ((-322 . -952) 102807) ((-314 . -952) 102791) ((-237 . -952) 102637) ((-221 . -952) 102515) ((-112 . -106) 102432) ((-57 . -1109) T) ((-482 . -1109) T) ((-480 . -1109) T) ((-462 . -1109) T) ((-461 . -1109) T) ((-407 . -557) 102414) ((-404 . -557) 102396) ((-3 . -97) T) ((-942 . -1103) 102365) ((-765 . -97) T) ((-623 . -55) 102323) ((-632 . -961) T) ((-49 . -585) 102297) ((-261 . -421) T) ((-445 . -1103) 102266) ((0 . -97) T) ((-530 . -585) 102231) ((-481 . -585) 102176) ((-48 . -97) T) ((-832 . -952) 102163) ((-632 . -217) T) ((-987 . -379) 102142) ((-664 . -579) 102090) ((-915 . -1003) T) ((-645 . -156) 101981) ((-454 . -909) 101963) ((-237 . -347) 101947) ((-221 . -347) 101931) ((-369 . -1003) T) ((-309 . -37) 101915) ((-941 . -97) 101893) ((-192 . -909) 101875) ((-157 . -37) 101807) ((-1139 . -278) 101786) ((-1118 . -278) 101765) ((-595 . -659) T) ((-94 . -557) 101747) ((-1065 . -579) 101699) ((-452 . -25) T) ((-452 . -21) T) ((-1118 . -937) 101652) ((-564 . -961) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -822) 101598) ((-221 . -822) 101575) ((-112 . -961) T) ((-748 . -1015) T) ((-992 . -659) T) ((-564 . -207) 101554) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1015) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-984 . -258) 101533) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -967) 101483) ((-1147 . -123) T) ((-1140 . -123) T) ((-1119 . -123) T) ((-1041 . -381) 101467) ((-575 . -337) 101399) ((-551 . -337) 101331) ((-1055 . -1048) 101315) ((-98 . -1003) 101293) ((-1072 . -25) T) ((-1072 . -21) T) ((-1071 . -21) T) ((-915 . -650) 101241) ((-197 . -585) 101208) ((-627 . -106) 101135) ((-49 . -659) T) ((-1071 . -25) T) ((-321 . -319) T) ((-1065 . -21) T) ((-987 . -421) 101086) ((-1065 . -25) T) ((-645 . -478) 101034) ((-530 . -659) T) ((-481 . -659) T) ((-1027 . -21) T) ((-1027 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 101013) ((-283 . -258) 100879) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1180 . -557) 100861) ((-1180 . -558) 100843) ((-987 . -372) 100822) ((-950 . -456) 100754) ((-517 . -727) T) ((-517 . -724) T) ((-973 . -209) 100700) ((-329 . -372) 100651) ((-323 . -372) 100602) ((-315 . -372) 100553) ((-1167 . -1015) T) ((-1167 . -23) T) ((-1156 . -97) T) ((-1041 . -968) T) ((-607 . -677) 100537) ((-1076 . -132) 100516) ((-1076 . -134) 100495) ((-1045 . -1003) T) ((-1045 . -980) 100464) ((-67 . -1109) T) ((-939 . -967) 100401) ((-790 . -968) T) ((-214 . -579) 100309) ((-627 . -961) T) ((-324 . -967) 100254) ((-59 . -1109) T) ((-939 . -106) 100163) ((-823 . -557) 100095) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 100074) ((-632 . -727) T) ((-632 . -724) T) ((-919 . -381) 100051) ((-324 . -106) 99968) ((-349 . -842) T) ((-377 . -777) 99947) ((-645 . -262) 99858) ((-197 . -659) T) ((-1147 . -458) 99824) ((-1140 . -458) 99790) ((-1119 . -458) 99756) ((-286 . -918) 99735) ((-196 . -1003) 99713) ((-289 . -890) 99676) ((-100 . -97) T) ((-47 . -967) 99641) ((-1176 . -97) T) ((-351 . -97) T) ((-47 . -106) 99590) ((-920 . -579) 99572) ((-1141 . -557) 99554) ((-489 . -97) T) ((-465 . -97) T) ((-1034 . -1035) 99538) ((-139 . -1161) 99522) ((-219 . -1109) T) ((-1070 . -1113) 99501) ((-1026 . -1113) 99480) ((-214 . -21) 99391) ((-214 . -25) 99243) ((-122 . -114) 99227) ((-116 . -114) 99211) ((-43 . -677) 99195) ((-1070 . -509) 99106) ((-1026 . -509) 99037) ((-950 . -258) 99012) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-998 . -1109) T) ((-224 . -1015) 98943) ((-223 . -1015) 98874) ((-939 . -961) T) ((-919 . -968) T) ((-313 . -585) 98819) ((-562 . -37) 98803) ((-1165 . -557) 98765) ((-1165 . -558) 98726) ((-984 . -557) 98708) ((-939 . -217) T) ((-324 . -961) T) ((-747 . -1161) 98678) ((-224 . -23) T) ((-223 . -23) T) ((-904 . -557) 98660) ((-670 . -558) 98621) ((-670 . -557) 98603) ((-731 . -779) 98582) ((-915 . -478) 98494) ((-324 . -207) T) ((-324 . -217) T) ((-1058 . -138) 98441) ((-920 . -25) T) ((-128 . -557) 98423) ((-128 . -558) 98382) ((-832 . -278) T) ((-920 . -21) T) ((-888 . -25) T) ((-836 . -21) T) ((-836 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 98366) ((-47 . -961) T) ((-1174 . -1166) 98350) ((-1172 . -1166) 98334) ((-950 . -550) 98309) ((-286 . -558) 98170) ((-286 . -557) 98152) ((-283 . -558) NIL) ((-283 . -557) 98134) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 98095) ((-503 . -209) 98045) ((-127 . -557) 98027) ((-109 . -557) 98009) ((-446 . -37) 97974) ((-1176 . -1173) 97953) ((-1167 . -123) T) ((-1175 . -968) T) ((-989 . -97) T) ((-86 . -1109) T) ((-465 . -280) NIL) ((-916 . -102) 97937) ((-811 . -1003) T) ((-807 . -1003) T) ((-1154 . -588) 97921) ((-1154 . -343) 97905) ((-297 . -1109) T) ((-540 . -779) T) ((-1041 . -1003) T) ((-1041 . -964) 97845) ((-98 . -478) 97778) ((-849 . -557) 97760) ((-313 . -659) T) ((-30 . -557) 97742) ((-790 . -1003) T) ((-772 . -968) 97721) ((-39 . -585) 97666) ((-199 . -1113) T) ((-377 . -968) T) ((-1057 . -138) 97648) ((-915 . -262) 97599) ((-199 . -509) T) ((-289 . -1136) 97583) ((-289 . -1133) 97553) ((-1083 . -1086) 97532) ((-982 . -557) 97514) ((-584 . -138) 97498) ((-572 . -138) 97444) ((-1083 . -102) 97394) ((-447 . -1086) 97373) ((-454 . -134) T) ((-454 . -132) NIL) ((-1021 . -558) 97288) ((-408 . -557) 97270) ((-192 . -134) T) ((-192 . -132) NIL) ((-1021 . -557) 97252) ((-51 . -97) T) ((-1119 . -579) 97204) ((-447 . -102) 97154) ((-910 . -23) T) ((-1176 . -37) 97124) ((-1070 . -1015) T) ((-1026 . -1015) T) ((-972 . -1113) T) ((-783 . -1015) T) ((-874 . -1113) 97103) ((-449 . -1113) 97082) ((-664 . -779) 97061) ((-972 . -509) T) ((-874 . -509) 96992) ((-1070 . -23) T) ((-1026 . -23) T) ((-783 . -23) T) ((-449 . -509) 96923) ((-1041 . -650) 96855) ((-1045 . -478) 96788) ((-950 . -558) NIL) ((-950 . -557) 96770) ((-790 . -650) 96740) ((-1104 . -46) 96709) ((-224 . -123) T) ((-223 . -123) T) ((-1007 . -1003) T) ((-919 . -1003) T) ((-60 . -557) 96691) ((-1065 . -779) NIL) ((-939 . -724) T) ((-939 . -727) T) ((-1180 . -967) 96678) ((-1180 . -106) 96663) ((-794 . -585) 96650) ((-1147 . -25) T) ((-1147 . -21) T) ((-1140 . -21) T) ((-1140 . -25) T) ((-1119 . -21) T) ((-1119 . -25) T) ((-942 . -138) 96634) ((-796 . -752) 96613) ((-796 . -842) T) ((-645 . -258) 96540) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 96473) ((-542 . -25) T) ((-445 . -138) 96457) ((-432 . -138) 96441) ((-843 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1003) T) ((-703 . -659) T) ((-199 . -333) T) ((-1055 . -1003) 96419) ((-795 . -1113) T) ((-591 . -557) 96401) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1161) 96385) ((-607 . -97) T) ((-323 . -1161) 96369) ((-315 . -1161) 96353) ((-1175 . -1003) T) ((-483 . -779) 96332) ((-749 . -421) 96311) ((-958 . -1003) T) ((-958 . -980) 96240) ((-942 . -893) 96209) ((-751 . -1015) T) ((-919 . -650) 96154) ((-356 . -1015) T) ((-445 . -893) 96123) ((-432 . -893) 96092) ((-105 . -138) 96074) ((-71 . -557) 96056) ((-815 . -557) 96038) ((-987 . -657) 96017) ((-1180 . -961) T) ((-748 . -579) 95965) ((-265 . -968) 95908) ((-153 . -1113) 95813) ((-199 . -1015) T) ((-294 . -23) T) ((-1065 . -909) 95765) ((-772 . -1003) T) ((-1027 . -673) 95744) ((-1141 . -967) 95633) ((-1139 . -842) 95612) ((-794 . -659) T) ((-153 . -509) 95523) ((-1118 . -842) 95502) ((-529 . -585) 95489) ((-377 . -1003) T) ((-517 . -585) 95476) ((-236 . -1003) T) ((-460 . -585) 95441) ((-199 . -23) T) ((-1118 . -752) 95394) ((-1174 . -97) T) ((-324 . -1171) 95371) ((-1172 . -97) T) ((-1141 . -106) 95221) ((-131 . -557) 95203) ((-910 . -123) T) ((-43 . -97) T) ((-214 . -779) 95154) ((-1128 . -1113) 95133) ((-98 . -456) 95117) ((-1175 . -650) 95087) ((-992 . -46) 95049) ((-972 . -1015) T) ((-874 . -1015) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 95026) ((-712 . -46) 94998) ((-1128 . -509) 94909) ((-324 . -338) T) ((-449 . -1015) T) ((-1070 . -123) T) ((-1026 . -123) T) ((-423 . -46) 94888) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-972 . -23) T) ((-874 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1041 . -478) 94821) ((-534 . -952) 94805) ((-449 . -23) T) ((-321 . -968) T) ((-1104 . -822) 94786) ((-607 . -280) 94724) ((-1016 . -1161) 94694) ((-632 . -585) 94659) ((-919 . -156) T) ((-884 . -132) 94638) ((-575 . -1003) T) ((-551 . -1003) T) ((-884 . -134) 94617) ((-920 . -779) T) ((-668 . -134) 94596) ((-668 . -132) 94575) ((-888 . -779) T) ((-443 . -842) 94554) ((-286 . -967) 94464) ((-283 . -967) 94393) ((-915 . -258) 94351) ((-377 . -650) 94303) ((-634 . -777) T) ((-1141 . -961) T) ((-286 . -106) 94192) ((-283 . -106) 94077) ((-885 . -97) T) ((-747 . -97) 93888) ((-645 . -558) NIL) ((-645 . -557) 93870) ((-595 . -952) 93768) ((-1141 . -296) 93712) ((-950 . -260) 93687) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 93638) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1045 . -456) 93622) ((-992 . -808) NIL) ((-795 . -1015) T) ((-112 . -831) NIL) ((-1174 . -1173) 93598) ((-1172 . -1173) 93577) ((-714 . -808) NIL) ((-712 . -808) 93436) ((-1167 . -25) T) ((-1167 . -21) T) ((-1107 . -97) 93414) ((-1009 . -365) T) ((-564 . -585) 93401) ((-423 . -808) NIL) ((-611 . -97) 93379) ((-992 . -952) 93209) ((-795 . -23) T) ((-714 . -952) 93071) ((-712 . -952) 92930) ((-112 . -585) 92875) ((-423 . -952) 92753) ((-586 . -952) 92737) ((-567 . -97) T) ((-196 . -456) 92721) ((-1154 . -33) T) ((-575 . -650) 92705) ((-551 . -650) 92689) ((-607 . -37) 92649) ((-289 . -97) T) ((-83 . -557) 92631) ((-49 . -952) 92615) ((-1021 . -967) 92602) ((-992 . -347) 92586) ((-58 . -55) 92548) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -952) 92535) ((-481 . -952) 92512) ((-632 . -659) T) ((-286 . -961) 92403) ((-294 . -123) T) ((-283 . -961) T) ((-153 . -1015) T) ((-714 . -347) 92387) ((-712 . -347) 92371) ((-44 . -138) 92321) ((-920 . -909) 92303) ((-423 . -347) 92287) ((-377 . -156) T) ((-286 . -217) 92266) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1003) 92049) ((-199 . -123) T) ((-1021 . -106) 92034) ((-153 . -23) T) ((-731 . -134) 92013) ((-731 . -132) 91992) ((-224 . -579) 91900) ((-223 . -579) 91808) ((-289 . -256) 91774) ((-1055 . -478) 91707) ((-1034 . -1003) T) ((-199 . -970) T) ((-747 . -280) 91645) ((-992 . -822) 91581) ((-714 . -822) 91525) ((-712 . -822) 91509) ((-1174 . -37) 91479) ((-1172 . -37) 91449) ((-1128 . -1015) T) ((-784 . -1015) T) ((-423 . -822) 91426) ((-786 . -1003) T) ((-1128 . -23) T) ((-524 . -1015) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -842) T) ((-322 . -842) T) ((-261 . -97) T) ((-314 . -842) T) ((-972 . -123) T) ((-874 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -831) NIL) ((-958 . -478) 91310) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 91248) ((-575 . -694) T) ((-551 . -694) T) ((-1119 . -779) NIL) ((-919 . -262) T) ((-224 . -21) T) ((-627 . -585) 91198) ((-321 . -1003) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 91182) ((-2 . -97) T) ((-832 . -842) T) ((-450 . -1161) 91152) ((-197 . -952) 91129) ((-1021 . -961) T) ((-644 . -278) T) ((-265 . -650) 91071) ((-634 . -968) T) ((-454 . -421) T) ((-377 . -478) 90983) ((-192 . -421) T) ((-1021 . -207) T) ((-266 . -138) 90933) ((-915 . -558) 90894) ((-915 . -557) 90876) ((-906 . -557) 90858) ((-111 . -968) T) ((-591 . -967) 90842) ((-199 . -458) T) ((-369 . -557) 90824) ((-369 . -558) 90801) ((-965 . -1161) 90771) ((-591 . -106) 90750) ((-1041 . -456) 90734) ((-747 . -37) 90704) ((-61 . -410) T) ((-61 . -365) T) ((-1058 . -97) T) ((-795 . -123) T) ((-451 . -97) 90682) ((-1180 . -338) T) ((-987 . -97) T) ((-971 . -97) T) ((-321 . -650) 90627) ((-664 . -134) 90606) ((-664 . -132) 90585) ((-939 . -585) 90522) ((-486 . -1003) 90500) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1003) T) ((-324 . -585) 90445) ((-1070 . -579) 90393) ((-1026 . -579) 90341) ((-355 . -473) 90320) ((-765 . -777) 90299) ((-349 . -1113) T) ((-627 . -659) T) ((-309 . -968) T) ((-1119 . -909) 90251) ((-157 . -968) T) ((-98 . -557) 90183) ((-1072 . -132) 90162) ((-1072 . -134) 90141) ((-349 . -509) T) ((-1071 . -134) 90120) ((-1071 . -132) 90099) ((-1065 . -132) 90006) ((-377 . -262) T) ((-1065 . -134) 89913) ((-1027 . -134) 89892) ((-1027 . -132) 89871) ((-289 . -37) 89712) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -961) T) ((-47 . -585) 89677) ((-910 . -21) T) ((-122 . -926) 89661) ((-116 . -926) 89645) ((-910 . -25) T) ((-823 . -114) 89629) ((-1057 . -97) T) ((-748 . -779) 89608) ((-1128 . -123) T) ((-1070 . -25) T) ((-1070 . -21) T) ((-784 . -123) T) ((-1026 . -25) T) ((-1026 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 89587) ((-584 . -97) 89565) ((-572 . -97) T) ((-1058 . -280) 89360) ((-524 . -123) T) ((-562 . -777) 89339) ((-1055 . -456) 89323) ((-1049 . -138) 89273) ((-1045 . -557) 89235) ((-1045 . -558) 89196) ((-939 . -723) T) ((-939 . -726) T) ((-939 . -659) T) ((-451 . -280) 89134) ((-422 . -387) 89104) ((-321 . -156) T) ((-261 . -37) 89091) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -952) 89068) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -967) 88891) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 88693) ((-607 . -205) 88677) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 88626) ((-103 . -280) NIL) ((-70 . -365) T) ((-1016 . -97) 88437) ((-765 . -381) 88421) ((-1021 . -727) T) ((-1021 . -724) T) ((-634 . -1003) T) ((-349 . -333) T) ((-153 . -458) 88399) ((-196 . -557) 88331) ((-125 . -1003) T) ((-111 . -1003) T) ((-47 . -659) T) ((-958 . -456) 88296) ((-128 . -395) 88278) ((-128 . -338) T) ((-942 . -97) T) ((-476 . -473) 88257) ((-445 . -97) T) ((-432 . -97) T) ((-949 . -1015) T) ((-1072 . -34) 88223) ((-1072 . -91) 88189) ((-1072 . -1098) 88155) ((-1072 . -1095) 88121) ((-1057 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-987 . -1050) 88100) ((-1071 . -1095) 88066) ((-1071 . -1098) 88032) ((-949 . -23) T) ((-1071 . -91) 87998) ((-524 . -458) T) ((-1071 . -34) 87964) ((-1065 . -1095) 87930) ((-1065 . -1098) 87896) ((-1065 . -91) 87862) ((-331 . -1015) T) ((-329 . -1050) 87841) ((-323 . -1050) 87820) ((-315 . -1050) 87799) ((-1065 . -34) 87765) ((-1027 . -34) 87731) ((-1027 . -91) 87697) ((-103 . -1050) T) ((-1027 . -1098) 87663) ((-765 . -968) 87642) ((-584 . -280) 87580) ((-572 . -280) 87431) ((-1027 . -1095) 87397) ((-645 . -961) T) ((-972 . -579) 87379) ((-987 . -37) 87247) ((-874 . -579) 87195) ((-920 . -134) T) ((-920 . -132) NIL) ((-349 . -1015) T) ((-294 . -25) T) ((-292 . -23) T) ((-865 . -779) 87174) ((-645 . -296) 87151) ((-449 . -579) 87099) ((-39 . -952) 86976) ((-634 . -650) 86963) ((-645 . -207) T) ((-309 . -1003) T) ((-157 . -1003) T) ((-301 . -779) T) ((-388 . -421) 86913) ((-349 . -23) T) ((-329 . -37) 86878) ((-323 . -37) 86843) ((-315 . -37) 86808) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1015) T) ((-103 . -37) 86758) ((-759 . -1015) T) ((-706 . -1003) T) ((-111 . -650) 86745) ((-608 . -952) 86729) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1055 . -258) 86706) ((-1016 . -280) 86644) ((-1005 . -209) 86628) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 86605) ((-590 . -781) 86589) ((-972 . -21) T) ((-972 . -25) T) ((-747 . -205) 86559) ((-874 . -25) T) ((-874 . -21) T) ((-562 . -968) T) ((-449 . -25) T) ((-449 . -21) T) ((-942 . -280) 86497) ((-811 . -557) 86479) ((-807 . -557) 86461) ((-224 . -779) 86412) ((-223 . -779) 86363) ((-486 . -478) 86296) ((-795 . -579) 86273) ((-445 . -280) 86211) ((-432 . -280) 86149) ((-321 . -262) T) ((-1055 . -1143) 86133) ((-1041 . -557) 86095) ((-1041 . -558) 86056) ((-1039 . -97) T) ((-915 . -967) 85952) ((-39 . -822) 85904) ((-1055 . -550) 85881) ((-1180 . -585) 85868) ((-973 . -138) 85814) ((-796 . -1113) T) ((-915 . -106) 85689) ((-309 . -650) 85673) ((-790 . -557) 85655) ((-157 . -650) 85587) ((-377 . -258) 85545) ((-796 . -509) T) ((-103 . -370) 85527) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 85338) ((-94 . -442) T) ((-111 . -156) T) ((-1016 . -37) 85308) ((-153 . -579) 85256) ((-965 . -97) T) ((-795 . -25) T) ((-747 . -212) 85235) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 85213) ((-122 . -1109) T) ((-116 . -1109) T) ((-949 . -123) T) ((-607 . -337) 85197) ((-915 . -961) T) ((-1128 . -579) 85145) ((-1007 . -557) 85127) ((-919 . -557) 85109) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1003) T) ((-919 . -558) 85093) ((-915 . -217) 85072) ((-915 . -207) 85051) ((-1180 . -659) T) ((-1147 . -132) 85030) ((-765 . -1003) T) ((-1147 . -134) 85009) ((-1140 . -134) 84988) ((-1140 . -132) 84967) ((-1139 . -1113) 84946) ((-1119 . -132) 84853) ((-1119 . -134) 84760) ((-1118 . -1113) 84739) ((-349 . -123) T) ((-517 . -808) 84721) ((0 . -1003) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1003) T) ((-1141 . -585) 84610) ((-1139 . -509) 84561) ((-647 . -1015) T) ((-1118 . -509) 84512) ((-517 . -952) 84494) ((-542 . -134) 84473) ((-542 . -132) 84452) ((-460 . -952) 84395) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 84377) ((-1176 . -968) T) ((-349 . -970) T) ((-941 . -1003) 84355) ((-823 . -33) T) ((-450 . -280) 84293) ((-1055 . -558) 84254) ((-1055 . -557) 84186) ((-1070 . -779) 84165) ((-44 . -97) T) ((-1026 . -779) 84144) ((-749 . -97) T) ((-1128 . -25) T) ((-1128 . -21) T) ((-784 . -25) T) ((-43 . -337) 84128) ((-784 . -21) T) ((-664 . -421) 84079) ((-1175 . -557) 84061) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1003) T) ((-965 . -280) 83999) ((-562 . -1003) T) ((-632 . -808) 83981) ((-1154 . -1109) T) ((-201 . -280) 83919) ((-131 . -338) T) ((-958 . -558) 83861) ((-958 . -557) 83804) ((-283 . -831) NIL) ((-632 . -952) 83749) ((-644 . -842) T) ((-443 . -1113) 83728) ((-1071 . -421) 83707) ((-1065 . -421) 83686) ((-300 . -97) T) ((-796 . -1015) T) ((-286 . -585) 83508) ((-283 . -585) 83437) ((-443 . -509) 83388) ((-309 . -478) 83354) ((-503 . -138) 83304) ((-39 . -278) T) ((-772 . -557) 83286) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-987 . -205) 83256) ((-476 . -97) T) ((-377 . -558) 83059) ((-377 . -557) 83041) ((-236 . -557) 83023) ((-111 . -262) T) ((-1141 . -659) T) ((-1139 . -333) 83002) ((-1118 . -333) 82981) ((-1165 . -33) T) ((-112 . -1109) T) ((-103 . -205) 82963) ((-1076 . -97) T) ((-446 . -1003) T) ((-486 . -456) 82947) ((-670 . -33) T) ((-450 . -37) 82917) ((-128 . -33) T) ((-112 . -806) 82894) ((-112 . -808) NIL) ((-564 . -952) 82779) ((-583 . -779) 82758) ((-1164 . -97) T) ((-266 . -97) T) ((-645 . -338) 82737) ((-112 . -952) 82714) ((-360 . -650) 82698) ((-562 . -650) 82682) ((-44 . -280) 82486) ((-748 . -132) 82465) ((-748 . -134) 82444) ((-1175 . -352) 82423) ((-751 . -779) T) ((-1156 . -1003) T) ((-1058 . -203) 82370) ((-356 . -779) 82349) ((-1147 . -1098) 82315) ((-1147 . -1095) 82281) ((-1140 . -1095) 82247) ((-479 . -123) T) ((-1140 . -1098) 82213) ((-1119 . -1095) 82179) ((-1119 . -1098) 82145) ((-1147 . -34) 82111) ((-1147 . -91) 82077) ((-575 . -557) 82046) ((-551 . -557) 82015) ((-199 . -779) T) ((-1140 . -91) 81981) ((-1140 . -34) 81947) ((-1139 . -1015) T) ((-1021 . -585) 81934) ((-1119 . -91) 81900) ((-1118 . -1015) T) ((-540 . -138) 81882) ((-987 . -319) 81861) ((-112 . -347) 81838) ((-112 . -308) 81815) ((-157 . -262) T) ((-1119 . -34) 81781) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 81631) ((-283 . -659) T) ((-443 . -333) 81610) ((-329 . -319) 81589) ((-323 . -319) 81568) ((-315 . -319) 81547) ((-286 . -442) 81526) ((-1139 . -23) T) ((-1118 . -23) T) ((-651 . -1015) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 81491) ((-44 . -254) 81441) ((-100 . -1003) T) ((-66 . -557) 81423) ((-789 . -97) T) ((-564 . -822) 81382) ((-1176 . -1003) T) ((-351 . -1003) T) ((-80 . -1109) T) ((-972 . -779) T) ((-874 . -779) 81361) ((-112 . -822) NIL) ((-714 . -842) 81340) ((-646 . -779) T) ((-489 . -1003) T) ((-465 . -1003) T) ((-325 . -1113) T) ((-322 . -1113) T) ((-314 . -1113) T) ((-237 . -1113) 81319) ((-221 . -1113) 81298) ((-1016 . -205) 81268) ((-449 . -779) 81247) ((-1041 . -967) 81231) ((-360 . -694) T) ((-1057 . -760) T) ((-627 . -1109) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 81162) ((-221 . -509) 81093) ((-1041 . -106) 81072) ((-422 . -677) 81042) ((-790 . -967) 81012) ((-749 . -37) 80949) ((-627 . -806) 80931) ((-627 . -808) 80913) ((-266 . -280) 80717) ((-832 . -1113) T) ((-607 . -381) 80701) ((-790 . -106) 80666) ((-627 . -952) 80611) ((-920 . -421) T) ((-832 . -509) T) ((-530 . -842) T) ((-443 . -1015) T) ((-481 . -842) T) ((-1055 . -260) 80588) ((-836 . -421) T) ((-63 . -557) 80570) ((-572 . -203) 80516) ((-443 . -23) T) ((-1021 . -726) T) ((-796 . -123) T) ((-1021 . -723) T) ((-1167 . -1169) 80495) ((-1021 . -659) T) ((-591 . -585) 80469) ((-265 . -557) 80211) ((-950 . -33) T) ((-747 . -777) 80190) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1176 . -650) 80160) ((-627 . -347) 80142) ((-627 . -308) 80124) ((-446 . -156) T) ((-351 . -650) 80094) ((-795 . -779) NIL) ((-517 . -937) T) ((-460 . -937) T) ((-1034 . -557) 80076) ((-1016 . -212) 80055) ((-189 . -97) T) ((-1049 . -97) T) ((-69 . -557) 80037) ((-1041 . -961) T) ((-1076 . -37) 79934) ((-786 . -557) 79916) ((-517 . -502) T) ((-607 . -968) T) ((-664 . -871) 79869) ((-1041 . -207) 79848) ((-989 . -1003) T) ((-949 . -25) T) ((-949 . -21) T) ((-919 . -967) 79793) ((-827 . -97) T) ((-790 . -961) T) ((-627 . -822) NIL) ((-325 . -299) 79777) ((-325 . -333) T) ((-322 . -299) 79761) ((-322 . -333) T) ((-314 . -299) 79745) ((-314 . -333) T) ((-454 . -97) T) ((-1164 . -37) 79715) ((-486 . -621) 79665) ((-192 . -97) T) ((-939 . -952) 79547) ((-919 . -106) 79464) ((-1072 . -890) 79434) ((-1071 . -890) 79397) ((-483 . -138) 79381) ((-987 . -340) 79360) ((-321 . -557) 79342) ((-292 . -21) T) ((-324 . -952) 79319) ((-292 . -25) T) ((-1065 . -890) 79289) ((-1027 . -890) 79256) ((-74 . -557) 79238) ((-632 . -278) T) ((-153 . -779) 79217) ((-832 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-832 . -299) 79204) ((-84 . -557) 79186) ((-632 . -937) T) ((-612 . -779) T) ((-1139 . -123) T) ((-1118 . -123) T) ((-823 . -926) 79170) ((-766 . -21) T) ((-47 . -952) 79113) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1174 . -968) T) ((-1172 . -968) T) ((-591 . -659) T) ((-1175 . -967) 79097) ((-1128 . -779) 79076) ((-747 . -381) 79045) ((-98 . -114) 79029) ((-51 . -1003) T) ((-848 . -557) 79011) ((-795 . -909) 78988) ((-755 . -97) T) ((-1175 . -106) 78967) ((-590 . -37) 78937) ((-524 . -779) T) ((-325 . -1015) T) ((-322 . -1015) T) ((-314 . -1015) T) ((-237 . -1015) T) ((-221 . -1015) T) ((-564 . -278) 78916) ((-1049 . -280) 78720) ((-601 . -23) T) ((-450 . -205) 78690) ((-139 . -968) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-919 . -961) T) ((-645 . -831) 78669) ((-919 . -207) 78641) ((-919 . -217) T) ((-112 . -937) NIL) ((-832 . -1015) T) ((-1140 . -421) 78620) ((-1119 . -421) 78599) ((-486 . -557) 78531) ((-645 . -585) 78456) ((-377 . -967) 78408) ((-469 . -557) 78390) ((-832 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 78321) ((-747 . -968) 78252) ((-670 . -1001) 78236) ((-1139 . -458) 78202) ((-1118 . -458) 78168) ((-128 . -1001) 78150) ((-446 . -262) T) ((-1175 . -961) T) ((-973 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 78129) ((-1070 . -132) 78108) ((-1070 . -134) 78087) ((-1026 . -134) 78066) ((-1026 . -132) 78045) ((-575 . -967) 78029) ((-551 . -967) 78013) ((-607 . -1003) T) ((-607 . -964) 77953) ((-1072 . -1146) 77937) ((-1072 . -1133) 77914) ((-454 . -1050) T) ((-1071 . -1138) 77875) ((-1071 . -1133) 77845) ((-1071 . -1136) 77829) ((-192 . -1050) T) ((-313 . -842) T) ((-750 . -239) 77813) ((-575 . -106) 77792) ((-551 . -106) 77771) ((-1065 . -1117) 77732) ((-772 . -961) 77711) ((-1065 . -1133) 77688) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1065 . -1115) 77672) ((-377 . -961) T) ((-289 . -968) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 77651) ((-645 . -659) T) ((-454 . -37) 77601) ((-192 . -37) 77551) ((-443 . -458) 77517) ((-1057 . -1043) T) ((-1004 . -97) T) ((-634 . -557) 77499) ((-634 . -558) 77414) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 77396) ((-111 . -557) 77378) ((-142 . -25) T) ((-1174 . -1003) T) ((-796 . -579) 77326) ((-1172 . -1003) T) ((-884 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 77277) ((-43 . -1003) T) ((-993 . -779) T) ((-601 . -123) T) ((-973 . -280) 77128) ((-607 . -650) 77112) ((-261 . -968) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1003) T) ((-44 . -203) 77062) ((-879 . -779) 77041) ((-915 . -585) 76979) ((-214 . -1161) 76949) ((-939 . -278) T) ((-265 . -967) 76871) ((-832 . -123) T) ((-39 . -842) T) ((-454 . -370) 76853) ((-324 . -278) T) ((-192 . -370) 76835) ((-987 . -381) 76819) ((-265 . -106) 76736) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 76718) ((-1141 . -46) 76662) ((-199 . -134) T) ((-157 . -557) 76644) ((-1016 . -777) 76623) ((-706 . -557) 76605) ((-552 . -209) 76552) ((-444 . -209) 76502) ((-1174 . -650) 76472) ((-47 . -278) T) ((-1172 . -650) 76442) ((-885 . -1003) T) ((-747 . -1003) 76253) ((-282 . -97) T) ((-823 . -1109) T) ((-47 . -937) T) ((-1118 . -579) 76161) ((-623 . -97) 76139) ((-43 . -650) 76123) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1107 . -1003) 76101) ((-321 . -967) 76046) ((-611 . -1003) 76024) ((-972 . -134) T) ((-874 . -134) 76003) ((-874 . -132) 75982) ((-731 . -97) T) ((-139 . -650) 75966) ((-449 . -134) 75945) ((-449 . -132) 75924) ((-321 . -106) 75841) ((-987 . -968) T) ((-292 . -779) 75820) ((-1147 . -890) 75790) ((-567 . -1003) T) ((-1140 . -890) 75753) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 75703) ((-329 . -968) T) ((-323 . -968) T) ((-315 . -968) T) ((-265 . -961) 75646) ((-1119 . -890) 75616) ((-349 . -779) T) ((-103 . -968) T) ((-915 . -659) T) ((-794 . -842) T) ((-772 . -727) 75595) ((-772 . -724) 75574) ((-388 . -280) 75513) ((-437 . -97) T) ((-542 . -890) 75483) ((-289 . -1003) T) ((-377 . -727) 75462) ((-377 . -724) 75441) ((-465 . -456) 75423) ((-1141 . -952) 75389) ((-1139 . -21) T) ((-1139 . -25) T) ((-1118 . -21) T) ((-1118 . -25) T) ((-747 . -650) 75331) ((-632 . -374) T) ((-1165 . -1109) T) ((-1016 . -381) 75300) ((-919 . -338) NIL) ((-98 . -33) T) ((-670 . -1109) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 75284) ((-128 . -1109) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -961) T) ((-68 . -353) T) ((-68 . -365) T) ((-1064 . -97) T) ((-607 . -478) 75217) ((-623 . -280) 75155) ((-884 . -37) 75052) ((-668 . -37) 75022) ((-503 . -280) 74826) ((-286 . -1109) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1109) T) ((-261 . -1003) T) ((-1078 . -557) 74808) ((-644 . -1113) T) ((-1055 . -588) 74792) ((-1104 . -509) 74771) ((-644 . -509) T) ((-286 . -806) 74755) ((-286 . -808) 74680) ((-283 . -806) 74641) ((-283 . -808) NIL) ((-731 . -280) 74606) ((-289 . -650) 74447) ((-294 . -293) 74424) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 74398) ((-286 . -952) 74066) ((-199 . -1095) T) ((-199 . -1098) T) ((-3 . -557) 74048) ((-283 . -952) 73978) ((-2 . -1003) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73960) ((-1016 . -968) 73891) ((-529 . -842) T) ((-517 . -752) T) ((-517 . -842) T) ((-460 . -842) T) ((-127 . -952) 73875) ((-199 . -91) T) ((-153 . -134) 73854) ((-73 . -410) T) ((0 . -557) 73836) ((-73 . -365) T) ((-153 . -132) 73787) ((-199 . -34) T) ((-48 . -557) 73769) ((-446 . -968) T) ((-454 . -205) 73751) ((-451 . -886) 73735) ((-450 . -777) 73714) ((-192 . -205) 73696) ((-79 . -410) T) ((-79 . -365) T) ((-1045 . -33) T) ((-747 . -156) 73675) ((-664 . -97) T) ((-941 . -557) 73642) ((-465 . -258) 73617) ((-286 . -347) 73587) ((-283 . -347) 73548) ((-283 . -308) 73509) ((-748 . -871) 73456) ((-599 . -123) T) ((-1128 . -132) 73435) ((-1128 . -134) 73414) ((-1072 . -97) T) ((-1071 . -97) T) ((-1065 . -97) T) ((-1058 . -1003) T) ((-1027 . -97) T) ((-196 . -33) T) ((-261 . -650) 73401) ((-1058 . -554) 73377) ((-540 . -280) NIL) ((-451 . -1003) 73355) ((-360 . -557) 73337) ((-474 . -779) T) ((-1049 . -203) 73287) ((-1147 . -1146) 73271) ((-1147 . -1133) 73248) ((-1140 . -1138) 73209) ((-1140 . -1133) 73179) ((-1140 . -1136) 73163) ((-1119 . -1117) 73124) ((-1119 . -1133) 73101) ((-562 . -557) 73083) ((-1119 . -1115) 73067) ((-632 . -842) T) ((-1072 . -256) 73033) ((-1071 . -256) 72999) ((-1065 . -256) 72965) ((-987 . -1003) T) ((-971 . -1003) T) ((-47 . -273) T) ((-286 . -822) 72932) ((-283 . -822) NIL) ((-971 . -977) 72911) ((-1021 . -808) 72893) ((-731 . -37) 72877) ((-237 . -579) 72825) ((-221 . -579) 72773) ((-634 . -967) 72760) ((-542 . -1133) 72737) ((-1027 . -256) 72703) ((-289 . -156) 72634) ((-329 . -1003) T) ((-323 . -1003) T) ((-315 . -1003) T) ((-465 . -19) 72616) ((-1021 . -952) 72598) ((-1005 . -138) 72582) ((-103 . -1003) T) ((-111 . -967) 72569) ((-644 . -333) T) ((-465 . -550) 72544) ((-634 . -106) 72529) ((-406 . -97) T) ((-44 . -1048) 72479) ((-111 . -106) 72464) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 72397) ((-950 . -1109) T) ((-865 . -138) 72381) ((-483 . -97) 72331) ((-992 . -1113) 72310) ((-446 . -557) 72262) ((-446 . -558) 72184) ((-60 . -1109) T) ((-714 . -1113) 72163) ((-712 . -1113) 72142) ((-1070 . -421) 72073) ((-1057 . -1003) T) ((-1041 . -585) 72047) ((-992 . -509) 71978) ((-450 . -381) 71947) ((-564 . -842) 71926) ((-423 . -1113) 71905) ((-1026 . -421) 71856) ((-368 . -557) 71838) ((-611 . -478) 71771) ((-714 . -509) 71682) ((-712 . -509) 71613) ((-664 . -280) 71600) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 71531) ((-112 . -842) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1156 . -557) 71513) ((-1104 . -1015) T) ((-1104 . -23) T) ((-1065 . -280) 71398) ((-1027 . -280) 71385) ((-790 . -585) 71345) ((-987 . -650) 71213) ((-865 . -897) 71197) ((-261 . -156) T) ((-832 . -21) T) ((-832 . -25) T) ((-796 . -779) 71148) ((-644 . -1015) T) ((-644 . -23) T) ((-584 . -1003) 71126) ((-572 . -554) 71101) ((-572 . -1003) T) ((-530 . -1113) T) ((-481 . -1113) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 71053) ((-323 . -650) 71005) ((-157 . -967) 70937) ((-309 . -967) 70921) ((-103 . -650) 70871) ((-157 . -106) 70770) ((-315 . -650) 70722) ((-309 . -106) 70701) ((-247 . -1003) T) ((-246 . -1003) T) ((-245 . -1003) T) ((-244 . -1003) T) ((-634 . -961) T) ((-243 . -1003) T) ((-242 . -1003) T) ((-241 . -1003) T) ((-188 . -1003) T) ((-187 . -1003) T) ((-185 . -1003) T) ((-153 . -1098) 70679) ((-153 . -1095) 70657) ((-184 . -1003) T) ((-183 . -1003) T) ((-111 . -961) T) ((-182 . -1003) T) ((-179 . -1003) T) ((-634 . -207) T) ((-178 . -1003) T) ((-177 . -1003) T) ((-176 . -1003) T) ((-175 . -1003) T) ((-174 . -1003) T) ((-173 . -1003) T) ((-172 . -1003) T) ((-171 . -1003) T) ((-170 . -1003) T) ((-169 . -1003) T) ((-214 . -97) 70468) ((-153 . -34) 70446) ((-153 . -91) 70424) ((-591 . -952) 70322) ((-450 . -968) 70253) ((-1016 . -1003) 70064) ((-1041 . -33) T) ((-607 . -456) 70048) ((-71 . -1109) T) ((-100 . -557) 70030) ((-1176 . -557) 70012) ((-351 . -557) 69994) ((-524 . -1098) T) ((-524 . -1095) T) ((-664 . -37) 69843) ((-489 . -557) 69825) ((-483 . -280) 69763) ((-465 . -557) 69745) ((-465 . -558) 69727) ((-1065 . -1050) NIL) ((-942 . -980) 69696) ((-942 . -1003) T) ((-920 . -97) T) ((-888 . -97) T) ((-836 . -97) T) ((-815 . -952) 69673) ((-1041 . -659) T) ((-919 . -585) 69618) ((-445 . -1003) T) ((-432 . -1003) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-973 . -203) 69564) ((-1072 . -37) 69461) ((-790 . -659) T) ((-627 . -842) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1071 . -37) 69302) ((-309 . -961) T) ((-1065 . -37) 69098) ((-987 . -156) T) ((-157 . -961) T) ((-1027 . -37) 68995) ((-645 . -46) 68972) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68946) ((-462 . -55) 68896) ((-321 . -1171) 68873) ((-199 . -421) T) ((-289 . -262) 68824) ((-315 . -156) T) ((-157 . -217) T) ((-1118 . -779) 68723) ((-103 . -156) T) ((-796 . -909) 68707) ((-595 . -1015) T) ((-530 . -333) T) ((-530 . -299) 68694) ((-481 . -299) 68671) ((-481 . -333) T) ((-286 . -278) 68650) ((-283 . -278) T) ((-548 . -779) 68629) ((-1016 . -650) 68571) ((-483 . -254) 68555) ((-595 . -23) T) ((-388 . -205) 68539) ((-283 . -937) NIL) ((-306 . -23) T) ((-98 . -926) 68523) ((-44 . -35) 68502) ((-556 . -1003) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 68440) ((-992 . -1015) T) ((-1175 . -585) 68414) ((-714 . -1015) T) ((-712 . -1015) T) ((-423 . -1015) T) ((-972 . -421) T) ((-874 . -421) 68365) ((-105 . -1003) T) ((-992 . -23) T) ((-749 . -968) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 68316) ((-1058 . -478) 68064) ((-351 . -352) 68043) ((-1076 . -381) 68027) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67960) ((-261 . -262) T) ((-989 . -557) 67942) ((-377 . -831) 67921) ((-49 . -1015) T) ((-939 . -842) T) ((-919 . -659) T) ((-645 . -808) NIL) ((-530 . -1015) T) ((-481 . -1015) T) ((-772 . -585) 67894) ((-1104 . -123) T) ((-1065 . -370) 67846) ((-920 . -280) NIL) ((-747 . -456) 67830) ((-324 . -842) T) ((-1055 . -33) T) ((-377 . -585) 67782) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -952) 67665) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 67636) ((-1039 . -1003) T) ((-1167 . -1166) 67620) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1021 . -278) T) ((-1118 . -909) 67590) ((-47 . -842) T) ((-611 . -456) 67574) ((-224 . -1161) 67544) ((-223 . -1161) 67514) ((-1074 . -779) T) ((-1016 . -156) 67493) ((-1021 . -937) T) ((-958 . -33) T) ((-766 . -134) 67472) ((-766 . -132) 67451) ((-670 . -102) 67435) ((-556 . -124) T) ((-450 . -1003) 67246) ((-1076 . -968) T) ((-795 . -421) T) ((-83 . -1109) T) ((-214 . -37) 67216) ((-128 . -102) 67198) ((-645 . -347) 67182) ((-1021 . -502) T) ((-360 . -967) 67166) ((-1175 . -659) T) ((-1070 . -871) 67136) ((-51 . -557) 67118) ((-1026 . -871) 67085) ((-590 . -381) 67069) ((-1164 . -968) T) ((-562 . -967) 67053) ((-599 . -25) T) ((-599 . -21) T) ((-1057 . -478) NIL) ((-1147 . -97) T) ((-1140 . -97) T) ((-360 . -106) 67032) ((-196 . -227) 67016) ((-1119 . -97) T) ((-965 . -1003) T) ((-920 . -1050) T) ((-965 . -964) 66956) ((-750 . -1003) T) ((-313 . -1113) T) ((-575 . -585) 66940) ((-562 . -106) 66919) ((-551 . -585) 66903) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1003) T) ((-355 . -1003) T) ((-201 . -1003) 66881) ((-584 . -478) 66814) ((-572 . -478) 66622) ((-765 . -961) 66601) ((-583 . -138) 66585) ((-313 . -509) T) ((-645 . -822) 66529) ((-503 . -203) 66479) ((-1147 . -256) 66445) ((-987 . -262) 66396) ((-454 . -777) T) ((-197 . -1015) T) ((-1140 . -256) 66362) ((-1119 . -256) 66328) ((-920 . -37) 66278) ((-192 . -777) T) ((-1104 . -458) 66244) ((-836 . -37) 66196) ((-772 . -726) 66175) ((-772 . -723) 66154) ((-772 . -659) 66133) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 66064) ((-397 . -37) 66048) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 66027) ((-377 . -723) 66006) ((-377 . -659) T) ((-465 . -260) 65981) ((-446 . -967) 65946) ((-595 . -123) T) ((-1016 . -478) 65879) ((-306 . -123) T) ((-153 . -372) 65858) ((-450 . -650) 65800) ((-747 . -258) 65777) ((-446 . -106) 65726) ((-590 . -968) T) ((-1128 . -421) 65657) ((-992 . -123) T) ((-237 . -779) 65636) ((-221 . -779) 65615) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-965 . -650) 65557) ((-562 . -961) T) ((-942 . -478) 65490) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1003) T) ((-355 . -650) 65460) ((-749 . -1003) T) ((-445 . -478) 65393) ((-432 . -478) 65326) ((-422 . -337) 65296) ((-44 . -554) 65275) ((-286 . -273) T) ((-607 . -557) 65237) ((-57 . -779) 65216) ((-1119 . -280) 65101) ((-920 . -370) 65083) ((-747 . -550) 65060) ((-480 . -779) 65039) ((-461 . -779) 65018) ((-39 . -1113) T) ((-915 . -952) 64916) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64778) ((-313 . -299) 64755) ((-313 . -333) T) ((-292 . -293) 64732) ((-289 . -258) 64717) ((-39 . -509) T) ((-349 . -1095) T) ((-349 . -1098) T) ((-950 . -1086) 64692) ((-1083 . -209) 64642) ((-1065 . -205) 64594) ((-300 . -1003) T) ((-349 . -91) T) ((-349 . -34) T) ((-950 . -102) 64540) ((-446 . -961) T) ((-447 . -209) 64490) ((-1058 . -456) 64424) ((-1176 . -967) 64408) ((-351 . -967) 64392) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 64371) ((-647 . -132) 64350) ((-451 . -456) 64334) ((-452 . -305) 64303) ((-1176 . -106) 64282) ((-476 . -1003) T) ((-450 . -156) 64261) ((-915 . -347) 64245) ((-383 . -97) T) ((-351 . -106) 64224) ((-915 . -308) 64208) ((-252 . -900) 64192) ((-251 . -900) 64176) ((-1174 . -557) 64158) ((-1172 . -557) 64140) ((-105 . -478) NIL) ((-1070 . -1131) 64124) ((-783 . -781) 64108) ((-1076 . -1003) T) ((-98 . -1109) T) ((-874 . -871) 64069) ((-749 . -650) 64006) ((-1119 . -1050) NIL) ((-449 . -871) 63951) ((-972 . -130) T) ((-58 . -97) 63929) ((-43 . -557) 63911) ((-76 . -557) 63893) ((-321 . -585) 63838) ((-1164 . -1003) T) ((-475 . -779) T) ((-313 . -1015) T) ((-266 . -1003) T) ((-915 . -822) 63797) ((-266 . -554) 63776) ((-1147 . -37) 63673) ((-1140 . -37) 63514) ((-454 . -968) T) ((-1119 . -37) 63310) ((-192 . -968) T) ((-313 . -23) T) ((-139 . -557) 63292) ((-765 . -727) 63271) ((-765 . -724) 63250) ((-543 . -37) 63223) ((-542 . -37) 63120) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -918) 63086) ((-77 . -557) 63068) ((-645 . -278) 63047) ((-265 . -659) 62950) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62929) ((-1167 . -97) T) ((-39 . -333) T) ((-796 . -134) 62908) ((-796 . -132) 62887) ((-1057 . -456) 62869) ((-1176 . -961) T) ((-450 . -478) 62802) ((-1045 . -1109) T) ((-885 . -557) 62784) ((-584 . -456) 62768) ((-572 . -456) 62700) ((-747 . -557) 62452) ((-47 . -27) T) ((-1076 . -650) 62349) ((-590 . -1003) T) ((-406 . -334) 62323) ((-1005 . -97) T) ((-748 . -280) 62310) ((-789 . -1003) T) ((-1172 . -352) 62282) ((-965 . -478) 62215) ((-1058 . -258) 62191) ((-214 . -205) 62161) ((-1164 . -650) 62131) ((-749 . -156) 62110) ((-201 . -478) 62043) ((-562 . -727) 62022) ((-562 . -724) 62001) ((-1107 . -557) 61913) ((-196 . -1109) T) ((-611 . -557) 61845) ((-1055 . -926) 61829) ((-321 . -659) T) ((-865 . -97) 61779) ((-1119 . -370) 61731) ((-1016 . -456) 61715) ((-58 . -280) 61653) ((-301 . -97) T) ((-1104 . -21) T) ((-1104 . -25) T) ((-39 . -1015) T) ((-644 . -21) T) ((-567 . -557) 61635) ((-479 . -293) 61614) ((-644 . -25) T) ((-103 . -258) NIL) ((-843 . -1015) T) ((-39 . -23) T) ((-703 . -1015) T) ((-517 . -1113) T) ((-460 . -1113) T) ((-289 . -557) 61596) ((-920 . -205) 61578) ((-153 . -150) 61562) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1139 . -134) 61541) ((-1058 . -550) 61517) ((-1139 . -132) 61496) ((-942 . -456) 61480) ((-1118 . -132) 61405) ((-1118 . -134) 61330) ((-1167 . -1173) 61309) ((-445 . -456) 61293) ((-432 . -456) 61277) ((-486 . -33) T) ((-590 . -650) 61247) ((-599 . -779) 61226) ((-1076 . -156) 61177) ((-335 . -97) T) ((-214 . -212) 61156) ((-224 . -97) T) ((-223 . -97) T) ((-1128 . -871) 61126) ((-104 . -97) T) ((-219 . -779) 61105) ((-748 . -37) 60954) ((-44 . -478) 60714) ((-1057 . -258) 60689) ((-189 . -1003) T) ((-1049 . -1003) T) ((-1049 . -554) 60668) ((-534 . -25) T) ((-534 . -21) T) ((-1005 . -280) 60606) ((-884 . -381) 60590) ((-632 . -1113) T) ((-572 . -258) 60565) ((-992 . -579) 60513) ((-714 . -579) 60461) ((-712 . -579) 60409) ((-313 . -123) T) ((-261 . -557) 60391) ((-632 . -509) T) ((-827 . -1003) T) ((-794 . -1015) T) ((-423 . -579) 60339) ((-827 . -825) 60323) ((-349 . -421) T) ((-454 . -1003) T) ((-634 . -585) 60310) ((-865 . -280) 60248) ((-192 . -1003) T) ((-286 . -842) 60227) ((-283 . -842) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 60214) ((-443 . -132) 60193) ((-388 . -381) 60177) ((-443 . -134) 60156) ((-105 . -456) 60138) ((-2 . -557) 60120) ((-1057 . -19) 60102) ((-1057 . -550) 60077) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1043) T) ((-1016 . -258) 60054) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1167 . -37) 60024) ((-1041 . -1109) T) ((-572 . -550) 59999) ((-992 . -25) T) ((-992 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1113) T) ((-884 . -968) T) ((-564 . -509) T) ((-668 . -968) T) ((-648 . -968) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -967) 59983) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1041 . -952) 59881) ((-749 . -262) 59860) ((-755 . -1003) T) ((-607 . -106) 59839) ((-266 . -478) 59599) ((-1174 . -967) 59583) ((-1172 . -967) 59567) ((-224 . -280) 59505) ((-223 . -280) 59443) ((-1122 . -97) 59421) ((-1058 . -558) NIL) ((-1058 . -557) 59403) ((-1139 . -1095) 59369) ((-1139 . -1098) 59335) ((-1119 . -205) 59287) ((-1118 . -1095) 59253) ((-1118 . -1098) 59219) ((-1041 . -347) 59203) ((-1021 . -752) T) ((-1021 . -842) T) ((-1016 . -550) 59180) ((-987 . -558) 59164) ((-451 . -557) 59096) ((-747 . -260) 59073) ((-552 . -138) 59020) ((-388 . -968) T) ((-454 . -650) 58970) ((-450 . -456) 58954) ((-297 . -779) 58933) ((-309 . -585) 58907) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58857) ((-153 . -657) 58828) ((-157 . -585) 58760) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58710) ((-987 . -557) 58692) ((-971 . -557) 58674) ((-910 . -97) T) ((-787 . -97) T) ((-731 . -381) 58638) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -817) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1015) T) ((-517 . -1015) T) ((-460 . -1015) T) ((-634 . -659) T) ((-329 . -557) 58620) ((-323 . -557) 58602) ((-315 . -557) 58584) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 58514) ((-103 . -557) 58496) ((-187 . -817) T) ((-879 . -138) 58480) ((-1139 . -91) 58446) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1139 . -34) 58412) ((-965 . -456) 58396) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1118 . -91) 58362) ((-1118 . -34) 58328) ((-1070 . -97) T) ((-1026 . -97) T) ((-783 . -97) T) ((-201 . -456) 58312) ((-1174 . -106) 58291) ((-1172 . -106) 58270) ((-43 . -967) 58254) ((-1128 . -1131) 58238) ((-784 . -781) 58222) ((-1076 . -262) 58201) ((-105 . -258) 58176) ((-1041 . -822) 58135) ((-43 . -106) 58114) ((-607 . -961) T) ((-1057 . -558) NIL) ((-1057 . -557) 58096) ((-973 . -554) 58071) ((-973 . -1003) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 58050) ((-139 . -967) 58034) ((-524 . -507) 58018) ((-325 . -134) 57997) ((-325 . -132) 57948) ((-322 . -134) 57927) ((-636 . -1003) T) ((-322 . -132) 57878) ((-314 . -134) 57857) ((-314 . -132) 57808) ((-237 . -132) 57787) ((-237 . -134) 57766) ((-224 . -37) 57736) ((-221 . -134) 57715) ((-112 . -333) T) ((-221 . -132) 57694) ((-223 . -37) 57664) ((-139 . -106) 57643) ((-919 . -952) 57520) ((-1065 . -777) NIL) ((-627 . -1113) T) ((-731 . -968) T) ((-632 . -1015) T) ((-1174 . -961) T) ((-1172 . -961) T) ((-1055 . -1109) T) ((-919 . -347) 57497) ((-832 . -132) T) ((-832 . -134) 57479) ((-794 . -123) T) ((-747 . -967) 57377) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 57309) ((-584 . -558) 57270) ((-572 . -558) NIL) ((-572 . -557) 57252) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1098) 57218) ((-443 . -1095) 57184) ((-247 . -557) 57166) ((-246 . -557) 57148) ((-245 . -557) 57130) ((-244 . -557) 57112) ((-243 . -557) 57094) ((-465 . -588) 57076) ((-242 . -557) 57058) ((-309 . -659) T) ((-241 . -557) 57040) ((-105 . -19) 57022) ((-157 . -659) T) ((-465 . -343) 57004) ((-188 . -557) 56986) ((-483 . -1048) 56970) ((-465 . -118) T) ((-105 . -550) 56945) ((-187 . -557) 56927) ((-443 . -34) 56893) ((-443 . -91) 56859) ((-185 . -557) 56841) ((-184 . -557) 56823) ((-183 . -557) 56805) ((-182 . -557) 56787) ((-179 . -557) 56769) ((-178 . -557) 56751) ((-177 . -557) 56733) ((-176 . -557) 56715) ((-175 . -557) 56697) ((-174 . -557) 56679) ((-173 . -557) 56661) ((-493 . -1006) 56613) ((-172 . -557) 56595) ((-171 . -557) 56577) ((-44 . -456) 56514) ((-170 . -557) 56496) ((-169 . -557) 56478) ((-747 . -106) 56369) ((-583 . -97) 56319) ((-450 . -258) 56296) ((-1016 . -557) 56048) ((-1004 . -1003) T) ((-958 . -1109) T) ((-564 . -1015) T) ((-1175 . -952) 56032) ((-1070 . -280) 56019) ((-1026 . -280) 56006) ((-112 . -1015) T) ((-751 . -97) T) ((-564 . -23) T) ((-1049 . -478) 55766) ((-356 . -97) T) ((-294 . -97) T) ((-919 . -822) 55718) ((-884 . -1003) T) ((-139 . -961) T) ((-112 . -23) T) ((-664 . -381) 55702) ((-668 . -1003) T) ((-648 . -1003) T) ((-636 . -124) T) ((-422 . -1003) T) ((-286 . -400) 55686) ((-377 . -1109) T) ((-942 . -558) 55647) ((-939 . -1113) T) ((-199 . -97) T) ((-942 . -557) 55609) ((-748 . -205) 55593) ((-939 . -509) T) ((-765 . -585) 55566) ((-324 . -1113) T) ((-445 . -557) 55528) ((-445 . -558) 55489) ((-432 . -558) 55450) ((-432 . -557) 55412) ((-377 . -806) 55396) ((-289 . -967) 55231) ((-377 . -808) 55156) ((-772 . -952) 55054) ((-454 . -478) NIL) ((-450 . -550) 55031) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1003) T) ((-377 . -952) 54898) ((-289 . -106) 54712) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1113) T) ((-747 . -961) 54643) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1058 . -260) 54619) ((-1070 . -1050) 54597) ((-286 . -27) 54576) ((-972 . -97) T) ((-747 . -207) 54529) ((-214 . -777) 54508) ((-874 . -97) T) ((-646 . -97) T) ((-266 . -456) 54445) ((-449 . -97) T) ((-664 . -968) T) ((-556 . -557) 54427) ((-556 . -558) 54288) ((-377 . -347) 54272) ((-377 . -308) 54256) ((-1070 . -37) 54085) ((-1026 . -37) 53934) ((-783 . -37) 53904) ((-360 . -585) 53888) ((-583 . -280) 53826) ((-884 . -650) 53723) ((-196 . -102) 53707) ((-44 . -258) 53632) ((-668 . -650) 53602) ((-562 . -585) 53576) ((-282 . -1003) T) ((-261 . -967) 53563) ((-105 . -557) 53545) ((-105 . -558) 53527) ((-422 . -650) 53497) ((-748 . -226) 53436) ((-623 . -1003) 53414) ((-503 . -1003) T) ((-1072 . -968) T) ((-1071 . -968) T) ((-261 . -106) 53399) ((-1065 . -968) T) ((-1027 . -968) T) ((-503 . -554) 53378) ((-920 . -777) T) ((-201 . -621) 53336) ((-627 . -1015) T) ((-1104 . -673) 53312) ((-289 . -961) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -822) 53271) ((-66 . -1109) T) ((-765 . -726) 53250) ((-388 . -650) 53224) ((-731 . -1003) T) ((-765 . -723) 53203) ((-632 . -123) T) ((-645 . -842) 53182) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 53161) ((-289 . -207) 53113) ((-289 . -217) 53092) ((-192 . -262) T) ((-939 . -333) T) ((-1139 . -421) 53071) ((-1118 . -421) 53050) ((-324 . -299) 53027) ((-324 . -333) T) ((-1039 . -557) 53009) ((-44 . -1143) 52959) ((-795 . -97) T) ((-583 . -254) 52943) ((-632 . -970) T) ((-446 . -585) 52908) ((-437 . -1003) T) ((-44 . -550) 52833) ((-1057 . -260) 52808) ((-39 . -579) 52742) ((-47 . -333) T) ((-1009 . -557) 52724) ((-992 . -779) 52703) ((-572 . -260) 52678) ((-714 . -779) 52657) ((-712 . -779) 52636) ((-450 . -557) 52388) ((-214 . -381) 52357) ((-874 . -280) 52344) ((-423 . -779) 52323) ((-63 . -1109) T) ((-564 . -123) T) ((-449 . -280) 52310) ((-973 . -478) 52118) ((-261 . -961) T) ((-112 . -123) T) ((-422 . -694) T) ((-884 . -156) 52069) ((-987 . -967) 51979) ((-562 . -726) 51958) ((-540 . -1003) T) ((-562 . -723) 51937) ((-562 . -659) T) ((-266 . -258) 51916) ((-265 . -1109) T) ((-965 . -557) 51878) ((-965 . -558) 51839) ((-939 . -1015) T) ((-153 . -97) T) ((-248 . -779) T) ((-1064 . -1003) T) ((-750 . -557) 51821) ((-1016 . -260) 51798) ((-1005 . -203) 51782) ((-919 . -278) T) ((-731 . -650) 51766) ((-329 . -967) 51718) ((-324 . -1015) T) ((-323 . -967) 51670) ((-384 . -557) 51652) ((-355 . -557) 51634) ((-315 . -967) 51586) ((-201 . -557) 51518) ((-987 . -106) 51407) ((-939 . -23) T) ((-103 . -967) 51357) ((-820 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 51336) ((-388 . -156) T) ((-329 . -106) 51267) ((-323 . -106) 51198) ((-315 . -106) 51129) ((-224 . -205) 51099) ((-223 . -205) 51069) ((-324 . -23) T) ((-69 . -1109) T) ((-199 . -37) 51034) ((-103 . -106) 50961) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50939) ((-47 . -1015) T) ((-843 . -25) T) ((-703 . -25) T) ((-1049 . -456) 50876) ((-452 . -1003) T) ((-1176 . -585) 50850) ((-1128 . -97) T) ((-784 . -97) T) ((-214 . -968) 50781) ((-972 . -1050) T) ((-885 . -724) 50734) ((-351 . -585) 50718) ((-47 . -23) T) ((-885 . -727) 50671) ((-747 . -727) 50622) ((-747 . -724) 50573) ((-266 . -550) 50552) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 50496) ((-590 . -258) 50475) ((-107 . -598) T) ((-74 . -1109) T) ((-972 . -37) 50462) ((-601 . -344) 50441) ((-874 . -37) 50290) ((-664 . -1003) T) ((-449 . -37) 50139) ((-84 . -1109) T) ((-524 . -256) T) ((-1119 . -777) NIL) ((-1072 . -1003) T) ((-1071 . -1003) T) ((-1065 . -1003) T) ((-321 . -952) 50116) ((-987 . -961) T) ((-920 . -968) T) ((-44 . -557) 50098) ((-44 . -558) NIL) ((-836 . -968) T) ((-749 . -557) 50080) ((-1046 . -97) 50058) ((-987 . -217) 50009) ((-397 . -968) T) ((-329 . -961) T) ((-323 . -961) T) ((-335 . -334) 49986) ((-315 . -961) T) ((-224 . -212) 49965) ((-223 . -212) 49944) ((-104 . -334) 49918) ((-987 . -207) 49843) ((-1027 . -1003) T) ((-265 . -822) 49802) ((-103 . -961) T) ((-627 . -123) T) ((-388 . -478) 49644) ((-329 . -207) 49623) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49602) ((-323 . -217) T) ((-315 . -207) 49581) ((-315 . -217) T) ((-153 . -280) 49546) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49521) ((-1016 . -967) 49419) ((-795 . -1050) NIL) ((-300 . -557) 49401) ((-377 . -937) 49380) ((-1016 . -106) 49271) ((-406 . -1003) T) ((-1176 . -659) T) ((-61 . -557) 49253) ((-795 . -37) 49198) ((-486 . -1109) T) ((-548 . -138) 49182) ((-476 . -557) 49164) ((-1128 . -280) 49151) ((-664 . -650) 49000) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48982) ((-460 . -579) 48942) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48893) ((-483 . -1003) 48843) ((-221 . -421) 48794) ((-1049 . -258) 48773) ((-1076 . -557) 48755) ((-623 . -478) 48688) ((-884 . -262) 48667) ((-503 . -478) 48427) ((-1070 . -205) 48411) ((-153 . -1050) 48390) ((-1164 . -557) 48372) ((-1072 . -650) 48269) ((-1071 . -650) 48110) ((-814 . -97) T) ((-1065 . -650) 47906) ((-1027 . -650) 47803) ((-1055 . -610) 47787) ((-325 . -372) 47738) ((-322 . -372) 47689) ((-314 . -372) 47640) ((-939 . -123) T) ((-731 . -478) 47552) ((-266 . -558) NIL) ((-266 . -557) 47534) ((-832 . -421) T) ((-885 . -338) 47487) ((-747 . -338) 47466) ((-474 . -473) 47445) ((-472 . -473) 47424) ((-454 . -258) NIL) ((-450 . -260) 47401) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1015) T) ((-153 . -37) 47229) ((-1139 . -890) 47192) ((-1046 . -280) 47130) ((-1118 . -890) 47100) ((-832 . -372) T) ((-1016 . -961) 47031) ((-1141 . -509) T) ((-1049 . -550) 47010) ((-107 . -779) T) ((-973 . -456) 46942) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1128 . -1050) 46920) ((-1016 . -207) 46873) ((-47 . -123) T) ((-1091 . -97) T) ((-214 . -1003) 46684) ((-795 . -370) 46661) ((-993 . -97) T) ((-983 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1128 . -37) 46490) ((-784 . -37) 46460) ((-664 . -156) 46371) ((-590 . -557) 46353) ((-524 . -37) 46340) ((-879 . -97) 46290) ((-789 . -557) 46272) ((-789 . -558) 46194) ((-540 . -478) NIL) ((-1147 . -968) T) ((-1140 . -968) T) ((-1119 . -968) T) ((-543 . -968) T) ((-542 . -968) T) ((-1180 . -1015) T) ((-1072 . -156) 46145) ((-1071 . -156) 46076) ((-1065 . -156) 46007) ((-1027 . -156) 45958) ((-920 . -1003) T) ((-888 . -1003) T) ((-836 . -1003) T) ((-1104 . -134) 45937) ((-731 . -729) 45921) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45898) ((-634 . -808) 45880) ((-397 . -1003) T) ((-286 . -1113) 45859) ((-283 . -1113) T) ((-153 . -370) 45843) ((-1104 . -132) 45822) ((-443 . -890) 45785) ((-70 . -557) 45767) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45746) ((-634 . -952) 45728) ((-283 . -509) T) ((-1180 . -23) T) ((-125 . -952) 45710) ((-450 . -967) 45608) ((-44 . -260) 45533) ((-214 . -650) 45475) ((-450 . -106) 45366) ((-996 . -97) 45344) ((-949 . -97) T) ((-583 . -760) 45323) ((-664 . -478) 45261) ((-965 . -967) 45245) ((-564 . -21) T) ((-564 . -25) T) ((-973 . -258) 45220) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 45194) ((-355 . -967) 45178) ((-965 . -106) 45157) ((-748 . -381) 45141) ((-112 . -25) T) ((-87 . -557) 45123) ((-112 . -21) T) ((-552 . -280) 44918) ((-444 . -280) 44722) ((-1049 . -558) NIL) ((-355 . -106) 44701) ((-349 . -97) T) ((-189 . -557) 44683) ((-1049 . -557) 44665) ((-920 . -650) 44615) ((-1065 . -478) 44349) ((-836 . -650) 44301) ((-1027 . -478) 44271) ((-321 . -278) T) ((-1083 . -138) 44221) ((-879 . -280) 44159) ((-766 . -97) T) ((-397 . -650) 44143) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 44093) ((-1139 . -1138) 44072) ((-1021 . -1113) T) ((-309 . -952) 44039) ((-1139 . -1133) 44009) ((-1139 . -1136) 43993) ((-1118 . -1117) 43972) ((-78 . -557) 43954) ((-827 . -557) 43936) ((-1118 . -1133) 43913) ((-1021 . -509) T) ((-843 . -779) T) ((-454 . -558) 43843) ((-454 . -557) 43825) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1118 . -1115) 43809) ((-1141 . -1015) T) ((-192 . -558) 43739) ((-192 . -557) 43721) ((-973 . -550) 43696) ((-57 . -138) 43680) ((-480 . -138) 43664) ((-461 . -138) 43648) ((-329 . -1171) 43632) ((-323 . -1171) 43616) ((-315 . -1171) 43600) ((-286 . -333) 43579) ((-283 . -333) T) ((-450 . -961) 43510) ((-627 . -579) 43492) ((-1174 . -585) 43466) ((-1172 . -585) 43440) ((-1141 . -23) T) ((-623 . -456) 43424) ((-62 . -557) 43406) ((-1016 . -727) 43357) ((-1016 . -724) 43308) ((-503 . -456) 43245) ((-607 . -33) T) ((-450 . -207) 43198) ((-266 . -260) 43177) ((-214 . -156) 43156) ((-748 . -968) T) ((-43 . -585) 43114) ((-987 . -338) 43065) ((-664 . -262) 42996) ((-483 . -478) 42929) ((-749 . -967) 42880) ((-992 . -132) 42859) ((-329 . -338) 42838) ((-323 . -338) 42817) ((-315 . -338) 42796) ((-992 . -134) 42775) ((-795 . -205) 42752) ((-749 . -106) 42687) ((-714 . -132) 42666) ((-714 . -134) 42645) ((-237 . -871) 42612) ((-224 . -777) 42591) ((-221 . -871) 42536) ((-223 . -777) 42515) ((-712 . -132) 42494) ((-712 . -134) 42473) ((-139 . -585) 42447) ((-423 . -134) 42426) ((-423 . -132) 42405) ((-607 . -659) T) ((-755 . -557) 42387) ((-1147 . -1003) T) ((-1140 . -1003) T) ((-1119 . -1003) T) ((-1104 . -1098) 42353) ((-1104 . -1095) 42319) ((-1072 . -262) 42298) ((-1071 . -262) 42249) ((-1065 . -262) 42200) ((-1027 . -262) 42179) ((-309 . -822) 42160) ((-920 . -156) T) ((-836 . -156) T) ((-543 . -1003) T) ((-542 . -1003) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1136) 42144) ((-443 . -1133) 42114) ((-388 . -258) 42042) ((-286 . -1015) 41892) ((-283 . -1015) T) ((-1104 . -34) 41858) ((-1104 . -91) 41824) ((-82 . -557) 41806) ((-89 . -97) 41784) ((-1180 . -123) T) ((-530 . -132) T) ((-530 . -134) 41766) ((-481 . -134) 41748) ((-481 . -132) T) ((-286 . -23) 41601) ((-39 . -312) 41575) ((-283 . -23) T) ((-1057 . -588) 41557) ((-747 . -585) 41407) ((-1167 . -968) T) ((-1057 . -343) 41389) ((-153 . -205) 41373) ((-540 . -456) 41355) ((-214 . -478) 41288) ((-1174 . -659) T) ((-1172 . -659) T) ((-1076 . -967) 41171) ((-1076 . -106) 41033) ((-749 . -961) T) ((-479 . -97) T) ((-47 . -579) 40993) ((-474 . -97) T) ((-472 . -97) T) ((-1164 . -967) 40963) ((-949 . -37) 40947) ((-749 . -207) T) ((-749 . -217) 40926) ((-503 . -258) 40905) ((-1164 . -106) 40870) ((-1128 . -205) 40854) ((-1147 . -650) 40751) ((-973 . -558) NIL) ((-973 . -557) 40733) ((-1140 . -650) 40574) ((-1119 . -650) 40370) ((-919 . -842) T) ((-636 . -557) 40339) ((-139 . -659) T) ((-1016 . -338) 40318) ((-920 . -478) NIL) ((-224 . -381) 40287) ((-223 . -381) 40256) ((-939 . -25) T) ((-939 . -21) T) ((-543 . -650) 40229) ((-542 . -650) 40126) ((-731 . -258) 40084) ((-121 . -97) 40062) ((-765 . -952) 39960) ((-153 . -760) 39939) ((-289 . -585) 39836) ((-747 . -33) T) ((-647 . -97) T) ((-1021 . -1015) T) ((-941 . -1109) T) ((-349 . -37) 39801) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1161) 39785) ((-322 . -1161) 39769) ((-314 . -1161) 39753) ((-153 . -319) 39732) ((-517 . -779) T) ((-460 . -779) T) ((-1021 . -23) T) ((-85 . -557) 39714) ((-634 . -278) T) ((-766 . -37) 39684) ((-759 . -37) 39654) ((-1141 . -123) T) ((-1049 . -260) 39633) ((-885 . -725) 39586) ((-885 . -726) 39539) ((-747 . -723) 39518) ((-111 . -278) T) ((-89 . -280) 39456) ((-611 . -33) T) ((-503 . -550) 39435) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 39386) ((-747 . -725) 39365) ((-634 . -937) T) ((-590 . -967) 39349) ((-885 . -659) 39248) ((-747 . -659) 39179) ((-885 . -442) 39132) ((-450 . -727) 39083) ((-450 . -724) 39034) ((-832 . -1161) 39021) ((-1076 . -961) T) ((-590 . -106) 39000) ((-1076 . -296) 38977) ((-1096 . -97) 38955) ((-1004 . -557) 38937) ((-634 . -502) T) ((-748 . -1003) T) ((-1164 . -961) T) ((-383 . -1003) T) ((-224 . -968) 38868) ((-223 . -968) 38799) ((-261 . -585) 38786) ((-540 . -258) 38761) ((-623 . -621) 38719) ((-884 . -557) 38701) ((-796 . -97) T) ((-668 . -557) 38683) ((-648 . -557) 38665) ((-1147 . -156) 38616) ((-1140 . -156) 38547) ((-1119 . -156) 38478) ((-632 . -779) T) ((-920 . -262) T) ((-422 . -557) 38460) ((-567 . -659) T) ((-58 . -1003) 38438) ((-219 . -138) 38422) ((-836 . -262) T) ((-939 . -928) T) ((-567 . -442) T) ((-645 . -1113) 38401) ((-543 . -156) 38380) ((-542 . -156) 38331) ((-1154 . -779) 38310) ((-645 . -509) 38221) ((-377 . -842) T) ((-377 . -752) 38200) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 38182) ((-388 . -558) 38085) ((-583 . -1048) 38069) ((-105 . -588) 38051) ((-121 . -280) 37989) ((-105 . -343) 37971) ((-157 . -278) T) ((-368 . -1109) T) ((-286 . -123) 37843) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37827) ((-591 . -1015) T) ((-540 . -19) 37809) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1003) T) ((-540 . -550) 37784) ((-446 . -952) 37744) ((-590 . -961) T) ((-591 . -23) T) ((-1167 . -1003) T) ((-748 . -650) 37593) ((-112 . -779) NIL) ((-1070 . -381) 37577) ((-1026 . -381) 37561) ((-783 . -381) 37545) ((-1139 . -97) T) ((-1119 . -478) 37279) ((-1096 . -280) 37217) ((-282 . -557) 37199) ((-1118 . -97) T) ((-1005 . -1003) T) ((-1072 . -258) 37184) ((-1071 . -258) 37169) ((-261 . -659) T) ((-103 . -831) NIL) ((-623 . -557) 37101) ((-623 . -558) 37062) ((-987 . -585) 36972) ((-547 . -557) 36954) ((-503 . -558) NIL) ((-503 . -557) 36936) ((-1065 . -258) 36784) ((-454 . -967) 36734) ((-644 . -421) T) ((-475 . -473) 36713) ((-471 . -473) 36692) ((-192 . -967) 36642) ((-329 . -585) 36594) ((-323 . -585) 36546) ((-199 . -777) T) ((-315 . -585) 36498) ((-548 . -97) 36448) ((-450 . -338) 36427) ((-103 . -585) 36377) ((-454 . -106) 36304) ((-214 . -456) 36288) ((-313 . -134) 36270) ((-313 . -132) T) ((-153 . -340) 36241) ((-865 . -1152) 36225) ((-192 . -106) 36152) ((-796 . -280) 36117) ((-865 . -1003) 36067) ((-731 . -558) 36028) ((-731 . -557) 36010) ((-651 . -97) T) ((-301 . -1003) T) ((-1021 . -123) T) ((-647 . -37) 35980) ((-286 . -458) 35959) ((-465 . -1109) T) ((-1139 . -256) 35925) ((-1118 . -256) 35891) ((-297 . -138) 35875) ((-973 . -260) 35850) ((-1167 . -650) 35820) ((-1058 . -33) T) ((-1176 . -952) 35797) ((-437 . -557) 35779) ((-451 . -33) T) ((-351 . -952) 35763) ((-1070 . -968) T) ((-1026 . -968) T) ((-783 . -968) T) ((-972 . -777) T) ((-748 . -156) 35674) ((-483 . -258) 35651) ((-112 . -909) 35628) ((-1147 . -262) 35607) ((-1091 . -334) 35581) ((-993 . -239) 35565) ((-443 . -97) T) ((-335 . -1003) T) ((-224 . -1003) T) ((-223 . -1003) T) ((-1140 . -262) 35516) ((-104 . -1003) T) ((-1119 . -262) 35467) ((-796 . -1050) 35445) ((-1072 . -918) 35411) ((-552 . -334) 35351) ((-1071 . -918) 35317) ((-552 . -203) 35264) ((-540 . -557) 35246) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 35196) ((-454 . -961) T) ((-1065 . -918) 35162) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -961) T) ((-1027 . -918) 35128) ((-987 . -659) T) ((-645 . -1015) T) ((-543 . -262) 35107) ((-542 . -262) 35086) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1064 . -557) 35068) ((-796 . -37) 35020) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1143) 35004) ((-103 . -659) T) ((-645 . -23) T) ((-1180 . -25) T) ((-443 . -256) 34970) ((-1180 . -21) T) ((-1118 . -280) 34909) ((-1074 . -97) T) ((-39 . -132) 34881) ((-39 . -134) 34853) ((-483 . -550) 34830) ((-1016 . -585) 34680) ((-548 . -280) 34618) ((-44 . -588) 34568) ((-44 . -603) 34518) ((-44 . -343) 34468) ((-1057 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34450) ((-214 . -258) 34427) ((-584 . -33) T) ((-572 . -33) T) ((-992 . -421) 34378) ((-748 . -478) 34243) ((-714 . -421) 34174) ((-712 . -421) 34125) ((-423 . -421) 34076) ((-874 . -381) 34060) ((-664 . -557) 34042) ((-224 . -650) 33984) ((-223 . -650) 33926) ((-664 . -558) 33787) ((-449 . -381) 33771) ((-309 . -273) T) ((-321 . -842) T) ((-916 . -97) 33749) ((-939 . -779) T) ((-58 . -478) 33682) ((-1118 . -1050) 33634) ((-920 . -258) NIL) ((-199 . -968) T) ((-349 . -760) T) ((-1016 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1122 . -997) 33618) ((-1122 . -1003) 33596) ((-214 . -550) 33573) ((-1122 . -999) 33530) ((-1072 . -557) 33512) ((-1071 . -557) 33494) ((-1065 . -557) 33476) ((-1065 . -558) NIL) ((-1027 . -557) 33458) ((-796 . -370) 33442) ((-493 . -97) T) ((-1139 . -37) 33283) ((-1118 . -37) 33097) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1141 . -21) T) ((-1141 . -25) T) ((-1016 . -723) 33076) ((-1016 . -726) 33027) ((-1016 . -725) 33006) ((-910 . -1003) T) ((-942 . -33) T) ((-787 . -1003) T) ((-1150 . -97) T) ((-1016 . -659) 32937) ((-601 . -97) T) ((-503 . -260) 32916) ((-1083 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-972 . -968) T) ((-874 . -968) T) ((-286 . -579) 32824) ((-283 . -579) 32785) ((-449 . -968) T) ((-447 . -97) T) ((-406 . -557) 32767) ((-1070 . -1003) T) ((-1026 . -1003) T) ((-783 . -1003) T) ((-1040 . -97) T) ((-748 . -262) 32698) ((-884 . -967) 32581) ((-446 . -937) T) ((-668 . -967) 32551) ((-422 . -967) 32521) ((-1046 . -1022) 32505) ((-1005 . -478) 32438) ((-884 . -106) 32300) ((-832 . -97) T) ((-668 . -106) 32265) ((-57 . -97) 32215) ((-483 . -558) 32176) ((-483 . -557) 32088) ((-482 . -97) 32066) ((-480 . -97) 32016) ((-462 . -97) 31994) ((-461 . -97) 31944) ((-422 . -106) 31895) ((-224 . -156) 31874) ((-223 . -156) 31853) ((-388 . -967) 31827) ((-1104 . -890) 31788) ((-915 . -1015) T) ((-865 . -478) 31721) ((-454 . -727) T) ((-443 . -37) 31562) ((-388 . -106) 31529) ((-454 . -724) T) ((-916 . -280) 31467) ((-192 . -727) T) ((-192 . -724) T) ((-915 . -23) T) ((-645 . -123) T) ((-1118 . -370) 31437) ((-286 . -25) 31290) ((-153 . -381) 31274) ((-286 . -21) 31146) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30996) ((-795 . -968) T) ((-540 . -260) 30971) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1070 . -650) 30800) ((-1026 . -650) 30649) ((-1021 . -579) 30631) ((-783 . -650) 30601) ((-607 . -1109) T) ((-1 . -97) T) ((-214 . -557) 30353) ((-1128 . -381) 30337) ((-1083 . -280) 30141) ((-884 . -961) T) ((-668 . -961) T) ((-648 . -961) T) ((-583 . -1003) 30091) ((-965 . -585) 30075) ((-784 . -381) 30059) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 30046) ((-237 . -280) 30033) ((-884 . -296) 30012) ((-355 . -585) 29996) ((-447 . -280) 29800) ((-224 . -478) 29733) ((-607 . -952) 29631) ((-223 . -478) 29564) ((-1040 . -280) 29490) ((-751 . -1003) T) ((-731 . -967) 29474) ((-1147 . -258) 29459) ((-1140 . -258) 29444) ((-1119 . -258) 29292) ((-356 . -1003) T) ((-294 . -1003) T) ((-388 . -961) T) ((-153 . -968) T) ((-57 . -280) 29230) ((-731 . -106) 29209) ((-542 . -258) 29194) ((-482 . -280) 29132) ((-480 . -280) 29070) ((-462 . -280) 29008) ((-461 . -280) 28946) ((-388 . -207) 28925) ((-450 . -33) T) ((-920 . -558) 28855) ((-199 . -1003) T) ((-920 . -557) 28837) ((-888 . -557) 28819) ((-888 . -558) 28794) ((-836 . -557) 28776) ((-632 . -134) T) ((-634 . -842) T) ((-634 . -752) T) ((-397 . -557) 28758) ((-1021 . -21) T) ((-1021 . -25) T) ((-607 . -347) 28742) ((-111 . -842) T) ((-796 . -205) 28726) ((-76 . -1109) T) ((-121 . -120) 28710) ((-965 . -33) T) ((-1174 . -952) 28684) ((-1172 . -952) 28641) ((-1128 . -968) T) ((-784 . -968) T) ((-450 . -723) 28620) ((-325 . -1050) 28599) ((-322 . -1050) 28578) ((-314 . -1050) 28557) ((-450 . -726) 28508) ((-450 . -725) 28487) ((-201 . -33) T) ((-450 . -659) 28418) ((-58 . -456) 28402) ((-524 . -968) T) ((-1070 . -156) 28293) ((-1026 . -156) 28204) ((-972 . -1003) T) ((-992 . -871) 28151) ((-874 . -1003) T) ((-749 . -585) 28102) ((-714 . -871) 28072) ((-646 . -1003) T) ((-712 . -871) 28039) ((-480 . -254) 28023) ((-607 . -822) 27982) ((-449 . -1003) T) ((-423 . -871) 27949) ((-77 . -1109) T) ((-325 . -37) 27914) ((-322 . -37) 27879) ((-314 . -37) 27844) ((-237 . -37) 27693) ((-221 . -37) 27542) ((-832 . -1050) T) ((-564 . -134) 27521) ((-564 . -132) 27500) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -961) T) ((-313 . -421) T) ((-1147 . -918) 27466) ((-1140 . -918) 27432) ((-1119 . -918) 27398) ((-832 . -37) 27363) ((-199 . -650) 27328) ((-39 . -379) 27300) ((-289 . -46) 27270) ((-915 . -123) T) ((-747 . -1109) T) ((-157 . -842) T) ((-313 . -372) T) ((-483 . -260) 27247) ((-44 . -33) T) ((-747 . -952) 27076) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1005 . -456) 27060) ((-1118 . -205) 27030) ((-611 . -1109) T) ((-219 . -97) 26980) ((-795 . -1003) T) ((-1076 . -585) 26905) ((-972 . -650) 26892) ((-664 . -967) 26735) ((-1070 . -478) 26683) ((-874 . -650) 26532) ((-1026 . -478) 26484) ((-449 . -650) 26333) ((-65 . -557) 26315) ((-664 . -106) 26137) ((-865 . -456) 26121) ((-1164 . -585) 26081) ((-749 . -659) T) ((-1072 . -967) 25964) ((-1071 . -967) 25799) ((-1065 . -967) 25589) ((-1027 . -967) 25472) ((-919 . -1113) T) ((-998 . -97) 25450) ((-747 . -347) 25420) ((-919 . -509) T) ((-1072 . -106) 25282) ((-1071 . -106) 25096) ((-1065 . -106) 24842) ((-1027 . -106) 24704) ((-1008 . -1006) 24668) ((-349 . -777) T) ((-1147 . -557) 24650) ((-1140 . -557) 24632) ((-1119 . -557) 24614) ((-1119 . -558) NIL) ((-214 . -260) 24591) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1003) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24573) ((-542 . -557) 24555) ((-820 . -1003) T) ((-770 . -1003) T) ((-740 . -1003) T) ((-701 . -1003) T) ((-595 . -781) 24539) ((-612 . -1003) T) ((-747 . -822) 24472) ((-39 . -372) NIL) ((-1021 . -598) T) ((-795 . -650) 24417) ((-224 . -456) 24401) ((-223 . -456) 24385) ((-645 . -579) 24333) ((-590 . -585) 24307) ((-266 . -33) T) ((-664 . -961) T) ((-530 . -1161) 24294) ((-481 . -1161) 24271) ((-1128 . -1003) T) ((-1070 . -262) 24182) ((-1026 . -262) 24113) ((-972 . -156) T) ((-784 . -1003) T) ((-874 . -156) 24024) ((-714 . -1131) 24008) ((-583 . -478) 23941) ((-75 . -557) 23923) ((-664 . -296) 23888) ((-1076 . -659) T) ((-524 . -1003) T) ((-449 . -156) 23799) ((-219 . -280) 23737) ((-1041 . -1015) T) ((-68 . -557) 23719) ((-1164 . -659) T) ((-1072 . -961) T) ((-1071 . -961) T) ((-297 . -97) 23669) ((-1065 . -961) T) ((-1041 . -23) T) ((-1027 . -961) T) ((-89 . -1022) 23653) ((-790 . -1015) T) ((-1072 . -207) 23612) ((-1071 . -217) 23591) ((-1071 . -207) 23543) ((-1065 . -207) 23430) ((-1065 . -217) 23409) ((-289 . -822) 23315) ((-790 . -23) T) ((-153 . -650) 23143) ((-377 . -1113) T) ((-1004 . -338) T) ((-939 . -134) T) ((-919 . -333) T) ((-794 . -421) T) ((-865 . -258) 23120) ((-286 . -779) T) ((-283 . -779) NIL) ((-797 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 23102) ((-324 . -132) T) ((-1046 . -1003) 23080) ((-422 . -653) T) ((-73 . -557) 23062) ((-109 . -779) T) ((-219 . -254) 23046) ((-214 . -967) 22944) ((-79 . -557) 22926) ((-668 . -338) 22879) ((-1074 . -760) T) ((-670 . -209) 22863) ((-1058 . -1109) T) ((-128 . -209) 22845) ((-214 . -106) 22736) ((-1128 . -650) 22565) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22535) ((-451 . -1109) T) ((-874 . -478) 22481) ((-590 . -659) T) ((-524 . -650) 22468) ((-949 . -968) T) ((-449 . -478) 22406) ((-865 . -19) 22390) ((-865 . -550) 22367) ((-748 . -558) NIL) ((-748 . -557) 22349) ((-920 . -967) 22299) ((-383 . -557) 22281) ((-224 . -258) 22258) ((-223 . -258) 22235) ((-454 . -831) NIL) ((-286 . -29) 22205) ((-103 . -1109) T) ((-919 . -1015) T) ((-192 . -831) NIL) ((-836 . -967) 22157) ((-987 . -952) 22055) ((-920 . -106) 21982) ((-237 . -205) 21966) ((-670 . -628) 21950) ((-397 . -967) 21934) ((-349 . -968) T) ((-919 . -23) T) ((-836 . -106) 21865) ((-627 . -1098) NIL) ((-454 . -585) 21815) ((-103 . -806) 21797) ((-103 . -808) 21779) ((-627 . -1095) NIL) ((-192 . -585) 21729) ((-329 . -952) 21713) ((-323 . -952) 21697) ((-297 . -280) 21635) ((-315 . -952) 21619) ((-199 . -262) T) ((-397 . -106) 21598) ((-58 . -557) 21530) ((-153 . -156) T) ((-1021 . -779) T) ((-103 . -952) 21490) ((-814 . -1003) T) ((-766 . -968) T) ((-759 . -968) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -909) 21451) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -961) 21382) ((-1049 . -33) T) ((-446 . -842) T) ((-915 . -579) 21330) ((-224 . -550) 21307) ((-223 . -550) 21284) ((-987 . -347) 21268) ((-795 . -478) 21131) ((-214 . -207) 21084) ((-1057 . -1109) T) ((-756 . -557) 21066) ((-1175 . -1015) T) ((-1167 . -557) 21048) ((-1128 . -156) 20939) ((-103 . -347) 20921) ((-103 . -308) 20903) ((-972 . -262) T) ((-874 . -262) 20834) ((-731 . -338) 20813) ((-584 . -1109) T) ((-572 . -1109) T) ((-449 . -262) 20744) ((-524 . -156) T) ((-297 . -254) 20728) ((-1175 . -23) T) ((-1104 . -97) T) ((-1091 . -1003) T) ((-993 . -1003) T) ((-983 . -1003) T) ((-81 . -557) 20710) ((-644 . -97) T) ((-325 . -319) 20689) ((-552 . -1003) T) ((-322 . -319) 20668) ((-314 . -319) 20647) ((-444 . -1003) T) ((-1083 . -203) 20597) ((-237 . -226) 20559) ((-1041 . -123) T) ((-552 . -554) 20535) ((-987 . -822) 20468) ((-920 . -961) T) ((-836 . -961) T) ((-444 . -554) 20447) ((-1065 . -724) NIL) ((-1065 . -727) NIL) ((-1005 . -558) 20408) ((-447 . -203) 20358) ((-1005 . -557) 20340) ((-920 . -217) T) ((-920 . -207) T) ((-397 . -961) T) ((-879 . -1003) 20290) ((-836 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1015) 20269) ((-103 . -822) NIL) ((-1104 . -256) 20235) ((-796 . -777) 20214) ((-1016 . -1109) T) ((-827 . -659) T) ((-153 . -478) 20126) ((-915 . -25) T) ((-827 . -442) T) ((-377 . -1015) T) ((-454 . -726) T) ((-454 . -723) T) ((-832 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-915 . -21) T) ((-192 . -659) T) ((-772 . -23) 20078) ((-289 . -278) 20057) ((-950 . -209) 20003) ((-377 . -23) T) ((-865 . -558) 19964) ((-865 . -557) 19876) ((-583 . -456) 19860) ((-44 . -926) 19810) ((-301 . -557) 19792) ((-1016 . -952) 19621) ((-540 . -588) 19603) ((-540 . -343) 19585) ((-313 . -1161) 19562) ((-942 . -1109) T) ((-795 . -262) T) ((-1128 . -478) 19510) ((-445 . -1109) T) ((-432 . -1109) T) ((-534 . -97) T) ((-1070 . -258) 19437) ((-564 . -421) 19416) ((-916 . -911) 19400) ((-1167 . -352) 19372) ((-112 . -421) T) ((-1090 . -97) T) ((-996 . -1003) 19350) ((-949 . -1003) T) ((-815 . -779) T) ((-321 . -1113) T) ((-1147 . -967) 19233) ((-1016 . -347) 19203) ((-1140 . -967) 19038) ((-1119 . -967) 18828) ((-1147 . -106) 18690) ((-1140 . -106) 18504) ((-1119 . -106) 18250) ((-1104 . -280) 18237) ((-321 . -509) T) ((-335 . -557) 18219) ((-261 . -278) T) ((-543 . -967) 18192) ((-542 . -967) 18075) ((-331 . -1003) T) ((-292 . -1003) T) ((-224 . -557) 18036) ((-223 . -557) 17997) ((-919 . -123) T) ((-104 . -557) 17979) ((-575 . -23) T) ((-627 . -379) 17946) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17917) ((-542 . -106) 17779) ((-349 . -1003) T) ((-306 . -97) T) ((-153 . -262) 17690) ((-1118 . -777) 17643) ((-647 . -968) T) ((-1046 . -478) 17576) ((-1016 . -822) 17509) ((-766 . -1003) T) ((-759 . -1003) T) ((-757 . -1003) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -806) 17493) ((-105 . -1109) T) ((-992 . -97) T) ((-973 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17444) ((-214 . -724) 17395) ((-586 . -97) T) ((-1128 . -262) 17306) ((-601 . -574) 17290) ((-583 . -258) 17267) ((-949 . -650) 17251) ((-524 . -262) T) ((-884 . -585) 17176) ((-1175 . -123) T) ((-668 . -585) 17136) ((-648 . -585) 17123) ((-248 . -97) T) ((-422 . -585) 17053) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1147 . -961) T) ((-1140 . -961) T) ((-1119 . -961) T) ((-292 . -650) 17035) ((-1147 . -207) 16994) ((-1140 . -217) 16973) ((-1140 . -207) 16925) ((-1119 . -207) 16812) ((-1119 . -217) 16791) ((-1104 . -37) 16688) ((-543 . -961) T) ((-542 . -961) T) ((-920 . -727) T) ((-920 . -724) T) ((-888 . -727) T) ((-888 . -724) T) ((-796 . -968) T) ((-794 . -793) 16672) ((-627 . -421) T) ((-349 . -650) 16637) ((-388 . -585) 16611) ((-645 . -779) 16590) ((-644 . -37) 16555) ((-542 . -207) 16514) ((-39 . -657) 16486) ((-321 . -299) 16463) ((-321 . -333) T) ((-987 . -278) 16414) ((-265 . -1015) 16296) ((-1009 . -1109) T) ((-155 . -97) T) ((-1122 . -557) 16263) ((-772 . -123) 16215) ((-583 . -1143) 16199) ((-766 . -650) 16169) ((-759 . -650) 16139) ((-450 . -1109) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 16116) ((-377 . -123) T) ((-483 . -603) 16100) ((-103 . -278) T) ((-265 . -23) 15984) ((-483 . -588) 15968) ((-627 . -372) NIL) ((-483 . -343) 15952) ((-89 . -1003) 15930) ((-103 . -937) T) ((-517 . -130) T) ((-1154 . -138) 15914) ((-450 . -952) 15743) ((-1141 . -132) 15704) ((-1141 . -134) 15665) ((-965 . -1109) T) ((-910 . -557) 15647) ((-787 . -557) 15629) ((-748 . -967) 15472) ((-992 . -280) 15459) ((-201 . -1109) T) ((-714 . -280) 15446) ((-712 . -280) 15433) ((-748 . -106) 15255) ((-423 . -280) 15242) ((-1070 . -558) NIL) ((-1070 . -557) 15224) ((-1026 . -557) 15206) ((-1026 . -558) 14954) ((-949 . -156) T) ((-783 . -557) 14936) ((-865 . -260) 14913) ((-552 . -478) 14661) ((-750 . -952) 14645) ((-444 . -478) 14405) ((-884 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1015) T) ((-1077 . -557) 14387) ((-197 . -97) T) ((-450 . -347) 14357) ((-479 . -1003) T) ((-474 . -1003) T) ((-472 . -1003) T) ((-731 . -585) 14331) ((-939 . -421) T) ((-879 . -478) 14264) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14243) ((-349 . -156) T) ((-1139 . -968) T) ((-1118 . -968) T) ((-199 . -918) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1113) T) ((-1041 . -579) 14191) ((-529 . -793) 14175) ((-1058 . -1086) 14151) ((-634 . -509) T) ((-121 . -1003) 14129) ((-1167 . -967) 14113) ((-647 . -1003) T) ((-450 . -822) 14046) ((-595 . -37) 14016) ((-324 . -372) T) ((-286 . -134) 13995) ((-286 . -132) 13974) ((-111 . -509) T) ((-283 . -134) 13930) ((-283 . -132) 13886) ((-47 . -421) T) ((-146 . -1003) T) ((-142 . -1003) T) ((-1058 . -102) 13833) ((-714 . -1050) 13811) ((-623 . -33) T) ((-1167 . -106) 13790) ((-503 . -33) T) ((-451 . -102) 13774) ((-224 . -260) 13751) ((-223 . -260) 13728) ((-795 . -258) 13658) ((-44 . -1109) T) ((-748 . -961) T) ((-1076 . -46) 13635) ((-748 . -296) 13597) ((-992 . -37) 13446) ((-748 . -207) 13425) ((-714 . -37) 13254) ((-712 . -37) 13103) ((-423 . -37) 12952) ((-583 . -558) 12913) ((-583 . -557) 12825) ((-530 . -1050) T) ((-481 . -1050) T) ((-1046 . -456) 12809) ((-1096 . -1003) 12787) ((-1041 . -25) T) ((-1041 . -21) T) ((-443 . -968) T) ((-1119 . -724) NIL) ((-1119 . -727) NIL) ((-915 . -779) 12766) ((-751 . -557) 12748) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1113) T) ((-530 . -37) 12713) ((-481 . -37) 12678) ((-356 . -557) 12660) ((-294 . -557) 12642) ((-153 . -258) 12600) ((-61 . -1109) T) ((-107 . -97) T) ((-796 . -1003) T) ((-157 . -509) T) ((-647 . -650) 12570) ((-265 . -123) 12454) ((-199 . -557) 12436) ((-199 . -558) 12366) ((-919 . -579) 12300) ((-1167 . -961) T) ((-1021 . -134) T) ((-572 . -1086) 12275) ((-664 . -831) 12254) ((-540 . -33) T) ((-584 . -102) 12238) ((-572 . -102) 12184) ((-1128 . -258) 12111) ((-664 . -585) 12036) ((-266 . -1109) T) ((-1076 . -952) 11934) ((-1065 . -831) NIL) ((-972 . -558) 11849) ((-972 . -557) 11831) ((-313 . -97) T) ((-224 . -967) 11729) ((-223 . -967) 11627) ((-364 . -97) T) ((-874 . -557) 11609) ((-874 . -558) 11470) ((-646 . -557) 11452) ((-1165 . -1103) 11421) ((-449 . -557) 11403) ((-449 . -558) 11264) ((-221 . -381) 11248) ((-237 . -381) 11232) ((-224 . -106) 11123) ((-223 . -106) 11014) ((-1072 . -585) 10939) ((-1071 . -585) 10836) ((-1065 . -585) 10688) ((-1027 . -585) 10613) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-919 . -25) T) ((-919 . -21) T) ((-796 . -650) 10565) ((-349 . -262) T) ((-153 . -918) 10517) ((-627 . -357) T) ((-915 . -913) 10501) ((-634 . -1015) T) ((-627 . -150) 10483) ((-1139 . -1003) T) ((-1118 . -1003) T) ((-286 . -1095) 10462) ((-286 . -1098) 10441) ((-1063 . -97) T) ((-286 . -880) 10420) ((-125 . -1015) T) ((-111 . -1015) T) ((-548 . -1152) 10404) ((-634 . -23) T) ((-548 . -1003) 10354) ((-89 . -478) 10287) ((-157 . -333) T) ((-286 . -91) 10266) ((-286 . -34) 10245) ((-552 . -456) 10179) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1003) T) ((-444 . -456) 10116) ((-377 . -579) 10064) ((-590 . -952) 9962) ((-879 . -456) 9946) ((-325 . -968) T) ((-322 . -968) T) ((-314 . -968) T) ((-237 . -968) T) ((-221 . -968) T) ((-795 . -558) NIL) ((-795 . -557) 9928) ((-1175 . -21) T) ((-524 . -918) T) ((-664 . -659) T) ((-1175 . -25) T) ((-224 . -961) 9859) ((-223 . -961) 9790) ((-70 . -1109) T) ((-224 . -207) 9743) ((-223 . -207) 9696) ((-39 . -97) T) ((-832 . -968) T) ((-1072 . -659) T) ((-1071 . -659) T) ((-1065 . -659) T) ((-1065 . -723) NIL) ((-1065 . -726) NIL) ((-843 . -97) T) ((-1027 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1003) T) ((-309 . -1015) T) ((-157 . -1015) T) ((-289 . -842) 9675) ((-1139 . -650) 9516) ((-796 . -156) T) ((-1118 . -650) 9330) ((-772 . -21) 9282) ((-772 . -25) 9234) ((-219 . -1048) 9218) ((-121 . -478) 9151) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8919) ((-153 . -557) 8901) ((-157 . -23) T) ((-583 . -260) 8878) ((-483 . -33) T) ((-820 . -557) 8860) ((-87 . -1109) T) ((-770 . -557) 8842) ((-740 . -557) 8824) ((-701 . -557) 8806) ((-612 . -557) 8788) ((-214 . -585) 8638) ((-1074 . -1003) T) ((-1070 . -967) 8461) ((-1049 . -1109) T) ((-1026 . -967) 8304) ((-783 . -967) 8288) ((-1070 . -106) 8090) ((-1026 . -106) 7912) ((-783 . -106) 7891) ((-1128 . -558) NIL) ((-1128 . -557) 7873) ((-313 . -1050) T) ((-784 . -557) 7855) ((-983 . -258) 7834) ((-78 . -1109) T) ((-920 . -831) NIL) ((-552 . -258) 7810) ((-1096 . -478) 7743) ((-454 . -1109) T) ((-524 . -557) 7725) ((-444 . -258) 7704) ((-192 . -1109) T) ((-992 . -205) 7688) ((-261 . -842) T) ((-749 . -278) 7667) ((-794 . -97) T) ((-714 . -205) 7651) ((-920 . -585) 7601) ((-879 . -258) 7578) ((-836 . -585) 7530) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7495) ((-627 . -657) 7462) ((-454 . -806) 7444) ((-454 . -808) 7426) ((-443 . -650) 7267) ((-192 . -806) 7249) ((-62 . -1109) T) ((-192 . -808) 7231) ((-551 . -25) T) ((-397 . -585) 7205) ((-454 . -952) 7165) ((-796 . -478) 7077) ((-192 . -952) 7037) ((-214 . -33) T) ((-916 . -1003) 7015) ((-1139 . -156) 6946) ((-1118 . -156) 6877) ((-645 . -132) 6856) ((-645 . -134) 6835) ((-634 . -123) T) ((-127 . -434) 6812) ((-595 . -593) 6796) ((-1046 . -557) 6728) ((-111 . -123) T) ((-446 . -1113) T) ((-552 . -550) 6704) ((-444 . -550) 6683) ((-306 . -305) 6652) ((-493 . -1003) T) ((-446 . -509) T) ((-1070 . -961) T) ((-1026 . -961) T) ((-783 . -961) T) ((-214 . -723) 6631) ((-214 . -726) 6582) ((-214 . -725) 6561) ((-1070 . -296) 6538) ((-214 . -659) 6469) ((-879 . -19) 6453) ((-454 . -347) 6435) ((-454 . -308) 6417) ((-1026 . -296) 6389) ((-324 . -1161) 6366) ((-192 . -347) 6348) ((-192 . -308) 6330) ((-879 . -550) 6307) ((-1070 . -207) T) ((-601 . -1003) T) ((-1150 . -1003) T) ((-1083 . -1003) T) ((-992 . -226) 6246) ((-325 . -1003) T) ((-322 . -1003) T) ((-314 . -1003) T) ((-237 . -1003) T) ((-221 . -1003) T) ((-82 . -1109) T) ((-122 . -97) 6224) ((-116 . -97) 6202) ((-1083 . -554) 6181) ((-447 . -1003) T) ((-1040 . -1003) T) ((-447 . -554) 6160) ((-224 . -727) 6111) ((-224 . -724) 6062) ((-223 . -727) 6013) ((-39 . -1050) NIL) ((-223 . -724) 5964) ((-987 . -842) 5915) ((-920 . -726) T) ((-920 . -723) T) ((-920 . -659) T) ((-888 . -726) T) ((-836 . -659) T) ((-89 . -456) 5899) ((-454 . -822) NIL) ((-832 . -1003) T) ((-199 . -967) 5864) ((-796 . -262) T) ((-192 . -822) NIL) ((-765 . -1015) 5843) ((-57 . -1003) 5793) ((-482 . -1003) 5771) ((-480 . -1003) 5721) ((-462 . -1003) 5699) ((-461 . -1003) 5649) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5580) ((-329 . -842) T) ((-323 . -842) T) ((-315 . -842) T) ((-199 . -106) 5529) ((-765 . -23) 5481) ((-397 . -659) T) ((-103 . -842) T) ((-39 . -37) 5426) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1118 . -478) 5286) ((-286 . -421) 5265) ((-283 . -421) T) ((-766 . -258) 5244) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5109) ((-265 . -21) 4993) ((-44 . -1086) 4972) ((-64 . -557) 4954) ((-814 . -557) 4936) ((-548 . -478) 4869) ((-44 . -102) 4819) ((-1005 . -395) 4803) ((-1005 . -338) 4782) ((-973 . -1109) T) ((-972 . -967) 4769) ((-874 . -967) 4612) ((-449 . -967) 4455) ((-601 . -650) 4439) ((-972 . -106) 4424) ((-874 . -106) 4246) ((-446 . -333) T) ((-325 . -650) 4198) ((-322 . -650) 4150) ((-314 . -650) 4102) ((-237 . -650) 3951) ((-221 . -650) 3800) ((-865 . -588) 3784) ((-449 . -106) 3606) ((-1155 . -97) T) ((-865 . -343) 3590) ((-1119 . -831) NIL) ((-72 . -557) 3572) ((-884 . -46) 3551) ((-562 . -1015) T) ((-1 . -1003) T) ((-632 . -97) T) ((-1154 . -97) 3501) ((-1147 . -585) 3426) ((-1140 . -585) 3323) ((-121 . -456) 3307) ((-1091 . -557) 3289) ((-993 . -557) 3271) ((-360 . -23) T) ((-983 . -557) 3253) ((-85 . -1109) T) ((-1119 . -585) 3105) ((-832 . -650) 3070) ((-562 . -23) T) ((-552 . -557) 3052) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 3034) ((-475 . -1003) T) ((-471 . -1003) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2972) ((-116 . -280) 2910) ((-543 . -585) 2897) ((-199 . -961) T) ((-542 . -585) 2822) ((-349 . -918) T) ((-199 . -217) T) ((-199 . -207) T) ((-879 . -558) 2783) ((-879 . -557) 2695) ((-794 . -37) 2682) ((-1139 . -262) 2633) ((-1118 . -262) 2584) ((-1021 . -421) T) ((-467 . -779) T) ((-286 . -1038) 2563) ((-915 . -134) 2542) ((-915 . -132) 2521) ((-460 . -280) 2508) ((-266 . -1086) 2487) ((-446 . -1015) T) ((-795 . -967) 2432) ((-564 . -97) T) ((-1096 . -456) 2416) ((-224 . -338) 2395) ((-223 . -338) 2374) ((-266 . -102) 2324) ((-972 . -961) T) ((-112 . -97) T) ((-874 . -961) T) ((-795 . -106) 2241) ((-446 . -23) T) ((-449 . -961) T) ((-972 . -207) T) ((-874 . -296) 2210) ((-449 . -296) 2167) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2078) ((-221 . -156) 1989) ((-884 . -952) 1887) ((-668 . -952) 1858) ((-1008 . -97) T) ((-996 . -557) 1825) ((-949 . -557) 1807) ((-1147 . -659) T) ((-1140 . -659) T) ((-1119 . -723) NIL) ((-153 . -967) 1717) ((-1119 . -726) NIL) ((-832 . -156) T) ((-1119 . -659) T) ((-1165 . -138) 1701) ((-919 . -312) 1675) ((-916 . -478) 1608) ((-772 . -779) 1587) ((-517 . -1050) T) ((-443 . -262) 1538) ((-543 . -659) T) ((-331 . -557) 1520) ((-292 . -557) 1502) ((-388 . -952) 1400) ((-542 . -659) T) ((-377 . -779) 1351) ((-153 . -106) 1240) ((-765 . -123) 1192) ((-670 . -138) 1176) ((-1154 . -280) 1114) ((-454 . -278) T) ((-349 . -557) 1081) ((-483 . -926) 1065) ((-349 . -558) 979) ((-192 . -278) T) ((-128 . -138) 961) ((-647 . -258) 940) ((-454 . -937) T) ((-529 . -37) 927) ((-517 . -37) 914) ((-460 . -37) 879) ((-192 . -937) T) ((-795 . -961) T) ((-766 . -557) 861) ((-759 . -557) 843) ((-757 . -557) 825) ((-748 . -831) 804) ((-1176 . -1015) T) ((-1128 . -967) 627) ((-784 . -967) 611) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1109) T) ((-1176 . -23) T) ((-748 . -585) 536) ((-503 . -1109) T) ((-388 . -308) 520) ((-524 . -967) 507) ((-1128 . -106) 309) ((-634 . -579) 291) ((-784 . -106) 270) ((-351 . -23) T) ((-1083 . -478) 30)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index e4492c87..7224bcf6 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,3 +1,3 @@
-(30 . 3403927921)
-(4183 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArrayFunctions2| |OneDimensionalArray| |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| |DrawOptionFunctions1| |DrawOption| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |EquationFunctions2| |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |ExponentialExpansion| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |Expression| |ExpressionSpaceODESolver| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| |FunctionFieldCategory| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteField| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| |FreeModuleCat| |FortranMatrixCategory| |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| |FiniteSetAggregate&| |FiniteSetAggregate| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| |FortranType| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage1| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OrderedCancellationAbelianMonoid| |OctonionCategory&| |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |FunctionSpaceAttachPredicates| |AttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| |SExpressionCategory| |SExpression| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctionsNonCommutative| |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| |UnivariateTaylorSeriesODESolver| |UTSodetools| |Variable| |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |char| |numberOfNormalPoly| |cAtanh| |leftTrace| |heap| |cubic| |leadingCoefficient| |s19abf| |permutationGroup| |diophantineSystem| |extendIfCan| |linears| |untab| |cCsch| |cycle| |pop!| |primitiveMonomials| |s19acf| |outlineRender| |in?| |color| |escape| |name| |HermiteIntegrate| |createRandomElement| |close| |intensity| |reductum| |unitCanonical| |s19adf| |fortranCharacter| |fixPredicate| |exprToUPS| |problemPoints| |cPower| |basisOfLeftNucleus| |hypergeometric0F1| |bag| |s20acf| |createNormalElement| |rotate| |factorsOfCyclicGroupSize| |leftMult| |gradient| |hex| |tubePointsDefault| |vertConcat| |s20adf| |currentSubProgram| |function| |trivialIdeal?| |showTypeInOutput| |position!| |nthExponent| |d01fcf| |acschIfCan| |tableau| |display| |label| |s21baf| |showTheIFTable| |psolve| |acosIfCan| |safetyMargin| |updatD| |curry| |geometric| |innerEigenvectors| |d01gaf| |setprevious!| |s21bbf| |rationalIfCan| |entry| |stoseInvertible?reg| |setButtonValue| |primintfldpoly| |makeop| |SturmHabichtCoefficients| |d01gbf| |polygamma| |s21bcf| |atanhIfCan| |notelem| |showAllElements| |d02bbf| |binomial| |discriminantEuclidean| |node?| |sturmVariationsOf| |newTypeLists| |s21bdf| |setMinPoints3D| |oddintegers| |scale| |checkRur| |OMunhandledSymbol| |squareFreeLexTriangular| |coshIfCan| |d02bhf| |mix| |lowerCase| |jordanAdmissible?| |imagj| |input| |green| |extractSplittingLeaf| |vark| |magnitude| |genericLeftMinimalPolynomial| |d02cjf| |stirling2| |basisOfCenter| |acotIfCan| |getMultiplicationTable| |library| |ddFact| |pr2dmp| |resetNew| |d02ejf| |leftFactor| |setMaxPoints3D| |divide| |maxColIndex| |measure| |match?| |d02gaf| |coefficients| |cotIfCan| |split| |wholeRagits| |mainDefiningPolynomial| |associative?| |stopMusserTrials| |bubbleSort!| |nextItem| |relerror| BY |romberg| |nsqfree| |besselI| |palglimint| |d02gbf| |noLinearFactor?| |charthRoot| |karatsuba| |delta| |subTriSet?| |extendedResultant| |rootProduct| |symmetricSquare| |shiftRoots| |d02kef| |overlap| |minColIndex| |monomial| |complex?| |testModulus| |chebyshevT| |interReduce| |tryFunctionalDecomposition?| |split!| |OMserve| |polygon| |d02raf| |power| |multivariate| |setProperties| |normalizedDivide| |setScreenResolution3D| |reindex| |rational?| |rotatez| |generalizedEigenvectors| |matrixGcd| |coefChoose| |d03edf| |over| |set| |shift| |variables| |lcm| |fixedPoint| |jacobian| |removeSinSq| |totalDegree| |rotatey| |sncndn| |fortranCompilerName| |exponentialOrder| |addBadValue| |d03eef| |minrank| |qelt| |makeCrit| |space| |quickSort| |cosSinInfo| |copies| |increment| |Nul| |semiLastSubResultantEuclidean| |d03faf| |linearlyDependentOverZ?| |polyPart| |dominantTerm| |iibinom| |ksec| |evaluateInverse| |e01baf| |laguerreL| |wordInGenerators| |clearCache| |xRange| |bits| |mkAnswer| |eigenMatrix| |gcd| |innerint| |acothIfCan| |perfectSquare?| |numerator| |e01bef| |sech2cosh| |yRange| |mainVariable| |basisOfCentroid| |lambda| |solveLinear| |union| |substring?| |formula| |mapDown!| |OMputError| |nextPrimitivePoly| |generalPosition| |lexTriangular| |e01bff| |zRange| |leftGcd| |debug| |false| |Aleph| |cosh2sech| |rotatex| |startPolynomial| |iiacosh| |generalizedInverse| |e01bgf| |map!| |rroot| |ran| |pomopo!| |suffix?| |identity| |monicModulo| |prem| |normalForm| |localUnquote| |e01bhf| |viewDeltaYDefault| |qsetelt!| |lastSubResultantEuclidean| |lfextlimint| |startTableInvSet!| |elt| |rightUnit| |internalInfRittWu?| |makeGraphImage| |e01daf| |primPartElseUnitCanonical| |show| |flagFactor| |read!| |exptMod| |prefix?| ~ |ricDsolve| |outputList| |symFunc| |denominators| |intcompBasis| |e01saf| |imagI| |forLoop| |withPredicates| |principal?| |e01sbf| |trace| |lazyGintegrate| |sin?| |hermiteH| |cyclicEntries| |nrows| |extendedSubResultantGcd| |children| |pointColor| |e01sef| |expandLog| |contractSolve| FG2F |linSolve| |ncols| |conjugate| |solveRetract| |shellSort| |e02adf| |atom?| |acsch| |OMputVariable| |aspFilename| |stFuncN| |constantOperator| |normalized?| |e02aef| |coord| |permutations| |addiag| |filename| |fractionFreeGauss!| |errorKind| |minGbasis| |norm| |e02agf| |addPointLast| |iiasec| |prindINFO| |infix?| |patternVariable| |open| |nand| |finite?| |diagonal?| |stoseInvertible?| |e02ahf| |coth2trigh| |iprint| |cyclicSubmodule| |mask| |setOrder| |generalizedContinuumHypothesisAssumed| |options| |coordinate| |cot2tan| |linearPolynomials| |list| |e02ajf| |permanent| |OMreceive| |pair?| |slash| |sn| |parts| |wronskianMatrix| |purelyAlgebraic?| |cAcsch| |cons| |e02akf| |rightOne| |cSin| |linGenPos| |complete| |OMUnknownCD?| = |makeSUP| |lookup| |setDifference| |eyeDistance| |mesh| |fixedPointExquo| |e02baf| |scanOneDimSubspaces| |expr| |tRange| |rewriteIdealWithQuasiMonicGenerators| |has?| |basisOfCommutingElements| |commutative?| |setIntersection| |xCoord| |Gamma| |viewWriteAvailable| |e02bbf| |rootSimp| |makeTerm| |true| |dimensions| |Is| < |ellipticCylindrical| |numberOfDivisors| |cCsc| |setUnion| |numberOfMonomials| |e02bcf| |cAsin| |perfectSqrt| |randnum| |associatorDependence| > |generalizedContinuumHypothesisAssumed?| |lfinfieldint| |complexLimit| |apply| |stopTableInvSet!| |e02bdf| |taylor| |toScale| |numberOfComposites| |weierstrass| |setPrologue!| <= |rightZero| |zeroDimPrime?| |addMatch| |enterInCache| |e02bef| |laurent| |doubleResultant| |quasiMonicPolynomials| |stripCommentsAndBlanks| |coHeight| >= |minPoly| |lifting1| |is?| |rename!| |size| |e02daf| |puiseux| |firstSubsetGray| |roughUnitIdeal?| |reducedDiscriminant| |setEmpty!| |baseRDE| |constant| |discreteLog| |infix| |conjugates| |prefix| |isList| |e02dcf| |derivative| |cAsinh| |iteratedInitials| |endSubProgram| |distribute| |listConjugateBases| |removeRedundantFactorsInContents| |countable?| |algebraicSort| |e02ddf| |useNagFunctions| |build| |variable| |singular?| |sup| |lambert| + |knownInfBasis| |functionIsContinuousAtEndPoints| |nilFactor| |meatAxe| |first| |e02def| |rootsOf| |primlimitedint| |fi2df| |primintegrate| |uncouplingMatrices| - |erf| |multiEuclideanTree| |solve1| |reseed| |chineseRemainder| |rest| |e02dff| |clipWithRanges| |triangularSystems| |frobenius| |univariate?| |integers| / |swap!| |pack!| |substitute| |sin2csc| |extend| |e02gaf| |solve| |pushucoef| |showTheSymbolTable| |rewriteIdealWithRemainder| |say| |removeDuplicates| |leftRecip| |unprotectedRemoveRedundantFactors| |iisec| |antisymmetric?| |e02zaf| |optional?| |directSum| |setMaxPoints| |selectOptimizationRoutines| |dilog| |droot| |LiePoly| |queue| |padicallyExpand| |depth| |e04dgf| F |flexible?| |bivariate?| |monicCompleteDecompose| |rewriteSetWithReduction| |sin| |lowerCase?| |var2Steps| |linearAssociatedOrder| |plus!| |e04fdf| |sizeLess?| |safeCeiling| |presub| |insert!| |cos| |ScanArabic| |semiIndiceSubResultantEuclidean| |semiResultantReduitEuclidean| |SturmHabichtSequence| |e04gcf| |monomialIntPoly| |mapUnivariate| |internalLastSubResultant| |pleskenSplit| |tan| |comparison| |reopen!| |henselFact| |pushdterm| |mainMonomials| |e04jaf| |curveColor| |rightScalarTimes!| |airyAi| |divisorCascade| |cot| |closeComponent| |modulus| |isPower| |fprindINFO| |expressIdealMember| |e04mbf| |cot2trig| |bipolarCylindrical| |rewriteIdealWithHeadRemainder| |readable?| |sec| |alternatingGroup| |iicosh| |empty| |ratPoly| |monicDecomposeIfCan| |e04naf| |listLoops| |shuffle| |setTopPredicate| |basis| |csc| |supersub| |positiveRemainder| |linearlyDependent?| |palgRDE0| |groebner| |e04ucf| |cycleEntry| |subSet| |leaf?| |extension| |asin| |createPrimitiveElement| |lllip| |drawCurves| |odd?| |transcendentalDecompose| |e04ycf| |retractIfCan| |polyRDE| |FormatArabic| |compose| |triangulate| |acos| |asecIfCan| |cothIfCan| |principalIdeal| |bernoulli| |f01brf| |mainKernel| |integralCoordinates| |mindeg| |genus| |numer| |atan| |hexDigit| |numberOfComponents| |exprToGenUPS| |mainVariable?| |leftUnit| F2FG |f01bsf| |operation| |iCompose| |se2rfi| |setStatus!| |denom| |writeLine!| |acot| |randomLC| |overlabel| |redPo| |stoseLastSubResultant| |multinomial| |OMreadStr| |f01maf| |clip| |power!| |intersect| |mulmod| |asec| |optAttributes| |removeRedundantFactors| |eigenvector| |mesh?| |complement| |credPol| |f01mcf| |OMconnInDevice| |whileLoop| |stoseInvertibleSetsqfreg| |reducedQPowers| |doubleFloatFormat| |acsc| |edf2fi| |purelyAlgebraicLeadingMonomial?| |expintegrate| |powern| |checkForZero| |firstDenom| |f01qcf| |selectODEIVPRoutines| |f2df| |subCase?| |hasHi| |sinh| |matrix| |neglist| |replaceKthElement| |rootBound| |cSec| |tryFunctionalDecomposition| |collect| |f01qdf| |jacobiIdentity?| |rootSplit| |eigenvectors| |kernel| |identification| |cosh| |computeCycleEntry| |lastSubResultant| |bumprow| |indices| |crest| |f01qef| |surface| |fortranDouble| |gcdPolynomial| |draw| |algint| |tanh| |topFortranOutputStack| |log| |ranges| |quasiMonic?| |normalizeAtInfinity| |algebraic?| |integralMatrix| |bezoutMatrix| |pseudoDivide| |pmintegrate| |coth| |tablePow| |tanIfCan| |diagonalMatrix| |taylorRep| |height| |startTable!| |pade| |increase| |ScanFloatIgnoreSpacesIfCan| |twoFactor| |sech| |nor| |rootPoly| |differentialVariables| |idealSimplify| |showClipRegion| |map| |nodeOf?| |goodPoint| |OMputAttr| |clearDenominator| |csch| |integerIfCan| |extractIndex| |factorSFBRlcUnit| |factor1| |messagePrint| |rombergo| |totalDifferential| |copyInto!| |makeObject| |real?| |inverseIntegralMatrixAtInfinity| |perfectNthRoot| |numberOfFractionalTerms| |monicRightFactorIfCan| |pol| |insertMatch| |solveLinearlyOverQ| |exprToXXP| |addmod| |setvalue!| |zag| |integralDerivationMatrix| |gbasis| |genericRightDiscriminant| |mainPrimitivePart| |integralBasisAtInfinity| |mathieu11| |tableForDiscreteLogarithm| |fractionPart| |polCase| |viewport3D| UP2UTS |coef| |dn| |inf| |infieldIntegrate| |univariatePolynomialsGcds| |selectSumOfSquaresRoutines| |nlde| |sequences| |row| |tanAn| |entries| |basicSet| |approximants| |approxSqrt| |sylvesterSequence| |assign| |OMputEndObject| |nullity| |ceiling| |solveLinearPolynomialEquationByFractions| |normalDenom| |mathieu12| |fmecg| |idealiserMatrix| |comp| |antiCommutator| |overset?| |subNodeOf?| |headReduced?| |OMgetBind| |setCondition!| |badNum| |setTex!| |univariatePolynomials| |OMParseError?| |divisor| |represents| |leadingSupport| |selectOrPolynomials| |declare| |leftExactQuotient| Y |integer?| |truncate| |infinityNorm| |mvar| |flexibleArray| |orbits| |clipParametric| |cup| |leadingCoefficientRicDE| |fixedDivisor| |ratDsolve| |asimpson| |pointLists| |outputSpacing| |rCoord| |leftDiscriminant| |aQuartic| |iiexp| |lfunc| |xn| |OMreadFile| |tanNa| |rowEchelonLocal| |largest| |invmod| |denomLODE| |returnTypeOf| |getExplanations| |intermediateResultsIF| |relativeApprox| |graphs| |inverseColeman| |continuedFraction| |B1solve| |equality| |padicFraction| |move| |leftTraceMatrix| |cscIfCan| |bright| |domainOf| |selectPDERoutines| |degreeSubResultantEuclidean| |numberOfVariables| |yCoord| |tube| |iiacot| |createNormalPrimitivePoly| |OMcloseConn| |any| |iroot| |ldf2lst| |branchPointAtInfinity?| |lazyVariations| |powers| |back| |complexExpand| |OMconnOutDevice| |prepareSubResAlgo| |solveInField| |transpose| |sort!| |linear?| |clearTable!| |Ci| |OMsupportsCD?| |yCoordinates| |minPol| |inverseIntegralMatrix| |getGraph| |nonSingularModel| |sorted?| |external?| |mightHaveRoots| |realSolve| |every?| |aQuadratic| |cyclicParents| |eval| |remove| |binomThmExpt| |epilogue| |df2fi| |float?| |getBadValues| |backOldPos| |plotPolar| |exprHasWeightCosWXorSinWX| |adjoint| |cache| |shanksDiscLogAlgorithm| |logIfCan| |harmonic| |fglmIfCan| |closedCurve?| |last| |extendedEuclidean| |mainMonomial| |fTable| |Lazard2| |accuracyIF| |assoc| |option| |genericLeftTraceForm| |exponent| |cLog| |ode2| |unrankImproperPartitions0| |lflimitedint| |integral| |infieldint| |ScanRoman| |rightCharacteristicPolynomial| |groebnerFactorize| |biRank| |output| |graphImage| |tab1| |simpsono| |nonQsign| |subscriptedVariables| |parametric?| |width| |socf2socdf| |virtualDegree| |vspace| |rk4qc| |selectAndPolynomials| |error| |setAttributeButtonStep| |lex| |inverse| |OMmakeConn| |showScalarValues| |assert| |dimensionsOf| |changeVar| |univariateSolve| |fixedPoints| |rationalFunction| |numFunEvals| |autoReduced?| |weakBiRank| |gcdPrimitive| |invertibleSet| |numericalIntegration| |algebraicCoefficients?| |bitLength| |partialFraction| |e| |mkcomm| |newLine| |mapExpon| |equation| |cAcosh| |cfirst| |df2st| |infLex?| |eq| |decompose| |leader| |signAround| |definingPolynomial| |chiSquare| |iiacoth| |increasePrecision| |nary?| |dark| |iter| |roughBasicSet| |iiasin| |traverse| |closed?| |components| |t| |exprHasLogarithmicWeights| |fullPartialFraction| |digamma| |eulerE| |screenResolution3D| |cRationalPower| |delete!| |realEigenvectors| |constantCoefficientRicDE| |OMgetObject| |rightRecip| |radicalEigenvector| |fractRadix| |multisect| |graphStates| |unary?| |insertTop!| |completeSmith| |OMgetFloat| |optional| |iiasech| |infinite?| |rootNormalize| |indicialEquationAtInfinity| |splitLinear| |directory| |representationType| |elements| |nextIrreduciblePoly| |palgextint0| |point?| |basisOfMiddleNucleus| |zeroSquareMatrix| |printingInfo?| |quadraticForm| |startTableGcd!| |divideIfCan!| |pattern| |fillPascalTriangle| |reduceLODE| |mapUp!| |lintgcd| |leftCharacteristicPolynomial| |An| |repeating?| |toseLastSubResultant| |arg1| |length| |nthFlag| |removeSuperfluousCases| |cSech| |polyRicDE| |setProperty| |cardinality| |lazy?| |mergeFactors| |setright!| |arg2| |scripts| ^ |lquo| |factorPolynomial| |prefixRagits| |palgLODE0| |totolex| |scripted?| |partialDenominators| |adaptive3D?| |integralBasis| |iExquo| |leftLcm| |flatten| |printStatement| |bracket| |message| |terms| |element?| |conditions| |OMread| |firstNumer| |imaginary| |anfactor| |OMconnectTCP| |fortran| |rootPower| |test| |selectfirst| |mainCoefficients| |movedPoints| |match| |PDESolve| |shade| |leastPower| |shiftRight| |compBound| |closedCurve| |bumptab| |iFTable| |addMatchRestricted| |lyndon?| |parent| |ipow| |OMlistCDs| |doubleComplex?| |diff| |showAll?| |subPolSet?| |trailingCoefficient| |coerce| |rightUnits| |clearTheIFTable| |critMTonD1| |enumerate| |rank| |realRoots| |selectFiniteRoutines| |extractProperty| |csubst| |lllp| |figureUnits| |viewZoomDefault| |resetBadValues| |middle| |component| |usingTable?| |changeWeightLevel| |keys| |ode| |construct| |dequeue| |conditionsForIdempotents| |frst| |pastel| |PollardSmallFactor| |OMgetError| |jacobi| |probablyZeroDim?| |mpsode| |predicate| |ocf2ocdf| |optpair| |palglimint0| |stoseInvertibleSet| |unrankImproperPartitions1| |gcdcofactprim| |moduleSum| |defineProperty| |numberOfHues| |#| |alphanumeric| |normalDeriv| |rightTrace| |leftRankPolynomial| |hclf| |subst| |collectQuasiMonic| |stiffnessAndStabilityOfODEIF| |option?| |variationOfParameters| |extendedIntegrate| |pdf2ef| |prinb| |subresultantVector| |genericRightMinimalPolynomial| |semiResultantEuclidean1| |laguerre| |simpson| |qroot| |separate| |bivariateSLPEBR| |iicsc| |complexNumeric| |showTheFTable| |LyndonCoordinates| |bombieriNorm| |overbar| |status| |algebraicOf| |measure2Result| |polyred| |quoByVar| |schema| |seriesToOutputForm| |rowEch| |ListOfTerms| |tanSum| |enterPointData| |stack| |lists| |select!| |save| |taylorQuoByVar| |cyclicGroup| |call| |palginfieldint| |kernels| |commutativeEquality| |makeFloatFunction| |presuper| |string?| |explicitlyFinite?| |minimumDegree| |Beta| |clipSurface| |univariate| |birth| |laurentIfCan| |rewriteSetByReducingWithParticularGenerators| |setref| |palgint0| |groebgen| |iiabs| |univcase| |viewport2D| |rightAlternative?| |symmetricTensors| |objects| |log2| |fortranDoubleComplex| |factorAndSplit| |idealiser| |divisors| |iiasinh| |removeRoughlyRedundantFactorsInContents| |base| |declare!| |edf2df| |selectMultiDimensionalRoutines| |deepExpand| |multiEuclidean| |primeFrobenius| |removeConstantTerm| |pdct| |recoverAfterFail| |/\\| |numberOfFactors| |subresultantSequence| |updatF| |fortranInteger| |cAcos| |legendreP| |alphabetic| |critB| |\\/| |cAsech| |addPoint| |OMencodingUnknown| |stoseInternalLastSubResultant| |Zero| |properties| |decimal| |tanintegrate| |primes| |mdeg| |mirror| |expenseOfEvaluationIF| |setFormula!| |csch2sinh| |semiResultantEuclidean2| |resultantReduit| |coerceListOfPairs| |One| |regularRepresentation| |setelt| |btwFact| |makeSeries| |finiteBasis| |OMputFloat| |aLinear| |rightMinimalPolynomial| |characteristicSerie| |setClipValue| |positiveSolve| |supRittWu?| |ratpart| |curryRight| LODO2FUN |cTan| |meshPar2Var| |double?| |cap| |OMputEndBVar| |numberOfOperations| |monomRDE| |logGamma| |copy| |normal?| |recur| |rightRankPolynomial| |stronglyReduce| |sumOfSquares| |BasicMethod| |factorset| |monicRightDivide| |collectUpper| |scaleRoots| |translate| |reciprocalPolynomial| |euclideanNormalForm| |cAcsc| |direction| |mapUnivariateIfCan| |prevPrime| |deepestTail| |concat| |normalElement| |unit?| |expenseOfEvaluation| |cn| ^= |qinterval| |distance| |asinhIfCan| |squareMatrix| |ravel| |close!| |unvectorise| |nextSublist| |normal01| |subspace| |rowEchelon| |bat| |denomRicDE| |setAdaptive| |leadingExponent| |reshape| |internalAugment| |negative?| |exquo| |taylorIfCan| |computePowers| |LyndonWordsList| |besselK| |euclideanGroebner| |OMwrite| |cylindrical| |shrinkable| |normalize| |div| |stoseInvertible?sqfreg| |viewThetaDefault| |pquo| |vectorise| |integralAtInfinity?| |nthRootIfCan| |previous| |distFact| |extractIfCan| |integerBound| |quo| |twist| |selectPolynomials| |externalList| |radicalSolve| |createThreeSpace| |systemCommand| |irreducible?| |showRegion| |palgRDE| |optimize| |prime| |errorInfo| |completeEchelonBasis| |iisin| |roughSubIdeal?| |showAttributes| |LyndonWordsList1| |segment| |iicos| |zCoord| |rem| |dihedralGroup| |horizConcat| |primextendedint| |coth2tanh| |drawComplex| |antiAssociative?| |zeroVector| |modularFactor| |normal| |pointColorDefault| |update| |constantLeft| |round| |unmakeSUP| |lagrange| |maxrank| |squareFreePart| |complexEigenvectors| |common| |nextNormalPrimitivePoly| |fibonacci| |numberOfPrimitivePoly| |sum| |intChoose| |createPrimitiveNormalPoly| |fracPart| |generalSqFr| |mergeDifference| |axes| |youngGroup| |inRadical?| |more?| |alphanumeric?| |cycleTail| |numerators| |quoted?| |midpoint| |compdegd| |primPartElseUnitCanonical!| |pointColorPalette| |radicalEigenvalues| |members| |factorSquareFreePolynomial| |normalizeIfCan| |modTree| |inrootof| |fill!| |repeating| |internalDecompose| |concat!| |digit?| |besselY| |child| |leftPower| |quartic| |rk4| |expint| |setLabelValue| |unaryFunction| |front| |rk4f| |inR?| |OMputBind| |leftExtendedGcd| |expPot| |companionBlocks| |charClass| |getCurve| |critpOrder| |returnType!| |mr| |simplifyExp| |zeroDim?| |ptFunc| |fortranCarriageReturn| |adaptive| |readIfCan!| |tanQ| |floor| |chebyshevU| |makeprod| |revert| |clearTheFTable| |listBranches| |bipolar| |initial| |duplicates?| |radicalRoots| |position| |hasPredicate?| |htrigs| |halfExtendedResultant1| |hcrf| |int| |contains?| |algebraicVariables| |groebSolve| |rubiksGroup| |basisOfLeftNucloid| |cond| |rightTraceMatrix| |insert| |normInvertible?| |iiacsch| |cSinh| |exp| |multiset| |rightLcm| |varselect| |regime| |wholeRadix| |not| |rule| |sayLength| |radicalEigenvectors| |alternating| |symmetricRemainder| |null?| |complexElementary| |yellow| |cycleElt| |delay| |lazyPseudoRemainder| |OMputApp| |deriv| |interpretString| |pi| |decreasePrecision| |expandTrigProducts| |ef2edf| |var1StepsDefault| |null| |ref| |block| |countRealRoots| |OMgetSymbol| |cyclic?| |makeVariable| |unexpand| |polarCoordinates| |interpret| |iflist2Result| |cCoth| |plus| |OMUnknownSymbol?| |setPredicates| |routines| |ramified?| |generalInfiniteProduct| |wholePart| |lazyPseudoDivide| |subNode?| |diagonalProduct| |insertRoot!| |paraboloidal| |subResultantsChain| |setScreenResolution| |infinity| |void| |outputFixed| |particularSolution| |writable?| |curve?| |extractClosed| |nextsousResultant2| |leadingIndex| |ridHack1| |iidprod| |antiCommutative?| |trapezoidal| |curve| |headRemainder| |cycleLength| |functionIsOscillatory| |sqfrFactor| |car| |rangeIsFinite| |elColumn2!| |exponential| |OMputEndError| |plusInfinity| |OMputEndAttr| |complexIntegrate| |ReduceOrder| |roughBase?| |pseudoRemainder| |cdr| |createMultiplicationTable| |times| |leftFactorIfCan| |powerSum| |symbol?| |monicDivide| |argscript| |useEisensteinCriterion?| |lyndon| |colorDef| |trigs2explogs| |dimensionOfIrreducibleRepresentation| |maxRowIndex| |unitNormalize| |coefficient| |pdf2df| |minusInfinity| |outerProduct| |algintegrate| |makeCos| |invertIfCan| |OMgetEndAttr| |UP2ifCan| |linearAssociatedLog| |innerSolve1| D |child?| |OMsetEncoding| |create3Space| |generalizedEigenvector| |setLegalFortranSourceExtensions| |lazyIrreducibleFactors| |bottom!| |bsolve| |trapezoidalo| |addPoint2| |changeName| |singularitiesOf| |goodnessOfFit| |groebner?| |bit?| |graphCurves| |wreath| |perspective| ~= |prinshINFO| |singularAtInfinity?| |pToHdmp| |noncommutativeJordanAlgebra?| |OMputEndBind| |hspace| |minordet| |userOrdered?| |squareFree| |sumSquares| |minPoints| |fortranLiteral| |OMReadError?| |getMatch| |cyclotomic| |outputAsTex| |diagonals| |dihedral| |complexNormalize| |initTable!| |OMgetAtp| |nextLatticePermutation| |heapSort| |initials| |xor| |balancedBinaryTree| |mapCoef| |swapColumns!| |tail| |rangePascalTriangle| |baseRDEsys| |rootKerSimp| |removeRoughlyRedundantFactorsInPols| |univariatePolynomial| |reset| |normFactors| |member?| |subResultantChain| |dec| |mat| |RittWuCompare| |quadratic?| |key?| |iilog| |write| |testDim| |merge!| |adaptive?| |dfRange| |isOp| |setErrorBound| |quatern| |diagonal| |createPrimitivePoly| |cCot| |dim| |coercePreimagesImages| |print| |degreeSubResultant| |viewPosDefault| |rowEchLocal| |hitherPlane| |minRowIndex| |zero?| |fortranTypeOf| |shufflein| |red| |symmetric?| |kovacic| |bandedHessian| |c02aff| |gramschmidt| |useSingleFactorBound?| |makeUnit| |evenInfiniteProduct| |polynomialZeros| |clipBoolean| |acoshIfCan| |combineFeatureCompatibility| |llprop| |c02agf| |typeList| |lyndonIfCan| |invertibleElseSplit?| |totalLex| |init| |po| |changeBase| |prolateSpheroidal| |indiceSubResultantEuclidean| |c05adf| |wordsForStrongGenerators| |satisfy?| |maxdeg| |iomode| |singRicDE| |unitVector| |systemSizeIF| |realElementary| |parabolicCylindrical| |c05nbf| |coerceP| |iiatan| |leadingTerm| |OMgetEndAtp| |monicLeftDivide| |specialTrigs| |complexForm| |morphism| |c05pbf| |chvar| |cross| |readLineIfCan!| |primextintfrac| |preprocess| |ramifiedAtInfinity?| |controlPanel| |c06eaf| |removeZeroes| |balancedFactorisation| |prepareDecompose| |showTheRoutinesTable| UTS2UP |getButtonValue| |getStream| |quotedOperators| |putGraph| |c06ebf| |factors| |splitConstant| SEGMENT |shiftLeft| |showIntensityFunctions| |OMgetEndBind| |pushdown| |push!| |find| |zerosOf| |point| |c06ecf| |insertionSort!| |expextendedint| |listYoungTableaus| GF2FG |asinIfCan| |curveColorPalette| |primeFactor| |possiblyNewVariety?| |bivariatePolynomials| |c06ekf| |quasiComponent| |nthCoef| |Lazard| |LowTriBddDenomInv| |objectOf| |pushup| |cAsec| |LiePolyIfCan| |transcendent?| |tab| |c06fpf| |gderiv| |ptree| |sylvesterMatrix| |lazyPremWithDefault| |randomR| |associatedSystem| |complexZeros| |range| |contract| |argument| |mkPrim| |definingInequation| |c06fqf| |series| |level| |lp| |lazyPquo| |newSubProgram| |digits| |cartesian| |weight| |meshPar1Var| |mapSolve| |badValues| |nthr| |c06frf| |SturmHabicht| |rspace| |argumentList!| |elem?| |unitNormal| |elliptic?| |sechIfCan| |failed?| |getVariableOrder| |c06fuf| |UpTriBddDenomInv| |arity| |root?| |raisePolynomial| |outputMeasure| |size?| |internalSubQuasiComponent?| |irreducibleFactor| |pmComplexintegrate| |c06gbf| |hasTopPredicate?| |fractRagits| |drawStyle| |characteristic| |leftDivide| |resultantReduitEuclidean| |eigenvalues| |antisymmetricTensors| |isQuotient| |min| |c06gcf| |bernoulliB| |derivationCoordinates| |denominator| |OMsupportsSymbol?| |inHallBasis?| |viewDeltaXDefault| |rightExactQuotient| |imagK| |c06gqf| |linearDependenceOverZ| |df2mf| |seed| |degreePartition| |isobaric?| |iisech| |LyndonBasis| |leftQuotient| |center| |sizeMultiplication| |c06gsf| |iitan| |moebius| |f01rcf| |branchPoint?| |second| |property| |drawComplexVectorField| |tubePlot| |palgextint| |OMputEndAtp| |imagJ| |d01ajf| |solid| |constantToUnaryFunction| |f01rdf| |minimumExponent| |third| |lowerCase!| |edf2efi| |meshFun2Var| |subset?| |discriminant| |d01akf| |f01ref| |OMopenFile| |pointData| |bfKeys| |repeatUntilLoop| |cyclotomicFactorization| |generalTwoFactor| |OMclose| |limitPlus| |d01alf| |cAcoth| |f02aaf| |getGoodPrime| |OMputObject| |top!| |torsion?| |rischDEsys| |units| |stirling1| |numberOfImproperPartitions| |d01amf| |cyclic| |f02abf| |listOfLists| |summation| |lazyPseudoQuotient| |points| |palgLODE| |Vectorise| |uniform01| |setfirst!| |d01anf| |basisOfRightNucloid| |f02adf| |torsionIfCan| |upDateBranches| |triangSolve| |nextSubsetGray| |internalIntegrate| |LazardQuotient| |critBonD| |lifting| |d01apf| |traceMatrix| |f02aef| |determinant| |schwerpunkt| |head| |remainder| |modifyPoint| |kroneckerDelta| |nodes| |d01aqf| |critMonD1| |f02aff| |parametersOf| |exactQuotient| |ignore?| |ode1| |code| |operator| |useSingleFactorBound| |mainSquareFreePart| |d01asf| |f02agf| |symmetricGroup| |outputForm| |generators| |sPol| |subResultantGcd| |var1Steps| |sub| |d01bbf| |corrPoly| |f02ajf| |halfExtendedResultant2| |reducedContinuedFraction| |dictionary| |nextPrime| |symmetricPower| |sample| |reverse| |f02akf| |multiple?| |setrest!| |eulerPhi| |next| |max| |low| |makeYoungTableau| |OMgetAttr| |multiplyCoefficients| |comment| |leadingBasisTerm| ** |f02awf| |clearTheSymbolTable| |lexico| |irreducibleRepresentation| |outputAsScript| |processTemplate| |sinIfCan| |f02axf| |mainCharacterization| |sh| |makeSin| |vector| |OMgetEndError| |zeroSetSplitIntoTriangularSystems| |digit| |qPot| |rightRank| |f02bbf| |chiSquare1| |deref| |differentiate| EQ |dequeue!| |tensorProduct| |semiSubResultantGcdEuclidean2| |upperCase| |rischNormalize| |f02bjf| |toseInvertibleSet| |omError| |swap| |mapBivariate| |li| |definingEquations| |dimension| |f02fjf| |squareFreePolynomial| |crushedSet| |completeHermite| |euclideanSize| |cCosh| |algSplitSimple| |wrregime| |deleteProperty!| |exteriorDifferential| |f02wef| |retractable?| |generic| |reverseLex| |hdmpToP| |prologue| |distdfact| |f02xef| |internalZeroSetSplit| |lexGroebner| |nonLinearPart| |moebiusMu| |zeroDimPrimary?| |removeCoshSq| |sort| |brace| |f04adf| |semiSubResultantGcdEuclidean1| |difference| |convergents| |selectNonFiniteRoutines| |sinh2csch| |isExpt| |pointSizeDefault| |factorList| |f04arf| |OMsend| |solveLinearPolynomialEquation| |f2st| |imagi| |divergence| |headReduce| |f04asf| |orbit| |rotate!| |topPredicate| |vedf2vef| |retract| |unitsColorDefault| |gethi| |cAcot| |f04atf| |iipow| |anticoord| |quasiAlgebraicSet| |radicalOfLeftTraceForm| |firstUncouplingMatrix| |value| |f04axf| |pole?| |inGroundField?| |aromberg| |makeFR| |times!| |hash| |SturmHabichtMultiple| |mindegTerm| |random| |factorials| |f04faf| |remove!| |square?| |sqfree| |lprop| |lift| |count| |predicates| |changeMeasure| |generator| |f04jgf| |viewpoint| |setMinPoints| |halfExtendedSubResultantGcd1| |reduce| |solid?| |graphState| |style| |prod| |f04maf| |OMputString| |ODESolve| |besselJ| |sumOfKthPowerDivisors| |nextPartition| |limit| |merge| |f04mbf| |nextsubResultant2| |dmp2rfi| |hdmpToDmp| |exponents| |minIndex| |calcRanges| |symmetricDifference| |f04mcf| |ord| |laplacian| |decomposeFunc| |transcendenceDegree| |inc| |basisOfNucleus| |semiDegreeSubResultantEuclidean| |search| |f04qaf| |dmpToP| |lfextendedint| |lazyEvaluate| |elliptic| |matrixDimensions| |OMbindTCP| |fortranLiteralLine| |OMgetType| |f07adf| |superHeight| |content| |rootOf| |computeInt| |evaluate| |OMputEndApp| |reduction| |cyclicCopy| |f07aef| |iifact| |mathieu24| |iicot| |mathieu23| |cyclePartition| |countRealRootsMultiple| |iiacsc| |genericRightTraceForm| |algebraicDecompose| |reduced?| |f07fdf| |genericPosition| |debug3D| |extractPoint| |binarySearchTree| |trace2PowMod| |uniform| |integral?| |chainSubResultants| |f07fef| |splitNodeOf!| |unit| |choosemon| |iidsum| |divideIfCan| |highCommonTerms| |localReal?| |super| |s01eaf| |OMputSymbol| |startStats!| |stosePrepareSubResAlgo| |tan2cot| |fullDisplay| |cAtan| |inspect| |lo| |rightRemainder| |airyBi| |repSq| |s13aaf| |gcdcofact| |seriesSolve| |axesColorDefault| |nextNormalPoly| |curryLeft| |incr| |ScanFloatIgnoreSpaces| |OMencodingBinary| |s13acf| |selectsecond| |mapmult| |mainForm| |extensionDegree| |mapExponents| |associates?| |hi| |binaryTree| |iiacos| |s13adf| |quadratic| |generateIrredPoly| |poisson| |blue| |e01sff| |getlo| |moduloP| |getOperator| |dioSolve| |rightRegularRepresentation| |makeEq| |s14aaf| |rightTrim| |modifyPointData| |isAbsolutelyIrreducible?| |minimize| |duplicates| |pascalTriangle| |fintegrate| |nil| |getOperands| |reducedSystem| |OMgetInteger| |legendre| |s14abf| |leftTrim| |slex| |returns| |Si| |acscIfCan| |rational| |buildSyntax| |appendPoint| |makingStats?| |s14baf| |createGenericMatrix| |associatedEquations| |mantissa| |compiledFunction| |graeffe| |paren| |leftZero| |newReduc| |s15adf| |OMgetBVar| |partialNumerators| |rightPower| |doublyTransitive?| |relationsIdeal| |approximate| |rationalPoint?| |setEpilogue!| |createNormalPoly| |s15aef| |resultant| |RemainderList| |rootRadius| |primitive?| |complex| |iicoth| |commutator| |shallowExpand| |s17acf| |numberOfIrreduciblePoly| |matrixConcat3D| |mathieu22| |palgint| |isPlus| |id| |safeFloor| |tanh2trigh| |s17adf| |cycleSplit!| |rationalPoints| |initializeGroupForWordProblem| |makeViewport2D| |printTypes| |infRittWu?| |constantOpIfCan| |secIfCan| |lieAdmissible?| |s17aef| |universe| |perfectNthPower?| |padecf| |monom| |mapGen| |areEquivalent?| |table| |sincos| |outputGeneral| |quotient| |s17aff| |pointPlot| |leastAffineMultiple| |innerSolve| |multiplyExponents| |nextColeman| |factorSquareFree| |tree| |intPatternMatch| |key| |abelianGroup| |refine| |useEisensteinCriterion| |s17agf| |oblateSpheroidal| |makeResult| |primitiveElement| |deepestInitial| |branchIfCan| |conjug| |readLine!| |opeval| |index| |setleft!| |UnVectorise| |certainlySubVariety?| |Ei| |s17ahf| |integralRepresents| |rules| |someBasis| |indicialEquation| |smith| |lazyIntegrate| |sinhcosh| |rdregime| |new| |varList| |generate| |completeEval| |nthFactor| |s17ajf| |deleteRoutine!| |weights| |bitCoef| |supDimElseRittWu?| |blankSeparate| |viewDefaults| |pushuconst| |resultantEuclidean| |condition| |solveid| |ParCond| |sizePascalTriangle| |s17akf| |elementary| |maxIndex| |removeDuplicates!| |commonDenominator| |product| |zeroMatrix| |scalarMatrix| |incrementBy| |inconsistent?| |imagE| |cyclicEqual?| |minus!| |s17dcf| |qfactor| |boundOfCauchy| |maxPoints3D| |linear| |semiDiscriminantEuclidean| |subQuasiComponent?| |shallowCopy| |dot| |expand| |removeIrreducibleRedundantFactors| |divideExponents| |s17def| |internalSubPolSet?| |makeSketch| |OMgetVariable| |number?| |resetVariableOrder| |central?| |hue| |filterWhile| |leftRank| |evenlambert| |s17dgf| |commaSeparate| |cosIfCan| |generic?| |polynomial| |high| |initiallyReduce| |iisinh| |cos2sec| |filterUntil| |zero| |rightQuotient| |removeRedundantFactorsInPols| |att2Result| |s17dhf| |quotientByP| |algDsolve| |structuralConstants| |primitivePart| |removeCosSq| |select| |packageCall| |squareFreePrim| |listOfMonoms| |s17dlf| |symmetricProduct| |symbolTableOf| |upperCase?| |tracePowMod| |And| |palgintegrate| |composites| |submod| |s18acf| |leftUnits| |rightDivide| |basisOfLeftAnnihilator| |screenResolution| |precision| |Or| |positive?| |deepCopy| |argumentListOf| |decrease| |tubePoints| |extractBottom!| |extendedint| |Not| |linearMatrix| |setsubMatrix!| |rightFactorCandidate| |list?| |bezoutResultant| |result| |checkPrecision| |OMgetApp| |critT| |splitSquarefree| |setImagSteps| |stoseInvertibleSetreg| |moreAlgebraic?| |expt| |printCode| |drawToScale| |integralMatrixAtInfinity| |totalfract| |oneDimensionalArray| |nullary?| |createLowComplexityTable| |updateStatus!| |triangular?| |partitions| |tubeRadius| |multMonom| |colorFunction| |logpart| |ratDenom| |homogeneous?| |makeRecord| |redPol| |augment| |iiGamma| |rationalPower| |infiniteProduct| |linearAssociatedExp| |weighted| |getOrder| |lhs| |expandPower| |applyRules| |leftAlternative?| |critM| |cschIfCan| |realEigenvalues| |replace| |transform| |recolor| |bringDown| |scalarTypeOf| |stopTableGcd!| |rhs| |toroidal| |const| |empty?| |getRef| |recip| |mainContent| |rk4a| |subResultantGcdEuclidean| |leviCivitaSymbol| |constantRight| |polar| |compile| |inverseLaplace| |roughEqualIdeals?| |pow| |midpoints| |tValues| |lazyResidueClass| |aCubic| |radPoly| |fortranLogical| |iitanh| |left| |removeSquaresIfCan| |clikeUniv| |alternative?| |numberOfCycles| |nullary| |convert| |stop| |permutation| |simpleBounds?| |prinpolINFO| |Hausdorff| |lSpaceBasis| |right| |localAbs| |phiCoord| |constDsolve| |OMgetEndBVar| |clearFortranOutputStack| |OMputAtp| |removeZero| |explicitEntries?| |connect| |irreducibleFactors| |factorial| |stiffnessAndStabilityFactor| RF2UTS |swapRows!| |lineColorDefault| |genericLeftNorm| |characteristicPolynomial| |simplify| |subMatrix| |trim| |iiperm| |complexRoots| |any?| |cycleRagits| |removeSinhSq| |rightExtendedGcd| |bfEntry| |qqq| |complexSolve| |hermite| |asinh| |identitySquareMatrix| |HenselLift| |orthonormalBasis| |OMgetEndObject| |degree| |factorByRecursion| |numeric| |parabolic| |lazyPrem| |quadraticNorm| |removeSuperfluousQuasiComponents| |acosh| |complementaryBasis| |fortranComplex| |consnewpol| |selectIntegrationRoutines| |removeRoughlyRedundantFactorsInPol| |conical| |radical| |isTimes| |halfExtendedSubResultantGcd2| |thetaCoord| |nullSpace| |atanh| |rootOfIrreduciblePoly| |sign| |abs| |radix| |sec2cos| |failed| |tubeRadiusDefault| |goto| |exactQuotient!| |gcdprim| |superscript| |acoth| |log10| |laurentRep| |rightFactorIfCan| |musserTrials| |setelt!| |light| |tower| |sparsityIF| |column| |putColorInfo| |plenaryPower| |asech| |viewPhiDefault| |write!| |squareFreeFactors| |atoms| |script| |logical?| |open?| |setColumn!| |minset| |append| |clipPointsDefault| |separateDegrees| |var2StepsDefault| |janko2| |factorSquareFreeByRecursion| |euler| |setnext!| |cCos| |delete| |multiple| |spherical| |indiceSubResultant| |mkIntegral| |factor| |iisqrt2| |noKaratsuba| |redpps| |collectUnder| |applyQuote| |SFunction| |exprHasAlgebraicWeight| |coleman| |create| |tex| |sqrt| |lfintegrate| |quasiRegular| |leadingIdeal| |toseInvertible?| |doubleRank| |iiatanh| |postfix| |quote| |real| |genericRightNorm| |minimalPolynomial| |OMgetEndApp| |resize| |bandedJacobian| |setlast!| |integralLastSubResultant| |explimitedint| |rightGcd| |imag| |getMultiplicationMatrix| |hasoln| |ruleset| |outputFloating| |partition| |rquo| |eq?| |composite| |directProduct| |finiteBound| |kmax| NOT |hMonic| |sumOfDivisors| |KrullNumber| |region| |invertible?| |brillhartTrials| |invmultisect| |symbolIfCan| |numericIfCan| OR |eisensteinIrreducible?| |physicalLength!| |binaryFunction| |possiblyInfinite?| |doubleDisc| |realZeros| |destruct| |partialQuotients| |showArrayValues| AND |getDatabase| |constant?| |suchThat| |oddlambert| |diag| |check| |nthRoot| |medialSet| |numericalOptimization| |froot| |iisqrt3| |asechIfCan| |printInfo| |vconcat| |freeOf?| |totalGroebner| |genericRightTrace| |FormatRoman| |hasSolution?| |op| |enqueue!| |leastMonomial| |makeMulti| |exQuo| |internal?| |reduceBasisAtInfinity| |dAndcExp| |modularGcd| |subHeight| |less?| |one?| |prime?| |semiResultantEuclideannaif| |OMencodingSGML| |initiallyReduced?| |setleaves!| |hyperelliptic| |module| |dflist| |identityMatrix| |hexDigit?| |restorePrecision| |permutationRepresentation| |rst| |leftOne| |mapMatrixIfCan| |lowerPolynomial| |trueEqual| |rightNorm| |singleFactorBound| |createIrreduciblePoly| |zeroOf| |conditionP| |computeBasis| |LazardQuotient2| |bumptab1| |elRow1!| |myDegree| |elRow2!| |rdHack1| |changeNameToObjf| |brillhartIrreducible?| |upperCase!| |symbol| |nthExpon| |trunc| |atanIfCan| |tanhIfCan| |implies| |cycles| |resetAttributeButtons| |internalIntegrate0| |string| |datalist| |setPosition| |whatInfinity| |nthFractionalTerm| |getPickedPoints| |monomRDEsys| |listRepresentation| |beauzamyBound| |GospersMethod| |endOfFile?| * |character?| |modularGcdPrimitive| |viewWriteDefault| |scan| |patternMatchTimes| |exponential1| |obj| |createMultiplicationMatrix| |df2ef| |factorOfDegree| |integer| |leftNorm| |leftRegularRepresentation| |normalise| |lighting| |associator| |stoseIntegralLastSubResultant| |linearPart| |factorsOfDegree| |mainVariables| |tan2trig| |factorGroebnerBasis| |reorder| |normalizedAssociate| |generalLambert| |linearDependence| |mainValue| |expintfldpoly| |expIfCan| |computeCycleLength| |toseSquareFreePart| |cyclotomicDecomposition| |rationalApproximation| |exists?| |cExp| |constantIfCan| |redmat| |stronglyReduced?| |hconcat| |laplace| |maximumExponent| |hessian| |listexp| |OMputInteger| |atrapezoidal| |getMeasure| |setValue!| |bitTruth| |ffactor| |validExponential| |ldf2vmf| |rightMult| |factorFraction| |lastSubResultantElseSplit| |OMputBVar| |setVariableOrder| |zeroDimensional?| |root| |separant| |fortranReal| |powerAssociative?| |exp1| |bat1| |completeHensel| |compactFraction| |printStats!| |insertBottom!| |tanh2coth| |unparse| |BumInSepFFE| |order| |numFunEvals3D| |minPoints3D| |subscript| |karatsubaOnce| |makeViewport3D| |getZechTable| |limitedint| |explicitlyEmpty?| |stFunc1| |plot| |lieAlgebra?| |primaryDecomp| |latex| |getCode| |createLowComplexityNormalBasis| |separateFactors| |semicolonSeparate| |stoseSquareFreePart| |rischDE| |leaves| |binaryTournament| |solveLinearPolynomialEquationByRecursion| |allRootsOf| |viewSizeDefault| |octon| |even?| |OMencodingXML| |typeLists| |operators| |sturmSequence| |double| |createZechTable| |float| |extract!| |reducedForm| |squareTop| |normDeriv2| |standardBasisOfCyclicSubmodule| |roman| |showFortranOutputStack| |indicialEquations| |ideal| |interval| |maxrow| |alphabetic?| |extractTop!| |physicalLength| |reverse!| |characteristicSet| |printHeader| |pile| |pToDmp| |or| |resultantEuclideannaif| |limitedIntegrate| |resultantnaif| |zeroSetSplit| |incrementKthElement| |monomial?| |outputArgs| |arrayStack| |stopTable!| |and| |wordInStrongGenerators| |bezoutDiscriminant| |subtractIfCan| |sts2stst| |setchildren!| |npcoef| |entry?| |approxNthRoot| |setPoly| |jordanAlgebra?| |genericLeftDiscriminant| |simplifyLog| |linkToFortran| |reduceByQuasiMonic| |setAdaptive3D| |genericLeftTrace| |setFieldInfo| |sdf2lst| |rectangularMatrix| |karatsubaDivide| |maxPoints| |patternMatch| |interpolate| |unravel| |groebnerIdeal| |polygon?| |sortConstraints| |purelyTranscendental?| |rur| |absolutelyIrreducible?| |primlimintfrac| |stFunc2| |nextPrimitiveNormalPoly| |rightDiscriminant| |dom| |cTanh| |explogs2trigs| |csc2sin| |belong?| |strongGenerators| |oddInfiniteProduct| |basisOfRightNucleus| |sinhIfCan| GE |pseudoQuotient| |simplifyPower| |LagrangeInterpolation| |primitivePart!| |charpol| |leftScalarTimes!| |printInfo!| |setRow!| |index?| GT |trigs| |setClosed| |quasiRegular?| |ParCondList| |monomials| |iicsch| |functionIsFracPolynomial?| |numberOfComputedEntries| |s18adf| |radicalSimplify| LE |node| |leftRemainder| |Frobenius| |dmpToHdmp| |mapdiv| |coerceImages| |symbolTable| |edf2ef| |s18aef| |OMgetString| LT |splitDenominator| |powmod| |coordinates| |maxint| |complexNumericIfCan| |setStatus| |inv| |copy!| |s18aff| |leftMinimalPolynomial| |OMlistSymbols| |basisOfRightAnnihilator| |pushFortranOutputStack| |rarrow| |setOfMinN| |ground?| |fortranLinkerArgs| |changeThreshhold| |findCycle| |s18dcf| |zoom| |isMult| |constantKernel| |skewSFunction| |setRealSteps| |popFortranOutputStack| |loopPoints| |top| |localIntegralBasis| |ground| |imagk| |s18def| |rename| |saturate| |binary| |continue| |box| |monomialIntegrate| |title| |integrate| |leadingMonomial| |complexEigenvalues| |pureLex| |outputAsFortran| |monic?| |OMopenString| |s19aaf| |lepol| |numberOfChildren| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+(30 . 3404130409)
+(4186 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArrayFunctions2| |OneDimensionalArray| |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| |DrawOptionFunctions1| |DrawOption| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |EquationFunctions2| |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |ExponentialExpansion| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |Expression| |ExpressionSpaceODESolver| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| |FunctionFieldCategory| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteField| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| |FreeModuleCat| |FortranMatrixCategory| |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| |FiniteSetAggregate&| |FiniteSetAggregate| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| |FortranType| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage1| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OrderedCancellationAbelianMonoid| |OctonionCategory&| |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |FunctionSpaceAttachPredicates| |AttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| |SExpressionCategory| |SExpression| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadParser| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctionsNonCommutative| |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| |UnivariateTaylorSeriesODESolver| |UTSodetools| |Variable| |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |ranges| |paren| |shade| |alphabetic?| |yRange| |rename!| |leadingCoefficient| |top!| |fractionPart| |rootOfIrreduciblePoly| |members| |quasiMonic?| |leftZero| |leastPower| |extractTop!| |zRange| |firstSubsetGray| |primitiveMonomials| |polCase| |torsion?| |factorSquareFreePolynomial| |sign| |multinomial| |normalizeAtInfinity| |newReduc| |name| |shiftRight| |map!| |physicalLength| |close| |roughUnitIdeal?| |reductum| |rischDEsys| |viewport3D| |normalizeIfCan| |abs| |OMreadStr| |algebraic?| |compBound| |OMgetBVar| |qsetelt!| |reverse!| |stirling1| |reducedDiscriminant| |modTree| UP2UTS |directory| |radix| |clip| |integralMatrix| |partialNumerators| |closedCurve| |characteristicSet| |dn| |numberOfImproperPartitions| |inrootof| |sec2cos| |function| |bezoutMatrix| |power!| |rightPower| |bumptab| |printHeader| |d01gaf| |display| |cyclic| |previous| |inf| |fill!| |tubeRadiusDefault| |label| |pseudoDivide| |doublyTransitive?| |iFTable| |pile| |d01gbf| |infieldIntegrate| |listOfLists| |goto| |repeating| |entry| |pmintegrate| |relationsIdeal| |addMatchRestricted| |pToDmp| |d02bbf| |summation| |univariatePolynomialsGcds| |diagonal?| |exactQuotient!| |internalDecompose| |rationalPoint?| |lyndon?| |acsch| |resultantEuclideannaif| |d02bhf| |gcdprim| |lazyPseudoQuotient| |selectSumOfSquaresRoutines| |stoseInvertible?| |concat!| |parent| |setEpilogue!| |limitedIntegrate| |d02cjf| |nlde| |points| |coth2trigh| |besselY| |superscript| |readable?| |ipow| |createNormalPoly| |resultantnaif| |input| |d02ejf| |log10| |palgLODE| |sequences| |iprint| |child| |alternatingGroup| |OMlistCDs| |resultant| |zeroSetSplit| |library| |d02gaf| |leftPower| |cyclicSubmodule| |laurentRep| |iicosh| |match?| |doubleComplex?| |RemainderList| |incrementKthElement| |d02gbf| |bivariatePolynomials| |setOrder| |quartic| |rightFactorIfCan| |empty| |rootRadius| |diff| BY |basisOfCenter| |monomial?| |d02kef| |quasiComponent| |generalizedContinuumHypothesisAssumed| |musserTrials| |rk4| |primitive?| |showAll?| |acotIfCan| |outputArgs| |d02raf| |nthCoef| |monomial| |setelt!| |coordinate| |expint| |dec| |arrayStack| |getMultiplicationTable| |d03edf| |Lazard| |multivariate| |setLabelValue| |cot2tan| |light| |mkcomm| |elliptic| |ddFact| |d03eef| |stopTable!| |set| |shift| |variables| |LowTriBddDenomInv| |sparsityIF| |unaryFunction| |linearPolynomials| |lcm| |newLine| |matrixDimensions| |pr2dmp| |wordInStrongGenerators| |d03faf| |objectOf| |permanent| |front| |column| |mapExpon| |OMbindTCP| |bezoutDiscriminant| |resetNew| |e01baf| |pushup| |OMreceive| |fortranLiteralLine| |cAcosh| |subtractIfCan| |leftFactor| |e01bef| |clearCache| |cAsec| |weighted| |direction| |pair?| |innerEigenvectors| |gcd| |OMgetType| |cfirst| |makeop| |setMaxPoints3D| |sts2stst| |e01bff| |LiePolyIfCan| |mapUnivariateIfCan| |getOrder| |slash| |setprevious!| |union| |substring?| |df2st| |superHeight| |divide| |SturmHabichtCoefficients| |setchildren!| |e01bgf| |transcendent?| |debug| |prevPrime| |expandPower| |sn| |false| |rationalIfCan| |content| |infLex?| |polygamma| |e01bhf| |applyRules| |tab| |message| |deepestTail| |wronskianMatrix| |stoseInvertible?reg| |suffix?| |rootOf| |decompose| |reorder| |atanhIfCan| |e01daf| |gderiv| |leftAlternative?| |normalElement| |purelyAlgebraic?| |setButtonValue| |computeInt| |signAround| |normalizedAssociate| |notelem| |e01saf| |show| |sylvesterMatrix| |critM| |unit?| |solveLinear| |primintfldpoly| |evaluate| |prefix?| |definingPolynomial| ~ |outputList| |generalLambert| |e01sbf| |mapDown!| |lazyPremWithDefault| |expenseOfEvaluation| |cschIfCan| |OMputEndApp| |chiSquare| |linearDependence| |e01sef| |trace| |qinterval| |randomR| |realEigenvalues| |OMputError| |iiacoth| |reduction| |mainValue| |e02adf| |associatedSystem| |nextPrimitivePoly| |transform| |distance| |increasePrecision| |cyclicCopy| |expintfldpoly| |e02aef| |complexZeros| |recolor| |generalPosition| |asinhIfCan| |nary?| |iifact| |expIfCan| |e02agf| |range| |bringDown| |lexTriangular| |squareMatrix| |dark| |mathieu24| |computeCycleLength| |filename| |point| |e02ahf| |close!| |contract| |scalarTypeOf| |leftGcd| |iicot| |infix?| |open| |roughBasicSet| |toseSquareFreePart| |e02ajf| |Aleph| |argument| |stopTableGcd!| |unvectorise| |iiasin| |mask| |mathieu23| |options| |cyclotomicDecomposition| |list| |e02akf| |toroidal| |mkPrim| |nextSublist| |cosh2sech| |cyclePartition| |traverse| |rationalApproximation| |cons| |series| |e02baf| |definingInequation| |const| |normal01| = |countRealRootsMultiple| |closed?| |exists?| |setDifference| |nsqfree| |e02bbf| |empty?| |lazyPquo| |subspace| |expr| |iiacsc| |components| |cExp| |setIntersection| |e02bcf| |besselI| |newSubProgram| |getRef| |rowEchelon| |true| < |exprHasLogarithmicWeights| |genericRightTraceForm| |constantIfCan| |setUnion| |e02bdf| |palglimint| |digits| |recip| |bat| > |fullPartialFraction| |algebraicDecompose| |redmat| |apply| |min| |noLinearFactor?| |e02bef| |cartesian| |taylor| |denomRicDE| |mainContent| <= |digamma| |reduced?| |semiResultantReduitEuclidean| |stronglyReduced?| |weight| |e02daf| |charthRoot| |laurent| |rk4a| |setAdaptive| >= |genericPosition| |eulerE| |SturmHabichtSequence| |hconcat| |size| |meshPar1Var| |e02dcf| |karatsuba| |puiseux| |leadingExponent| |subResultantGcdEuclidean| |constant| |debug3D| |screenResolution3D| |monomialIntPoly| |laplace| |prefix| |e02ddf| |subTriSet?| |mapSolve| |leviCivitaSymbol| |internalAugment| |cRationalPower| |extractPoint| |mapUnivariate| |maximumExponent| |constantRight| |e02def| |extendedResultant| |badValues| |negative?| |variable| + |binarySearchTree| |delete!| |hessian| |internalLastSubResultant| |first| |e02dff| |rootProduct| |nthr| |polar| |taylorIfCan| - |erf| |or| |trace2PowMod| |realEigenvectors| |pleskenSplit| |listexp| |rest| |e02gaf| |SturmHabicht| |inverseLaplace| |computePowers| / |comparison| |and| |constantCoefficientRicDE| |uniform| |OMputInteger| |endSubProgram| |substitute| |e02zaf| |rspace| |LyndonWordsList| |roughEqualIdeals?| |say| |distribute| |integral?| |OMgetObject| |reopen!| |atrapezoidal| |removeDuplicates| |showAllElements| |e04dgf| |argumentList!| |pow| |besselK| |listConjugateBases| |dilog| |rightRecip| |chainSubResultants| |henselFact| |getMeasure| |binomial| |e04fdf| |elem?| |euclideanGroebner| |midpoints| |ratPoly| |sin| |radicalEigenvector| |splitNodeOf!| |removeRedundantFactorsInContents| |setValue!| |discriminantEuclidean| |e04gcf| |unitNormal| |OMwrite| |tValues| |cAcsch| |monicDecomposeIfCan| |unit| |cos| |differentiate| |fractRadix| |countable?| |bitTruth| |node?| |e04jaf| |elliptic?| |cylindrical| |lazyResidueClass| |rightOne| |listLoops| |tan| |choosemon| |multisect| |ffactor| |algebraicSort| |sturmVariationsOf| |e04mbf| |sechIfCan| |shrinkable| |aCubic| |cSin| |shuffle| |cot| |iidsum| |graphStates| |validExponential| |useNagFunctions| |e04naf| |failed?| |radPoly| |normalize| |sec| |unary?| |divideIfCan| |ldf2vmf| |build| |e04ucf| |fortranLogical| |getVariableOrder| |s18aef| |stoseInvertible?sqfreg| |csc| |insertTop!| |highCommonTerms| |singular?| |rightMult| |e04ycf| |iitanh| |UpTriBddDenomInv| |s18aff| |viewThetaDefault| |asin| |localReal?| |completeSmith| |sup| |factorFraction| |arity| |f01brf| |s18dcf| |retractIfCan| |removeSquaresIfCan| |pquo| |acos| |OMgetFloat| |super| |lastSubResultantElseSplit| |lambert| |f01bsf| |s18def| |root?| |vectorise| |clikeUniv| |numer| |atan| |iiasech| |OMputSymbol| |knownInfBasis| |OMputBVar| |f01maf| |raisePolynomial| |integralAtInfinity?| |alternative?| |s19aaf| |denom| |acot| |infinite?| |startStats!| |functionIsContinuousAtEndPoints| |setVariableOrder| |f01mcf| |outputMeasure| |numberOfCycles| |nthRootIfCan| |s19abf| |asec| |rootNormalize| |stosePrepareSubResAlgo| |zeroDimensional?| |f01qcf| |size?| |distFact| |nullary| |s19acf| |acsc| |indicialEquationAtInfinity| |tan2cot| |root| |f01qdf| |permutation| |internalSubQuasiComponent?| |extractIfCan| |s19adf| |sinh| |matrix| |splitLinear| |fullDisplay| |separant| |f01qef| |integerBound| |irreducibleFactor| |simpleBounds?| |s20acf| |kernel| |representationType| |cosh| |cAtan| |log| |fortranReal| |f01rcf| |prinpolINFO| |pmComplexintegrate| |twist| |s20adf| |draw| |tanh| |inspect| |elements| |powerAssociative?| |selectPolynomials| |hasTopPredicate?| |Hausdorff| |s21baf| |coth| |nextIrreduciblePoly| |rightRemainder| |exp1| |height| |lSpaceBasis| |fractRagits| |externalList| |s21bbf| |sech| |palgextint0| |airyBi| |bat1| |localAbs| |drawStyle| |map| |radicalSolve| |s21bcf| |csch| |repSq| |point?| |completeHensel| |s21bdf| |characteristic| |phiCoord| |createThreeSpace| |makeObject| |basisOfMiddleNucleus| |gcdcofact| |compactFraction| |leftDivide| |irreducible?| |constDsolve| |ncols| |seriesSolve| |zeroSquareMatrix| |printStats!| |symmetricSquare| |resultantReduitEuclidean| |OMgetEndBVar| |showRegion| |coef| |printingInfo?| |axesColorDefault| |insertBottom!| |nilFactor| |eigenvalues| |shiftRoots| |clearFortranOutputStack| |palgRDE| |nextNormalPoly| |quadraticForm| |meatAxe| |tanh2coth| |mkAnswer| |OMputAtp| |prime| |rootsOf| |curryLeft| |startTableGcd!| |unparse| |comp| |eigenMatrix| |invertibleElseSplit?| |errorInfo| |removeZero| |divideIfCan!| |ScanFloatIgnoreSpaces| |primlimitedint| |BumInSepFFE| |innerint| |declare| |totalLex| |explicitEntries?| |completeEchelonBasis| |fillPascalTriangle| |showAttributes| |OMencodingBinary| |fi2df| |order| |acothIfCan| |po| |iisin| |connect| |primintegrate| |numFunEvals3D| |perfectSquare?| |changeBase| |roughSubIdeal?| |irreducibleFactors| |backOldPos| |orbit| |uncouplingMatrices| |minPoints3D| |numerator| |prolateSpheroidal| |factorial| |LyndonWordsList1| |drawCurves| |plotPolar| |rotate!| |bright| |multiEuclideanTree| |subscript| |sech2cosh| |indiceSubResultantEuclidean| |stiffnessAndStabilityFactor| |iicos| |exprHasWeightCosWXorSinWX| |topPredicate| |solve1| |karatsubaOnce| |mainVariable| |wordsForStrongGenerators| |vedf2vef| |adjoint| |makeViewport3D| |basisOfCentroid| |satisfy?| |updatF| |removeCosSq| |shanksDiscLogAlgorithm| |unitsColorDefault| |getZechTable| |maxdeg| |fortranInteger| |packageCall| |gethi| |logIfCan| |remove| |limitedint| |linear| |iomode| |cAcos| |squareFreePrim| |harmonic| |cAcot| |eval| |singRicDE| |listOfMonoms| |legendreP| |iipow| |printInfo| |fglmIfCan| |elt| |rst| |last| |polynomial| |cache| |unitVector| |alphabetic| |symmetricProduct| |anticoord| |closedCurve?| |assoc| |leftOne| |systemSizeIF| |critB| |symbolTableOf| |option| |extendedEuclidean| |quasiAlgebraicSet| |mapMatrixIfCan| |linSolve| |realElementary| |upperCase?| |cAsech| |parse| |radicalOfLeftTraceForm| |mainMonomial| |lowerPolynomial| |conjugate| |parabolicCylindrical| |tracePowMod| |addPoint| |rootSimp| |fTable| |firstUncouplingMatrix| |output| |trueEqual| |solveRetract| |coerceP| |palgintegrate| |OMencodingUnknown| |width| |makeTerm| |Lazard2| |pole?| |rightNorm| |shellSort| |iiatan| |error| |stoseInternalLastSubResultant| |composites| |car| |dimensions| |accuracyIF| |inGroundField?| |singleFactorBound| |atom?| |decimal| |leadingTerm| |submod| |assert| |rotatex| |Is| |cdr| |genericLeftTraceForm| |aromberg| |createIrreduciblePoly| |OMputVariable| |OMgetEndAtp| |leftUnits| |tanintegrate| |ellipticCylindrical| |startPolynomial| |makeFR| |exponent| |zeroOf| |aspFilename| |e| |monicLeftDivide| |rightDivide| |primes| |iiacosh| |numberOfDivisors| |cLog| |times!| |equation| |conditionP| |stFuncN| |basisOfLeftAnnihilator| |specialTrigs| |eq| |leader| |mdeg| |generalizedInverse| |palgRDE0| |cCsc| |SturmHabichtMultiple| |ode2| |computeBasis| |constantOperator| |iter| |complexForm| |screenResolution| |mirror| |groebner| |t| |numberOfMonomials| |rroot| |unrankImproperPartitions0| |mindegTerm| |LazardQuotient2| |normalized?| |morphism| |expenseOfEvaluationIF| |positive?| |factorials| |cAsin| |lflimitedint| |cycleEntry| |bumptab1| |coord| |chvar| |setFormula!| |deepCopy| |optional| |integral| |remove!| |subSet| |elRow1!| |permutations| |cross| |argumentListOf| |csch2sinh| |infieldint| |square?| |myDegree| |addiag| |tableau| |readLineIfCan!| |decrease| |semiResultantEuclidean2| |ScanRoman| |sqfree| |pattern| |elRow2!| |showTheIFTable| |primextintfrac| |tubePoints| |resultantReduit| |rightCharacteristicPolynomial| |arg1| |lprop| |rdHack1| |psolve| |preprocess| |extractBottom!| |coerceListOfPairs| |groebnerFactorize| |arg2| |predicates| |changeNameToObjf| ^ |ramifiedAtInfinity?| |regularRepresentation| |extendedint| |biRank| |changeMeasure| |brillhartIrreducible?| |flatten| |controlPanel| |linearMatrix| |btwFact| |graphImage| |conditions| |viewpoint| |upperCase!| |test| |fortran| |removeZeroes| |makeSeries| |setsubMatrix!| |setMinPoints| |match| |tab1| |nthExpon| |balancedFactorisation| |finiteBasis| |rightFactorCandidate| |subst| |simpsono| |halfExtendedSubResultantGcd1| |trunc| |prepareDecompose| |OMputFloat| |list?| |solid?| |nonQsign| |coerce| |atanIfCan| F |showTheRoutinesTable| |bezoutResultant| |aLinear| |subscriptedVariables| |graphState| |tanhIfCan| |replace| UTS2UP |rightMinimalPolynomial| |OMgetApp| |style| |parametric?| |construct| |cycles| |acosIfCan| |getButtonValue| |critT| |characteristicSerie| |socf2socdf| |prod| |resetAttributeButtons| |safetyMargin| |getStream| |setClipValue| |splitSquarefree| |#| |virtualDegree| |OMputString| |internalIntegrate0| |updatD| |quotedOperators| |setImagSteps| |positiveSolve| |objects| |ODESolve| |vspace| |setPosition| |curry| |putGraph| |supRittWu?| |stoseInvertibleSetreg| |complexNumeric| |rk4qc| |besselJ| |whatInfinity| |ratpart| |geometric| |factors| |status| |delta| |moreAlgebraic?| |sumOfKthPowerDivisors| |selectAndPolynomials| |nthFractionalTerm| |stack| |save| |splitConstant| |curryRight| |expt| |call| |setAttributeButtonStep| |ran| |kernels| |nextPartition| |getPickedPoints| |shiftLeft| |printCode| LODO2FUN |pomopo!| |limit| |univariate| |lex| |monomRDEsys| |showIntensityFunctions| |drawToScale| |cTan| |identity| |merge| |inverse| |fractionFreeGauss!| |listRepresentation| |OMgetEndBind| |integralMatrixAtInfinity| |meshPar2Var| |monicModulo| |OMmakeConn| |nextsubResultant2| |beauzamyBound| |errorKind| |double?| |pushdown| |totalfract| |declare!| |prem| |dmp2rfi| |showScalarValues| |minGbasis| |GospersMethod| |/\\| |push!| |oneDimensionalArray| |cap| |dimensionsOf| |hdmpToDmp| |norm| |endOfFile?| |\\/| |nullary?| |find| |lambda| |OMputEndBVar| |properties| |Zero| |exponents| |changeVar| |character?| |addPointLast| |zerosOf| |numberOfOperations| |createLowComplexityTable| |minIndex| |One| |setelt| |univariateSolve| |iiasec| |modularGcdPrimitive| |insertionSort!| |monomRDE| |updateStatus!| |fixedPoints| |calcRanges| |prindINFO| |viewWriteDefault| |expextendedint| |logGamma| |triangular?| |symmetricDifference| |copy| |rationalFunction| |patternVariable| |scan| |listYoungTableaus| |normal?| |partitions| |ord| |numFunEvals| |translate| |nand| |patternMatchTimes| GF2FG |tubeRadius| |recur| |concat| |laplacian| ^= |autoReduced?| |finite?| |exponential1| |cn| |rightRankPolynomial| |asinIfCan| |multMonom| |cPower| |ravel| |exquo| |weakBiRank| |decomposeFunc| |createMultiplicationMatrix| |basisOfLeftNucleus| |curveColorPalette| |colorFunction| |stronglyReduce| |reshape| |div| |gcdPrimitive| |transcendenceDegree| |df2ef| |hypergeometric0F1| |primeFactor| |sumOfSquares| |logpart| |quo| |basisOfNucleus| |invertibleSet| |factorOfDegree| |any| |ratDenom| |possiblyNewVariety?| |bag| |BasicMethod| |numericalIntegration| |semiDegreeSubResultantEuclidean| |leftNorm| |homogeneous?| |createNormalElement| |systemCommand| |factorset| |optimize| |rem| |dmpToP| |algebraicCoefficients?| |leftRegularRepresentation| |overlap| |complexNormalize| Y |redPol| |segment| |monicRightDivide| |odd?| |bitLength| |lfextendedint| |normalise| |minColIndex| |initTable!| |collectUpper| |normal| |augment| |update| |lazyEvaluate| |partialFraction| |lighting| |OMgetAtp| |common| |iiGamma| |scaleRoots| |sum| |associator| |nextLatticePermutation| |reciprocalPolynomial| |rationalPower| |denomLODE| |mainCharacterization| |stoseIntegralLastSubResultant| |heapSort| |euclideanNormalForm| |infiniteProduct| |returnTypeOf| |sh| |linearPart| |digit?| |initials| |linearAssociatedExp| |cAcsc| |makeSin| |getExplanations| |factorsOfDegree| |balancedBinaryTree| |intermediateResultsIF| |OMgetEndError| |mainVariables| |mr| |mapCoef| |completeEval| |bivariateSLPEBR| |relativeApprox| |zeroSetSplitIntoTriangularSystems| |tan2trig| |initial| |swapColumns!| |iicsc| |nthFactor| |position| |digit| |graphs| |factorGroebnerBasis| |rangePascalTriangle| |showTheFTable| |deleteRoutine!| |cond| |insert| |not| |qPot| |inverseColeman| |baseRDEsys| |exp| |weights| |LyndonCoordinates| |rightRank| |continuedFraction| |rule| |sumOfDivisors| |deriv| |rootKerSimp| |bombieriNorm| |bitCoef| |B1solve| |chiSquare1| |KrullNumber| |interpretString| |removeRoughlyRedundantFactorsInPols| |pi| |overbar| |supDimElseRittWu?| |null| |equality| |deref| |decreasePrecision| |region| |operation| |univariatePolynomial| |blankSeparate| |algebraicOf| |interpret| |plus| |padicFraction| |dequeue!| |invertible?| |expandTrigProducts| |normFactors| |measure2Result| |viewDefaults| |Frobenius| |tensorProduct| |move| |brillhartTrials| |ef2edf| |infinity| |member?| |void| |pushuconst| |polyred| |dmpToHdmp| |leftTraceMatrix| |semiSubResultantGcdEuclidean2| |invmultisect| |var1StepsDefault| |lift| |subResultantChain| |resultantEuclidean| |quoByVar| |mapdiv| |cscIfCan| |upperCase| |transcendentalDecompose| |symbolIfCan| |ref| |reduce| |mat| |plusInfinity| |solveid| |schema| |coerceImages| |domainOf| |rischNormalize| |block| |polyRDE| |numericIfCan| |times| |RittWuCompare| |seriesToOutputForm| |ParCond| |edf2ef| |selectPDERoutines| |toseInvertibleSet| |eisensteinIrreducible?| |countRealRoots| |quadratic?| |length| |minusInfinity| |outerProduct| |sizePascalTriangle| |rowEch| |OMgetString| |physicalLength!| |omError| |degreeSubResultantEuclidean| |intersect| |OMgetSymbol| D |scripts| |key?| |elementary| |ListOfTerms| |splitDenominator| |swap| |numberOfVariables| |binaryFunction| |cyclic?| |iilog| |maxIndex| |tanSum| |powmod| |mapBivariate| |yCoord| |makeVariable| |possiblyInfinite?| ~= |testDim| |removeDuplicates!| |enterPointData| |coordinates| |FormatArabic| |definingEquations| |tube| |doubleDisc| |unexpand| |merge!| |select!| |commonDenominator| |maxint| |iiacot| |dimension| |polarCoordinates| |realZeros| |adaptive?| |taylorQuoByVar| |product| |complexNumericIfCan| |createNormalPrimitivePoly| |squareFreePolynomial| |compose| |partialQuotients| |iflist2Result| |dfRange| |zeroMatrix| |cyclicGroup| |setStatus| |tail| |OMcloseConn| |crushedSet| |cCoth| |showArrayValues| |palginfieldint| |isOp| |scalarMatrix| |reset| |copy!| |iroot| |triangulate| |completeHermite| |OMUnknownSymbol?| |getDatabase| |setErrorBound| |commutativeEquality| |inconsistent?| |write| |leftMinimalPolynomial| |ldf2lst| |euclideanSize| |setPredicates| |constant?| |quatern| |makeFloatFunction| |imagE| |OMlistSymbols| |dim| |branchPointAtInfinity?| |cCosh| |asecIfCan| |print| |routines| |oddlambert| |diagonal| |presuper| |cyclicEqual?| |basisOfRightAnnihilator| |polygon| |algSplitSimple| |lazyVariations| |ramified?| |diag| |pop!| |createPrimitivePoly| |minus!| |string?| |rarrow| |power| |wrregime| |powers| |cothIfCan| |check| |generalInfiniteProduct| |outlineRender| |cCot| |qfactor| |explicitlyFinite?| |setProperties| |setOfMinN| |init| |deleteProperty!| |back| |nthRoot| |wholePart| |in?| |fortranCompilerName| |coercePreimagesImages| |boundOfCauchy| |minimumDegree| |normalizedDivide| |fortranLinkerArgs| |exteriorDifferential| |lowerCase| |complexExpand| |principalIdeal| |lazyPseudoDivide| |medialSet| |color| |exponentialOrder| |degreeSubResultant| |maxPoints3D| |Beta| |changeThreshhold| |setScreenResolution3D| |jordanAdmissible?| |OMconnOutDevice| |retractable?| |numericalOptimization| |subNode?| |escape| |addBadValue| |viewPosDefault| |semiDiscriminantEuclidean| |clipSurface| |reindex| |findCycle| |generic| |imagj| |bernoulli| |prepareSubResAlgo| |froot| |diagonalProduct| |HermiteIntegrate| |rowEchLocal| |minrank| |subQuasiComponent?| |birth| |zoom| |rational?| |green| |solveInField| |reverseLex| |insertRoot!| |iisqrt3| |rotatez| |createRandomElement| |makeCrit| |hitherPlane| |shallowCopy| |laurentIfCan| |isMult| SEGMENT |mainKernel| |extractSplittingLeaf| |hdmpToP| |transpose| |paraboloidal| |asechIfCan| |intensity| |space| |minRowIndex| |rewriteSetByReducingWithParticularGenerators| |dot| |generalizedEigenvectors| |constantKernel| |vark| |sort!| |prologue| |subResultantsChain| |vconcat| |quickSort| |zero?| |removeIrreducibleRedundantFactors| |setref| |skewSFunction| |complex?| |distdfact| |magnitude| |integralCoordinates| |linear?| |freeOf?| |setScreenResolution| |palgint0| |cosSinInfo| |fortranTypeOf| |divideExponents| |ptree| |setRealSteps| |testModulus| |genericLeftMinimalPolynomial| |internalZeroSetSplit| |clearTable!| |outputFixed| |totalGroebner| |copies| |level| |shufflein| |lp| |groebgen| |internalSubPolSet?| |loopPoints| |chebyshevT| |stirling2| |Ci| |lexGroebner| |mindeg| |genericRightTrace| |particularSolution| |red| |increment| |makeSketch| |iiabs| |localIntegralBasis| |interReduce| |nonLinearPart| |genus| |OMsupportsCD?| |writable?| |FormatRoman| |Nul| |symmetric?| |univcase| |OMgetVariable| |imagk| |tryFunctionalDecomposition?| |hexDigit| |yCoordinates| |moebiusMu| |hasSolution?| |curve?| |kovacic| |semiLastSubResultantEuclidean| |number?| |viewport2D| |rename| |split!| |zeroDimPrimary?| |minPol| |numberOfComponents| |enqueue!| |extractClosed| |rightAlternative?| |isQuotient| |bandedHessian| |linearlyDependentOverZ?| |resetVariableOrder| |maxColIndex| |saturate| |OMserve| |inverseIntegralMatrix| |depth| |exprToGenUPS| |removeCoshSq| |nextsousResultant2| |leastMonomial| |central?| |polyPart| |measure| |gramschmidt| |symmetricTensors| |coefficients| |binary| |semiSubResultantGcdEuclidean1| |getGraph| |leadingIndex| |makeMulti| |center| |log2| |useSingleFactorBound?| |linGenPos| |dominantTerm| |hue| |cotIfCan| |monomialIntegrate| |f01rdf| |second| |property| |nonSingularModel| |difference| |exQuo| |ridHack1| |leftRank| |iibinom| |fortranDoubleComplex| |makeUnit| |setStatus!| |complete| |split| |f01ref| |integrate| |third| |convergents| |sorted?| |iidprod| |internal?| |factorAndSplit| |ksec| |evenlambert| |evenInfiniteProduct| |writeLine!| |OMUnknownCD?| |wholeRagits| |reseed| |f02aaf| |complexEigenvalues| |external?| |pushdterm| |selectNonFiniteRoutines| |reduceBasisAtInfinity| |antiCommutative?| |polynomialZeros| |randomLC| |idealiser| |chineseRemainder| |commaSeparate| |evaluateInverse| |mainDefiningPolynomial| |makeSUP| |f02abf| |pureLex| |dAndcExp| |mainMonomials| |mightHaveRoots| |sinh2csch| |trapezoidal| |units| |clipWithRanges| |clipBoolean| |associative?| |lookup| |laguerreL| |overlabel| |divisors| |cosIfCan| |f02adf| |monic?| |curveColor| |isExpt| |realSolve| |modularGcd| |curve| |iiasinh| |stopMusserTrials| |redPo| |generic?| |wordInGenerators| |acoshIfCan| |triangularSystems| |eyeDistance| |f02aef| |OMopenString| |every?| |rightScalarTimes!| |pointSizeDefault| |subHeight| |headRemainder| |combineFeatureCompatibility| |bits| |frobenius| |removeRoughlyRedundantFactorsInContents| |high| |bubbleSort!| |mesh| |lepol| |f02aff| |factorList| |airyAi| |aQuadratic| |less?| |cycleLength| |edf2df| |llprop| |initiallyReduce| |fixedPointExquo| |f02agf| |numberOfChildren| |perfectSqrt| |functionIsOscillatory| |OMsend| |cyclicParents| |code| |one?| |iisinh| |typeList| |selectMultiDimensionalRoutines| |scanOneDimSubspaces| |f02ajf| |randnum| |binomThmExpt| |solveLinearPolynomialEquation| |sqfrFactor| |prime?| |deepExpand| |lyndonIfCan| |cos2sec| |tRange| |f02akf| |associatorDependence| |f2st| |epilogue| |rangeIsFinite| |semiResultantEuclideannaif| |multiEuclidean| |rightQuotient| |rewriteIdealWithQuasiMonicGenerators| |reverse| |f02awf| |next| |df2fi| |imagi| |elColumn2!| |OMencodingSGML| |max| |powerSum| |comment| |has?| |primeFrobenius| |removeRedundantFactorsInPols| ** |f02axf| |divergence| |mainVariable?| |float?| |exponential| |initiallyReduced?| |symbol?| |basisOfCommutingElements| |att2Result| |removeConstantTerm| |f02bbf| |leftUnit| |getBadValues| |headReduce| |setleaves!| |OMputEndError| |monicDivide| |commutative?| |quotientByP| |pdct| |f02bjf| |hyperelliptic| EQ |OMputEndAttr| |argscript| |algDsolve| |recoverAfterFail| |xCoord| |f02fjf| |Vectorise| |row| |module| |complexIntegrate| |li| |useEisensteinCriterion?| |numberOfFactors| |structuralConstants| |Gamma| |f02wef| |uniform01| |tanAn| |dflist| |ReduceOrder| |lyndon| |parts| |subresultantSequence| |primitivePart| |viewWriteAvailable| |f02xef| |entries| |setfirst!| |identityMatrix| |roughBase?| |colorDef| |f04adf| |basisOfRightNucloid| |basicSet| |hexDigit?| |pseudoRemainder| |iicoth| |trigs2explogs| |subPolSet?| |brace| |sort| |f04arf| |approximants| |torsionIfCan| |createMultiplicationTable| |restorePrecision| |dimensionOfIrreducibleRepresentation| |trailingCoefficient| |commutator| |f04asf| |approxSqrt| |upDateBranches| |permutationRepresentation| |leftFactorIfCan| |maxRowIndex| |shallowExpand| |rightUnits| |f04atf| |sylvesterSequence| |triangSolve| |retract| |unitNormalize| |numberOfIrreduciblePoly| |clearTheIFTable| |f04axf| |nextSubsetGray| |assign| |putColorInfo| |rk4f| |critMTonD1| |coefficient| |matrixConcat3D| |value| |f04faf| |internalIntegrate| |OMputEndObject| |plenaryPower| |inR?| |hash| |pdf2df| |mathieu22| |enumerate| |random| |f04jgf| |OMputBind| |nullity| |LazardQuotient| |tex| |viewPhiDefault| |count| |algintegrate| |generator| |realRoots| |palgint| |f04maf| |critBonD| |ceiling| |write!| |leftExtendedGcd| |makeCos| |isPlus| |selectFiniteRoutines| |npcoef| |f04mbf| |solveLinearPolynomialEquationByFractions| |lifting| |expPot| |squareFreeFactors| |invertIfCan| |safeFloor| |extractProperty| |entry?| |f04mcf| |traceMatrix| |normalDenom| |atoms| |companionBlocks| |OMgetEndAttr| |csubst| |tanh2trigh| |approxNthRoot| |f04qaf| |mathieu12| |determinant| |charClass| |logical?| |UP2ifCan| |inc| |lllp| |cycleSplit!| |setPoly| |search| |f07adf| |schwerpunkt| |fmecg| |getCurve| |open?| |linearAssociatedLog| |rationalPoints| |figureUnits| |jordanAlgebra?| |f07aef| |idealiserMatrix| |head| |setColumn!| |critpOrder| |innerSolve1| |initializeGroupForWordProblem| |viewZoomDefault| |genericLeftDiscriminant| |f07fdf| |minset| |antiCommutator| |remainder| |returnType!| |symbolTable| |child?| |stoseLastSubResultant| |resetBadValues| |makeViewport2D| |linearlyDependent?| |simplifyLog| |f07fef| F2FG |overset?| |modifyPoint| |clipPointsDefault| |simplifyExp| |OMsetEncoding| |middle| |printTypes| |linkToFortran| |s01eaf| |kroneckerDelta| |separateDegrees| |subNodeOf?| |pushFortranOutputStack| |zeroDim?| |create3Space| |component| |infRittWu?| |reduceByQuasiMonic| |s13aaf| |popFortranOutputStack| |nodes| |headReduced?| |ptFunc| |var2StepsDefault| |generalizedEigenvector| |lo| |constantOpIfCan| |usingTable?| |setAdaptive3D| |unitCanonical| |s13acf| |fortranCarriageReturn| |critMonD1| |OMgetBind| |janko2| |outputAsFortran| |setLegalFortranSourceExtensions| |incr| |secIfCan| |changeWeightLevel| |genericLeftTrace| |fortranCharacter| |s13adf| |setCondition!| |parametersOf| |adaptive| |factorSquareFreeByRecursion| |lazyIrreducibleFactors| |hi| |lieAdmissible?| |ode| |setFieldInfo| |s14aaf| |fixPredicate| |iCompose| |badNum| |exactQuotient| |euler| |readIfCan!| |reify| |bottom!| |dequeue| |universe| |sdf2lst| |exprToUPS| |s14abf| |rightTrim| |ignore?| |se2rfi| |setTex!| |setnext!| |tanQ| |nil| |bsolve| |conditionsForIdempotents| |perfectNthPower?| |problemPoints| |rectangularMatrix| |s14baf| |leftTrim| |univariatePolynomials| |ode1| |cCos| |floor| |trapezoidalo| |frst| |padecf| |karatsubaDivide| |s15adf| |spherical| |operator| |OMParseError?| |mantissa| |chebyshevU| |c02aff| |addPoint2| |mapGen| |pastel| |maxPoints| |s15aef| |divisor| |useSingleFactorBound| |makeprod| |indiceSubResultant| |approximate| |changeName| |c02agf| |PollardSmallFactor| |areEquivalent?| |patternMatch| |s17acf| |represents| |mainSquareFreePart| |mkIntegral| |revert| |complex| |singularitiesOf| |c05adf| |OMgetError| |sincos| |interpolate| |s17adf| |leadingSupport| |symmetricGroup| |iisqrt2| |clearTheFTable| |id| |c05nbf| |goodnessOfFit| |outputGeneral| |jacobi| |unravel| |s17aef| |selectOrPolynomials| |outputForm| |listBranches| |noKaratsuba| |groebner?| |c05pbf| |quotient| |probablyZeroDim?| |groebnerIdeal| |s17aff| |bipolar| |redpps| |leftExactQuotient| |generators| |monom| |vector| |bit?| |c06eaf| |table| |pointPlot| |mpsode| |polygon?| |s17agf| |sPol| |integer?| |duplicates?| |collectUnder| |c06ebf| |tree| |key| |graphCurves| |ocf2ocdf| |leastAffineMultiple| |sortConstraints| |s17ahf| |subResultantGcd| |truncate| |SFunction| |radicalRoots| |wreath| |index| |c06ecf| |innerSolve| |optpair| |purelyTranscendental?| |s17ajf| |generalizedContinuumHypothesisAssumed?| |rules| |var1Steps| |infinityNorm| |exprHasAlgebraicWeight| |hasPredicate?| |c06ekf| |new| |varList| |generate| |perspective| |palglimint0| |multiplyExponents| |rur| |precision| |s17akf| |lfinfieldint| |sub| |mvar| |coleman| |htrigs| |prinshINFO| |c06fpf| |stoseInvertibleSet| |nextColeman| |condition| |absolutelyIrreducible?| |s17dcf| |complexLimit| |flexibleArray| |corrPoly| |halfExtendedResultant1| |create| |singularAtInfinity?| |incrementBy| |c06fqf| |univariate?| |unrankImproperPartitions1| |factorSquareFree| |primlimintfrac| |s17def| |stopTableInvSet!| |halfExtendedResultant2| |orbits| |lfintegrate| |hcrf| |gcdcofactprim| |c06frf| |pToHdmp| |expand| |intPatternMatch| |integers| |stFunc2| |s17dgf| |clipParametric| |toScale| |reducedContinuedFraction| |rotate| |int| |quasiRegular| |noncommutativeJordanAlgebra?| |moduleSum| |c06fuf| |filterWhile| |swap!| |abelianGroup| |nextPrimitiveNormalPoly| |s17dhf| |cup| |numberOfComposites| |dictionary| |factorsOfCyclicGroupSize| |leadingIdeal| |contains?| |pack!| |c06gbf| |OMputEndBind| |filterUntil| |zero| |refine| |defineProperty| |rightDiscriminant| |s17dlf| |leftMult| |weierstrass| |leadingCoefficientRicDE| |nextPrime| |toseInvertible?| |algebraicVariables| |numberOfHues| |c06gcf| |hspace| |select| |useEisensteinCriterion| |sin2csc| |cTanh| |s18acf| |symmetricPower| |setPrologue!| |gradient| |fixedDivisor| |doubleRank| |groebSolve| |alphanumeric| |c06gqf| |minordet| |And| |oblateSpheroidal| |extend| |explogs2trigs| |s18adf| |rightZero| |hex| |ratDsolve| |sample| |iiatanh| |rubiksGroup| |normalDeriv| |c06gsf| |userOrdered?| |Or| |solve| |makeResult| |csc2sin| |asimpson| |multiple?| |tubePointsDefault| |basisOfLeftNucloid| |postfix| |rightTrace| |d01ajf| |squareFree| |Not| |pushucoef| |primitiveElement| |belong?| |rightTraceMatrix| |pointLists| |vertConcat| |result| |setrest!| |checkPrecision| |quote| |sumSquares| |leftRankPolynomial| |d01akf| |showTheSymbolTable| |deepestInitial| |strongGenerators| |outputSpacing| |eulerPhi| |currentSubProgram| |genericRightNorm| |normInvertible?| |d01alf| |minPoints| |rewriteIdealWithRemainder| |hclf| |branchIfCan| |oddInfiniteProduct| |rCoord| |low| |trivialIdeal?| |iiacsch| |minimalPolynomial| |fortranLiteral| |makeRecord| |leftRecip| |d01amf| |conjug| |collectQuasiMonic| |basisOfRightNucleus| |showTypeInOutput| |leftDiscriminant| |makeYoungTableau| |cSinh| |OMgetEndApp| |lhs| |stiffnessAndStabilityOfODEIF| |d01anf| |OMReadError?| |unprotectedRemoveRedundantFactors| |readLine!| |sinhIfCan| |position!| |OMgetAttr| |aQuartic| |multiset| |resize| |rhs| |box| |option?| |d01apf| |getMatch| |iisec| |opeval| |pseudoQuotient| |iiexp| |nthExponent| |multiplyCoefficients| |bandedJacobian| |rightLcm| |setleft!| |compile| |d01aqf| |cyclotomic| |antisymmetric?| |variationOfParameters| |simplifyPower| |normalForm| |leadingBasisTerm| |lfunc| |acschIfCan| |varselect| |setlast!| |extendedIntegrate| |d01asf| |outputAsTex| |left| |UnVectorise| |optional?| |localUnquote| |LagrangeInterpolation| |convert| |stop| |xn| |clearTheSymbolTable| |regime| |integralLastSubResultant| |pdf2ef| |d01bbf| |diagonals| |right| |directSum| |certainlySubVariety?| |primitivePart!| |viewDeltaYDefault| |lexico| |OMreadFile| |explimitedint| |wholeRadix| |dihedral| |mulmod| |prinb| |d01fcf| |Ei| |setMaxPoints| |charpol| |lastSubResultantEuclidean| |irreducibleRepresentation| |tanNa| |sayLength| |rightGcd| |integralRepresents| |lfextlimint| |selectOptimizationRoutines| |subresultantVector| |leftScalarTimes!| |leaves| |rowEchelonLocal| |outputAsScript| |getMultiplicationMatrix| |radicalEigenvectors| |asinh| |droot| |someBasis| |genericRightMinimalPolynomial| |printInfo!| |processTemplate| |largest| |alternating| |hasoln| |acosh| |LiePoly| |indicialEquation| |semiResultantEuclidean1| |setRow!| |setEmpty!| |failed| |invmod| |sinIfCan| |outputFloating| |symmetricRemainder| |atanh| |queue| |laguerre| |smith| |index?| |baseRDE| |partition| |null?| |acoth| |padicallyExpand| |simpson| |lazyIntegrate| |discreteLog| |trigs| |tower| |tablePow| |antisymmetricTensors| |complexElementary| |rquo| |asech| |flexible?| |infix| |qroot| |sinhcosh| |setClosed| |startTableInvSet!| |bernoulliB| |tanIfCan| |eq?| |yellow| |rightUnit| |append| |bivariate?| |rdregime| |script| |separate| |conjugates| |quasiRegular?| |derivationCoordinates| |diagonalMatrix| |newTypeLists| |cycleElt| |composite| |delete| |multiple| |isList| |monicCompleteDecompose| |ParCondList| |internalInfRittWu?| |denominator| |taylorRep| |factor| |setMinPoints3D| |finiteBound| |delay| |optAttributes| |applyQuote| |reduceLODE| |selectsecond| |derivative| |rewriteSetWithReduction| |makeGraphImage| |monomials| |OMsupportsSymbol?| |sqrt| |startTable!| |oddintegers| |kmax| |lazyPseudoRemainder| |removeRedundantFactors| |mapUp!| |mapmult| |lowerCase?| |iicsch| |cAsinh| |primPartElseUnitCanonical| |inHallBasis?| |pade| |real| |scale| |hMonic| |OMputApp| |eigenvector| |lintgcd| |mainForm| |var2Steps| |functionIsFracPolynomial?| |flagFactor| |iteratedInitials| |increase| |imag| |viewDeltaXDefault| |checkRur| |ruleset| |mesh?| |leftCharacteristicPolynomial| |extensionDegree| |directProduct| |linearAssociatedOrder| |read!| |numberOfComputedEntries| |zCoord| |nextItem| |ScanFloatIgnoreSpacesIfCan| |rightExactQuotient| RF2UTS |OMunhandledSymbol| NOT |complement| |mapExponents| |An| |relerror| |plus!| |exptMod| |radicalSimplify| |squareFreeLexTriangular| |swapRows!| |imagK| |twoFactor| |dihedralGroup| |leaf?| OR |nor| |sizeLess?| |credPol| |associates?| |repeating?| |extension| |matrixGcd| |leftRemainder| |ricDsolve| |horizConcat| |romberg| |destruct| |linearDependenceOverZ| |lineColorDefault| |coshIfCan| AND |OMconnInDevice| |suchThat| |binaryTree| |toseLastSubResultant| |rootPoly| |safeCeiling| |df2mf| |symFunc| |createPrimitiveElement| |numberOfNormalPoly| |genericLeftNorm| |primextendedint| |coefChoose| |mix| |setTopPredicate| |rank| |iiacos| |whileLoop| |nthFlag| |keys| |explicitlyEmpty?| |presub| |denominators| |differentialVariables| |characteristicPolynomial| |xor| |seed| |coth2tanh| |over| |basis| |cAtanh| |stoseInvertibleSetsqfreg| |op| |removeSuperfluousCases| |quadratic| |stFunc1| |insert!| |intcompBasis| |drawComplex| |degreePartition| |idealSimplify| |fixedPoint| |simplify| |leftTrace| |supersub| |reducedQPowers| |generateIrredPoly| |cSech| |plot| |ScanArabic| |imagI| |isobaric?| |antiAssociative?| |showClipRegion| |subMatrix| |jacobian| |heap| |positiveRemainder| |doubleFloatFormat| |polyRicDE| |poisson| |lieAlgebra?| |semiIndiceSubResultantEuclidean| |forLoop| |iisech| |zeroVector| |nodeOf?| |trim| |removeSinSq| |cubic| |edf2fi| |setProperty| |blue| |primaryDecomp| |withPredicates| |goodPoint| |iiperm| |modularFactor| |LyndonBasis| |lllip| |totalDegree| |permutationGroup| |purelyAlgebraicLeadingMonomial?| |cardinality| |e01sff| |latex| |principal?| |rotatey| |OMputAttr| |leftQuotient| |complexRoots| |pointColorDefault| |diophantineSystem| |symbol| |expintegrate| |getlo| |lazy?| |getCode| |lazyGintegrate| |implies| |sncndn| |sizeMultiplication| |clearDenominator| |any?| |constantLeft| |lists| |extendIfCan| |string| |powern| |mergeFactors| |moduloP| |createLowComplexityNormalBasis| |sin?| |iitan| |integerIfCan| |cycleRagits| |round| |linears| * |checkForZero| |setright!| |getOperator| |separateFactors| |hermiteH| |obj| |moebius| |extractIndex| |removeSinhSq| |unmakeSUP| |untab| |integer| |firstDenom| |dioSolve| |lquo| |semicolonSeparate| |cyclicEntries| |branchPoint?| |factorSFBRlcUnit| |rightExtendedGcd| |lagrange| |cCsch| |selectODEIVPRoutines| |rightRegularRepresentation| |factorPolynomial| |stoseSquareFreePart| |extendedSubResultantGcd| |drawComplexVectorField| |factor1| |bfEntry| |maxrank| |cycle| |f2df| |makeEq| |prefixRagits| |rischDE| |children| |tubePlot| |messagePrint| |squareFreePart| |qqq| |divisorCascade| |subCase?| |palgLODE0| |modifyPointData| |binaryTournament| |pointColor| |palgextint| |rombergo| |complexSolve| |complexEigenvectors| |totolex| |hasHi| |isAbsolutelyIrreducible?| |closeComponent| |solveLinearPolynomialEquationByRecursion| |expandLog| |totalDifferential| |OMputEndAtp| |nextNormalPrimitivePoly| |hermite| |neglist| |minimize| |modulus| |scripted?| |allRootsOf| |contractSolve| |copyInto!| |imagJ| |identitySquareMatrix| |fibonacci| |partialDenominators| |replaceKthElement| |duplicates| |isPower| |viewSizeDefault| FG2F |solid| |real?| |numberOfPrimitivePoly| |HenselLift| |rootBound| |pascalTriangle| |fprindINFO| |adaptive3D?| |octon| |datalist| |constantToUnaryFunction| |inverseIntegralMatrixAtInfinity| |intChoose| |orthonormalBasis| |cSec| |expressIdealMember| |fintegrate| |integralBasis| |even?| |perfectNthRoot| |minimumExponent| |createPrimitiveNormalPoly| |OMgetEndObject| |tryFunctionalDecomposition| |iExquo| |getOperands| |cot2trig| |OMencodingXML| |fracPart| |numberOfFractionalTerms| |lowerCase!| |degree| |double| |float| |bipolarCylindrical| |collect| |reducedSystem| |leftLcm| |typeLists| |predicate| |edf2efi| |monicRightFactorIfCan| |factorByRecursion| |generalSqFr| |qelt| |printStatement| |jacobiIdentity?| |OMgetInteger| |rewriteIdealWithHeadRemainder| |operators| |pol| |meshFun2Var| |parabolic| |mergeDifference| |rootSplit| |bracket| |legendre| |sturmSequence| |insertMatch| |subset?| |lazyPrem| |axes| |eigenvectors| |slex| |terms| |createZechTable| |discriminant| |solveLinearlyOverQ| |quadraticNorm| |youngGroup| |identification| |returns| |element?| |extract!| |exprToXXP| |OMopenFile| |inRadical?| |removeSuperfluousQuasiComponents| |computeCycleEntry| |Si| |OMread| |reducedForm| |formula| |zeroDimPrime?| |numeric| |addmod| |pointData| |complementaryBasis| |more?| |lastSubResultant| |firstNumer| |acscIfCan| |squareTop| |radical| |addMatch| |bfKeys| |setvalue!| |alphanumeric?| |fortranComplex| |dom| |bumprow| |imaginary| |rational| |normDeriv2| |enterInCache| |repeatUntilLoop| |zag| |consnewpol| |cycleTail| GE |indices| |anfactor| |buildSyntax| |standardBasisOfCyclicSubmodule| |doubleResultant| |cyclotomicFactorization| |integralDerivationMatrix| |numerators| |selectIntegrationRoutines| GT |crest| |appendPoint| |OMconnectTCP| |roman| |gbasis| |quasiMonicPolynomials| |generalTwoFactor| |base| |quoted?| |removeRoughlyRedundantFactorsInPol| LE |surface| |rootPower| |makingStats?| |showFortranOutputStack| |node| |stripCommentsAndBlanks| |genericRightDiscriminant| |OMclose| |conical| |midpoint| LT |fortranDouble| |selectfirst| |createGenericMatrix| |indicialEquations| |nrows| |inv| |coHeight| |mainPrimitivePart| |limitPlus| |compdegd| |isTimes| |gcdPolynomial| |associatedEquations| |mainCoefficients| |ideal| |minPoly| |ground?| |integralBasisAtInfinity| |cAcoth| |halfExtendedSubResultantGcd2| |primPartElseUnitCanonical!| |algint| |compiledFunction| |movedPoints| |interval| |top| |ground| |lifting1| |getGoodPrime| |mathieu11| |pointColorPalette| |thetaCoord| |graeffe| |topFortranOutputStack| |PDESolve| |title| |xRange| |maxrow| |char| |continue| |is?| |leadingMonomial| |tableForDiscreteLogarithm| |OMputObject| |radicalEigenvalues| |nullSpace| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 5bef96d4..354d41d2 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4838 +1,4842 @@
-(3124874 . 3403927952)
-((-2044 (((-107) (-1 (-107) |#2| |#2|) $) 62) (((-107) $) NIL)) (-2034 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2411 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1121 (-517)) |#2|) 34)) (-4020 (($ $) 58)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2607 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 70)) (-1536 (((-583 |#2|) $) 13)) (-3237 (($ (-1 (-107) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-1433 (($ (-1 |#2| |#2|) $) 29)) (-1893 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2620 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 49)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-2048 (((-107) (-1 (-107) |#2|) $) 21)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1121 (-517))) 48)) (-3750 (($ $ (-517)) 55) (($ $ (-1121 (-517))) 54)) (-3217 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-1906 (($ $ $ (-517)) 51)) (-2433 (($ $) 50)) (-2276 (($ (-583 |#2|)) 52)) (-2452 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-583 $)) 61)) (-2256 (((-787) $) 68)) (-3675 (((-107) (-1 (-107) |#2|) $) 20)) (-1547 (((-107) $ $) 69)) (-1572 (((-107) $ $) 72)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -2044 ((-107) |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|))) (-19 |#2|) (-1108)) (T -18))
-NIL
-(-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -2044 ((-107) |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-19 |#1|) (-1184) (-1108)) (T -19))
-NIL
-(-13 (-343 |t#1|) (-10 -7 (-6 -4181)))
-(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T))
-((-4038 (((-3 $ "failed") $ $) 12)) (-1654 (($ $) NIL) (($ $ $) 9)) (* (($ (-843) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -4038 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-21)) (T -20))
-NIL
-(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -4038 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
-(((-21) (-1184)) (T -21))
-((-1654 (*1 *1 *1) (-4 *1 (-21))) (-1654 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))))
-(-13 (-123) (-10 -8 (-15 -1654 ($ $)) (-15 -1654 ($ $ $)) (-15 * ($ (-517) $))))
+(3125242 . 3404130428)
+((-2866 (((-107) (-1 (-107) |#2| |#2|) $) 62) (((-107) $) NIL)) (-2740 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2307 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1122 (-517)) |#2|) 34)) (-1227 (($ $) 58)) (-2521 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2446 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 70)) (-3037 (((-583 |#2|) $) 13)) (-2262 (($ (-1 (-107) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-1213 (($ (-1 |#2| |#2|) $) 29)) (-1857 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2454 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 49)) (-2293 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-2925 (((-107) (-1 (-107) |#2|) $) 21)) (-1986 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1122 (-517))) 48)) (-3685 (($ $ (-517)) 55) (($ $ (-1122 (-517))) 54)) (-3105 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-3966 (($ $ $ (-517)) 51)) (-2322 (($ $) 50)) (-2197 (($ (-583 |#2|)) 52)) (-2337 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-583 $)) 61)) (-2182 (((-787) $) 68)) (-3883 (((-107) (-1 (-107) |#2|) $) 20)) (-1539 (((-107) $ $) 69)) (-1560 (((-107) $ $) 72)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2740 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1227 (|#1| |#1|)) (-15 -3966 (|#1| |#1| |#1| (-517))) (-15 -2866 ((-107) |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2446 ((-517) |#2| |#1| (-517))) (-15 -2446 ((-517) |#2| |#1|)) (-15 -2446 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2866 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2262 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2307 (|#2| |#1| (-1122 (-517)) |#2|)) (-15 -2454 (|#1| |#1| |#1| (-517))) (-15 -2454 (|#1| |#2| |#1| (-517))) (-15 -3685 (|#1| |#1| (-1122 (-517)))) (-15 -3685 (|#1| |#1| (-517))) (-15 -1986 (|#1| |#1| (-1122 (-517)))) (-15 -1857 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2337 (|#1| (-583 |#1|))) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#2|)) (-15 -2197 (|#1| (-583 |#2|))) (-15 -2293 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1986 (|#2| |#1| (-517))) (-15 -1986 (|#2| |#1| (-517) |#2|)) (-15 -2307 (|#2| |#1| (-517) |#2|)) (-15 -3105 ((-703) |#2| |#1|)) (-15 -3037 ((-583 |#2|) |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1213 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2322 (|#1| |#1|))) (-19 |#2|) (-1109)) (T -18))
+NIL
+(-10 -8 (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2740 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1227 (|#1| |#1|)) (-15 -3966 (|#1| |#1| |#1| (-517))) (-15 -2866 ((-107) |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2446 ((-517) |#2| |#1| (-517))) (-15 -2446 ((-517) |#2| |#1|)) (-15 -2446 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2866 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2262 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2307 (|#2| |#1| (-1122 (-517)) |#2|)) (-15 -2454 (|#1| |#1| |#1| (-517))) (-15 -2454 (|#1| |#2| |#1| (-517))) (-15 -3685 (|#1| |#1| (-1122 (-517)))) (-15 -3685 (|#1| |#1| (-517))) (-15 -1986 (|#1| |#1| (-1122 (-517)))) (-15 -1857 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2337 (|#1| (-583 |#1|))) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#2|)) (-15 -2197 (|#1| (-583 |#2|))) (-15 -2293 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1986 (|#2| |#1| (-517))) (-15 -1986 (|#2| |#1| (-517) |#2|)) (-15 -2307 (|#2| |#1| (-517) |#2|)) (-15 -3105 ((-703) |#2| |#1|)) (-15 -3037 ((-583 |#2|) |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1213 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2322 (|#1| |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1227 (($ $) 90 (|has| $ (-6 -4184)))) (-2979 (($ $) 100)) (-1667 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 51)) (-2446 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3366 (($ (-703) |#1|) 69)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-1575 (($ $ $) 87 (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-2986 (($ $ $) 86 (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 42 (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-1254 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-3685 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3966 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 70)) (-2337 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1582 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-19 |#1|) (-1185) (-1109)) (T -19))
+NIL
+(-13 (-343 |t#1|) (-10 -7 (-6 -4184)))
+(((-33) . T) ((-97) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1109) . T))
+((-1387 (((-3 $ "failed") $ $) 12)) (-1637 (($ $) NIL) (($ $ $) 9)) (* (($ (-843) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 -1387 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-21)) (T -20))
+NIL
+(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 -1387 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
+(((-21) (-1185)) (T -21))
+((-1637 (*1 *1 *1) (-4 *1 (-21))) (-1637 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))))
+(-13 (-123) (-10 -8 (-15 -1637 ($ $)) (-15 -1637 ($ $ $)) (-15 * ($ (-517) $))))
(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2814 (((-107) $) 10)) (-3092 (($) 15)) (* (($ (-843) $) 14) (($ (-703) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 * (|#1| (-843) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 * (|#1| (-843) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15)))
-(((-23) (-1184)) (T -23))
-((-2396 (*1 *1) (-4 *1 (-23))) (-3092 (*1 *1) (-4 *1 (-23))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))))
-(-13 (-25) (-10 -8 (-15 (-2396) ($) -1619) (-15 -3092 ($) -1619) (-15 -2814 ((-107) $)) (-15 * ($ (-703) $))))
+((-2745 (((-107) $) 10)) (-3473 (($) 15)) (* (($ (-843) $) 14) (($ (-703) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2745 ((-107) |#1|)) (-15 -3473 (|#1|)) (-15 * (|#1| (-843) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2745 ((-107) |#1|)) (-15 -3473 (|#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15)))
+(((-23) (-1185)) (T -23))
+((-2297 (*1 *1) (-4 *1 (-23))) (-3473 (*1 *1) (-4 *1 (-23))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))))
+(-13 (-25) (-10 -8 (-15 (-2297) ($) -1605) (-15 -3473 ($) -1605) (-15 -2745 ((-107) $)) (-15 * ($ (-703) $))))
(((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
((* (($ (-843) $) 10)))
(((-24 |#1|) (-10 -8 (-15 * (|#1| (-843) |#1|))) (-25)) (T -24))
NIL
(-10 -8 (-15 * (|#1| (-843) |#1|)))
-((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13)))
-(((-25) (-1184)) (T -25))
-((-1642 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))))
-(-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ (-843) $))))
+((-2571 (((-107) $ $) 7)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13)))
+(((-25) (-1185)) (T -25))
+((-1626 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))))
+(-13 (-1003) (-10 -8 (-15 -1626 ($ $ $)) (-15 * ($ (-843) $))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2888 (((-583 $) (-874 $)) 29) (((-583 $) (-1069 $)) 16) (((-583 $) (-1069 $) (-1073)) 20)) (-3869 (($ (-874 $)) 27) (($ (-1069 $)) 11) (($ (-1069 $) (-1073)) 54)) (-1649 (((-583 $) (-874 $)) 30) (((-583 $) (-1069 $)) 18) (((-583 $) (-1069 $) (-1073)) 19)) (-3267 (($ (-874 $)) 28) (($ (-1069 $)) 13) (($ (-1069 $) (-1073)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2888 (((-583 $) (-874 $)) 80) (((-583 $) (-1069 $)) 79) (((-583 $) (-1069 $) (-1073)) 78)) (-3869 (($ (-874 $)) 83) (($ (-1069 $)) 82) (($ (-1069 $) (-1073)) 81)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 92)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1649 (((-583 $) (-874 $)) 86) (((-583 $) (-1069 $)) 85) (((-583 $) (-1069 $) (-1073)) 84)) (-3267 (($ (-874 $)) 89) (($ (-1069 $)) 88) (($ (-1069 $) (-1073)) 87)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 91)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-27) (-1184)) (T -27))
-((-3267 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) (-3267 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) (-3869 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
-(-13 (-333) (-918) (-10 -8 (-15 -3267 ($ (-874 $))) (-15 -3267 ($ (-1069 $))) (-15 -3267 ($ (-1069 $) (-1073))) (-15 -1649 ((-583 $) (-874 $))) (-15 -1649 ((-583 $) (-1069 $))) (-15 -1649 ((-583 $) (-1069 $) (-1073))) (-15 -3869 ($ (-874 $))) (-15 -3869 ($ (-1069 $))) (-15 -3869 ($ (-1069 $) (-1073))) (-15 -2888 ((-583 $) (-874 $))) (-15 -2888 ((-583 $) (-1069 $))) (-15 -2888 ((-583 $) (-1069 $) (-1073)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-918) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
-((-2888 (((-583 $) (-874 $)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 $) (-1073)) 50) (((-583 $) $) 19) (((-583 $) $ (-1073)) 41)) (-3869 (($ (-874 $)) NIL) (($ (-1069 $)) NIL) (($ (-1069 $) (-1073)) 52) (($ $) 17) (($ $ (-1073)) 37)) (-1649 (((-583 $) (-874 $)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 $) (-1073)) 48) (((-583 $) $) 15) (((-583 $) $ (-1073)) 43)) (-3267 (($ (-874 $)) NIL) (($ (-1069 $)) NIL) (($ (-1069 $) (-1073)) NIL) (($ $) 12) (($ $ (-1073)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2888 ((-583 |#1|) |#1| (-1073))) (-15 -3869 (|#1| |#1| (-1073))) (-15 -2888 ((-583 |#1|) |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -1649 ((-583 |#1|) |#1| (-1073))) (-15 -3267 (|#1| |#1| (-1073))) (-15 -1649 ((-583 |#1|) |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28))
-NIL
-(-10 -8 (-15 -2888 ((-583 |#1|) |#1| (-1073))) (-15 -3869 (|#1| |#1| (-1073))) (-15 -2888 ((-583 |#1|) |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -1649 ((-583 |#1|) |#1| (-1073))) (-15 -3267 (|#1| |#1| (-1073))) (-15 -1649 ((-583 |#1|) |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2888 (((-583 $) (-874 $)) 80) (((-583 $) (-1069 $)) 79) (((-583 $) (-1069 $) (-1073)) 78) (((-583 $) $) 126) (((-583 $) $ (-1073)) 124)) (-3869 (($ (-874 $)) 83) (($ (-1069 $)) 82) (($ (-1069 $) (-1073)) 81) (($ $) 127) (($ $ (-1073)) 125)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-1073)) $) 201)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-3726 (((-583 (-556 $)) $) 164)) (-4038 (((-3 $ "failed") $ $) 19)) (-2302 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 92)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1649 (((-583 $) (-874 $)) 86) (((-583 $) (-1069 $)) 85) (((-583 $) (-1069 $) (-1073)) 84) (((-583 $) $) 130) (((-583 $) $ (-1073)) 128)) (-3267 (($ (-874 $)) 89) (($ (-1069 $)) 88) (($ (-1069 $) (-1073)) 87) (($ $) 131) (($ $ (-1073)) 129)) (-1772 (((-3 (-874 |#1|) "failed") $) 251 (|has| |#1| (-961))) (((-3 (-377 (-874 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-952 (-517)))) (((-3 (-1073) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-874 |#1|) $) 252 (|has| |#1| (-961))) (((-377 (-874 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-952 (-517)))) (((-1073) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) 55)) (-3355 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 240 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 121 (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (((-623 (-517)) (-623 $)) 120 (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 193 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 192 (|has| |#1| (-808 (-517))))) (-3374 (($ (-583 $)) 158) (($ $) 157)) (-4001 (((-583 (-109)) $) 165)) (-3072 (((-109) (-109)) 166)) (-3848 (((-107) $) 31)) (-1769 (((-107) $) 186 (|has| $ (-952 (-517))))) (-1405 (($ $) 218 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 217 (|has| |#1| (-961)))) (-3824 (($ $ (-517)) 91)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1607 (((-1069 $) (-556 $)) 183 (|has| $ (-961)))) (-2967 (($ $ $) 137)) (-3099 (($ $ $) 136)) (-1893 (($ (-1 $ $) (-556 $)) 172)) (-1783 (((-3 (-556 $) "failed") $) 162)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 163)) (-1851 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-3703 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 221 (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 220 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 213 (|has| |#1| (-1015)))) (-1609 (((-107) $ (-1073)) 169) (((-107) $ (-109)) 168)) (-4118 (($ $) 70)) (-1881 (((-703) $) 161)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 199)) (-4141 ((|#1| $) 200)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3832 (((-107) $ (-1073)) 174) (((-107) $ $) 173)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3998 (((-107) $) 185 (|has| $ (-952 (-517))))) (-2051 (($ $ (-1073) (-703) (-1 $ $)) 225 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-961))) (($ $ (-583 (-109)) (-583 $) (-1073)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1073)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1073) (-1 $ $)) 178) (($ $ (-1073) (-1 $ (-583 $))) 177) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-3146 (((-703) $) 58)) (-1449 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1630 (($ $ $) 160) (($ $) 159)) (-3127 (($ $ (-1073)) 249 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 248 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 247 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) 246 (|has| |#1| (-961)))) (-2971 (($ $) 228 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-2135 (($ $) 184 (|has| $ (-961)))) (-3645 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-814 (-349)) $) 191 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 190 (|has| |#1| (-558 (-814 (-517)))))) (-1487 (($ $ $) 254 (|has| |#1| (-442)))) (-3394 (($ $ $) 253 (|has| |#1| (-442)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-874 |#1|)) 250 (|has| |#1| (-961))) (($ (-377 (-874 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1026 |#1| (-556 $))) 216 (|has| |#1| (-961))) (($ |#1|) 196) (($ (-1073)) 187) (($ (-556 $)) 138)) (-1328 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-4148 (($ (-583 $)) 156) (($ $) 155)) (-4074 (((-107) (-109)) 167)) (-3329 (((-107) $ $) 39)) (-3760 (($ (-1073) (-583 $)) 206) (($ (-1073) $ $ $ $) 205) (($ (-1073) $ $ $) 204) (($ (-1073) $ $) 203) (($ (-1073) $) 202)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1073)) 245 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 244 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 243 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) 242 (|has| |#1| (-961)))) (-1606 (((-107) $ $) 134)) (-1583 (((-107) $ $) 133)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 135)) (-1572 (((-107) $ $) 132)) (-1667 (($ $ $) 64) (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156)))))
-(((-29 |#1|) (-1184) (-13 (-779) (-509))) (T -29))
-((-3267 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-1649 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2888 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2888 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -3267 ($ $)) (-15 -1649 ((-583 $) $)) (-15 -3267 ($ $ (-1073))) (-15 -1649 ((-583 $) $ (-1073))) (-15 -3869 ($ $)) (-15 -2888 ((-583 $) $)) (-15 -3869 ($ $ (-1073))) (-15 -2888 ((-583 $) $ (-1073)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-822 (-1073)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) -3807 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1073)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1108) . T) ((-1112) . T))
-((-1408 (((-998 (-199)) $) NIL)) (-1397 (((-998 (-199)) $) NIL)) (-3437 (($ $ (-199)) 122)) (-3507 (($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517)))) 84)) (-2602 (((-583 (-583 (-865 (-199)))) $) 134)) (-2256 (((-787) $) 146)))
-(((-30) (-13 (-876) (-10 -8 (-15 -3507 ($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -3437 ($ $ (-199)))))) (T -30))
-((-3507 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1073)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))))
-(-13 (-876) (-10 -8 (-15 -3507 ($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -3437 ($ $ (-199)))))
-((-3267 ((|#2| (-1069 |#2|) (-1073)) 42)) (-3072 (((-109) (-109)) 55)) (-1607 (((-1069 |#2|) (-556 |#2|)) 132 (|has| |#1| (-952 (-517))))) (-2023 ((|#2| |#1| (-517)) 121 (|has| |#1| (-952 (-517))))) (-2564 ((|#2| (-1069 |#2|) |#2|) 30)) (-1690 (((-787) (-583 |#2|)) 85)) (-2135 ((|#2| |#2|) 128 (|has| |#1| (-952 (-517))))) (-4074 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 96 (|has| |#1| (-952 (-517))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -3267 (|#2| (-1069 |#2|) (-1073))) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -2564 (|#2| (-1069 |#2|) |#2|)) (-15 -1690 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -1607 ((-1069 |#2|) (-556 |#2|))) (-15 -2135 (|#2| |#2|)) (-15 -2023 (|#2| |#1| (-517)))) |noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31))
-((-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))) (-2135 (*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1069 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-2564 (*1 *2 *3 *2) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-5 *4 (-1073)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))))
-(-10 -7 (-15 -3267 (|#2| (-1069 |#2|) (-1073))) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -2564 (|#2| (-1069 |#2|) |#2|)) (-15 -1690 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -1607 ((-1069 |#2|) (-556 |#2|))) (-15 -2135 (|#2| |#2|)) (-15 -2023 (|#2| |#1| (-517)))) |noBranch|))
-((-2953 (((-107) $ (-703)) 16)) (-3092 (($) 10)) (-2550 (((-107) $ (-703)) 15)) (-3847 (((-107) $ (-703)) 14)) (-3792 (((-107) $ $) 8)) (-3619 (((-107) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -3092 (|#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -3619 ((-107) |#1|)) (-15 -3792 ((-107) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -3092 (|#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -3619 ((-107) |#1|)) (-15 -3792 ((-107) |#1| |#1|)))
-((-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-2550 (((-107) $ (-703)) 9)) (-3847 (((-107) $ (-703)) 10)) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-2433 (($ $) 13)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-33) (-1184)) (T -33))
-((-3792 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2433 (*1 *1 *1) (-4 *1 (-33))) (-1746 (*1 *1) (-4 *1 (-33))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-3847 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2550 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3092 (*1 *1) (-4 *1 (-33))) (-2296 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-33)) (-5 *2 (-703)))))
-(-13 (-1108) (-10 -8 (-15 -3792 ((-107) $ $)) (-15 -2433 ($ $)) (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3847 ((-107) $ (-703))) (-15 -2550 ((-107) $ (-703))) (-15 -2953 ((-107) $ (-703))) (-15 -3092 ($) -1619) (IF (|has| $ (-6 -4180)) (-15 -2296 ((-703) $)) |noBranch|)))
-(((-1108) . T))
-((-3707 (($ $) 11)) (-3683 (($ $) 10)) (-3731 (($ $) 9)) (-1492 (($ $) 8)) (-3719 (($ $) 7)) (-3695 (($ $) 6)))
-(((-34) (-1184)) (T -34))
-((-3707 (*1 *1 *1) (-4 *1 (-34))) (-3683 (*1 *1 *1) (-4 *1 (-34))) (-3731 (*1 *1 *1) (-4 *1 (-34))) (-1492 (*1 *1 *1) (-4 *1 (-34))) (-3719 (*1 *1 *1) (-4 *1 (-34))) (-3695 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -3695 ($ $)) (-15 -3719 ($ $)) (-15 -1492 ($ $)) (-15 -3731 ($ $)) (-15 -3683 ($ $)) (-15 -3707 ($ $))))
-((-2750 (((-107) $ $) 18 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3199 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 125)) (-3005 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 148)) (-2779 (($ $) 146)) (-3422 (($) 72) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 71)) (-1668 (((-1158) $ |#1| |#1|) 99 (|has| $ (-6 -4181))) (((-1158) $ (-517) (-517)) 178 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 159 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2034 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 200 (|has| $ (-6 -4181))) (($ $) 199 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-1918 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 134 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 155 (|has| $ (-6 -4181)))) (-3781 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 157 (|has| $ (-6 -4181)))) (-3042 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 153 (|has| $ (-6 -4181)))) (-2411 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 189 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-1121 (-517)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 160 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 158 (|has| $ (-6 -4181))) (($ $ "rest" $) 156 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 154 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 133 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 132 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 216)) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 175 (|has| $ (-6 -4180)))) (-2993 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 147)) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-4020 (($ $) 201 (|has| $ (-6 -4181)))) (-3093 (($ $) 211)) (-1660 (($ $ (-703)) 142) (($ $) 140)) (-3483 (($ $) 214 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1679 (($ $) 58 (-3807 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))) (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 220) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 215 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 174 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 176 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 173 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 172 (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 190 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 88) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 188)) (-3811 (((-107) $) 192)) (-2607 (((-517) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 208) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 207 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180))) (((-583 |#2|) $) 79 (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 114 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 123)) (-1272 (((-107) $ $) 131 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-3462 (($ (-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 169)) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-2967 (($ $ $) 198 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2797 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-3237 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180))) (((-583 |#2|) $) 80 (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 115 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-3099 (($ $ $) 197 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 110 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 109)) (-1529 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 225)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 128)) (-1763 (((-107) $) 124)) (-3985 (((-1056) $) 22 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2068 (($ $ (-703)) 145) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 143)) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-2620 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-1857 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-4088 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-3206 (((-1021) $) 21 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1647 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 137)) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51) (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 171)) (-2565 (($ $ |#2|) 98 (|has| $ (-6 -4181))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 179 (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2348 (((-107) $) 191)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 112 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 121 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 120 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 119 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 118 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 182 (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1941 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 185)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 187) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 186) (($ $ (-1121 (-517))) 165) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first") 138) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value") 126)) (-2459 (((-517) $ $) 129)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-2154 (($ $ (-517)) 222) (($ $ (-1121 (-517))) 221)) (-3750 (($ $ (-517)) 164) (($ $ (-1121 (-517))) 163)) (-2655 (((-107) $) 127)) (-2552 (($ $) 151)) (-3406 (($ $) 152 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 150)) (-1761 (($ $) 149)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 113 (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) 202 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493)))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 170)) (-2568 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 224) (($ $ $) 223)) (-2452 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 136) (($ $ $) 135)) (-2256 (((-787) $) 20 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1479 (((-583 $) $) 122)) (-2732 (((-107) $ $) 130 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-2074 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") |#1| $) 108)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 111 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 195 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1583 (((-107) $ $) 194 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1547 (((-107) $ $) 19 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1595 (((-107) $ $) 196 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1572 (((-107) $ $) 193 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-35 |#1| |#2|) (-1184) (-1003) (-1003)) (T -35))
-((-2074 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3435 *3) (|:| -1257 *4))))))
-(-13 (-1085 |t#1| |t#2|) (-603 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))) (-10 -8 (-15 -2074 ((-3 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-254 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-343 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 |#2|) . T) ((-550 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-588 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-603 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-779) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) ((-926 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-1003) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))) ((-1047 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-1085 |#1| |#2|) . T) ((-1108) . T) ((-1142 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
-((-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36))
-NIL
-(-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-37 |#1|) (-1184) (-156)) (T -37))
-((-2256 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))))
-(-13 (-961) (-650 |t#1|) (-10 -8 (-15 -2256 ($ |t#1|))))
+((-2302 (((-583 $) (-874 $)) 29) (((-583 $) (-1070 $)) 16) (((-583 $) (-1070 $) (-1074)) 20)) (-2060 (($ (-874 $)) 27) (($ (-1070 $)) 11) (($ (-1070 $) (-1074)) 54)) (-1899 (((-583 $) (-874 $)) 30) (((-583 $) (-1070 $)) 18) (((-583 $) (-1070 $) (-1074)) 19)) (-1434 (($ (-874 $)) 28) (($ (-1070 $)) 13) (($ (-1070 $) (-1074)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -2302 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -2302 ((-583 |#1|) (-1070 |#1|))) (-15 -2302 ((-583 |#1|) (-874 |#1|))) (-15 -2060 (|#1| (-1070 |#1|) (-1074))) (-15 -2060 (|#1| (-1070 |#1|))) (-15 -2060 (|#1| (-874 |#1|))) (-15 -1899 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -1899 ((-583 |#1|) (-1070 |#1|))) (-15 -1899 ((-583 |#1|) (-874 |#1|))) (-15 -1434 (|#1| (-1070 |#1|) (-1074))) (-15 -1434 (|#1| (-1070 |#1|))) (-15 -1434 (|#1| (-874 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -2302 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -2302 ((-583 |#1|) (-1070 |#1|))) (-15 -2302 ((-583 |#1|) (-874 |#1|))) (-15 -2060 (|#1| (-1070 |#1|) (-1074))) (-15 -2060 (|#1| (-1070 |#1|))) (-15 -2060 (|#1| (-874 |#1|))) (-15 -1899 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -1899 ((-583 |#1|) (-1070 |#1|))) (-15 -1899 ((-583 |#1|) (-874 |#1|))) (-15 -1434 (|#1| (-1070 |#1|) (-1074))) (-15 -1434 (|#1| (-1070 |#1|))) (-15 -1434 (|#1| (-874 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2302 (((-583 $) (-874 $)) 80) (((-583 $) (-1070 $)) 79) (((-583 $) (-1070 $) (-1074)) 78)) (-2060 (($ (-874 $)) 83) (($ (-1070 $)) 82) (($ (-1070 $) (-1074)) 81)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3706 (($ $) 92)) (-3765 (((-107) $ $) 59)) (-3473 (($) 17 T CONST)) (-1899 (((-583 $) (-874 $)) 86) (((-583 $) (-1070 $)) 85) (((-583 $) (-1070 $) (-1074)) 84)) (-1434 (($ (-874 $)) 89) (($ (-1070 $)) 88) (($ (-1070 $) (-1074)) 87)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2965 (((-107) $) 71)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 91)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-3693 (((-388 $) $) 74)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 64)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-27) (-1185)) (T -27))
+((-1434 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-1434 (*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) (-1434 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1074)) (-4 *1 (-27)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1899 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1074)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) (-2060 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1074)) (-4 *1 (-27)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1074)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
+(-13 (-333) (-918) (-10 -8 (-15 -1434 ($ (-874 $))) (-15 -1434 ($ (-1070 $))) (-15 -1434 ($ (-1070 $) (-1074))) (-15 -1899 ((-583 $) (-874 $))) (-15 -1899 ((-583 $) (-1070 $))) (-15 -1899 ((-583 $) (-1070 $) (-1074))) (-15 -2060 ($ (-874 $))) (-15 -2060 ($ (-1070 $))) (-15 -2060 ($ (-1070 $) (-1074))) (-15 -2302 ((-583 $) (-874 $))) (-15 -2302 ((-583 $) (-1070 $))) (-15 -2302 ((-583 $) (-1070 $) (-1074)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-918) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
+((-2302 (((-583 $) (-874 $)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-1070 $) (-1074)) 50) (((-583 $) $) 19) (((-583 $) $ (-1074)) 41)) (-2060 (($ (-874 $)) NIL) (($ (-1070 $)) NIL) (($ (-1070 $) (-1074)) 52) (($ $) 17) (($ $ (-1074)) 37)) (-1899 (((-583 $) (-874 $)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-1070 $) (-1074)) 48) (((-583 $) $) 15) (((-583 $) $ (-1074)) 43)) (-1434 (($ (-874 $)) NIL) (($ (-1070 $)) NIL) (($ (-1070 $) (-1074)) NIL) (($ $) 12) (($ $ (-1074)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -2302 ((-583 |#1|) |#1| (-1074))) (-15 -2060 (|#1| |#1| (-1074))) (-15 -2302 ((-583 |#1|) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -1899 ((-583 |#1|) |#1| (-1074))) (-15 -1434 (|#1| |#1| (-1074))) (-15 -1899 ((-583 |#1|) |#1|)) (-15 -1434 (|#1| |#1|)) (-15 -2302 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -2302 ((-583 |#1|) (-1070 |#1|))) (-15 -2302 ((-583 |#1|) (-874 |#1|))) (-15 -2060 (|#1| (-1070 |#1|) (-1074))) (-15 -2060 (|#1| (-1070 |#1|))) (-15 -2060 (|#1| (-874 |#1|))) (-15 -1899 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -1899 ((-583 |#1|) (-1070 |#1|))) (-15 -1899 ((-583 |#1|) (-874 |#1|))) (-15 -1434 (|#1| (-1070 |#1|) (-1074))) (-15 -1434 (|#1| (-1070 |#1|))) (-15 -1434 (|#1| (-874 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28))
+NIL
+(-10 -8 (-15 -2302 ((-583 |#1|) |#1| (-1074))) (-15 -2060 (|#1| |#1| (-1074))) (-15 -2302 ((-583 |#1|) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -1899 ((-583 |#1|) |#1| (-1074))) (-15 -1434 (|#1| |#1| (-1074))) (-15 -1899 ((-583 |#1|) |#1|)) (-15 -1434 (|#1| |#1|)) (-15 -2302 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -2302 ((-583 |#1|) (-1070 |#1|))) (-15 -2302 ((-583 |#1|) (-874 |#1|))) (-15 -2060 (|#1| (-1070 |#1|) (-1074))) (-15 -2060 (|#1| (-1070 |#1|))) (-15 -2060 (|#1| (-874 |#1|))) (-15 -1899 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -1899 ((-583 |#1|) (-1070 |#1|))) (-15 -1899 ((-583 |#1|) (-874 |#1|))) (-15 -1434 (|#1| (-1070 |#1|) (-1074))) (-15 -1434 (|#1| (-1070 |#1|))) (-15 -1434 (|#1| (-874 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2302 (((-583 $) (-874 $)) 80) (((-583 $) (-1070 $)) 79) (((-583 $) (-1070 $) (-1074)) 78) (((-583 $) $) 126) (((-583 $) $ (-1074)) 124)) (-2060 (($ (-874 $)) 83) (($ (-1070 $)) 82) (($ (-1070 $) (-1074)) 81) (($ $) 127) (($ $ (-1074)) 125)) (-2745 (((-107) $) 16)) (-1363 (((-583 (-1074)) $) 201)) (-2255 (((-377 (-1070 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-3656 (((-583 (-556 $)) $) 164)) (-1387 (((-3 $ "failed") $ $) 19)) (-2173 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3706 (($ $) 92)) (-3765 (((-107) $ $) 59)) (-3473 (($) 17 T CONST)) (-1899 (((-583 $) (-874 $)) 86) (((-583 $) (-1070 $)) 85) (((-583 $) (-1070 $) (-1074)) 84) (((-583 $) $) 130) (((-583 $) $ (-1074)) 128)) (-1434 (($ (-874 $)) 89) (($ (-1070 $)) 88) (($ (-1070 $) (-1074)) 87) (($ $) 131) (($ $ (-1074)) 129)) (-1759 (((-3 (-874 |#1|) "failed") $) 251 (|has| |#1| (-961))) (((-3 (-377 (-874 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-952 (-517)))) (((-3 (-1074) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3763 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3076 (((-874 |#1|) $) 252 (|has| |#1| (-961))) (((-377 (-874 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-952 (-517)))) (((-1074) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3763 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2383 (($ $ $) 55)) (-4012 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-961))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 240 (|has| |#1| (-961))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 121 (-3763 (-1651 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-1651 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (((-623 (-517)) (-623 $)) 120 (-3763 (-1651 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-1651 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2965 (((-107) $) 71)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 193 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 192 (|has| |#1| (-808 (-517))))) (-1187 (($ (-583 $)) 158) (($ $) 157)) (-4025 (((-583 (-109)) $) 165)) (-3270 (((-109) (-109)) 166)) (-2955 (((-107) $) 31)) (-2393 (((-107) $) 186 (|has| $ (-952 (-517))))) (-1936 (($ $) 218 (|has| |#1| (-961)))) (-1772 (((-1026 |#1| (-556 $)) $) 217 (|has| |#1| (-961)))) (-2666 (($ $ (-517)) 91)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-4133 (((-1070 $) (-556 $)) 183 (|has| $ (-961)))) (-1575 (($ $ $) 137)) (-2986 (($ $ $) 136)) (-1857 (($ (-1 $ $) (-556 $)) 172)) (-2726 (((-3 (-556 $) "failed") $) 162)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-2247 (((-583 (-556 $)) $) 163)) (-1822 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-4128 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1015)))) (-3973 (((-3 (-2 (|:| |val| $) (|:| -2059 (-517))) "failed") $) 221 (|has| |#1| (-961)))) (-3116 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-2724 (((-3 (-2 (|:| -1883 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2911 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-1074)) 220 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $) 213 (|has| |#1| (-1015)))) (-4158 (((-107) $ (-1074)) 169) (((-107) $ (-109)) 168)) (-4123 (($ $) 70)) (-1846 (((-703) $) 161)) (-3094 (((-1021) $) 10)) (-4134 (((-107) $) 199)) (-4144 ((|#1| $) 200)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-2754 (((-107) $ (-1074)) 174) (((-107) $ $) 173)) (-3693 (((-388 $) $) 74)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3994 (((-107) $) 185 (|has| $ (-952 (-517))))) (-1979 (($ $ (-1074) (-703) (-1 $ $)) 225 (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-961))) (($ $ (-583 (-109)) (-583 $) (-1074)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1074)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1074)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1074) (-1 $ $)) 178) (($ $ (-1074) (-1 $ (-583 $))) 177) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1074)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-2623 (((-703) $) 58)) (-1986 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-1662 (($ $ $) 160) (($ $) 159)) (-1699 (($ $ (-1074)) 249 (|has| |#1| (-961))) (($ $ (-583 (-1074))) 248 (|has| |#1| (-961))) (($ $ (-1074) (-703)) 247 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) 246 (|has| |#1| (-961)))) (-3691 (($ $) 228 (|has| |#1| (-509)))) (-1783 (((-1026 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-1457 (($ $) 184 (|has| $ (-961)))) (-3582 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-814 (-349)) $) 191 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 190 (|has| |#1| (-558 (-814 (-517)))))) (-2013 (($ $ $) 254 (|has| |#1| (-442)))) (-3064 (($ $ $) 253 (|has| |#1| (-442)))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-874 |#1|)) 250 (|has| |#1| (-961))) (($ (-377 (-874 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1026 |#1| (-556 $))) 216 (|has| |#1| (-961))) (($ |#1|) 196) (($ (-1074)) 187) (($ (-556 $)) 138)) (-1589 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-3549 (($ (-583 $)) 156) (($ $) 155)) (-3494 (((-107) (-109)) 167)) (-3767 (((-107) $ $) 39)) (-3698 (($ (-1074) (-583 $)) 206) (($ (-1074) $ $ $ $) 205) (($ (-1074) $ $ $) 204) (($ (-1074) $ $) 203) (($ (-1074) $) 202)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-1074)) 245 (|has| |#1| (-961))) (($ $ (-583 (-1074))) 244 (|has| |#1| (-961))) (($ $ (-1074) (-703)) 243 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) 242 (|has| |#1| (-961)))) (-1593 (((-107) $ $) 134)) (-1570 (((-107) $ $) 133)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 135)) (-1560 (((-107) $ $) 132)) (-1649 (($ $ $) 64) (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156)))))
+(((-29 |#1|) (-1185) (-13 (-779) (-509))) (T -29))
+((-1434 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-1899 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-1899 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-2060 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2302 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -1434 ($ $)) (-15 -1899 ((-583 $) $)) (-15 -1434 ($ $ (-1074))) (-15 -1899 ((-583 $) $ (-1074))) (-15 -2060 ($ $)) (-15 -2302 ((-583 $) $)) (-15 -2060 ($ $ (-1074))) (-15 -2302 ((-583 $) $ (-1074)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-822 (-1074)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) -3763 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1074)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1109) . T) ((-1113) . T))
+((-1190 (((-998 (-199)) $) NIL)) (-4154 (((-998 (-199)) $) NIL)) (-3438 (($ $ (-199)) 122)) (-2784 (($ (-874 (-517)) (-1074) (-1074) (-998 (-377 (-517))) (-998 (-377 (-517)))) 84)) (-3315 (((-583 (-583 (-865 (-199)))) $) 134)) (-2182 (((-787) $) 146)))
+(((-30) (-13 (-876) (-10 -8 (-15 -2784 ($ (-874 (-517)) (-1074) (-1074) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -3438 ($ $ (-199)))))) (T -30))
+((-2784 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1074)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))) (-3438 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))))
+(-13 (-876) (-10 -8 (-15 -2784 ($ (-874 (-517)) (-1074) (-1074) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -3438 ($ $ (-199)))))
+((-1434 ((|#2| (-1070 |#2|) (-1074)) 42)) (-3270 (((-109) (-109)) 55)) (-4133 (((-1070 |#2|) (-556 |#2|)) 132 (|has| |#1| (-952 (-517))))) (-2612 ((|#2| |#1| (-517)) 121 (|has| |#1| (-952 (-517))))) (-1241 ((|#2| (-1070 |#2|) |#2|) 30)) (-3623 (((-787) (-583 |#2|)) 85)) (-1457 ((|#2| |#2|) 128 (|has| |#1| (-952 (-517))))) (-3494 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 96 (|has| |#1| (-952 (-517))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -1434 (|#2| (-1070 |#2|) (-1074))) (-15 -3270 ((-109) (-109))) (-15 -3494 ((-107) (-109))) (-15 -1241 (|#2| (-1070 |#2|) |#2|)) (-15 -3623 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -4133 ((-1070 |#2|) (-556 |#2|))) (-15 -1457 (|#2| |#2|)) (-15 -2612 (|#2| |#1| (-517)))) |noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31))
+((-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))) (-1457 (*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1070 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-1241 (*1 *2 *3 *2) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-1434 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-5 *4 (-1074)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))))
+(-10 -7 (-15 -1434 (|#2| (-1070 |#2|) (-1074))) (-15 -3270 ((-109) (-109))) (-15 -3494 ((-107) (-109))) (-15 -1241 (|#2| (-1070 |#2|) |#2|)) (-15 -3623 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -4133 ((-1070 |#2|) (-556 |#2|))) (-15 -1457 (|#2| |#2|)) (-15 -2612 (|#2| |#1| (-517)))) |noBranch|))
+((-1799 (((-107) $ (-703)) 16)) (-3473 (($) 10)) (-4064 (((-107) $ (-703)) 15)) (-2942 (((-107) $ (-703)) 14)) (-3670 (((-107) $ $) 8)) (-1546 (((-107) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -3473 (|#1|)) (-15 -1799 ((-107) |#1| (-703))) (-15 -4064 ((-107) |#1| (-703))) (-15 -2942 ((-107) |#1| (-703))) (-15 -1546 ((-107) |#1|)) (-15 -3670 ((-107) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -3473 (|#1|)) (-15 -1799 ((-107) |#1| (-703))) (-15 -4064 ((-107) |#1| (-703))) (-15 -2942 ((-107) |#1| (-703))) (-15 -1546 ((-107) |#1|)) (-15 -3670 ((-107) |#1| |#1|)))
+((-1799 (((-107) $ (-703)) 8)) (-3473 (($) 7 T CONST)) (-4064 (((-107) $ (-703)) 9)) (-2942 (((-107) $ (-703)) 10)) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-2322 (($ $) 13)) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-33) (-1185)) (T -33))
+((-3670 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2322 (*1 *1 *1) (-4 *1 (-33))) (-1326 (*1 *1) (-4 *1 (-33))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2942 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-4064 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-1799 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3473 (*1 *1) (-4 *1 (-33))) (-2210 (*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-33)) (-5 *2 (-703)))))
+(-13 (-1109) (-10 -8 (-15 -3670 ((-107) $ $)) (-15 -2322 ($ $)) (-15 -1326 ($)) (-15 -1546 ((-107) $)) (-15 -2942 ((-107) $ (-703))) (-15 -4064 ((-107) $ (-703))) (-15 -1799 ((-107) $ (-703))) (-15 -3473 ($) -1605) (IF (|has| $ (-6 -4183)) (-15 -2210 ((-703) $)) |noBranch|)))
+(((-1109) . T))
+((-3642 (($ $) 11)) (-3622 (($ $) 10)) (-3661 (($ $) 9)) (-1279 (($ $) 8)) (-3650 (($ $) 7)) (-3631 (($ $) 6)))
+(((-34) (-1185)) (T -34))
+((-3642 (*1 *1 *1) (-4 *1 (-34))) (-3622 (*1 *1 *1) (-4 *1 (-34))) (-3661 (*1 *1 *1) (-4 *1 (-34))) (-1279 (*1 *1 *1) (-4 *1 (-34))) (-3650 (*1 *1 *1) (-4 *1 (-34))) (-3631 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -3631 ($ $)) (-15 -3650 ($ $)) (-15 -1279 ($ $)) (-15 -3661 ($ $)) (-15 -3622 ($ $)) (-15 -3642 ($ $))))
+((-2571 (((-107) $ $) 18 (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3088 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 125)) (-2864 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 148)) (-2602 (($ $) 146)) (-3331 (($) 72) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 71)) (-3423 (((-1159) $ |#1| |#1|) 99 (|has| $ (-6 -4184))) (((-1159) $ (-517) (-517)) 178 (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) 159 (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-2740 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 200 (|has| $ (-6 -4184))) (($ $) 199 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)) (|has| $ (-6 -4184))))) (-3056 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1799 (((-107) $ (-703)) 8)) (-4072 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 134 (|has| $ (-6 -4184)))) (-3499 (($ $ $) 155 (|has| $ (-6 -4184)))) (-3573 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 157 (|has| $ (-6 -4184)))) (-3043 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 153 (|has| $ (-6 -4184)))) (-2307 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 189 (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-1122 (-517)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 160 (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "last" (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 158 (|has| $ (-6 -4184))) (($ $ "rest" $) 156 (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "first" (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 154 (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "value" (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 133 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 132 (|has| $ (-6 -4184)))) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 45 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 216)) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 55 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 175 (|has| $ (-6 -4183)))) (-2849 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 147)) (-3147 (((-3 |#2| "failed") |#1| $) 61)) (-3473 (($) 7 T CONST)) (-1227 (($ $) 201 (|has| $ (-6 -4184)))) (-2979 (($ $) 211)) (-1644 (($ $ (-703)) 142) (($ $) 140)) (-2573 (($ $) 214 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-1667 (($ $) 58 (-3763 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183))) (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 46 (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 220) (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 215 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 54 (|has| $ (-6 -4183))) (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 174 (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 56 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 53 (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 52 (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 176 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 173 (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 172 (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 190 (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) 88) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) 188)) (-2570 (((-107) $) 192)) (-2446 (((-517) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 208) (((-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 207 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) (((-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 30 (|has| $ (-6 -4183))) (((-583 |#2|) $) 79 (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 114 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 123)) (-1703 (((-107) $ $) 131 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-3366 (($ (-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 169)) (-4064 (((-107) $ (-703)) 9)) (-2305 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-1575 (($ $ $) 198 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-2581 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-2262 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 29 (|has| $ (-6 -4183))) (((-583 |#2|) $) 80 (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 115 (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183)))) (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-2564 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-2986 (($ $ $) 197 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 34 (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4184))) (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 110 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 109)) (-1524 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 225)) (-2942 (((-107) $ (-703)) 10)) (-3617 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 128)) (-3762 (((-107) $) 124)) (-3865 (((-1057) $) 22 (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-1988 (($ $ (-703)) 145) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 143)) (-3799 (((-583 |#1|) $) 63)) (-2555 (((-107) |#1| $) 64)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 39)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 40) (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-2454 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-4086 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-3646 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-3094 (((-1021) $) 21 (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-1631 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 137)) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 51) (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 171)) (-1254 (($ $ |#2|) 98 (|has| $ (-6 -4184))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 179 (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 41)) (-2660 (((-107) $) 191)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 32 (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 112 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) 26 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 25 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 24 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 23 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 121 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 120 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 119 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) 118 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 182 (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3042 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 185)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 187) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) 186) (($ $ (-1122 (-517))) 165) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "first") 138) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "value") 126)) (-1482 (((-517) $ $) 129)) (-3429 (($) 49) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 48)) (-1628 (($ $ (-517)) 222) (($ $ (-1122 (-517))) 221)) (-3685 (($ $ (-517)) 164) (($ $ (-1122 (-517))) 163)) (-2562 (((-107) $) 127)) (-4084 (($ $) 151)) (-3145 (($ $) 152 (|has| $ (-6 -4184)))) (-2943 (((-703) $) 150)) (-2103 (($ $) 149)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 31 (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 113 (|has| $ (-6 -4183)))) (-3966 (($ $ $ (-517)) 202 (|has| $ (-6 -4184)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493)))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 50) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 170)) (-1286 (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 224) (($ $ $) 223)) (-2337 (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 136) (($ $ $) 135)) (-2182 (((-787) $) 20 (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3935 (((-583 $) $) 122)) (-3172 (((-107) $ $) 130 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 42)) (-1996 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") |#1| $) 108)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 33 (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 111 (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) 195 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1570 (((-107) $ $) 194 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1539 (((-107) $ $) 19 (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-1582 (((-107) $ $) 196 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1560 (((-107) $ $) 193 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-35 |#1| |#2|) (-1185) (-1003) (-1003)) (T -35))
+((-1996 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3342 *3) (|:| -1266 *4))))))
+(-13 (-1086 |t#1| |t#2|) (-603 (-2 (|:| -3342 |t#1|) (|:| -1266 |t#2|))) (-10 -8 (-15 -1996 ((-3 (-2 (|:| -3342 |t#1|) (|:| -1266 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-102 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-97) -3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779))) ((-557 (-787)) -3763 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-209 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-258 (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) -12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-254 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-343 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-456 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-456 |#2|) . T) ((-550 (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) -12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-588 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-603 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-779) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)) ((-926 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-1003) -3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779))) ((-1048 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-1086 |#1| |#2|) . T) ((-1109) . T) ((-1143 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T))
+((-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36))
+NIL
+(-10 -8 (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-37 |#1|) (-1185) (-156)) (T -37))
+((-2182 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))))
+(-13 (-961) (-650 |t#1|) (-10 -8 (-15 -2182 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1313 (((-388 |#1|) |#1|) 38)) (-3755 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-3381 (((-107) |#1|) 54)))
-(((-38 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1313 ((-388 |#1|) |#1|)) (-15 -3381 ((-107) |#1|))) (-1130 (-47))) (T -38))
-((-3381 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-1313 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))))
-(-10 -7 (-15 -3755 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1313 ((-388 |#1|) |#1|)) (-15 -3381 ((-107) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-1213 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1472 (((-377 |#2|) $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) NIL)) (-1639 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) NIL) (($ (-1153 (-377 |#2|))) 57) (($ (-1153 |#2|) |#2|) 124)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-3843 (((-1153 $) (-1153 $)) NIL)) (-3225 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3407 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) NIL)) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) NIL)) (-2666 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2497 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-3534 (($ $) NIL)) (-3442 (($) NIL (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) NIL)) (-1790 (((-703)) NIL)) (-1870 (((-1153 $) (-1153 $)) 100)) (-1506 (((-377 |#2|) $) NIL)) (-2043 (((-583 (-874 |#1|)) (-1073)) NIL (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) NIL)) (-1643 (((-1158) (-703)) 78)) (-1909 (((-623 (-377 |#2|))) 51)) (-2041 (((-623 (-377 |#2|))) 44)) (-4118 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 125)) (-3580 (((-623 (-377 |#2|))) 45)) (-1872 (((-623 (-377 |#2|))) 43)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 63)) (-1924 (((-1153 $)) 42)) (-2216 (((-1153 $)) 41)) (-2491 (((-107) $) NIL)) (-3291 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2836 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) NIL)) (-3206 (((-1021) $) NIL)) (-1786 (((-703)) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) NIL)) (-3259 (((-3 |#2| "failed")) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) NIL) (((-377 |#2|)) 39)) (-1620 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 50)) (-1766 (($) NIL (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1153 $)) 101)) (-3645 (((-1153 (-377 |#2|)) $) NIL) (($ (-1153 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1328 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) NIL)) (-2961 (((-703)) NIL)) (-2025 (((-107)) 37)) (-2992 (((-107) |#1|) 49) (((-107) |#2|) 130)) (-1753 (((-1153 $)) 91)) (-3329 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4065 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2396 (($) 16 T CONST)) (-2409 (($) 26 T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1643 ((-1158) (-703))))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) |#3|) (T -39))
-((-1643 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *2 (-1158)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1130 (-377 *5))) (-14 *7 *6))))
-(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1643 ((-1158) (-703)))))
-((-1849 ((|#2| |#2|) 47)) (-1567 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-1333 ((|#2| |#2|) 85 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2232 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2782 ((|#2| (-109) |#2| (-703)) 113 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-1747 (((-1069 |#2|) |#2|) 44)) (-3592 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -1849 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| (-583 |#2|))) (-15 -3592 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -1747 ((-1069 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -2232 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2782 (|#2| (-109) |#2| (-703)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 |#1| (-556 $)) $)) (-15 -1800 ((-1026 |#1| (-556 $)) $)) (-15 -2256 ($ (-1026 |#1| (-556 $))))))) (T -40))
-((-2782 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *5 (-556 $)) $)) (-15 -1800 ((-1026 *5 (-556 $)) $)) (-15 -2256 ($ (-1026 *5 (-556 $))))))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1747 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1069 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))))) (-3592 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3592 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3592 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
-(-10 -7 (-15 -1849 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| (-583 |#2|))) (-15 -3592 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -1747 ((-1069 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -2232 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2782 (|#2| (-109) |#2| (-703)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|))
-((-3755 (((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3755 ((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47))))) (-779) (-725) (-871 (-47) |#2| |#1|)) (T -41))
-((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))))
-(-10 -7 (-15 -3755 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3755 ((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47)))))
-((-2115 (((-703) |#2|) 65)) (-3123 (((-703) |#2|) 68)) (-3197 (((-583 |#2|)) 33)) (-3514 (((-703) |#2|) 67)) (-3771 (((-703) |#2|) 64)) (-2087 (((-703) |#2|) 66)) (-3044 (((-583 (-623 |#1|))) 60)) (-4077 (((-583 |#2|)) 55)) (-4123 (((-583 |#2|) |#2|) 43)) (-3252 (((-583 |#2|)) 57)) (-2179 (((-583 |#2|)) 56)) (-2617 (((-583 (-623 |#1|))) 48)) (-1220 (((-583 |#2|)) 54)) (-3552 (((-583 |#2|) |#2|) 42)) (-1560 (((-583 |#2|)) 50)) (-1410 (((-583 (-623 |#1|))) 61)) (-1296 (((-583 |#2|)) 59)) (-1753 (((-1153 |#2|) (-1153 |#2|)) 83 (|has| |#1| (-278)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -3514 ((-703) |#2|)) (-15 -3123 ((-703) |#2|)) (-15 -3771 ((-703) |#2|)) (-15 -2115 ((-703) |#2|)) (-15 -2087 ((-703) |#2|)) (-15 -1560 ((-583 |#2|))) (-15 -3552 ((-583 |#2|) |#2|)) (-15 -4123 ((-583 |#2|) |#2|)) (-15 -1220 ((-583 |#2|))) (-15 -4077 ((-583 |#2|))) (-15 -2179 ((-583 |#2|))) (-15 -3252 ((-583 |#2|))) (-15 -1296 ((-583 |#2|))) (-15 -2617 ((-583 (-623 |#1|)))) (-15 -3044 ((-583 (-623 |#1|)))) (-15 -1410 ((-583 (-623 |#1|)))) (-15 -3197 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -1753 ((-1153 |#2|) (-1153 |#2|))) |noBranch|)) (-509) (-387 |#1|)) (T -42))
-((-1753 (*1 *2 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-3197 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1410 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3044 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2617 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1296 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3252 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2179 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4077 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1220 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4123 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1560 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2087 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(-10 -7 (-15 -3514 ((-703) |#2|)) (-15 -3123 ((-703) |#2|)) (-15 -3771 ((-703) |#2|)) (-15 -2115 ((-703) |#2|)) (-15 -2087 ((-703) |#2|)) (-15 -1560 ((-583 |#2|))) (-15 -3552 ((-583 |#2|) |#2|)) (-15 -4123 ((-583 |#2|) |#2|)) (-15 -1220 ((-583 |#2|))) (-15 -4077 ((-583 |#2|))) (-15 -2179 ((-583 |#2|))) (-15 -3252 ((-583 |#2|))) (-15 -1296 ((-583 |#2|))) (-15 -2617 ((-583 (-623 |#1|)))) (-15 -3044 ((-583 (-623 |#1|)))) (-15 -1410 ((-583 (-623 |#1|)))) (-15 -3197 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -1753 ((-1153 |#2|) (-1153 |#2|))) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) NIL) (((-1153 (-623 |#1|))) 24)) (-3456 (((-1153 $)) 50)) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-2299 ((|#1| $) NIL)) (-3343 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-2436 (((-1069 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL)) (-2417 (((-1069 |#1|) $) NIL (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-2085 (((-1069 |#1|) $) NIL)) (-2362 (((-107)) 86)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) NIL)) (-3621 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-2261 (((-843)) 51)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) 88)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-1188 ((|#1| $) NIL)) (-3914 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-2300 (((-1069 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL)) (-4121 (((-1069 |#1|) $) NIL (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-2190 (((-1069 |#1|) $) NIL)) (-3606 (((-107)) 85)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) 92)) (-1286 (((-107)) 91)) (-1848 (((-107)) 93)) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) 87)) (-1449 ((|#1| $ (-517)) 53)) (-4114 (((-1153 |#1|) $ (-1153 $)) 47) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) 28) (((-623 |#1|) (-1153 $)) NIL)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) NIL) (((-583 (-874 |#1|))) NIL)) (-3394 (($ $ $) NIL)) (-1561 (((-107)) 83)) (-2256 (((-787) $) 68) (($ (-1153 |#1|)) 22)) (-1753 (((-1153 $)) 44)) (-1582 (((-583 (-1153 |#1|))) NIL (|has| |#1| (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) 81)) (-1587 (($ (-623 |#1|) $) 18)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) 84)) (-2524 (((-107)) 82)) (-3642 (((-107)) 80)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1040 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1040 |#2| |#1|)) (-10 -8 (-15 -2256 ($ (-1153 |#1|))))) (-333) (-843) (-583 (-1073)) (-1153 (-623 |#1|))) (T -43))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))))
-(-13 (-387 |#1|) (-585 (-1040 |#2| |#1|)) (-10 -8 (-15 -2256 ($ (-1153 |#1|)))))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3199 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-3005 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2779 (($ $) NIL)) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181))) (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2034 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))))) (-3166 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-1918 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 27 (|has| $ (-6 -4181)))) (-3781 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-3042 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 29 (|has| $ (-6 -4181)))) (-2411 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-1121 (-517)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2993 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-3254 (((-3 |#2| "failed") |#1| $) 37)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $ (-703)) NIL) (($ $) 24)) (-3483 (($ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 18 (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 18 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-3462 (($ (-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2797 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-3237 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-1529 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) 41 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2068 (($ $ (-703)) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2274 (((-583 |#1|) $) 20)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2620 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-4088 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 23)) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1941 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 17)) (-3619 (((-107) $) 16)) (-1746 (($) 13)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first") NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value") NIL)) (-2459 (((-517) $ $) NIL)) (-3089 (($) 12) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2154 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2568 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (($ $ $) NIL)) (-2452 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 25) (($ $ $) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2074 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") |#1| $) 43)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1595 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2296 (((-703) $) 22 (|has| $ (-6 -4180)))))
+((-2861 (((-388 |#1|) |#1|) 38)) (-3693 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-1258 (((-107) |#1|) 54)))
+(((-38 |#1|) (-10 -7 (-15 -3693 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -2861 ((-388 |#1|) |#1|)) (-15 -1258 ((-107) |#1|))) (-1131 (-47))) (T -38))
+((-1258 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) (-2861 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))))
+(-10 -7 (-15 -3693 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -2861 ((-388 |#1|) |#1|)) (-15 -1258 ((-107) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2800 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-3209 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1452 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3129 (((-623 (-377 |#2|)) (-1154 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1470 (((-377 |#2|) $) NIL)) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3490 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3765 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1598 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-3392 (((-107)) NIL)) (-1744 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-3291 (($ (-1154 (-377 |#2|)) (-1154 $)) NIL) (($ (-1154 (-377 |#2|))) 57) (($ (-1154 |#2|) |#2|) 124)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2148 (((-623 (-377 |#2|)) $ (-1154 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-377 |#2|))) (|:| |vec| (-1154 (-377 |#2|)))) (-623 $) (-1154 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-2882 (((-1154 $) (-1154 $)) NIL)) (-2521 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-1568 (((-3 $ "failed") $) NIL)) (-3154 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-1277 (((-107) |#1| |#1|) NIL)) (-3795 (((-843)) NIL)) (-3098 (($) NIL (|has| (-377 |#2|) (-338)))) (-2147 (((-107)) NIL)) (-2644 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2366 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-3039 (($ $) NIL)) (-3493 (($) NIL (|has| (-377 |#2|) (-319)))) (-1337 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2990 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-2965 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1921 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-2955 (((-107) $) NIL)) (-2812 (((-703)) NIL)) (-1209 (((-1154 $) (-1154 $)) 100)) (-2289 (((-377 |#2|) $) NIL)) (-2851 (((-583 (-874 |#1|)) (-1074)) NIL (|has| |#1| (-333)))) (-3744 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3523 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-2903 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-2511 ((|#3| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3865 (((-1057) $) NIL)) (-1776 (((-1159) (-703)) 78)) (-3987 (((-623 (-377 |#2|))) 51)) (-2823 (((-623 (-377 |#2|))) 44)) (-4123 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3612 (($ (-1154 |#2|) |#2|) 125)) (-2267 (((-623 (-377 |#2|))) 45)) (-1235 (((-623 (-377 |#2|))) 43)) (-4092 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-2752 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) 63)) (-4135 (((-1154 $)) 42)) (-3993 (((-1154 $)) 41)) (-1780 (((-107) $) NIL)) (-1663 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2663 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3353 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3014 (((-3 |#2| "failed")) NIL)) (-3094 (((-1021) $) NIL)) (-2789 (((-703)) NIL)) (-3107 (($) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| (-377 |#2|) (-333)))) (-1396 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3693 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2349 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2623 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1986 ((|#1| $ |#1| |#1|) NIL)) (-1357 (((-3 |#2| "failed")) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-4042 (((-377 |#2|) (-1154 $)) NIL) (((-377 |#2|)) 39)) (-3654 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-1699 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-703)) NIL (-3763 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3763 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3680 (((-623 (-377 |#2|)) (-1154 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-1457 ((|#3|) 50)) (-3788 (($) NIL (|has| (-377 |#2|) (-319)))) (-2575 (((-1154 (-377 |#2|)) $ (-1154 $)) NIL) (((-623 (-377 |#2|)) (-1154 $) (-1154 $)) NIL) (((-1154 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1154 $)) 101)) (-3582 (((-1154 (-377 |#2|)) $) NIL) (($ (-1154 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-4063 (((-1154 $) (-1154 $)) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3763 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1589 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3804 ((|#3| $) NIL)) (-1865 (((-703)) NIL)) (-2631 (((-107)) 37)) (-3916 (((-107) |#1|) 49) (((-107) |#2|) 130)) (-3809 (((-1154 $)) 91)) (-3767 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3385 (((-107)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2297 (($) 16 T CONST)) (-2306 (($) 26 T CONST)) (-2553 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-703)) NIL (-3763 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3763 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-1159) (-703))))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) |#3|) (T -39))
+((-1776 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1131 *4)) (-5 *2 (-1159)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1131 (-377 *5))) (-14 *7 *6))))
+(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-1159) (-703)))))
+((-4030 ((|#2| |#2|) 47)) (-2017 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-1633 ((|#2| |#2|) 85 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-4108 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2467 ((|#2| (-109) |#2| (-703)) 113 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-1684 (((-1070 |#2|) |#2|) 44)) (-2371 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -4030 (|#2| |#2|)) (-15 -2371 (|#2| |#2|)) (-15 -2371 (|#2| |#2| |#2|)) (-15 -2371 (|#2| |#2| (-583 |#2|))) (-15 -2371 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -1684 ((-1070 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -4108 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2467 (|#2| (-109) |#2| (-703)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 |#1| (-556 $)) $)) (-15 -1783 ((-1026 |#1| (-556 $)) $)) (-15 -2182 ($ (-1026 |#1| (-556 $))))))) (T -40))
+((-2467 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *5 (-556 $)) $)) (-15 -1783 ((-1026 *5 (-556 $)) $)) (-15 -2182 ($ (-1026 *5 (-556 $))))))))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))) (-1633 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1070 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *4 (-556 $)) $)) (-15 -1783 ((-1026 *4 (-556 $)) $)) (-15 -2182 ($ (-1026 *4 (-556 $))))))))) (-2371 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *4 (-556 $)) $)) (-15 -1783 ((-1026 *4 (-556 $)) $)) (-15 -2182 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-2371 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *4 (-556 $)) $)) (-15 -1783 ((-1026 *4 (-556 $)) $)) (-15 -2182 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-2371 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))) (-2371 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))) (-4030 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))))
+(-10 -7 (-15 -4030 (|#2| |#2|)) (-15 -2371 (|#2| |#2|)) (-15 -2371 (|#2| |#2| |#2|)) (-15 -2371 (|#2| |#2| (-583 |#2|))) (-15 -2371 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -1684 ((-1070 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -4108 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2467 (|#2| (-109) |#2| (-703)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|))
+((-3693 (((-388 (-1070 |#3|)) (-1070 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3693 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3693 ((-388 (-1070 |#3|)) (-1070 |#3|) (-583 (-47))))) (-779) (-725) (-871 (-47) |#2| |#1|)) (T -41))
+((-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))))
+(-10 -7 (-15 -3693 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3693 ((-388 (-1070 |#3|)) (-1070 |#3|) (-583 (-47)))))
+((-2350 (((-703) |#2|) 65)) (-2462 (((-703) |#2|) 68)) (-2010 (((-583 |#2|)) 33)) (-2855 (((-703) |#2|) 67)) (-3460 (((-703) |#2|) 64)) (-2150 (((-703) |#2|) 66)) (-3048 (((-583 (-623 |#1|))) 60)) (-3530 (((-583 |#2|)) 55)) (-2640 (((-583 |#2|) |#2|) 43)) (-2367 (((-583 |#2|)) 57)) (-1869 (((-583 |#2|)) 56)) (-3486 (((-583 (-623 |#1|))) 48)) (-2353 (((-583 |#2|)) 54)) (-2073 (((-583 |#2|) |#2|) 42)) (-3000 (((-583 |#2|)) 50)) (-1959 (((-583 (-623 |#1|))) 61)) (-1330 (((-583 |#2|)) 59)) (-3809 (((-1154 |#2|) (-1154 |#2|)) 83 (|has| |#1| (-278)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -2855 ((-703) |#2|)) (-15 -2462 ((-703) |#2|)) (-15 -3460 ((-703) |#2|)) (-15 -2350 ((-703) |#2|)) (-15 -2150 ((-703) |#2|)) (-15 -3000 ((-583 |#2|))) (-15 -2073 ((-583 |#2|) |#2|)) (-15 -2640 ((-583 |#2|) |#2|)) (-15 -2353 ((-583 |#2|))) (-15 -3530 ((-583 |#2|))) (-15 -1869 ((-583 |#2|))) (-15 -2367 ((-583 |#2|))) (-15 -1330 ((-583 |#2|))) (-15 -3486 ((-583 (-623 |#1|)))) (-15 -3048 ((-583 (-623 |#1|)))) (-15 -1959 ((-583 (-623 |#1|)))) (-15 -2010 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -3809 ((-1154 |#2|) (-1154 |#2|))) |noBranch|)) (-509) (-387 |#1|)) (T -42))
+((-3809 (*1 *2 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-2010 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1959 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3048 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3486 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1330 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2367 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1869 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3530 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2353 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2640 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2073 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3000 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2150 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2350 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2462 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2855 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(-10 -7 (-15 -2855 ((-703) |#2|)) (-15 -2462 ((-703) |#2|)) (-15 -3460 ((-703) |#2|)) (-15 -2350 ((-703) |#2|)) (-15 -2150 ((-703) |#2|)) (-15 -3000 ((-583 |#2|))) (-15 -2073 ((-583 |#2|) |#2|)) (-15 -2640 ((-583 |#2|) |#2|)) (-15 -2353 ((-583 |#2|))) (-15 -3530 ((-583 |#2|))) (-15 -1869 ((-583 |#2|))) (-15 -2367 ((-583 |#2|))) (-15 -1330 ((-583 |#2|))) (-15 -3486 ((-583 (-623 |#1|)))) (-15 -3048 ((-583 (-623 |#1|)))) (-15 -1959 ((-583 (-623 |#1|)))) (-15 -2010 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -3809 ((-1154 |#2|) (-1154 |#2|))) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1697 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3029 (((-1154 (-623 |#1|)) (-1154 $)) NIL) (((-1154 (-623 |#1|))) 24)) (-3624 (((-1154 $)) 50)) (-3473 (($) NIL T CONST)) (-3072 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-3672 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-3495 (((-623 |#1|) (-1154 $)) NIL) (((-623 |#1|)) NIL)) (-3488 ((|#1| $) NIL)) (-3922 (((-623 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-2344 (((-1070 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-1246 (($ $ (-843)) NIL)) (-2030 ((|#1| $) NIL)) (-2193 (((-1070 |#1|) $) NIL (|has| |#1| (-509)))) (-3440 ((|#1| (-1154 $)) NIL) ((|#1|) NIL)) (-2134 (((-1070 |#1|) $) NIL)) (-2815 (((-107)) 86)) (-3291 (($ (-1154 |#1|) (-1154 $)) NIL) (($ (-1154 |#1|)) NIL)) (-1568 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-3795 (((-843)) 51)) (-1837 (((-107)) NIL)) (-3092 (($ $ (-843)) NIL)) (-3419 (((-107)) NIL)) (-3841 (((-107)) NIL)) (-3229 (((-107)) 88)) (-2054 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-3004 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2507 (((-623 |#1|) (-1154 $)) NIL) (((-623 |#1|)) NIL)) (-3823 ((|#1| $) NIL)) (-2386 (((-623 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) $) NIL)) (-3526 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-3503 (((-1070 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-1313 (($ $ (-843)) NIL)) (-2377 ((|#1| $) NIL)) (-2621 (((-1070 |#1|) $) NIL (|has| |#1| (-509)))) (-3532 ((|#1| (-1154 $)) NIL) ((|#1|) NIL)) (-3737 (((-1070 |#1|) $) NIL)) (-1440 (((-107)) 85)) (-3865 (((-1057) $) NIL)) (-3156 (((-107)) 92)) (-2688 (((-107)) 91)) (-4022 (((-107)) 93)) (-3094 (((-1021) $) NIL)) (-3662 (((-107)) 87)) (-1986 ((|#1| $ (-517)) 53)) (-2575 (((-1154 |#1|) $ (-1154 $)) 47) (((-623 |#1|) (-1154 $) (-1154 $)) NIL) (((-1154 |#1|) $) 28) (((-623 |#1|) (-1154 $)) NIL)) (-3582 (((-1154 |#1|) $) NIL) (($ (-1154 |#1|)) NIL)) (-3254 (((-583 (-874 |#1|)) (-1154 $)) NIL) (((-583 (-874 |#1|))) NIL)) (-3064 (($ $ $) NIL)) (-3010 (((-107)) 83)) (-2182 (((-787) $) 68) (($ (-1154 |#1|)) 22)) (-3809 (((-1154 $)) 44)) (-2971 (((-583 (-1154 |#1|))) NIL (|has| |#1| (-509)))) (-2411 (($ $ $ $) NIL)) (-2902 (((-107)) 81)) (-1574 (($ (-623 |#1|) $) 18)) (-3168 (($ $ $) NIL)) (-2883 (((-107)) 84)) (-3832 (((-107)) 82)) (-1781 (((-107)) 80)) (-2297 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1041 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1041 |#2| |#1|)) (-10 -8 (-15 -2182 ($ (-1154 |#1|))))) (-333) (-843) (-583 (-1074)) (-1154 (-623 |#1|))) (T -43))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-333)) (-14 *6 (-1154 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))))))
+(-13 (-387 |#1|) (-585 (-1041 |#2| |#1|)) (-10 -8 (-15 -2182 ($ (-1154 |#1|)))))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3088 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2864 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2602 (($ $) NIL)) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3423 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184))) (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-2740 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779))))) (-3056 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-4072 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184)))) (-3499 (($ $ $) 27 (|has| $ (-6 -4184)))) (-3573 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184)))) (-3043 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 29 (|has| $ (-6 -4184)))) (-2307 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-1122 (-517)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "last" (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184))) (($ $ "rest" $) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "first" (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "value" (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2849 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3147 (((-3 |#2| "failed") |#1| $) 37)) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1644 (($ $ (-703)) NIL) (($ $) 24)) (-2573 (($ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) NIL) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) NIL)) (-2570 (((-107) $) NIL)) (-2446 (((-517) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (((-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) (((-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 18 (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 18 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-3366 (($ (-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-2581 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-2262 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2564 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-1524 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3617 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-3762 (((-107) $) NIL)) (-3865 (((-1057) $) 41 (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1988 (($ $ (-703)) NIL) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3799 (((-583 |#1|) $) 20)) (-2555 (((-107) |#1| $) NIL)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL) (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2454 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-3646 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1631 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 23)) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2660 (((-107) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3042 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 17)) (-1546 (((-107) $) 16)) (-1326 (($) 13)) (-1986 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ (-517)) NIL) (($ $ (-1122 (-517))) NIL) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "first") NIL) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $ "value") NIL)) (-1482 (((-517) $ $) NIL)) (-3429 (($) 12) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-1628 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-2562 (((-107) $) NIL)) (-4084 (($ $) NIL)) (-3145 (($ $) NIL (|has| $ (-6 -4184)))) (-2943 (((-703) $) NIL)) (-2103 (($ $) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-1286 (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL) (($ $ $) NIL)) (-2337 (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 25) (($ $ $) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-1996 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") |#1| $) 43)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1582 (((-107) $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-1560 (((-107) $ $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-779)))) (-2210 (((-703) $) 22 (|has| $ (-6 -4183)))))
(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1003) (-1003)) (T -44))
NIL
(-35 |#1| |#2|)
-((-4031 (((-107) $) 12)) (-1893 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -4031 ((-107) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-46 |#2| |#3|) (-961) (-724)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -4031 ((-107) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-46 |#1| |#2|) (-1184) (-961) (-724)) (T -46))
-((-1191 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-1339 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))))
-(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -1191 (|t#1| $)) (-15 -4152 ($ $)) (-15 -3688 (|t#2| $)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -4031 ((-107) $)) (-15 -1339 ($ |t#1| |t#2|)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3869 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-2814 (((-107) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3726 (((-583 (-556 $)) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1649 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3267 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-377 (-517)))) (|:| |vec| (-1153 (-377 (-517))))) (-623 $) (-1153 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-3225 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) 14)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1787 (((-1026 (-517) (-556 $)) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (((-1069 $) (-1069 $) (-556 $)) NIL) (((-1069 $) (-1069 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1607 (((-1069 $) (-556 $)) NIL (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-4118 (($ $) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3146 (((-703) $) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-1800 (((-1026 (-517) (-556 $)) $) NIL)) (-2135 (($ $) NIL (|has| $ (-961)))) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) NIL)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 7 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 16)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $ $) 15) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
-(((-47) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))) (T -47))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-3225 (*1 *1 *1) (-5 *1 (-47))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))))
-(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))
-((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) NIL)))
+((-1331 (((-107) $) 12)) (-1857 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1331 ((-107) |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-46 |#2| |#3|) (-961) (-724)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1331 ((-107) |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1217 (($ $) 60)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-1331 (((-107) $) 62)) (-1343 (($ |#1| |#2|) 61)) (-1857 (($ (-1 |#1| |#1|) $) 63)) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-4007 ((|#2| $) 64)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3086 ((|#1| $ |#2|) 59)) (-1589 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-46 |#1| |#2|) (-1185) (-961) (-724)) (T -46))
+((-1192 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-4159 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-1343 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-3086 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1649 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))))
+(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -1192 (|t#1| $)) (-15 -4159 ($ $)) (-15 -4007 (|t#2| $)) (-15 -1857 ($ (-1 |t#1| |t#1|) $)) (-15 -1331 ((-107) $)) (-15 -1343 ($ |t#1| |t#2|)) (-15 -1217 ($ $)) (-15 -3086 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1649 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2571 (((-107) $ $) NIL)) (-2302 (((-583 $) (-1070 $) (-1074)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-874 $)) NIL)) (-2060 (($ (-1070 $) (-1074)) NIL) (($ (-1070 $)) NIL) (($ (-874 $)) NIL)) (-2745 (((-107) $) 11)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3656 (((-583 (-556 $)) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2173 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3706 (($ $) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1899 (((-583 $) (-1070 $) (-1074)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-874 $)) NIL)) (-1434 (($ (-1070 $) (-1074)) NIL) (($ (-1070 $)) NIL) (($ (-874 $)) NIL)) (-1759 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3076 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2383 (($ $ $) NIL)) (-4012 (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2522 (-623 (-377 (-517)))) (|:| |vec| (-1154 (-377 (-517))))) (-623 $) (-1154 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-2521 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-1187 (($ $) NIL) (($ (-583 $)) NIL)) (-4025 (((-583 (-109)) $) NIL)) (-3270 (((-109) (-109)) NIL)) (-2955 (((-107) $) 14)) (-2393 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1772 (((-1026 (-517) (-556 $)) $) NIL)) (-2666 (($ $ (-517)) NIL)) (-2289 (((-1070 $) (-1070 $) (-556 $)) NIL) (((-1070 $) (-1070 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4133 (((-1070 $) (-556 $)) NIL (|has| $ (-961)))) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 $ $) (-556 $)) NIL)) (-2726 (((-3 (-556 $) "failed") $) NIL)) (-1368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-2247 (((-583 (-556 $)) $) NIL)) (-1822 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-4158 (((-107) $ (-109)) NIL) (((-107) $ (-1074)) NIL)) (-4123 (($ $) NIL)) (-1846 (((-703) $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ (-583 $)) NIL) (($ $ $) NIL)) (-2754 (((-107) $ $) NIL) (((-107) $ (-1074)) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3994 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1979 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-2623 (((-703) $) NIL)) (-1986 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1662 (($ $) NIL) (($ $ $) NIL)) (-1699 (($ $ (-703)) NIL) (($ $) NIL)) (-1783 (((-1026 (-517) (-556 $)) $) NIL)) (-1457 (($ $) NIL (|has| $ (-961)))) (-3582 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2182 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) NIL)) (-1865 (((-703)) NIL)) (-3549 (($ $) NIL) (($ (-583 $)) NIL)) (-3494 (((-107) (-109)) NIL)) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2297 (($) 7 T CONST)) (-2306 (($) 12 T CONST)) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 16)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL)) (-1637 (($ $ $) 15) (($ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-47) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2182 ($ (-1026 (-517) (-556 $)))) (-15 -1772 ((-1026 (-517) (-556 $)) $)) (-15 -1783 ((-1026 (-517) (-556 $)) $)) (-15 -2521 ($ $)) (-15 -2289 ((-1070 $) (-1070 $) (-556 $))) (-15 -2289 ((-1070 $) (-1070 $) (-583 (-556 $)))) (-15 -2289 ($ $ (-556 $))) (-15 -2289 ($ $ (-583 (-556 $))))))) (T -47))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-2521 (*1 *1 *1) (-5 *1 (-47))) (-2289 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-2289 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))))
+(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2182 ($ (-1026 (-517) (-556 $)))) (-15 -1772 ((-1026 (-517) (-556 $)) $)) (-15 -1783 ((-1026 (-517) (-556 $)) $)) (-15 -2521 ($ $)) (-15 -2289 ((-1070 $) (-1070 $) (-556 $))) (-15 -2289 ((-1070 $) (-1070 $) (-583 (-556 $)))) (-15 -2289 ($ $ (-556 $))) (-15 -2289 ($ $ (-583 (-556 $))))))
+((-2571 (((-107) $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 7)) (-1539 (((-107) $ $) NIL)))
(((-48) (-1003)) (T -48))
NIL
(-1003)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 60)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3153 (((-107) $) 20)) (-1772 (((-3 |#1| "failed") $) 23)) (-3189 ((|#1| $) 24)) (-1212 (($ $) 27)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1191 ((|#1| $) 21)) (-3105 (($ $) 49)) (-3985 (((-1056) $) NIL)) (-3593 (((-107) $) 28)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) 47)) (-2624 (($ (-583 (-517))) 48)) (-3688 (((-703) $) 29)) (-2256 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-2720 ((|#1| $ $) 19)) (-2961 (((-703)) 46)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 30 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1191 (|#1| $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 (|#1| $ $)) (-15 -3220 ($ (-703))) (-15 -2624 ($ (-583 (-517)))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-703) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1073))) (T -49))
-((-1191 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) (-3105 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) (-2720 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1073))))))
-(-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1191 (|#1| $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 (|#1| $ $)) (-15 -3220 ($ (-703))) (-15 -2624 ($ (-583 (-517)))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-703) $)) (-15 -1893 ($ (-1 |#1| |#1|) $))))
-((-3153 (((-107) (-51)) 13)) (-1772 (((-3 |#1| "failed") (-51)) 21)) (-3189 ((|#1| (-51)) 22)) (-2256 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -2256 ((-51) |#1|)) (-15 -1772 ((-3 |#1| "failed") (-51))) (-15 -3153 ((-107) (-51))) (-15 -3189 (|#1| (-51)))) (-1108)) (T -50))
-((-3189 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1108)))) (-1772 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1108)))))
-(-10 -7 (-15 -2256 ((-51) |#1|)) (-15 -1772 ((-3 |#1| "failed") (-51))) (-15 -3153 ((-107) (-51))) (-15 -3189 (|#1| (-51))))
-((-2750 (((-107) $ $) NIL)) (-1236 (((-1056) (-107)) 25)) (-2905 (((-787) $) 24)) (-3908 (((-706) $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2013 (((-787) $) 16)) (-4070 (((-1007) $) 14)) (-2256 (((-787) $) 32)) (-2022 (($ (-1007) (-706)) 33)) (-1547 (((-107) $ $) 18)))
-(((-51) (-13 (-1003) (-10 -8 (-15 -2022 ($ (-1007) (-706))) (-15 -2013 ((-787) $)) (-15 -2905 ((-787) $)) (-15 -4070 ((-1007) $)) (-15 -3908 ((-706) $)) (-15 -1236 ((-1056) (-107)))))) (T -51))
-((-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-1236 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1056)) (-5 *1 (-51)))))
-(-13 (-1003) (-10 -8 (-15 -2022 ($ (-1007) (-706))) (-15 -2013 ((-787) $)) (-15 -2905 ((-787) $)) (-15 -4070 ((-1007) $)) (-15 -3908 ((-706) $)) (-15 -1236 ((-1056) (-107)))))
-((-1587 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1587 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-585 |#1|) (-781 |#1|)) (T -52))
-((-1587 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))))
-(-10 -7 (-15 -1587 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1442 ((|#3| |#3| (-583 (-1073))) 35)) (-3605 ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843)) 22) ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -1442 (|#3| |#3| (-583 (-1073))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -53))
-((-1442 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-3605 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3605 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -1442 (|#3| |#3| (-583 (-1073)))))
-((-2953 (((-107) $ (-703)) 23)) (-4087 (($ $ (-517) |#3|) 45)) (-3739 (($ $ (-517) |#4|) 49)) (-1939 ((|#3| $ (-517)) 58)) (-1536 (((-583 |#2|) $) 30)) (-2550 (((-107) $ (-703)) 25)) (-2787 (((-107) |#2| $) 53)) (-1433 (($ (-1 |#2| |#2|) $) 37)) (-1893 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-3847 (((-107) $ (-703)) 24)) (-2565 (($ $ |#2|) 34)) (-2048 (((-107) (-1 (-107) |#2|) $) 19)) (-1449 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-3217 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2433 (($ $) 33)) (-3728 ((|#4| $ (-517)) 61)) (-2256 (((-787) $) 66)) (-3675 (((-107) (-1 (-107) |#2|) $) 18)) (-1547 (((-107) $ $) 52)) (-2296 (((-703) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3739 (|#1| |#1| (-517) |#4|)) (-15 -4087 (|#1| |#1| (-517) |#3|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3728 (|#4| |#1| (-517))) (-15 -1939 (|#3| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -2433 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1108) (-343 |#2|) (-343 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3739 (|#1| |#1| (-517) |#4|)) (-15 -4087 (|#1| |#1| (-517) |#3|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3728 (|#4| |#1| (-517))) (-15 -1939 (|#3| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -2433 (|#1| |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) (-517) |#1|) 44)) (-4087 (($ $ (-517) |#2|) 42)) (-3739 (($ $ (-517) |#3|) 41)) (-3092 (($) 7 T CONST)) (-1939 ((|#2| $ (-517)) 46)) (-1445 ((|#1| $ (-517) (-517) |#1|) 43)) (-1377 ((|#1| $ (-517) (-517)) 48)) (-1536 (((-583 |#1|) $) 30)) (-1477 (((-703) $) 51)) (-3462 (($ (-703) (-703) |#1|) 57)) (-1486 (((-703) $) 50)) (-2550 (((-107) $ (-703)) 9)) (-2813 (((-517) $) 55)) (-1338 (((-517) $) 53)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 54)) (-1307 (((-517) $) 52)) (-1433 (($ (-1 |#1| |#1|) $) 34)) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) 56)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3728 ((|#3| $ (-517)) 45)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-55 |#1| |#2| |#3|) (-1184) (-1108) (-343 |t#1|) (-343 |t#1|)) (T -55))
-((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3462 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1108)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2565 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) (-1377 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2411 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1445 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-4087 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-3739 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-1433 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1893 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(-13 (-456 |t#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3462 ($ (-703) (-703) |t#1|)) (-15 -2565 ($ $ |t#1|)) (-15 -2813 ((-517) $)) (-15 -2718 ((-517) $)) (-15 -1338 ((-517) $)) (-15 -1307 ((-517) $)) (-15 -1477 ((-703) $)) (-15 -1486 ((-703) $)) (-15 -1449 (|t#1| $ (-517) (-517))) (-15 -1377 (|t#1| $ (-517) (-517))) (-15 -1449 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1939 (|t#2| $ (-517))) (-15 -3728 (|t#3| $ (-517))) (-15 -1536 ((-583 |t#1|) $)) (-15 -2411 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1445 (|t#1| $ (-517) (-517) |t#1|)) (-15 -4087 ($ $ (-517) |t#2|)) (-15 -3739 ($ $ (-517) |t#3|)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -1433 ($ (-1 |t#1| |t#1|) $)) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-3905 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1893 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -3905 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1893 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1108) (-1108)) (T -56))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-56 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -3905 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1893 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3582 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3462 (($ (-703) |#1|) 9)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 7)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3582 ($ (-583 |#1|))) (-15 -3582 ($ (-703) |#1|)))) (-1108)) (T -57))
-((-3582 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-57 *3)))) (-3582 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1108)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -3582 ($ (-583 |#1|))) (-15 -3582 ($ (-703) |#1|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4087 (($ $ (-517) (-57 |#1|)) NIL)) (-3739 (($ $ (-517) (-57 |#1|)) NIL)) (-3092 (($) NIL T CONST)) (-1939 (((-57 |#1|) $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-57 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4181))) (-1108)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4181)))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 69) (((-3 $ "failed") (-1153 (-286 (-517)))) 58) (((-3 $ "failed") (-1153 (-874 (-349)))) 91) (((-3 $ "failed") (-1153 (-874 (-517)))) 80) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 47) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 36)) (-3189 (($ (-1153 (-286 (-349)))) 65) (($ (-1153 (-286 (-517)))) 54) (($ (-1153 (-874 (-349)))) 87) (($ (-1153 (-874 (-517)))) 76) (($ (-1153 (-377 (-874 (-349))))) 43) (($ (-1153 (-377 (-874 (-517))))) 29)) (-4155 (((-1158) $) 118)) (-2256 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 97) (($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) 28)))
-(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632))))))) (-1073)) (T -59))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))))))
-((-4155 (((-1158) $) 48) (((-1158)) 49)) (-2256 (((-787) $) 45)))
-(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -60))
-((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-60 *3)) (-14 *3 (-1073)))))
-(-13 (-365) (-10 -7 (-15 -4155 ((-1158)))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 142) (((-3 $ "failed") (-1153 (-286 (-517)))) 132) (((-3 $ "failed") (-1153 (-874 (-349)))) 163) (((-3 $ "failed") (-1153 (-874 (-517)))) 152) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 121) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 110)) (-3189 (($ (-1153 (-286 (-349)))) 138) (($ (-1153 (-286 (-517)))) 128) (($ (-1153 (-874 (-349)))) 159) (($ (-1153 (-874 (-517)))) 148) (($ (-1153 (-377 (-874 (-349))))) 117) (($ (-1153 (-377 (-874 (-517))))) 103)) (-4155 (((-1158) $) 96)) (-2256 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 31) (($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) 88)))
-(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))) (-1073)) (T -61))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))))))
-((-1772 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-874 (-349))) 46) (((-3 $ "failed") (-874 (-517))) 51) (((-3 $ "failed") (-377 (-874 (-349)))) 31) (((-3 $ "failed") (-377 (-874 (-517)))) 26)) (-3189 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-874 (-349))) 44) (($ (-874 (-517))) 49) (($ (-377 (-874 (-349)))) 29) (($ (-377 (-874 (-517)))) 23)) (-4155 (((-1158) $) 73)) (-2256 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 60) (($ (-309 (-2276 (QUOTE X)) (-2276) (-632))) 22)))
-(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276) (-632)))))) (-1073)) (T -62))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1073)))))
-(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276) (-632))))))
-((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-874 (-349)))) 122) (((-3 $ "failed") (-623 (-874 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 67)) (-3189 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-874 (-349)))) 118) (($ (-623 (-874 (-517)))) 107) (($ (-623 (-377 (-874 (-349))))) 74) (($ (-623 (-377 (-874 (-517))))) 60)) (-4155 (((-1158) $) 130)) (-2256 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 30) (($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) 53)))
-(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1073)) (T -63))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1073)))))
-(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))))))
-((-1772 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-874 (-349))) 64) (((-3 $ "failed") (-874 (-517))) 69) (((-3 $ "failed") (-377 (-874 (-349)))) 49) (((-3 $ "failed") (-377 (-874 (-517)))) 44)) (-3189 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-874 (-349))) 62) (($ (-874 (-517))) 67) (($ (-377 (-874 (-349)))) 47) (($ (-377 (-874 (-517)))) 41)) (-4155 (((-1158) $) 78)) (-2256 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 30) (($ (-309 (-2276) (-2276 (QUOTE XC)) (-632))) 38)))
-(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE XC)) (-632)))))) (-1073)) (T -64))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1073)))))
-(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))
-((-4155 (((-1158) $) 63)) (-2256 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 53)))
-(((-65 |#1|) (-353) (-1073)) (T -65))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 60)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-2690 (((-107) $) 20)) (-1759 (((-3 |#1| "failed") $) 23)) (-3076 ((|#1| $) 24)) (-1217 (($ $) 27)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1192 ((|#1| $) 21)) (-3569 (($ $) 49)) (-3865 (((-1057) $) NIL)) (-2378 (((-107) $) 28)) (-3094 (((-1021) $) NIL)) (-3107 (($ (-703)) 47)) (-2459 (($ (-583 (-517))) 48)) (-4007 (((-703) $) 29)) (-2182 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-3086 ((|#1| $ $) 19)) (-1865 (((-703)) 46)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 30 T CONST)) (-2306 (($) 14 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1192 (|#1| $)) (-15 -3569 ($ $)) (-15 -1217 ($ $)) (-15 -3086 (|#1| $ $)) (-15 -3107 ($ (-703))) (-15 -2459 ($ (-583 (-517)))) (-15 -2378 ((-107) $)) (-15 -2690 ((-107) $)) (-15 -4007 ((-703) $)) (-15 -1857 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1074))) (T -49))
+((-1192 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1074))))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))))) (-1217 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))))) (-3086 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1074))))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-2459 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1074))))))
+(-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1192 (|#1| $)) (-15 -3569 ($ $)) (-15 -1217 ($ $)) (-15 -3086 (|#1| $ $)) (-15 -3107 ($ (-703))) (-15 -2459 ($ (-583 (-517)))) (-15 -2378 ((-107) $)) (-15 -2690 ((-107) $)) (-15 -4007 ((-703) $)) (-15 -1857 ($ (-1 |#1| |#1|) $))))
+((-2690 (((-107) (-51)) 13)) (-1759 (((-3 |#1| "failed") (-51)) 21)) (-3076 ((|#1| (-51)) 22)) (-2182 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -2182 ((-51) |#1|)) (-15 -1759 ((-3 |#1| "failed") (-51))) (-15 -2690 ((-107) (-51))) (-15 -3076 (|#1| (-51)))) (-1109)) (T -50))
+((-3076 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1109)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1109)))) (-1759 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1109)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1109)))))
+(-10 -7 (-15 -2182 ((-51) |#1|)) (-15 -1759 ((-3 |#1| "failed") (-51))) (-15 -2690 ((-107) (-51))) (-15 -3076 (|#1| (-51))))
+((-2571 (((-107) $ $) NIL)) (-3531 (((-1057) (-107)) 25)) (-1374 (((-787) $) 24)) (-3904 (((-706) $) 12)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2527 (((-787) $) 16)) (-4075 (((-1007) $) 14)) (-2182 (((-787) $) 32)) (-2370 (($ (-1007) (-706)) 33)) (-1539 (((-107) $ $) 18)))
+(((-51) (-13 (-1003) (-10 -8 (-15 -2370 ($ (-1007) (-706))) (-15 -2527 ((-787) $)) (-15 -1374 ((-787) $)) (-15 -4075 ((-1007) $)) (-15 -3904 ((-706) $)) (-15 -3531 ((-1057) (-107)))))) (T -51))
+((-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1057)) (-5 *1 (-51)))))
+(-13 (-1003) (-10 -8 (-15 -2370 ($ (-1007) (-706))) (-15 -2527 ((-787) $)) (-15 -1374 ((-787) $)) (-15 -4075 ((-1007) $)) (-15 -3904 ((-706) $)) (-15 -3531 ((-1057) (-107)))))
+((-1574 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1574 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-585 |#1|) (-781 |#1|)) (T -52))
+((-1574 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))))
+(-10 -7 (-15 -1574 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-3580 ((|#3| |#3| (-583 (-1074))) 35)) (-1427 ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843)) 22) ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1427 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -1427 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -3580 (|#3| |#3| (-583 (-1074))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -53))
+((-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-1427 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1427 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -1427 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -1427 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -3580 (|#3| |#3| (-583 (-1074)))))
+((-1799 (((-107) $ (-703)) 23)) (-3635 (($ $ (-517) |#3|) 45)) (-3160 (($ $ (-517) |#4|) 49)) (-3023 ((|#3| $ (-517)) 58)) (-3037 (((-583 |#2|) $) 30)) (-4064 (((-107) $ (-703)) 25)) (-2502 (((-107) |#2| $) 53)) (-1213 (($ (-1 |#2| |#2|) $) 37)) (-1857 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2942 (((-107) $ (-703)) 24)) (-1254 (($ $ |#2|) 34)) (-2925 (((-107) (-1 (-107) |#2|) $) 19)) (-1986 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-3105 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2322 (($ $) 33)) (-1377 ((|#4| $ (-517)) 61)) (-2182 (((-787) $) 66)) (-3883 (((-107) (-1 (-107) |#2|) $) 18)) (-1539 (((-107) $ $) 52)) (-2210 (((-703) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1857 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1857 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1213 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3160 (|#1| |#1| (-517) |#4|)) (-15 -3635 (|#1| |#1| (-517) |#3|)) (-15 -3037 ((-583 |#2|) |#1|)) (-15 -1377 (|#4| |#1| (-517))) (-15 -3023 (|#3| |#1| (-517))) (-15 -1986 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517) (-517))) (-15 -1254 (|#1| |#1| |#2|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -2502 ((-107) |#2| |#1|)) (-15 -3105 ((-703) |#2| |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -1799 ((-107) |#1| (-703))) (-15 -4064 ((-107) |#1| (-703))) (-15 -2942 ((-107) |#1| (-703))) (-15 -2322 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1109) (-343 |#2|) (-343 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -1857 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1857 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1213 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3160 (|#1| |#1| (-517) |#4|)) (-15 -3635 (|#1| |#1| (-517) |#3|)) (-15 -3037 ((-583 |#2|) |#1|)) (-15 -1377 (|#4| |#1| (-517))) (-15 -3023 (|#3| |#1| (-517))) (-15 -1986 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517) (-517))) (-15 -1254 (|#1| |#1| |#2|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -2502 ((-107) |#2| |#1|)) (-15 -3105 ((-703) |#2| |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -1799 ((-107) |#1| (-703))) (-15 -4064 ((-107) |#1| (-703))) (-15 -2942 ((-107) |#1| (-703))) (-15 -2322 (|#1| |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#1| $ (-517) (-517) |#1|) 44)) (-3635 (($ $ (-517) |#2|) 42)) (-3160 (($ $ (-517) |#3|) 41)) (-3473 (($) 7 T CONST)) (-3023 ((|#2| $ (-517)) 46)) (-1226 ((|#1| $ (-517) (-517) |#1|) 43)) (-4020 ((|#1| $ (-517) (-517)) 48)) (-3037 (((-583 |#1|) $) 30)) (-4122 (((-703) $) 51)) (-3366 (($ (-703) (-703) |#1|) 57)) (-1875 (((-703) $) 50)) (-4064 (((-107) $ (-703)) 9)) (-2734 (((-517) $) 55)) (-2397 (((-517) $) 53)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3070 (((-517) $) 54)) (-2820 (((-517) $) 52)) (-1213 (($ (-1 |#1| |#1|) $) 34)) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1254 (($ $ |#1|) 56)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-1377 ((|#3| $ (-517)) 45)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-55 |#1| |#2| |#3|) (-1185) (-1109) (-343 |t#1|) (-343 |t#1|)) (T -55))
+((-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3366 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1109)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1254 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1986 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1109)))) (-4020 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1109)))) (-1986 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3023 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-1377 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2307 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1226 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3635 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1109)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-3160 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-1213 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1857 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1857 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(-13 (-456 |t#1|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -3366 ($ (-703) (-703) |t#1|)) (-15 -1254 ($ $ |t#1|)) (-15 -2734 ((-517) $)) (-15 -3070 ((-517) $)) (-15 -2397 ((-517) $)) (-15 -2820 ((-517) $)) (-15 -4122 ((-703) $)) (-15 -1875 ((-703) $)) (-15 -1986 (|t#1| $ (-517) (-517))) (-15 -4020 (|t#1| $ (-517) (-517))) (-15 -1986 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3023 (|t#2| $ (-517))) (-15 -1377 (|t#3| $ (-517))) (-15 -3037 ((-583 |t#1|) $)) (-15 -2307 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1226 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3635 ($ $ (-517) |t#2|)) (-15 -3160 ($ $ (-517) |t#3|)) (-15 -1857 ($ (-1 |t#1| |t#1|) $)) (-15 -1213 ($ (-1 |t#1| |t#1|) $)) (-15 -1857 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1857 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-2325 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-2521 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1857 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -2325 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1857 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1109) (-1109)) (T -56))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-56 *5 *2)))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -2325 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1857 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2446 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2285 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3366 (($ (-703) |#1|) 9)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) NIL (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 7)) (-1986 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-2337 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2285 ($ (-583 |#1|))) (-15 -2285 ($ (-703) |#1|)))) (-1109)) (T -57))
+((-2285 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-57 *3)))) (-2285 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1109)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2285 ($ (-583 |#1|))) (-15 -2285 ($ (-703) |#1|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3635 (($ $ (-517) (-57 |#1|)) NIL)) (-3160 (($ $ (-517) (-57 |#1|)) NIL)) (-3473 (($) NIL T CONST)) (-3023 (((-57 |#1|) $ (-517)) NIL)) (-1226 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4020 ((|#1| $ (-517) (-517)) NIL)) (-3037 (((-583 |#1|) $) NIL)) (-4122 (((-703) $) NIL)) (-3366 (($ (-703) (-703) |#1|) NIL)) (-1875 (((-703) $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2734 (((-517) $) NIL)) (-2397 (((-517) $) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3070 (((-517) $) NIL)) (-2820 (((-517) $) NIL)) (-1213 (($ (-1 |#1| |#1|) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1254 (($ $ |#1|) NIL)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-1377 (((-57 |#1|) $ (-517)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4184))) (-1109)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4184)))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 69) (((-3 $ "failed") (-1154 (-286 (-517)))) 58) (((-3 $ "failed") (-1154 (-874 (-349)))) 91) (((-3 $ "failed") (-1154 (-874 (-517)))) 80) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 47) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 36)) (-3076 (($ (-1154 (-286 (-349)))) 65) (($ (-1154 (-286 (-517)))) 54) (($ (-1154 (-874 (-349)))) 87) (($ (-1154 (-874 (-517)))) 76) (($ (-1154 (-377 (-874 (-349))))) 43) (($ (-1154 (-377 (-874 (-517))))) 29)) (-3215 (((-1159) $) 118)) (-2182 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 97) (($ (-1154 (-309 (-2197 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2197) (-632)))) 28)))
+(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2197) (-632))))))) (-1074)) (T -59))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2197) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2197) (-632)))))))
+((-3215 (((-1159) $) 48) (((-1159)) 49)) (-2182 (((-787) $) 45)))
+(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -3215 ((-1159))))) (-1074)) (T -60))
+((-3215 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-60 *3)) (-14 *3 (-1074)))))
+(-13 (-365) (-10 -7 (-15 -3215 ((-1159)))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 142) (((-3 $ "failed") (-1154 (-286 (-517)))) 132) (((-3 $ "failed") (-1154 (-874 (-349)))) 163) (((-3 $ "failed") (-1154 (-874 (-517)))) 152) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 121) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 110)) (-3076 (($ (-1154 (-286 (-349)))) 138) (($ (-1154 (-286 (-517)))) 128) (($ (-1154 (-874 (-349)))) 159) (($ (-1154 (-874 (-517)))) 148) (($ (-1154 (-377 (-874 (-349))))) 117) (($ (-1154 (-377 (-874 (-517))))) 103)) (-3215 (((-1159) $) 96)) (-2182 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 31) (($ (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632)))) 88)))
+(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632))))))) (-1074)) (T -61))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632)))))))
+((-1759 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-874 (-349))) 46) (((-3 $ "failed") (-874 (-517))) 51) (((-3 $ "failed") (-377 (-874 (-349)))) 31) (((-3 $ "failed") (-377 (-874 (-517)))) 26)) (-3076 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-874 (-349))) 44) (($ (-874 (-517))) 49) (($ (-377 (-874 (-349)))) 29) (($ (-377 (-874 (-517)))) 23)) (-3215 (((-1159) $) 73)) (-2182 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 60) (($ (-309 (-2197 (QUOTE X)) (-2197) (-632))) 22)))
+(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197 (QUOTE X)) (-2197) (-632)))))) (-1074)) (T -62))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-309 (-2197 (QUOTE X)) (-2197) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1074)))))
+(-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197 (QUOTE X)) (-2197) (-632))))))
+((-1759 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-874 (-349)))) 122) (((-3 $ "failed") (-623 (-874 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 67)) (-3076 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-874 (-349)))) 118) (($ (-623 (-874 (-517)))) 107) (($ (-623 (-377 (-874 (-349))))) 74) (($ (-623 (-377 (-874 (-517))))) 60)) (-3215 (((-1159) $) 130)) (-2182 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 30) (($ (-623 (-309 (-2197) (-2197 (QUOTE X) (QUOTE HESS)) (-632)))) 53)))
+(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2182 ($ (-623 (-309 (-2197) (-2197 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1074)) (T -63))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2197) (-2197 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1074)))))
+(-13 (-354) (-10 -8 (-15 -2182 ($ (-623 (-309 (-2197) (-2197 (QUOTE X) (QUOTE HESS)) (-632)))))))
+((-1759 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-874 (-349))) 64) (((-3 $ "failed") (-874 (-517))) 69) (((-3 $ "failed") (-377 (-874 (-349)))) 49) (((-3 $ "failed") (-377 (-874 (-517)))) 44)) (-3076 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-874 (-349))) 62) (($ (-874 (-517))) 67) (($ (-377 (-874 (-349)))) 47) (($ (-377 (-874 (-517)))) 41)) (-3215 (((-1159) $) 78)) (-2182 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 30) (($ (-309 (-2197) (-2197 (QUOTE XC)) (-632))) 38)))
+(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197) (-2197 (QUOTE XC)) (-632)))))) (-1074)) (T -64))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-309 (-2197) (-2197 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1074)))))
+(-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197) (-2197 (QUOTE XC)) (-632))))))
+((-3215 (((-1159) $) 63)) (-2182 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 53)))
+(((-65 |#1|) (-353) (-1074)) (T -65))
NIL
(-353)
-((-4155 (((-1158) $) 64)) (-2256 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 55)))
-(((-66 |#1|) (-353) (-1073)) (T -66))
+((-3215 (((-1159) $) 64)) (-2182 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 55)))
+(((-66 |#1|) (-353) (-1074)) (T -66))
NIL
(-353)
-((-4155 (((-1158) $) NIL) (((-1158)) 32)) (-2256 (((-787) $) NIL)))
-(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -67))
-((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-67 *3)) (-14 *3 (-1073)))))
-(-13 (-365) (-10 -7 (-15 -4155 ((-1158)))))
-((-4155 (((-1158) $) 68)) (-2256 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 52)))
-(((-68 |#1|) (-353) (-1073)) (T -68))
+((-3215 (((-1159) $) NIL) (((-1159)) 32)) (-2182 (((-787) $) NIL)))
+(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -3215 ((-1159))))) (-1074)) (T -67))
+((-3215 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-67 *3)) (-14 *3 (-1074)))))
+(-13 (-365) (-10 -7 (-15 -3215 ((-1159)))))
+((-3215 (((-1159) $) 68)) (-2182 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 52)))
+(((-68 |#1|) (-353) (-1074)) (T -68))
NIL
(-353)
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 98) (((-3 $ "failed") (-1153 (-286 (-517)))) 87) (((-3 $ "failed") (-1153 (-874 (-349)))) 119) (((-3 $ "failed") (-1153 (-874 (-517)))) 108) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 76) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 65)) (-3189 (($ (-1153 (-286 (-349)))) 94) (($ (-1153 (-286 (-517)))) 83) (($ (-1153 (-874 (-349)))) 115) (($ (-1153 (-874 (-517)))) 104) (($ (-1153 (-377 (-874 (-349))))) 72) (($ (-1153 (-377 (-874 (-517))))) 58)) (-4155 (((-1158) $) 133)) (-2256 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 50) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) 51)))
-(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))) (-1073)) (T -69))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))))))
-((-4155 (((-1158) $) 32) (((-1158)) 31)) (-2256 (((-787) $) 35)))
-(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -70))
-((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-70 *3)) (-14 *3 (-1073)))))
-(-13 (-365) (-10 -7 (-15 -4155 ((-1158)))))
-((-4155 (((-1158) $) 62)) (-2256 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 46)))
-(((-71 |#1|) (-353) (-1073)) (T -71))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 98) (((-3 $ "failed") (-1154 (-286 (-517)))) 87) (((-3 $ "failed") (-1154 (-874 (-349)))) 119) (((-3 $ "failed") (-1154 (-874 (-517)))) 108) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 76) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 65)) (-3076 (($ (-1154 (-286 (-349)))) 94) (($ (-1154 (-286 (-517)))) 83) (($ (-1154 (-874 (-349)))) 115) (($ (-1154 (-874 (-517)))) 104) (($ (-1154 (-377 (-874 (-349))))) 72) (($ (-1154 (-377 (-874 (-517))))) 58)) (-3215 (((-1159) $) 133)) (-2182 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 50) (($ (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))) 51)))
+(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632))))))) (-1074)) (T -69))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))))))
+((-3215 (((-1159) $) 32) (((-1159)) 31)) (-2182 (((-787) $) 35)))
+(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -3215 ((-1159))))) (-1074)) (T -70))
+((-3215 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-70 *3)) (-14 *3 (-1074)))))
+(-13 (-365) (-10 -7 (-15 -3215 ((-1159)))))
+((-3215 (((-1159) $) 62)) (-2182 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 46)))
+(((-71 |#1|) (-353) (-1074)) (T -71))
NIL
(-353)
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 119) (((-3 $ "failed") (-1153 (-286 (-517)))) 108) (((-3 $ "failed") (-1153 (-874 (-349)))) 141) (((-3 $ "failed") (-1153 (-874 (-517)))) 130) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 98) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 87)) (-3189 (($ (-1153 (-286 (-349)))) 115) (($ (-1153 (-286 (-517)))) 104) (($ (-1153 (-874 (-349)))) 137) (($ (-1153 (-874 (-517)))) 126) (($ (-1153 (-377 (-874 (-349))))) 94) (($ (-1153 (-377 (-874 (-517))))) 80)) (-4155 (((-1158) $) 73)) (-2256 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 66) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 60)))
-(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -72))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 125) (((-3 $ "failed") (-1153 (-286 (-517)))) 114) (((-3 $ "failed") (-1153 (-874 (-349)))) 147) (((-3 $ "failed") (-1153 (-874 (-517)))) 136) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 103) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 92)) (-3189 (($ (-1153 (-286 (-349)))) 121) (($ (-1153 (-286 (-517)))) 110) (($ (-1153 (-874 (-349)))) 143) (($ (-1153 (-874 (-517)))) 132) (($ (-1153 (-377 (-874 (-349))))) 99) (($ (-1153 (-377 (-874 (-517))))) 85)) (-4155 (((-1158) $) 78)) (-2256 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) NIL) (($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) 65)))
-(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632))))))) (-1073) (-1073) (-1073)) (T -73))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 129) (((-3 $ "failed") (-1153 (-286 (-517)))) 118) (((-3 $ "failed") (-1153 (-874 (-349)))) 151) (((-3 $ "failed") (-1153 (-874 (-517)))) 140) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 107) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 96)) (-3189 (($ (-1153 (-286 (-349)))) 125) (($ (-1153 (-286 (-517)))) 114) (($ (-1153 (-874 (-349)))) 147) (($ (-1153 (-874 (-517)))) 136) (($ (-1153 (-377 (-874 (-349))))) 103) (($ (-1153 (-377 (-874 (-517))))) 89)) (-4155 (((-1158) $) 82)) (-2256 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) NIL) (($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) 69)))
-(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1073) (-1073) (-1073)) (T -74))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))))))
-((-1772 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-874 (-349))) 87) (((-3 $ "failed") (-874 (-517))) 92) (((-3 $ "failed") (-377 (-874 (-349)))) 72) (((-3 $ "failed") (-377 (-874 (-517)))) 67)) (-3189 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-874 (-349))) 85) (($ (-874 (-517))) 90) (($ (-377 (-874 (-349)))) 70) (($ (-377 (-874 (-517)))) 64)) (-4155 (((-1158) $) 61)) (-2256 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 53) (($ (-309 (-2276) (-2276 (QUOTE X)) (-632))) 46)))
-(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632)))))) (-1073)) (T -75))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1073)))))
-(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632))))))
-((-1772 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-874 (-349))) 51) (((-3 $ "failed") (-874 (-517))) 56) (((-3 $ "failed") (-377 (-874 (-349)))) 36) (((-3 $ "failed") (-377 (-874 (-517)))) 31)) (-3189 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-874 (-349))) 49) (($ (-874 (-517))) 54) (($ (-377 (-874 (-349)))) 34) (($ (-377 (-874 (-517)))) 28)) (-4155 (((-1158) $) 77)) (-2256 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 65) (($ (-309 (-2276) (-2276 (QUOTE X)) (-632))) 27)))
-(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632)))))) (-1073)) (T -76))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1073)))))
-(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632))))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 84) (((-3 $ "failed") (-1153 (-286 (-517)))) 73) (((-3 $ "failed") (-1153 (-874 (-349)))) 106) (((-3 $ "failed") (-1153 (-874 (-517)))) 95) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 62) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 51)) (-3189 (($ (-1153 (-286 (-349)))) 80) (($ (-1153 (-286 (-517)))) 69) (($ (-1153 (-874 (-349)))) 102) (($ (-1153 (-874 (-517)))) 91) (($ (-1153 (-377 (-874 (-349))))) 58) (($ (-1153 (-377 (-874 (-517))))) 44)) (-4155 (((-1158) $) 122)) (-2256 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 112) (($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) 37)))
-(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))) (-1073)) (T -77))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 137) (((-3 $ "failed") (-1153 (-286 (-517)))) 126) (((-3 $ "failed") (-1153 (-874 (-349)))) 158) (((-3 $ "failed") (-1153 (-874 (-517)))) 147) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 116) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 105)) (-3189 (($ (-1153 (-286 (-349)))) 133) (($ (-1153 (-286 (-517)))) 122) (($ (-1153 (-874 (-349)))) 154) (($ (-1153 (-874 (-517)))) 143) (($ (-1153 (-377 (-874 (-349))))) 112) (($ (-1153 (-377 (-874 (-517))))) 98)) (-4155 (((-1158) $) 91)) (-2256 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 81) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 77)))
-(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -78))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 73) (((-3 $ "failed") (-1153 (-286 (-517)))) 62) (((-3 $ "failed") (-1153 (-874 (-349)))) 95) (((-3 $ "failed") (-1153 (-874 (-517)))) 84) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 51) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 40)) (-3189 (($ (-1153 (-286 (-349)))) 69) (($ (-1153 (-286 (-517)))) 58) (($ (-1153 (-874 (-349)))) 91) (($ (-1153 (-874 (-517)))) 80) (($ (-1153 (-377 (-874 (-349))))) 47) (($ (-1153 (-377 (-874 (-517))))) 33)) (-4155 (((-1158) $) 121)) (-2256 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 110) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 32)))
-(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -79))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 90) (((-3 $ "failed") (-1153 (-286 (-517)))) 79) (((-3 $ "failed") (-1153 (-874 (-349)))) 112) (((-3 $ "failed") (-1153 (-874 (-517)))) 101) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 68) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 57)) (-3189 (($ (-1153 (-286 (-349)))) 86) (($ (-1153 (-286 (-517)))) 75) (($ (-1153 (-874 (-349)))) 108) (($ (-1153 (-874 (-517)))) 97) (($ (-1153 (-377 (-874 (-349))))) 64) (($ (-1153 (-377 (-874 (-517))))) 50)) (-4155 (((-1158) $) 43)) (-2256 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 32) (($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) 27)))
-(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632))))))) (-1073)) (T -80))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))))))
-((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 125) (((-3 $ "failed") (-623 (-874 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 71)) (-3189 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 121) (($ (-623 (-874 (-517)))) 110) (($ (-623 (-377 (-874 (-349))))) 78) (($ (-623 (-377 (-874 (-517))))) 64)) (-4155 (((-1158) $) 57)) (-2256 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 47) (($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) 40)))
-(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632))))))) (-1073)) (T -81))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1073)))))
-(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))))))
-((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 124) (((-3 $ "failed") (-623 (-874 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 70)) (-3189 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 120) (($ (-623 (-874 (-517)))) 109) (($ (-623 (-377 (-874 (-349))))) 77) (($ (-623 (-377 (-874 (-517))))) 63)) (-4155 (((-1158) $) 56)) (-2256 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 40) (($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) 41)))
-(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632))))))) (-1073)) (T -82))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1073)))))
-(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 99) (((-3 $ "failed") (-1153 (-286 (-517)))) 88) (((-3 $ "failed") (-1153 (-874 (-349)))) 121) (((-3 $ "failed") (-1153 (-874 (-517)))) 110) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 77) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 66)) (-3189 (($ (-1153 (-286 (-349)))) 95) (($ (-1153 (-286 (-517)))) 84) (($ (-1153 (-874 (-349)))) 117) (($ (-1153 (-874 (-517)))) 106) (($ (-1153 (-377 (-874 (-349))))) 73) (($ (-1153 (-377 (-874 (-517))))) 59)) (-4155 (((-1158) $) 45)) (-2256 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 51) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) 36)))
-(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632))))))) (-1073)) (T -83))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))))))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 74) (((-3 $ "failed") (-1153 (-286 (-517)))) 63) (((-3 $ "failed") (-1153 (-874 (-349)))) 96) (((-3 $ "failed") (-1153 (-874 (-517)))) 85) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 52) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 41)) (-3189 (($ (-1153 (-286 (-349)))) 70) (($ (-1153 (-286 (-517)))) 59) (($ (-1153 (-874 (-349)))) 92) (($ (-1153 (-874 (-517)))) 81) (($ (-1153 (-377 (-874 (-349))))) 48) (($ (-1153 (-377 (-874 (-517))))) 34)) (-4155 (((-1158) $) 122)) (-2256 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 111) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) 33)))
-(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))) (-1073)) (T -84))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1073)))))
-(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))))))
-((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-874 (-349)))) 127) (((-3 $ "failed") (-623 (-874 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 72)) (-3189 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-874 (-349)))) 123) (($ (-623 (-874 (-517)))) 112) (($ (-623 (-377 (-874 (-349))))) 79) (($ (-623 (-377 (-874 (-517))))) 65)) (-4155 (((-1158) $) 58)) (-2256 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 47) (($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) 43)))
-(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632))))))) (-1073)) (T -85))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1073)))))
-(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))))))
-((-4155 (((-1158) $) 44)) (-2256 (((-787) $) 38) (($ (-1153 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 32)))
-(((-86 |#1|) (-409) (-1073)) (T -86))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 119) (((-3 $ "failed") (-1154 (-286 (-517)))) 108) (((-3 $ "failed") (-1154 (-874 (-349)))) 141) (((-3 $ "failed") (-1154 (-874 (-517)))) 130) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 98) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 87)) (-3076 (($ (-1154 (-286 (-349)))) 115) (($ (-1154 (-286 (-517)))) 104) (($ (-1154 (-874 (-349)))) 137) (($ (-1154 (-874 (-517)))) 126) (($ (-1154 (-377 (-874 (-349))))) 94) (($ (-1154 (-377 (-874 (-517))))) 80)) (-3215 (((-1159) $) 73)) (-2182 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 66) (($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) 60)))
+(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632))))))) (-1074)) (T -72))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 125) (((-3 $ "failed") (-1154 (-286 (-517)))) 114) (((-3 $ "failed") (-1154 (-874 (-349)))) 147) (((-3 $ "failed") (-1154 (-874 (-517)))) 136) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 103) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 92)) (-3076 (($ (-1154 (-286 (-349)))) 121) (($ (-1154 (-286 (-517)))) 110) (($ (-1154 (-874 (-349)))) 143) (($ (-1154 (-874 (-517)))) 132) (($ (-1154 (-377 (-874 (-349))))) 99) (($ (-1154 (-377 (-874 (-517))))) 85)) (-3215 (((-1159) $) 78)) (-2182 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) NIL) (($ (-1154 (-309 (-2197 (QUOTE X) (QUOTE EPS)) (-2197 (QUOTE -2389)) (-632)))) 65)))
+(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X) (QUOTE EPS)) (-2197 (QUOTE -2389)) (-632))))))) (-1074) (-1074) (-1074)) (T -73))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X) (QUOTE EPS)) (-2197 (QUOTE -2389)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1074)) (-14 *4 (-1074)) (-14 *5 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X) (QUOTE EPS)) (-2197 (QUOTE -2389)) (-632)))))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 129) (((-3 $ "failed") (-1154 (-286 (-517)))) 118) (((-3 $ "failed") (-1154 (-874 (-349)))) 151) (((-3 $ "failed") (-1154 (-874 (-517)))) 140) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 107) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 96)) (-3076 (($ (-1154 (-286 (-349)))) 125) (($ (-1154 (-286 (-517)))) 114) (($ (-1154 (-874 (-349)))) 147) (($ (-1154 (-874 (-517)))) 136) (($ (-1154 (-377 (-874 (-349))))) 103) (($ (-1154 (-377 (-874 (-517))))) 89)) (-3215 (((-1159) $) 82)) (-2182 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) NIL) (($ (-1154 (-309 (-2197 (QUOTE EPS)) (-2197 (QUOTE YA) (QUOTE YB)) (-632)))) 69)))
+(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE EPS)) (-2197 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1074) (-1074) (-1074)) (T -74))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE EPS)) (-2197 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1074)) (-14 *4 (-1074)) (-14 *5 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE EPS)) (-2197 (QUOTE YA) (QUOTE YB)) (-632)))))))
+((-1759 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-874 (-349))) 87) (((-3 $ "failed") (-874 (-517))) 92) (((-3 $ "failed") (-377 (-874 (-349)))) 72) (((-3 $ "failed") (-377 (-874 (-517)))) 67)) (-3076 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-874 (-349))) 85) (($ (-874 (-517))) 90) (($ (-377 (-874 (-349)))) 70) (($ (-377 (-874 (-517)))) 64)) (-3215 (((-1159) $) 61)) (-2182 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 53) (($ (-309 (-2197) (-2197 (QUOTE X)) (-632))) 46)))
+(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197) (-2197 (QUOTE X)) (-632)))))) (-1074)) (T -75))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-309 (-2197) (-2197 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1074)))))
+(-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197) (-2197 (QUOTE X)) (-632))))))
+((-1759 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-874 (-349))) 51) (((-3 $ "failed") (-874 (-517))) 56) (((-3 $ "failed") (-377 (-874 (-349)))) 36) (((-3 $ "failed") (-377 (-874 (-517)))) 31)) (-3076 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-874 (-349))) 49) (($ (-874 (-517))) 54) (($ (-377 (-874 (-349)))) 34) (($ (-377 (-874 (-517)))) 28)) (-3215 (((-1159) $) 77)) (-2182 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 65) (($ (-309 (-2197) (-2197 (QUOTE X)) (-632))) 27)))
+(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197) (-2197 (QUOTE X)) (-632)))))) (-1074)) (T -76))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-309 (-2197) (-2197 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1074)))))
+(-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197) (-2197 (QUOTE X)) (-632))))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 84) (((-3 $ "failed") (-1154 (-286 (-517)))) 73) (((-3 $ "failed") (-1154 (-874 (-349)))) 106) (((-3 $ "failed") (-1154 (-874 (-517)))) 95) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 62) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 51)) (-3076 (($ (-1154 (-286 (-349)))) 80) (($ (-1154 (-286 (-517)))) 69) (($ (-1154 (-874 (-349)))) 102) (($ (-1154 (-874 (-517)))) 91) (($ (-1154 (-377 (-874 (-349))))) 58) (($ (-1154 (-377 (-874 (-517))))) 44)) (-3215 (((-1159) $) 122)) (-2182 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 112) (($ (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632)))) 37)))
+(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632))))))) (-1074)) (T -77))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632)))))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 137) (((-3 $ "failed") (-1154 (-286 (-517)))) 126) (((-3 $ "failed") (-1154 (-874 (-349)))) 158) (((-3 $ "failed") (-1154 (-874 (-517)))) 147) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 116) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 105)) (-3076 (($ (-1154 (-286 (-349)))) 133) (($ (-1154 (-286 (-517)))) 122) (($ (-1154 (-874 (-349)))) 154) (($ (-1154 (-874 (-517)))) 143) (($ (-1154 (-377 (-874 (-349))))) 112) (($ (-1154 (-377 (-874 (-517))))) 98)) (-3215 (((-1159) $) 91)) (-2182 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 81) (($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) 77)))
+(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632))))))) (-1074)) (T -78))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 73) (((-3 $ "failed") (-1154 (-286 (-517)))) 62) (((-3 $ "failed") (-1154 (-874 (-349)))) 95) (((-3 $ "failed") (-1154 (-874 (-517)))) 84) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 51) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 40)) (-3076 (($ (-1154 (-286 (-349)))) 69) (($ (-1154 (-286 (-517)))) 58) (($ (-1154 (-874 (-349)))) 91) (($ (-1154 (-874 (-517)))) 80) (($ (-1154 (-377 (-874 (-349))))) 47) (($ (-1154 (-377 (-874 (-517))))) 33)) (-3215 (((-1159) $) 121)) (-2182 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 110) (($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) 32)))
+(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632))))))) (-1074)) (T -79))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 90) (((-3 $ "failed") (-1154 (-286 (-517)))) 79) (((-3 $ "failed") (-1154 (-874 (-349)))) 112) (((-3 $ "failed") (-1154 (-874 (-517)))) 101) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 68) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 57)) (-3076 (($ (-1154 (-286 (-349)))) 86) (($ (-1154 (-286 (-517)))) 75) (($ (-1154 (-874 (-349)))) 108) (($ (-1154 (-874 (-517)))) 97) (($ (-1154 (-377 (-874 (-349))))) 64) (($ (-1154 (-377 (-874 (-517))))) 50)) (-3215 (((-1159) $) 43)) (-2182 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 32) (($ (-1154 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632)))) 27)))
+(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632))))))) (-1074)) (T -80))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632)))))))
+((-1759 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 125) (((-3 $ "failed") (-623 (-874 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 71)) (-3076 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 121) (($ (-623 (-874 (-517)))) 110) (($ (-623 (-377 (-874 (-349))))) 78) (($ (-623 (-377 (-874 (-517))))) 64)) (-3215 (((-1159) $) 57)) (-2182 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 47) (($ (-623 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632)))) 40)))
+(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2182 ($ (-623 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632))))))) (-1074)) (T -81))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1074)))))
+(-13 (-354) (-10 -8 (-15 -2182 ($ (-623 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632)))))))
+((-1759 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 124) (((-3 $ "failed") (-623 (-874 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 70)) (-3076 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 120) (($ (-623 (-874 (-517)))) 109) (($ (-623 (-377 (-874 (-349))))) 77) (($ (-623 (-377 (-874 (-517))))) 63)) (-3215 (((-1159) $) 56)) (-2182 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 40) (($ (-623 (-309 (-2197 (QUOTE X)) (-2197) (-632)))) 41)))
+(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2182 ($ (-623 (-309 (-2197 (QUOTE X)) (-2197) (-632))))))) (-1074)) (T -82))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2197 (QUOTE X)) (-2197) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1074)))))
+(-13 (-354) (-10 -8 (-15 -2182 ($ (-623 (-309 (-2197 (QUOTE X)) (-2197) (-632)))))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 99) (((-3 $ "failed") (-1154 (-286 (-517)))) 88) (((-3 $ "failed") (-1154 (-874 (-349)))) 121) (((-3 $ "failed") (-1154 (-874 (-517)))) 110) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 77) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 66)) (-3076 (($ (-1154 (-286 (-349)))) 95) (($ (-1154 (-286 (-517)))) 84) (($ (-1154 (-874 (-349)))) 117) (($ (-1154 (-874 (-517)))) 106) (($ (-1154 (-377 (-874 (-349))))) 73) (($ (-1154 (-377 (-874 (-517))))) 59)) (-3215 (((-1159) $) 45)) (-2182 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 51) (($ (-1154 (-309 (-2197 (QUOTE X)) (-2197) (-632)))) 36)))
+(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X)) (-2197) (-632))))))) (-1074)) (T -83))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X)) (-2197) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X)) (-2197) (-632)))))))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 74) (((-3 $ "failed") (-1154 (-286 (-517)))) 63) (((-3 $ "failed") (-1154 (-874 (-349)))) 96) (((-3 $ "failed") (-1154 (-874 (-517)))) 85) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 52) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 41)) (-3076 (($ (-1154 (-286 (-349)))) 70) (($ (-1154 (-286 (-517)))) 59) (($ (-1154 (-874 (-349)))) 92) (($ (-1154 (-874 (-517)))) 81) (($ (-1154 (-377 (-874 (-349))))) 48) (($ (-1154 (-377 (-874 (-517))))) 34)) (-3215 (((-1159) $) 122)) (-2182 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 111) (($ (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))) 33)))
+(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632))))))) (-1074)) (T -84))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1074)))))
+(-13 (-410) (-10 -8 (-15 -2182 ($ (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))))))
+((-1759 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-874 (-349)))) 127) (((-3 $ "failed") (-623 (-874 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 72)) (-3076 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-874 (-349)))) 123) (($ (-623 (-874 (-517)))) 112) (($ (-623 (-377 (-874 (-349))))) 79) (($ (-623 (-377 (-874 (-517))))) 65)) (-3215 (((-1159) $) 58)) (-2182 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 47) (($ (-623 (-309 (-2197 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2197) (-632)))) 43)))
+(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2182 ($ (-623 (-309 (-2197 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2197) (-632))))))) (-1074)) (T -85))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2197 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2197) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1074)))))
+(-13 (-354) (-10 -8 (-15 -2182 ($ (-623 (-309 (-2197 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2197) (-632)))))))
+((-3215 (((-1159) $) 44)) (-2182 (((-787) $) 38) (($ (-1154 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 32)))
+(((-86 |#1|) (-409) (-1074)) (T -86))
NIL
(-409)
-((-1772 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-874 (-349))) 52) (((-3 $ "failed") (-874 (-517))) 57) (((-3 $ "failed") (-377 (-874 (-349)))) 37) (((-3 $ "failed") (-377 (-874 (-517)))) 32)) (-3189 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-874 (-349))) 50) (($ (-874 (-517))) 55) (($ (-377 (-874 (-349)))) 35) (($ (-377 (-874 (-517)))) 29)) (-4155 (((-1158) $) 88)) (-2256 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 73) (($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) 28)))
-(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))))) (-1073)) (T -87))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1073)))))
-(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))
-((-1653 (((-1153 (-623 |#1|)) (-623 |#1|)) 54)) (-2917 (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843)) 44)) (-3370 (((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843)) 62 (|has| |#1| (-333)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -2917 ((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843))) (-15 -1653 ((-1153 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -3370 ((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |noBranch|)) (-509) (-593 |#1|)) (T -88))
-((-3370 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2131 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))) (-1653 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-2917 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
-(-10 -7 (-15 -2917 ((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843))) (-15 -1653 ((-1153 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -3370 ((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |noBranch|))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4139 ((|#1| $) 35)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2886 ((|#1| |#1| $) 30)) (-1200 ((|#1| $) 28)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) NIL)) (-1710 (($ |#1| $) 31)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 29)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 16)) (-1746 (($) 39)) (-1694 (((-703) $) 26)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 15)) (-2256 (((-787) $) 25 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-4033 (($ (-583 |#1|)) 37)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 13 (|has| |#1| (-1003)))) (-2296 (((-703) $) 10 (|has| $ (-6 -4180)))))
-(((-89 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -4033 ($ (-583 |#1|))))) (-1003)) (T -89))
-((-4033 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3)))))
-(-13 (-1022 |#1|) (-10 -8 (-15 -4033 ($ (-583 |#1|)))))
-((-1814 (($ $) 10)) (-1827 (($ $) 12)))
-(((-90 |#1|) (-10 -8 (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)))
-((-1788 (($ $) 11)) (-1765 (($ $) 10)) (-1814 (($ $) 9)) (-1827 (($ $) 8)) (-1802 (($ $) 7)) (-1777 (($ $) 6)))
-(((-91) (-1184)) (T -91))
-((-1788 (*1 *1 *1) (-4 *1 (-91))) (-1765 (*1 *1 *1) (-4 *1 (-91))) (-1814 (*1 *1 *1) (-4 *1 (-91))) (-1827 (*1 *1 *1) (-4 *1 (-91))) (-1802 (*1 *1 *1) (-4 *1 (-91))) (-1777 (*1 *1 *1) (-4 *1 (-91))))
-(-13 (-10 -8 (-15 -1777 ($ $)) (-15 -1802 ($ $)) (-15 -1827 ($ $)) (-15 -1814 ($ $)) (-15 -1765 ($ $)) (-15 -1788 ($ $))))
-((-2750 (((-107) $ $) NIL)) (-1259 (((-349) (-1056) (-349)) 42) (((-349) (-1056) (-1056) (-349)) 41)) (-2102 (((-349) (-349)) 33)) (-3888 (((-1158)) 36)) (-3985 (((-1056) $) NIL)) (-1884 (((-349) (-1056) (-1056)) 46) (((-349) (-1056)) 48)) (-3206 (((-1021) $) NIL)) (-2874 (((-349) (-1056) (-1056)) 47)) (-3559 (((-349) (-1056) (-1056)) 49) (((-349) (-1056)) 50)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
-(((-92) (-13 (-1003) (-10 -7 (-15 -1884 ((-349) (-1056) (-1056))) (-15 -1884 ((-349) (-1056))) (-15 -3559 ((-349) (-1056) (-1056))) (-15 -3559 ((-349) (-1056))) (-15 -2874 ((-349) (-1056) (-1056))) (-15 -3888 ((-1158))) (-15 -2102 ((-349) (-349))) (-15 -1259 ((-349) (-1056) (-349))) (-15 -1259 ((-349) (-1056) (-1056) (-349))) (-6 -4180)))) (T -92))
-((-1884 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3559 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2874 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3888 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-92)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-1259 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))) (-1259 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))))
-(-13 (-1003) (-10 -7 (-15 -1884 ((-349) (-1056) (-1056))) (-15 -1884 ((-349) (-1056))) (-15 -3559 ((-349) (-1056) (-1056))) (-15 -3559 ((-349) (-1056))) (-15 -2874 ((-349) (-1056) (-1056))) (-15 -3888 ((-1158))) (-15 -2102 ((-349) (-349))) (-15 -1259 ((-349) (-1056) (-349))) (-15 -1259 ((-349) (-1056) (-1056) (-349))) (-6 -4180)))
-NIL
-(((-93) (-1184)) (T -93))
-NIL
-(-13 (-10 -7 (-6 -4180) (-6 (-4182 "*")) (-6 -4181) (-6 -4177) (-6 -4175) (-6 -4174) (-6 -4173) (-6 -4178) (-6 -4172) (-6 -4171) (-6 -4170) (-6 -4169) (-6 -4168) (-6 -4176) (-6 -4179) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4167)))
-((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2859 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 14)) (-3206 (((-1021) $) NIL)) (-1449 ((|#1| $ |#1|) 11)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 20)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 8 T CONST)) (-1547 (((-107) $ $) 10)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29)))
-(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2859 ($ (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1| (-517)))))) (-961)) (T -94))
-((-2859 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2859 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))))
-(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2859 ($ (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1| (-517))))))
-((-2870 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11)))
-(((-95 |#1| |#2|) (-10 -7 (-15 -2870 ((-388 |#2|) |#2| |#2|)) (-15 -2870 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1130 |#1|)) (T -95))
-((-2870 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -2870 ((-388 |#2|) |#2| |#2|)) (-15 -2870 ((-388 |#2|) |#2| (-583 |#2|))))
-((-2750 (((-107) $ $) 9)))
-(((-96 |#1|) (-10 -8 (-15 -2750 ((-107) |#1| |#1|))) (-97)) (T -96))
-NIL
-(-10 -8 (-15 -2750 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-1547 (((-107) $ $) 6)))
-(((-97) (-1184)) (T -97))
-((-2750 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1547 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
-(-13 (-10 -8 (-15 -1547 ((-107) $ $)) (-15 -2750 ((-107) $ $))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 13 (|has| $ (-6 -4181)))) (-2204 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3449 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3853 (($ $ (-583 |#1|)) 15)) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 11)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 17)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2188 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1416 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 10)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 9)) (-1746 (($) 16)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2776 (($ (-703) |#1|) 19)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2776 ($ (-703) |#1|)) (-15 -3853 ($ $ (-583 |#1|))) (-15 -2188 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2188 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1003)) (T -98))
-((-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-2188 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))) (-2188 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2776 ($ (-703) |#1|)) (-15 -3853 ($ $ (-583 |#1|))) (-15 -2188 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2188 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)))))
-((-2914 ((|#3| |#2| |#2|) 28)) (-3568 ((|#1| |#2| |#2|) 38 (|has| |#1| (-6 (-4182 "*"))))) (-1873 ((|#3| |#2| |#2|) 29)) (-4037 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4182 "*"))))))
-(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2914 (|#3| |#2| |#2|)) (-15 -1873 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4182 "*"))) (PROGN (-15 -3568 (|#1| |#2| |#2|)) (-15 -4037 (|#1| |#2|))) |noBranch|)) (-961) (-1130 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99))
-((-4037 (*1 *2 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))) (-3568 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))) (-1873 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-2914 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
-(-10 -7 (-15 -2914 (|#3| |#2| |#2|)) (-15 -1873 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4182 "*"))) (PROGN (-15 -3568 (|#1| |#2| |#2|)) (-15 -4037 (|#1| |#2|))) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3015 (((-583 (-1073))) 32)) (-3679 (((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073)) 35)) (-1547 (((-107) $ $) NIL)))
-(((-100) (-13 (-1003) (-10 -7 (-15 -3015 ((-583 (-1073)))) (-15 -3679 ((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073))) (-6 -4180)))) (T -100))
-((-3015 (*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-100)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199))))) (-5 *1 (-100)))))
-(-13 (-1003) (-10 -7 (-15 -3015 ((-583 (-1073)))) (-15 -3679 ((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073))) (-6 -4180)))
-((-1222 (($ (-583 |#2|)) 11)))
-(((-101 |#1| |#2|) (-10 -8 (-15 -1222 (|#1| (-583 |#2|)))) (-102 |#2|) (-1108)) (T -101))
-NIL
-(-10 -8 (-15 -1222 (|#1| (-583 |#2|))))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-102 |#1|) (-1184) (-1108)) (T -102))
-((-1222 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-102 *3)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) (-1710 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))))
-(-13 (-456 |t#1|) (-10 -8 (-6 -4181) (-15 -1222 ($ (-583 |t#1|))) (-15 -4006 (|t#1| $)) (-15 -1710 ($ |t#1| $)) (-15 -3309 (|t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 2) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-4146 (($ (-377 (-517))) 8)) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-103) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 2) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -4146 ($ (-377 (-517))))))) (T -103))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))))
-(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 2) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -4146 ($ (-377 (-517))))))
-((-2750 (((-107) $ $) NIL)) (-3733 (((-1021) $ (-1021)) 23)) (-1723 (($ $ (-1056)) 17)) (-2595 (((-3 (-1021) "failed") $) 22)) (-1457 (((-1021) $) 20)) (-1237 (((-1021) $ (-1021)) 25)) (-2607 (((-1021) $) 24)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) 16)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2463 (($ $) 18)) (-1547 (((-107) $ $) NIL)))
-(((-104) (-13 (-334 (-358) (-1021)) (-10 -8 (-15 -2595 ((-3 (-1021) "failed") $)) (-15 -2607 ((-1021) $)) (-15 -1237 ((-1021) $ (-1021)))))) (T -104))
-((-2595 (*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-1237 (*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))))
-(-13 (-334 (-358) (-1021)) (-10 -8 (-15 -2595 ((-3 (-1021) "failed") $)) (-15 -2607 ((-1021) $)) (-15 -1237 ((-1021) $ (-1021)))))
-((-2750 (((-107) $ $) NIL)) (-1460 (($ $) NIL)) (-2775 (($ $ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-107) $ (-1121 (-517)) (-107)) NIL (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-2052 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1445 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) NIL)) (-2607 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1536 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-4025 (($ $ $) NIL)) (-2630 (($ $) NIL)) (-1888 (($ $ $) NIL)) (-3462 (($ (-703) (-107)) 8)) (-1514 (($ $ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL)) (-3237 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2560 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL)) (-1433 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-107) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2565 (($ $ (-107)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (($ $ (-1121 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3217 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) NIL)) (-2452 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2256 (((-787) $) NIL)) (-1398 (($ (-703) (-107)) 9)) (-3675 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-4035 (($ $ $) NIL)) (-2207 (($ $) NIL)) (-2391 (($ $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-2382 (($ $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-105) (-13 (-118) (-10 -8 (-15 -1398 ($ (-703) (-107)))))) (T -105))
-((-1398 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))))
-(-13 (-118) (-10 -8 (-15 -1398 ($ (-703) (-107)))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-106 |#1| |#2|) (-1184) (-961) (-961)) (T -106))
-NIL
-(-13 (-585 |t#1|) (-967 |t#2|) (-10 -7 (-6 -4175) (-6 -4174)))
+((-1759 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-874 (-349))) 52) (((-3 $ "failed") (-874 (-517))) 57) (((-3 $ "failed") (-377 (-874 (-349)))) 37) (((-3 $ "failed") (-377 (-874 (-517)))) 32)) (-3076 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-874 (-349))) 50) (($ (-874 (-517))) 55) (($ (-377 (-874 (-349)))) 35) (($ (-377 (-874 (-517)))) 29)) (-3215 (((-1159) $) 88)) (-2182 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 73) (($ (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632))) 28)))
+(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))))) (-1074)) (T -87))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1074)))))
+(-13 (-366) (-10 -8 (-15 -2182 ($ (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632))))))
+((-1934 (((-1154 (-623 |#1|)) (-623 |#1|)) 54)) (-1479 (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 (-583 (-843))))) |#2| (-843)) 44)) (-4130 (((-2 (|:| |minor| (-583 (-843))) (|:| -2075 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843)) 62 (|has| |#1| (-333)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -1479 ((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 (-583 (-843))))) |#2| (-843))) (-15 -1934 ((-1154 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -4130 ((-2 (|:| |minor| (-583 (-843))) (|:| -2075 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |noBranch|)) (-509) (-593 |#1|)) (T -88))
+((-4130 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2075 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))) (-1934 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-1479 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2522 (-623 *5)) (|:| |vec| (-1154 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
+(-10 -7 (-15 -1479 ((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 (-583 (-843))))) |#2| (-843))) (-15 -1934 ((-1154 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -4130 ((-2 (|:| |minor| (-583 (-843))) (|:| -2075 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |noBranch|))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4143 ((|#1| $) 35)) (-1799 (((-107) $ (-703)) NIL)) (-3473 (($) NIL T CONST)) (-2284 ((|#1| |#1| $) 30)) (-2646 ((|#1| $) 28)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1835 ((|#1| $) NIL)) (-3816 (($ |#1| $) 31)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4049 ((|#1| $) 29)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 16)) (-1326 (($) 39)) (-2824 (((-703) $) 26)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) 15)) (-2182 (((-787) $) 25 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) NIL)) (-1348 (($ (-583 |#1|)) 37)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 13 (|has| |#1| (-1003)))) (-2210 (((-703) $) 10 (|has| $ (-6 -4183)))))
+(((-89 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -1348 ($ (-583 |#1|))))) (-1003)) (T -89))
+((-1348 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3)))))
+(-13 (-1022 |#1|) (-10 -8 (-15 -1348 ($ (-583 |#1|)))))
+((-1794 (($ $) 10)) (-1803 (($ $) 12)))
+(((-90 |#1|) (-10 -8 (-15 -1803 (|#1| |#1|)) (-15 -1794 (|#1| |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -1803 (|#1| |#1|)) (-15 -1794 (|#1| |#1|)))
+((-1773 (($ $) 11)) (-1751 (($ $) 10)) (-1794 (($ $) 9)) (-1803 (($ $) 8)) (-1784 (($ $) 7)) (-1762 (($ $) 6)))
+(((-91) (-1185)) (T -91))
+((-1773 (*1 *1 *1) (-4 *1 (-91))) (-1751 (*1 *1 *1) (-4 *1 (-91))) (-1794 (*1 *1 *1) (-4 *1 (-91))) (-1803 (*1 *1 *1) (-4 *1 (-91))) (-1784 (*1 *1 *1) (-4 *1 (-91))) (-1762 (*1 *1 *1) (-4 *1 (-91))))
+(-13 (-10 -8 (-15 -1762 ($ $)) (-15 -1784 ($ $)) (-15 -1803 ($ $)) (-15 -1794 ($ $)) (-15 -1751 ($ $)) (-15 -1773 ($ $))))
+((-2571 (((-107) $ $) NIL)) (-1443 (((-349) (-1057) (-349)) 42) (((-349) (-1057) (-1057) (-349)) 41)) (-2245 (((-349) (-349)) 33)) (-2205 (((-1159)) 36)) (-3865 (((-1057) $) NIL)) (-3731 (((-349) (-1057) (-1057)) 46) (((-349) (-1057)) 48)) (-3094 (((-1021) $) NIL)) (-2200 (((-349) (-1057) (-1057)) 47)) (-2124 (((-349) (-1057) (-1057)) 49) (((-349) (-1057)) 50)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
+(((-92) (-13 (-1003) (-10 -7 (-15 -3731 ((-349) (-1057) (-1057))) (-15 -3731 ((-349) (-1057))) (-15 -2124 ((-349) (-1057) (-1057))) (-15 -2124 ((-349) (-1057))) (-15 -2200 ((-349) (-1057) (-1057))) (-15 -2205 ((-1159))) (-15 -2245 ((-349) (-349))) (-15 -1443 ((-349) (-1057) (-349))) (-15 -1443 ((-349) (-1057) (-1057) (-349))) (-6 -4183)))) (T -92))
+((-3731 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2124 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2200 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2205 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-92)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-1443 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1057)) (-5 *1 (-92)))) (-1443 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1057)) (-5 *1 (-92)))))
+(-13 (-1003) (-10 -7 (-15 -3731 ((-349) (-1057) (-1057))) (-15 -3731 ((-349) (-1057))) (-15 -2124 ((-349) (-1057) (-1057))) (-15 -2124 ((-349) (-1057))) (-15 -2200 ((-349) (-1057) (-1057))) (-15 -2205 ((-1159))) (-15 -2245 ((-349) (-349))) (-15 -1443 ((-349) (-1057) (-349))) (-15 -1443 ((-349) (-1057) (-1057) (-349))) (-6 -4183)))
+NIL
+(((-93) (-1185)) (T -93))
+NIL
+(-13 (-10 -7 (-6 -4183) (-6 (-4185 "*")) (-6 -4184) (-6 -4180) (-6 -4178) (-6 -4177) (-6 -4176) (-6 -4181) (-6 -4175) (-6 -4174) (-6 -4173) (-6 -4172) (-6 -4171) (-6 -4179) (-6 -4182) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4170)))
+((-2571 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-2097 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 14)) (-3094 (((-1021) $) NIL)) (-1986 ((|#1| $ |#1|) 11)) (-2013 (($ $ $) NIL)) (-3064 (($ $ $) NIL)) (-2182 (((-787) $) 20)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2306 (($) 8 T CONST)) (-1539 (((-107) $ $) 10)) (-1649 (($ $ $) NIL)) (** (($ $ (-843)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29)))
+(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2097 ($ (-1 |#1| |#1|))) (-15 -2097 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2097 ($ (-1 |#1| |#1| (-517)))))) (-961)) (T -94))
+((-2097 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2097 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2097 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))))
+(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2097 ($ (-1 |#1| |#1|))) (-15 -2097 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2097 ($ (-1 |#1| |#1| (-517))))))
+((-2170 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11)))
+(((-95 |#1| |#2|) (-10 -7 (-15 -2170 ((-388 |#2|) |#2| |#2|)) (-15 -2170 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1131 |#1|)) (T -95))
+((-2170 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-2170 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -2170 ((-388 |#2|) |#2| |#2|)) (-15 -2170 ((-388 |#2|) |#2| (-583 |#2|))))
+((-2571 (((-107) $ $) 9)))
+(((-96 |#1|) (-10 -8 (-15 -2571 ((-107) |#1| |#1|))) (-97)) (T -96))
+NIL
+(-10 -8 (-15 -2571 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-1539 (((-107) $ $) 6)))
+(((-97) (-1185)) (T -97))
+((-2571 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1539 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
+(-13 (-10 -8 (-15 -1539 ((-107) $ $)) (-15 -2571 ((-107) $ $))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-4072 ((|#1| $ |#1|) 13 (|has| $ (-6 -4184)))) (-3900 (($ $ $) NIL (|has| $ (-6 -4184)))) (-3561 (($ $ $) NIL (|has| $ (-6 -4184)))) (-3007 (($ $ (-583 |#1|)) 15)) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-3591 (($ $) 11)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4111 (($ $ |#1| $) 17)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3712 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1462 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3577 (($ $) 10)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) 12)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 9)) (-1326 (($) 16)) (-1986 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1482 (((-517) $ $) NIL)) (-2562 (((-107) $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2431 (($ (-703) |#1|) 19)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -2431 ($ (-703) |#1|)) (-15 -3007 ($ $ (-583 |#1|))) (-15 -3712 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3712 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1462 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1462 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1003)) (T -98))
+((-2431 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003)))) (-3007 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))) (-3712 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-1462 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) (-1462 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -2431 ($ (-703) |#1|)) (-15 -3007 ($ $ (-583 |#1|))) (-15 -3712 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3712 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1462 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1462 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)))))
+((-1450 ((|#3| |#2| |#2|) 28)) (-2186 ((|#1| |#2| |#2|) 38 (|has| |#1| (-6 (-4185 "*"))))) (-1244 ((|#3| |#2| |#2|) 29)) (-1380 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4185 "*"))))))
+(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1450 (|#3| |#2| |#2|)) (-15 -1244 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4185 "*"))) (PROGN (-15 -2186 (|#1| |#2| |#2|)) (-15 -1380 (|#1| |#2|))) |noBranch|)) (-961) (-1131 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99))
+((-1380 (*1 *2 *3) (-12 (|has| *2 (-6 (-4185 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1131 *2)) (-4 *4 (-621 *2 *5 *6)))) (-2186 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4185 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1131 *2)) (-4 *4 (-621 *2 *5 *6)))) (-1244 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1131 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-1450 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1131 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
+(-10 -7 (-15 -1450 (|#3| |#2| |#2|)) (-15 -1244 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4185 "*"))) (PROGN (-15 -2186 (|#1| |#2| |#2|)) (-15 -1380 (|#1| |#2|))) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-4071 (((-583 (-1074))) 32)) (-3928 (((-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199)))) (-1074)) 35)) (-1539 (((-107) $ $) NIL)))
+(((-100) (-13 (-1003) (-10 -7 (-15 -4071 ((-583 (-1074)))) (-15 -3928 ((-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199)))) (-1074))) (-6 -4183)))) (T -100))
+((-4071 (*1 *2) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-100)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199))))) (-5 *1 (-100)))))
+(-13 (-1003) (-10 -7 (-15 -4071 ((-583 (-1074)))) (-15 -3928 ((-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199)))) (-1074))) (-6 -4183)))
+((-2373 (($ (-583 |#2|)) 11)))
+(((-101 |#1| |#2|) (-10 -8 (-15 -2373 (|#1| (-583 |#2|)))) (-102 |#2|) (-1109)) (T -101))
+NIL
+(-10 -8 (-15 -2373 (|#1| (-583 |#2|))))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-3473 (($) 7 T CONST)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-102 |#1|) (-1185) (-1109)) (T -102))
+((-2373 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-102 *3)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))) (-3816 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))))
+(-13 (-456 |t#1|) (-10 -8 (-6 -4184) (-15 -2373 ($ (-583 |t#1|))) (-15 -4049 (|t#1| $)) (-15 -3816 ($ |t#1| $)) (-15 -1835 (|t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 (((-517) $) NIL (|has| (-517) (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| (-517) (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-517) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3076 (((-517) $) NIL) (((-1074) $) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-517) (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) NIL (|has| (-517) (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL)) (-1772 (((-517) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| (-517) (-1050)))) (-1624 (((-107) $) NIL (|has| (-517) (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| (-517) (-779)))) (-1857 (($ (-1 (-517) (-517)) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-517) (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-3263 (((-517) $) NIL (|has| (-517) (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1074)) (-583 (-517))) NIL (|has| (-517) (-478 (-1074) (-517)))) (($ $ (-1074) (-517)) NIL (|has| (-517) (-478 (-1074) (-517))))) (-2623 (((-703) $) NIL)) (-1986 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-3691 (($ $) NIL)) (-1783 (((-517) $) NIL)) (-3582 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1074)) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL) (((-920 2) $) 9)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-1865 (((-703)) NIL)) (-3112 (((-517) $) NIL (|has| (-517) (-502)))) (-2835 (($ (-377 (-517))) 8)) (-3767 (((-107) $ $) NIL)) (-1221 (($ $) NIL (|has| (-517) (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1593 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1560 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1649 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-103) (-13 (-909 (-517)) (-10 -8 (-15 -2182 ((-377 (-517)) $)) (-15 -2182 ((-920 2) $)) (-15 -1194 ((-377 (-517)) $)) (-15 -2835 ($ (-377 (-517))))))) (T -103))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) (-1194 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))))
+(-13 (-909 (-517)) (-10 -8 (-15 -2182 ((-377 (-517)) $)) (-15 -2182 ((-920 2) $)) (-15 -1194 ((-377 (-517)) $)) (-15 -2835 ($ (-377 (-517))))))
+((-2571 (((-107) $ $) NIL)) (-3113 (((-1021) $ (-1021)) 23)) (-1665 (($ $ (-1057)) 17)) (-3238 (((-3 (-1021) "failed") $) 22)) (-3741 (((-1021) $) 20)) (-3543 (((-1021) $ (-1021)) 25)) (-2446 (((-1021) $) 24)) (-1511 (($ (-358)) NIL) (($ (-358) (-1057)) 16)) (-1211 (((-358) $) NIL)) (-3865 (((-1057) $) NIL)) (-1974 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1505 (($ $) 18)) (-1539 (((-107) $ $) NIL)))
+(((-104) (-13 (-334 (-358) (-1021)) (-10 -8 (-15 -3238 ((-3 (-1021) "failed") $)) (-15 -2446 ((-1021) $)) (-15 -3543 ((-1021) $ (-1021)))))) (T -104))
+((-3238 (*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-3543 (*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))))
+(-13 (-334 (-358) (-1021)) (-10 -8 (-15 -3238 ((-3 (-1021) "failed") $)) (-15 -2446 ((-1021) $)) (-15 -3543 ((-1021) $ (-1021)))))
+((-2571 (((-107) $ $) NIL)) (-1458 (($ $) NIL)) (-3805 (($ $ $) NIL)) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-2740 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4184)))) (-3056 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-2307 (((-107) $ (-1122 (-517)) (-107)) NIL (|has| $ (-6 -4184))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-1971 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-2521 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-1226 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4184)))) (-4020 (((-107) $ (-517)) NIL)) (-2446 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-3037 (((-583 (-107)) $) NIL (|has| $ (-6 -4183)))) (-1639 (($ $ $) NIL)) (-2455 (($ $) NIL)) (-3764 (($ $ $) NIL)) (-3366 (($ (-703) (-107)) 8)) (-2332 (($ $ $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL)) (-2262 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-1196 (((-583 (-107)) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL)) (-1213 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-2454 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-107) $) NIL (|has| (-517) (-779)))) (-2293 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-1254 (($ $ (-107)) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3042 (((-583 (-107)) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 (($ $ (-1122 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3685 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3105 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2197 (($ (-583 (-107))) NIL)) (-2337 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2182 (((-787) $) NIL)) (-2931 (($ (-703) (-107)) 9)) (-3883 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-1651 (($ $ $) NIL)) (-2146 (($ $) NIL)) (-2291 (($ $ $) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-2283 (($ $ $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-105) (-13 (-118) (-10 -8 (-15 -2931 ($ (-703) (-107)))))) (T -105))
+((-2931 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))))
+(-13 (-118) (-10 -8 (-15 -2931 ($ (-703) (-107)))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-106 |#1| |#2|) (-1185) (-961) (-961)) (T -106))
+NIL
+(-13 (-585 |t#1|) (-967 |t#2|) (-10 -7 (-6 -4178) (-6 -4177)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-967 |#2|) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-1460 (($ $) 12)) (-2775 (($ $ $) 17)) (-1569 (($) 8 T CONST)) (-2233 (((-107) $) 7)) (-1611 (((-703)) 24)) (-3209 (($) 30)) (-4025 (($ $ $) 15)) (-2630 (($ $) 10)) (-1888 (($ $ $) 18)) (-1514 (($ $ $) 19)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1549 (((-843) $) 29)) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 28)) (-3886 (($ $ $) 21)) (-3206 (((-1021) $) NIL)) (-1425 (($) 9 T CONST)) (-3645 (((-493) $) 36)) (-2256 (((-787) $) 39)) (-4035 (($ $ $) 13)) (-2207 (($ $) 11)) (-2391 (($ $ $) 16)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 22)) (-2382 (($ $ $) 14)))
-(((-107) (-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1569 ($) -1619) (-15 -1425 ($) -1619) (-15 -2207 ($ $)) (-15 -2630 ($ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -3886 ($ $ $)) (-15 -2233 ((-107) $))))) (T -107))
-((-1569 (*1 *1) (-5 *1 (-107))) (-1425 (*1 *1) (-5 *1 (-107))) (-2207 (*1 *1 *1) (-5 *1 (-107))) (-2630 (*1 *1 *1) (-5 *1 (-107))) (-4035 (*1 *1 *1 *1) (-5 *1 (-107))) (-4025 (*1 *1 *1 *1) (-5 *1 (-107))) (-2775 (*1 *1 *1 *1) (-5 *1 (-107))) (-1514 (*1 *1 *1 *1) (-5 *1 (-107))) (-1888 (*1 *1 *1 *1) (-5 *1 (-107))) (-3886 (*1 *1 *1 *1) (-5 *1 (-107))) (-2233 (*1 *1 *1) (-5 *1 (-107))))
-(-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1569 ($) -1619) (-15 -1425 ($) -1619) (-15 -2207 ($ $)) (-15 -2630 ($ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -3886 ($ $ $)) (-15 -2233 ((-107) $))))
-((-3269 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-1626 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-1496 (((-109) |#1|) 53 (|has| |#1| (-779)))) (-3412 (((-3 |#1| "failed") (-109)) 48 (|has| |#1| (-779)))))
-(((-108 |#1|) (-10 -7 (-15 -3269 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3269 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3269 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3269 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1626 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1626 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1626 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1496 ((-109) |#1|)) (-15 -3412 ((-3 |#1| "failed") (-109)))) |noBranch|)) (-1003)) (T -108))
-((-3412 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-1496 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-1626 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-3269 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))))
-(-10 -7 (-15 -3269 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3269 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3269 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3269 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1626 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1626 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1626 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1496 ((-109) |#1|)) (-15 -3412 ((-3 |#1| "failed") (-109)))) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) 68) (($ $ (-703)) 30)) (-2163 (((-107) $) 32)) (-2200 (($ $ (-1056) (-706)) 26)) (-1351 (($ $ (-44 (-1056) (-706))) 13)) (-2994 (((-3 (-706) "failed") $ (-1056)) 24)) (-2397 (((-44 (-1056) (-706)) $) 12)) (-3072 (($ (-1073)) 15) (($ (-1073) (-703)) 20)) (-3583 (((-107) $) 31)) (-2139 (((-107) $) 33)) (-1207 (((-1073) $) 8)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1609 (((-107) $ (-1073)) 10)) (-1288 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-3206 (((-1021) $) NIL)) (-1559 (((-107) $ (-1056)) 29)) (-2007 (($ $ (-1 (-107) $ $)) 35)) (-1242 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-3150 (($ $ (-1056)) 45)) (-2433 (($ $) 61)) (-1722 (($ $ (-1 (-107) $ $)) 36)) (-2256 (((-787) $) 48)) (-2107 (($ $ (-1056)) 27)) (-2949 (((-3 (-703) "failed") $) 56)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 67)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 72)))
-(((-109) (-13 (-779) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -2397 ((-44 (-1056) (-706)) $)) (-15 -2433 ($ $)) (-15 -3072 ($ (-1073))) (-15 -3072 ($ (-1073) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -3583 ((-107) $)) (-15 -2163 ((-107) $)) (-15 -2139 ((-107) $)) (-15 -2932 ((-703) $)) (-15 -2932 ($ $ (-703))) (-15 -2007 ($ $ (-1 (-107) $ $))) (-15 -1722 ($ $ (-1 (-107) $ $))) (-15 -1242 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1242 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1242 ($ $ (-1 (-787) (-787)))) (-15 -1288 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1288 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -1609 ((-107) $ (-1073))) (-15 -1559 ((-107) $ (-1056))) (-15 -2107 ($ $ (-1056))) (-15 -3150 ($ $ (-1056))) (-15 -2994 ((-3 (-706) "failed") $ (-1056))) (-15 -2200 ($ $ (-1056) (-706))) (-15 -1351 ($ $ (-44 (-1056) (-706))))))) (T -109))
-((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))) (-2433 (*1 *1 *1) (-5 *1 (-109))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) (-3072 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *1 (-109)))) (-2949 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1722 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1242 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1288 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-109)))) (-1559 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-109)))) (-2107 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) (-3150 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) (-2994 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-706)) (-5 *1 (-109)))) (-2200 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-706)) (-5 *1 (-109)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))))
-(-13 (-779) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -2397 ((-44 (-1056) (-706)) $)) (-15 -2433 ($ $)) (-15 -3072 ($ (-1073))) (-15 -3072 ($ (-1073) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -3583 ((-107) $)) (-15 -2163 ((-107) $)) (-15 -2139 ((-107) $)) (-15 -2932 ((-703) $)) (-15 -2932 ($ $ (-703))) (-15 -2007 ($ $ (-1 (-107) $ $))) (-15 -1722 ($ $ (-1 (-107) $ $))) (-15 -1242 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1242 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1242 ($ $ (-1 (-787) (-787)))) (-15 -1288 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1288 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -1609 ((-107) $ (-1073))) (-15 -1559 ((-107) $ (-1056))) (-15 -2107 ($ $ (-1056))) (-15 -3150 ($ $ (-1056))) (-15 -2994 ((-3 (-706) "failed") $ (-1056))) (-15 -2200 ($ $ (-1056) (-706))) (-15 -1351 ($ $ (-44 (-1056) (-706))))))
-((-2496 (((-517) |#2|) 36)))
-(((-110 |#1| |#2|) (-10 -7 (-15 -2496 ((-517) |#2|))) (-13 (-333) (-952 (-377 (-517)))) (-1130 |#1|)) (T -110))
-((-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -2496 ((-517) |#2|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3531 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) NIL)) (-3340 (((-517) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-1054 (-517)) $) NIL)) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-1458 (($ $) 12)) (-3805 (($ $ $) 17)) (-1559 (($) 8 T CONST)) (-2161 (((-107) $) 7)) (-1598 (((-703)) 24)) (-3098 (($) 30)) (-1639 (($ $ $) 15)) (-2455 (($ $) 10)) (-3764 (($ $ $) 18)) (-2332 (($ $ $) 19)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-2903 (((-843) $) 29)) (-3865 (((-1057) $) NIL)) (-3353 (($ (-843)) 28)) (-3879 (($ $ $) 21)) (-3094 (((-1021) $) NIL)) (-1421 (($) 9 T CONST)) (-3582 (((-493) $) 36)) (-2182 (((-787) $) 39)) (-1651 (($ $ $) 13)) (-2146 (($ $) 11)) (-2291 (($ $ $) 16)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 20)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 22)) (-2283 (($ $ $) 14)))
+(((-107) (-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1559 ($) -1605) (-15 -1421 ($) -1605) (-15 -2146 ($ $)) (-15 -2455 ($ $)) (-15 -1651 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -3805 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -3764 ($ $ $)) (-15 -3879 ($ $ $)) (-15 -2161 ((-107) $))))) (T -107))
+((-1559 (*1 *1) (-5 *1 (-107))) (-1421 (*1 *1) (-5 *1 (-107))) (-2146 (*1 *1 *1) (-5 *1 (-107))) (-2455 (*1 *1 *1) (-5 *1 (-107))) (-1651 (*1 *1 *1 *1) (-5 *1 (-107))) (-1639 (*1 *1 *1 *1) (-5 *1 (-107))) (-3805 (*1 *1 *1 *1) (-5 *1 (-107))) (-2332 (*1 *1 *1 *1) (-5 *1 (-107))) (-3764 (*1 *1 *1 *1) (-5 *1 (-107))) (-3879 (*1 *1 *1 *1) (-5 *1 (-107))) (-2161 (*1 *1 *1) (-5 *1 (-107))))
+(-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1559 ($) -1605) (-15 -1421 ($) -1605) (-15 -2146 ($ $)) (-15 -2455 ($ $)) (-15 -1651 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -3805 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -3764 ($ $ $)) (-15 -3879 ($ $ $)) (-15 -2161 ((-107) $))))
+((-1455 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-3701 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-2084 (((-109) |#1|) 53 (|has| |#1| (-779)))) (-3206 (((-3 |#1| "failed") (-109)) 48 (|has| |#1| (-779)))))
+(((-108 |#1|) (-10 -7 (-15 -1455 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -1455 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -1455 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1455 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -3701 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3701 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3701 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -2084 ((-109) |#1|)) (-15 -3206 ((-3 |#1| "failed") (-109)))) |noBranch|)) (-1003)) (T -108))
+((-3206 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-2084 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-3701 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-3701 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3701 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-1455 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-1455 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-1455 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-1455 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))))
+(-10 -7 (-15 -1455 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -1455 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -1455 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1455 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -3701 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3701 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3701 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -2084 ((-109) |#1|)) (-15 -3206 ((-3 |#1| "failed") (-109)))) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-1587 (((-703) $) 68) (($ $ (-703)) 30)) (-1732 (((-107) $) 32)) (-3851 (($ $ (-1057) (-706)) 26)) (-2661 (($ $ (-44 (-1057) (-706))) 13)) (-2850 (((-3 (-706) "failed") $ (-1057)) 24)) (-2296 (((-44 (-1057) (-706)) $) 12)) (-3270 (($ (-1074)) 15) (($ (-1074) (-703)) 20)) (-2292 (((-107) $) 31)) (-1491 (((-107) $) 33)) (-1211 (((-1074) $) 8)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-4158 (((-107) $ (-1074)) 10)) (-1300 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-3094 (((-1021) $) NIL)) (-2989 (((-107) $ (-1057)) 29)) (-2479 (($ $ (-1 (-107) $ $)) 35)) (-1250 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-2664 (($ $ (-1057)) 45)) (-2322 (($ $) 61)) (-1650 (($ $ (-1 (-107) $ $)) 36)) (-2182 (((-787) $) 48)) (-2045 (($ $ (-1057)) 27)) (-1756 (((-3 (-703) "failed") $) 56)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 67)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 72)))
+(((-109) (-13 (-779) (-10 -8 (-15 -1211 ((-1074) $)) (-15 -2296 ((-44 (-1057) (-706)) $)) (-15 -2322 ($ $)) (-15 -3270 ($ (-1074))) (-15 -3270 ($ (-1074) (-703))) (-15 -1756 ((-3 (-703) "failed") $)) (-15 -2292 ((-107) $)) (-15 -1732 ((-107) $)) (-15 -1491 ((-107) $)) (-15 -1587 ((-703) $)) (-15 -1587 ($ $ (-703))) (-15 -2479 ($ $ (-1 (-107) $ $))) (-15 -1650 ($ $ (-1 (-107) $ $))) (-15 -1250 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1250 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1250 ($ $ (-1 (-787) (-787)))) (-15 -1300 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1300 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -4158 ((-107) $ (-1074))) (-15 -2989 ((-107) $ (-1057))) (-15 -2045 ($ $ (-1057))) (-15 -2664 ($ $ (-1057))) (-15 -2850 ((-3 (-706) "failed") $ (-1057))) (-15 -3851 ($ $ (-1057) (-706))) (-15 -2661 ($ $ (-44 (-1057) (-706))))))) (T -109))
+((-1211 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-109)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-44 (-1057) (-706))) (-5 *1 (-109)))) (-2322 (*1 *1 *1) (-5 *1 (-109))) (-3270 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-109)))) (-3270 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *1 (-109)))) (-1756 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-1587 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2479 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1650 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1250 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1250 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1250 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1300 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1300 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-107)) (-5 *1 (-109)))) (-2989 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-109)))) (-2045 (*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-109)))) (-2664 (*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-109)))) (-2850 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1057)) (-5 *2 (-706)) (-5 *1 (-109)))) (-3851 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-706)) (-5 *1 (-109)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1057) (-706))) (-5 *1 (-109)))))
+(-13 (-779) (-10 -8 (-15 -1211 ((-1074) $)) (-15 -2296 ((-44 (-1057) (-706)) $)) (-15 -2322 ($ $)) (-15 -3270 ($ (-1074))) (-15 -3270 ($ (-1074) (-703))) (-15 -1756 ((-3 (-703) "failed") $)) (-15 -2292 ((-107) $)) (-15 -1732 ((-107) $)) (-15 -1491 ((-107) $)) (-15 -1587 ((-703) $)) (-15 -1587 ($ $ (-703))) (-15 -2479 ($ $ (-1 (-107) $ $))) (-15 -1650 ($ $ (-1 (-107) $ $))) (-15 -1250 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1250 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1250 ($ $ (-1 (-787) (-787)))) (-15 -1300 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1300 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -4158 ((-107) $ (-1074))) (-15 -2989 ((-107) $ (-1057))) (-15 -2045 ($ $ (-1057))) (-15 -2664 ($ $ (-1057))) (-15 -2850 ((-3 (-706) "failed") $ (-1057))) (-15 -3851 ($ $ (-1057) (-706))) (-15 -2661 ($ $ (-44 (-1057) (-706))))))
+((-1818 (((-517) |#2|) 36)))
+(((-110 |#1| |#2|) (-10 -7 (-15 -1818 ((-517) |#2|))) (-13 (-333) (-952 (-377 (-517)))) (-1131 |#1|)) (T -110))
+((-1818 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -1818 ((-517) |#2|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $ (-517)) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1806 (($ (-1070 (-517)) (-517)) NIL)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3011 (($ $) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-1921 (((-703) $) NIL)) (-2955 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3962 (((-517)) NIL)) (-3890 (((-517) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3467 (($ $ (-517)) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1567 (((-1055 (-517)) $) NIL)) (-2860 (($ $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-1865 (((-703)) NIL)) (-3767 (((-107) $ $) NIL)) (-3284 (((-517) $ (-517)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
(((-111 |#1|) (-793 |#1|) (-517)) (T -111))
NIL
(-793 |#1|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-111 |#1|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-3189 (((-111 |#1|) $) NIL) (((-1073) $) NIL (|has| (-111 |#1|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-111 |#1|))) (|:| |vec| (-1153 (-111 |#1|)))) (-623 $) (-1153 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-111 |#1|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-111 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-111 |#1|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-111 |#1|) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-3099 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-1893 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-111 |#1|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-2597 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1073)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1073) (-111 |#1|)))) (($ $ (-1073) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1073) (-111 |#1|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-111 |#1|) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-937))) (((-199) $) NIL (|has| (-111 |#1|) (-937)))) (-2005 (((-157 (-377 (-517))) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1073)) NIL (|has| (-111 |#1|) (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))) (|has| (-111 |#1|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) NIL)) (-3710 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1667 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL)))
-(((-112 |#1|) (-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517)) (T -112))
-((-3383 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))))
-(-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $))))
-((-2411 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3063 (((-583 $) $) 27)) (-1272 (((-107) $ $) 32)) (-2787 (((-107) |#2| $) 36)) (-3992 (((-583 |#2|) $) 22)) (-1763 (((-107) $) 16)) (-1449 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2655 (((-107) $) 45)) (-2256 (((-787) $) 41)) (-1479 (((-583 $) $) 28)) (-1547 (((-107) $ $) 34)) (-2296 (((-703) $) 43)))
-(((-113 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| |#1| "right" |#1|)) (-15 -2411 (|#1| |#1| "left" |#1|)) (-15 -1449 (|#1| |#1| "right")) (-15 -1449 (|#1| |#1| "left")) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -3992 ((-583 |#2|) |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -2296 ((-703) |#1|))) (-114 |#2|) (-1108)) (T -113))
-NIL
-(-10 -8 (-15 -2411 (|#1| |#1| "right" |#1|)) (-15 -2411 (|#1| |#1| "left" |#1|)) (-15 -1449 (|#1| |#1| "right")) (-15 -1449 (|#1| |#1| "left")) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -3992 ((-583 |#2|) |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -2296 ((-703) |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 52 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) (($ $ "left" $) 55 (|has| $ (-6 -4181))) (($ $ "right" $) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-3652 (($ $) 57)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3639 (($ $) 59)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-114 |#1|) (-1184) (-1108)) (T -114))
-((-3639 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-3652 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-3449 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-2204 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))))
-(-13 (-926 |t#1|) (-10 -8 (-15 -3639 ($ $)) (-15 -1449 ($ $ "left")) (-15 -3652 ($ $)) (-15 -1449 ($ $ "right")) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2411 ($ $ "left" $)) (-15 -3449 ($ $ $)) (-15 -2411 ($ $ "right" $)) (-15 -2204 ($ $ $))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-1327 (((-107) |#1|) 24)) (-3803 (((-703) (-703)) 23) (((-703)) 22)) (-3879 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26)))
-(((-115 |#1|) (-10 -7 (-15 -3879 ((-107) |#1|)) (-15 -3879 ((-107) |#1| (-107))) (-15 -3803 ((-703))) (-15 -3803 ((-703) (-703))) (-15 -1327 ((-107) |#1|))) (-1130 (-517))) (T -115))
-((-1327 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3803 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3879 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3879 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))))
-(-10 -7 (-15 -3879 ((-107) |#1|)) (-15 -3879 ((-107) |#1| (-107))) (-15 -3803 ((-703))) (-15 -3803 ((-703) (-703))) (-15 -1327 ((-107) |#1|)))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 15)) (-1313 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2204 (($ $ $) 18 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 20 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 17)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 23)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 19)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2672 (($ |#1| $) 24)) (-1710 (($ |#1| $) 10)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 8)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3288 (($ (-583 |#1|)) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3288 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)) (-15 -2672 ($ |#1| $)) (-15 -1313 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116))
-((-3288 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-2672 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-1313 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3288 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)) (-15 -2672 ($ |#1| $)) (-15 -1313 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1460 (($ $) 14)) (-2630 (($ $) 11)) (-1888 (($ $ $) 24)) (-1514 (($ $ $) 22)) (-2207 (($ $) 12)) (-2391 (($ $ $) 20)) (-2382 (($ $ $) 18)))
-(((-117 |#1|) (-10 -8 (-15 -1888 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|))) (-118)) (T -117))
-NIL
-(-10 -8 (-15 -1888 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-1460 (($ $) 104)) (-2775 (($ $ $) 25)) (-1668 (((-1158) $ (-517) (-517)) 67 (|has| $ (-6 -4181)))) (-2044 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-2034 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4181)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4181)))) (-3166 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-2953 (((-107) $ (-703)) 38)) (-2411 (((-107) $ (-1121 (-517)) (-107)) 89 (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4180)))) (-3092 (($) 39 T CONST)) (-4020 (($ $) 101 (|has| $ (-6 -4181)))) (-3093 (($ $) 91)) (-1679 (($ $) 69 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4180))) (($ (-107) $) 70 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-1445 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) 56)) (-2607 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1003))) (((-517) (-107) $) 95 (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) 94)) (-1536 (((-583 (-107)) $) 46 (|has| $ (-6 -4180)))) (-4025 (($ $ $) 26)) (-2630 (($ $) 31)) (-1888 (($ $ $) 28)) (-3462 (($ (-703) (-107)) 78)) (-1514 (($ $ $) 29)) (-2550 (((-107) $ (-703)) 37)) (-3243 (((-517) $) 64 (|has| (-517) (-779)))) (-2967 (($ $ $) 13)) (-3237 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-2560 (((-583 (-107)) $) 47 (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 63 (|has| (-517) (-779)))) (-3099 (($ $ $) 14)) (-1433 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-3847 (((-107) $ (-703)) 36)) (-3985 (((-1056) $) 9)) (-2620 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-1857 (((-583 (-517)) $) 61)) (-4088 (((-107) (-517) $) 60)) (-3206 (((-1021) $) 10)) (-1647 (((-107) $) 65 (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-2565 (($ $ (-107)) 66 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) 32)) (-4042 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) 59)) (-3619 (((-107) $) 35)) (-1746 (($) 34)) (-1449 (($ $ (-1121 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3750 (($ $ (-1121 (-517))) 86) (($ $ (-517)) 85)) (-3217 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) 100 (|has| $ (-6 -4181)))) (-2433 (($ $) 33)) (-3645 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) 77)) (-2452 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2256 (((-787) $) 11)) (-3675 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4180)))) (-4035 (($ $ $) 27)) (-2207 (($ $) 30)) (-2391 (($ $ $) 106)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-2382 (($ $ $) 105)) (-2296 (((-703) $) 40 (|has| $ (-6 -4180)))))
-(((-118) (-1184)) (T -118))
-((-2630 (*1 *1 *1) (-4 *1 (-118))) (-2207 (*1 *1 *1) (-4 *1 (-118))) (-1514 (*1 *1 *1 *1) (-4 *1 (-118))) (-1888 (*1 *1 *1 *1) (-4 *1 (-118))) (-4035 (*1 *1 *1 *1) (-4 *1 (-118))) (-4025 (*1 *1 *1 *1) (-4 *1 (-118))) (-2775 (*1 *1 *1 *1) (-4 *1 (-118))))
-(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2630 ($ $)) (-15 -2207 ($ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 (-517) (-107)) . T) ((-260 (-517) (-107)) . T) ((-280 (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-343 (-107)) . T) ((-456 (-107)) . T) ((-550 (-517) (-107)) . T) ((-478 (-107) (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-588 (-107)) . T) ((-598) . T) ((-19 (-107)) . T) ((-779) . T) ((-1003) . T) ((-1108) . T))
-((-1433 (($ (-1 |#2| |#2|) $) 22)) (-2433 (($ $) 16)) (-2296 (((-703) $) 24)))
-(((-119 |#1| |#2|) (-10 -8 (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2433 (|#1| |#1|))) (-120 |#2|) (-1003)) (T -119))
-NIL
-(-10 -8 (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2433 (|#1| |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 52 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) (($ $ "left" $) 55 (|has| $ (-6 -4181))) (($ $ "right" $) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-3652 (($ $) 57)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 60)) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3639 (($ $) 59)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-120 |#1|) (-1184) (-1003)) (T -120))
-((-4101 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003)))))
-(-13 (-114 |t#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -4101 ($ $ |t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-114 |#1|) . T) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 15)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 19 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 20 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 18 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 21)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ |#1| $) 10)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 8)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 17)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3993 (($ (-583 |#1|)) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4181) (-15 -3993 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)))) (-779)) (T -121))
-((-3993 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4181) (-15 -3993 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 24)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 26 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 30 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 28 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 20)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 15)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 19)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 21)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 18)) (-1746 (($) 11)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3331 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 10 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -3331 ($ |#1|)) (-15 -3331 ($ $ |#1| $)))) (-1003)) (T -122))
-((-3331 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) (-3331 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))))
-(-13 (-120 |#1|) (-10 -8 (-15 -3331 ($ |#1|)) (-15 -3331 ($ $ |#1| $))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15)))
-(((-123) (-1184)) (T -123))
-((-4038 (*1 *1 *1 *1) (|partial| -4 *1 (-123))))
-(-13 (-23) (-10 -8 (-15 -4038 ((-3 $ "failed") $ $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-111 |#1|) (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-111 |#1|) (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-111 |#1|) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-3076 (((-111 |#1|) $) NIL) (((-1074) $) NIL (|has| (-111 |#1|) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-2163 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-111 |#1|))) (|:| |vec| (-1154 (-111 |#1|)))) (-623 $) (-1154 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-111 |#1|) (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-111 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-111 |#1|) (-808 (-349))))) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL)) (-1772 (((-111 |#1|) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1050)))) (-1624 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-2986 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-1857 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-111 |#1|) (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-3263 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-111 |#1|) (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-111 |#1|) (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1074)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1074) (-111 |#1|)))) (($ $ (-1074) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1074) (-111 |#1|))))) (-2623 (((-703) $) NIL)) (-1986 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1074)) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-3691 (($ $) NIL)) (-1783 (((-111 |#1|) $) NIL)) (-3582 (((-814 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-937))) (((-199) $) NIL (|has| (-111 |#1|) (-937)))) (-2463 (((-157 (-377 (-517))) $) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1074)) NIL (|has| (-111 |#1|) (-952 (-1074))))) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))) (|has| (-111 |#1|) (-132))))) (-1865 (((-703)) NIL)) (-3112 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-3767 (((-107) $ $) NIL)) (-3284 (((-377 (-517)) $ (-517)) NIL)) (-1221 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1074)) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1593 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1560 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1649 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL)))
+(((-112 |#1|) (-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3284 ((-377 (-517)) $ (-517))) (-15 -2463 ((-157 (-377 (-517))) $)) (-15 -2163 ($ $)) (-15 -2163 ($ (-517) $)))) (-517)) (T -112))
+((-3284 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-2163 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))))
+(-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3284 ((-377 (-517)) $ (-517))) (-15 -2463 ((-157 (-377 (-517))) $)) (-15 -2163 ($ $)) (-15 -2163 ($ (-517) $))))
+((-2307 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3200 (((-583 $) $) 27)) (-1703 (((-107) $ $) 32)) (-2502 (((-107) |#2| $) 36)) (-3617 (((-583 |#2|) $) 22)) (-3762 (((-107) $) 16)) (-1986 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2562 (((-107) $) 45)) (-2182 (((-787) $) 41)) (-3935 (((-583 $) $) 28)) (-1539 (((-107) $ $) 34)) (-2210 (((-703) $) 43)))
+(((-113 |#1| |#2|) (-10 -8 (-15 -2307 (|#1| |#1| "right" |#1|)) (-15 -2307 (|#1| |#1| "left" |#1|)) (-15 -1986 (|#1| |#1| "right")) (-15 -1986 (|#1| |#1| "left")) (-15 -2307 (|#2| |#1| "value" |#2|)) (-15 -1703 ((-107) |#1| |#1|)) (-15 -3617 ((-583 |#2|) |#1|)) (-15 -2562 ((-107) |#1|)) (-15 -1986 (|#2| |#1| "value")) (-15 -3762 ((-107) |#1|)) (-15 -3200 ((-583 |#1|) |#1|)) (-15 -3935 ((-583 |#1|) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -2502 ((-107) |#2| |#1|)) (-15 -2210 ((-703) |#1|))) (-114 |#2|) (-1109)) (T -113))
+NIL
+(-10 -8 (-15 -2307 (|#1| |#1| "right" |#1|)) (-15 -2307 (|#1| |#1| "left" |#1|)) (-15 -1986 (|#1| |#1| "right")) (-15 -1986 (|#1| |#1| "left")) (-15 -2307 (|#2| |#1| "value" |#2|)) (-15 -1703 ((-107) |#1| |#1|)) (-15 -3617 ((-583 |#2|) |#1|)) (-15 -2562 ((-107) |#1|)) (-15 -1986 (|#2| |#1| "value")) (-15 -3762 ((-107) |#1|)) (-15 -3200 ((-583 |#1|) |#1|)) (-15 -3935 ((-583 |#1|) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -2502 ((-107) |#2| |#1|)) (-15 -2210 ((-703) |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3088 ((|#1| $) 48)) (-1799 (((-107) $ (-703)) 8)) (-4072 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3900 (($ $ $) 52 (|has| $ (-6 -4184)))) (-3561 (($ $ $) 54 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) (($ $ "left" $) 55 (|has| $ (-6 -4184))) (($ $ "right" $) 53 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3473 (($) 7 T CONST)) (-3591 (($ $) 57)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 50)) (-1703 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3577 (($ $) 59)) (-3617 (((-583 |#1|) $) 45)) (-3762 (((-107) $) 49)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1482 (((-517) $ $) 44)) (-2562 (((-107) $) 46)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3935 (((-583 $) $) 51)) (-3172 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-114 |#1|) (-1185) (-1109)) (T -114))
+((-3577 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1109)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1109)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1109)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1109)))) (-2307 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4184)) (-4 *1 (-114 *3)) (-4 *3 (-1109)))) (-3561 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-114 *2)) (-4 *2 (-1109)))) (-2307 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4184)) (-4 *1 (-114 *3)) (-4 *3 (-1109)))) (-3900 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-114 *2)) (-4 *2 (-1109)))))
+(-13 (-926 |t#1|) (-10 -8 (-15 -3577 ($ $)) (-15 -1986 ($ $ "left")) (-15 -3591 ($ $)) (-15 -1986 ($ $ "right")) (IF (|has| $ (-6 -4184)) (PROGN (-15 -2307 ($ $ "left" $)) (-15 -3561 ($ $ $)) (-15 -2307 ($ $ "right" $)) (-15 -3900 ($ $ $))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-1576 (((-107) |#1|) 24)) (-2499 (((-703) (-703)) 23) (((-703)) 22)) (-2152 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26)))
+(((-115 |#1|) (-10 -7 (-15 -2152 ((-107) |#1|)) (-15 -2152 ((-107) |#1| (-107))) (-15 -2499 ((-703))) (-15 -2499 ((-703) (-703))) (-15 -1576 ((-107) |#1|))) (-1131 (-517))) (T -115))
+((-1576 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) (-2499 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) (-2499 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) (-2152 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) (-2152 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))))
+(-10 -7 (-15 -2152 ((-107) |#1|)) (-15 -2152 ((-107) |#1| (-107))) (-15 -2499 ((-703))) (-15 -2499 ((-703) (-703))) (-15 -1576 ((-107) |#1|)))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) 15)) (-2861 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1799 (((-107) $ (-703)) NIL)) (-4072 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3900 (($ $ $) 18 (|has| $ (-6 -4184)))) (-3561 (($ $ $) 20 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-3591 (($ $) 17)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4111 (($ $ |#1| $) 23)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3577 (($ $) 19)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2716 (($ |#1| $) 24)) (-3816 (($ |#1| $) 10)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 14)) (-1326 (($) 8)) (-1986 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1482 (((-517) $ $) NIL)) (-2562 (((-107) $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1627 (($ (-583 |#1|)) 12)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -1627 ($ (-583 |#1|))) (-15 -3816 ($ |#1| $)) (-15 -2716 ($ |#1| $)) (-15 -2861 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116))
+((-1627 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-2716 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-2861 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -1627 ($ (-583 |#1|))) (-15 -3816 ($ |#1| $)) (-15 -2716 ($ |#1| $)) (-15 -2861 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-1458 (($ $) 14)) (-2455 (($ $) 11)) (-3764 (($ $ $) 24)) (-2332 (($ $ $) 22)) (-2146 (($ $) 12)) (-2291 (($ $ $) 20)) (-2283 (($ $ $) 18)))
+(((-117 |#1|) (-10 -8 (-15 -3764 (|#1| |#1| |#1|)) (-15 -2332 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 -2283 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1| |#1|))) (-118)) (T -117))
+NIL
+(-10 -8 (-15 -3764 (|#1| |#1| |#1|)) (-15 -2332 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 -2283 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-1458 (($ $) 104)) (-3805 (($ $ $) 25)) (-3423 (((-1159) $ (-517) (-517)) 67 (|has| $ (-6 -4184)))) (-2866 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-2740 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4184)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4184)))) (-3056 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-1799 (((-107) $ (-703)) 38)) (-2307 (((-107) $ (-1122 (-517)) (-107)) 89 (|has| $ (-6 -4184))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4183)))) (-3473 (($) 39 T CONST)) (-1227 (($ $) 101 (|has| $ (-6 -4184)))) (-2979 (($ $) 91)) (-1667 (($ $) 69 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4183))) (($ (-107) $) 70 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183))))) (-2521 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183))))) (-1226 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4184)))) (-4020 (((-107) $ (-517)) 56)) (-2446 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1003))) (((-517) (-107) $) 95 (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) 94)) (-3037 (((-583 (-107)) $) 46 (|has| $ (-6 -4183)))) (-1639 (($ $ $) 26)) (-2455 (($ $) 31)) (-3764 (($ $ $) 28)) (-3366 (($ (-703) (-107)) 78)) (-2332 (($ $ $) 29)) (-4064 (((-107) $ (-703)) 37)) (-2305 (((-517) $) 64 (|has| (-517) (-779)))) (-1575 (($ $ $) 13)) (-2262 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-1196 (((-583 (-107)) $) 47 (|has| $ (-6 -4183)))) (-2502 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 63 (|has| (-517) (-779)))) (-2986 (($ $ $) 14)) (-1213 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-2942 (((-107) $ (-703)) 36)) (-3865 (((-1057) $) 9)) (-2454 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-4086 (((-583 (-517)) $) 61)) (-3646 (((-107) (-517) $) 60)) (-3094 (((-1021) $) 10)) (-1631 (((-107) $) 65 (|has| (-517) (-779)))) (-2293 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-1254 (($ $ (-107)) 66 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3670 (((-107) $ $) 32)) (-3127 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3042 (((-583 (-107)) $) 59)) (-1546 (((-107) $) 35)) (-1326 (($) 34)) (-1986 (($ $ (-1122 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3685 (($ $ (-1122 (-517))) 86) (($ $ (-517)) 85)) (-3105 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4183)))) (-3966 (($ $ $ (-517)) 100 (|has| $ (-6 -4184)))) (-2322 (($ $) 33)) (-3582 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2197 (($ (-583 (-107))) 77)) (-2337 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2182 (((-787) $) 11)) (-3883 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4183)))) (-1651 (($ $ $) 27)) (-2146 (($ $) 30)) (-2291 (($ $ $) 106)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (-2283 (($ $ $) 105)) (-2210 (((-703) $) 40 (|has| $ (-6 -4183)))))
+(((-118) (-1185)) (T -118))
+((-2455 (*1 *1 *1) (-4 *1 (-118))) (-2146 (*1 *1 *1) (-4 *1 (-118))) (-2332 (*1 *1 *1 *1) (-4 *1 (-118))) (-3764 (*1 *1 *1 *1) (-4 *1 (-118))) (-1651 (*1 *1 *1 *1) (-4 *1 (-118))) (-1639 (*1 *1 *1 *1) (-4 *1 (-118))) (-3805 (*1 *1 *1 *1) (-4 *1 (-118))))
+(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2455 ($ $)) (-15 -2146 ($ $)) (-15 -2332 ($ $ $)) (-15 -3764 ($ $ $)) (-15 -1651 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -3805 ($ $ $))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 (-517) (-107)) . T) ((-260 (-517) (-107)) . T) ((-280 (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-343 (-107)) . T) ((-456 (-107)) . T) ((-550 (-517) (-107)) . T) ((-478 (-107) (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-588 (-107)) . T) ((-598) . T) ((-19 (-107)) . T) ((-779) . T) ((-1003) . T) ((-1109) . T))
+((-1213 (($ (-1 |#2| |#2|) $) 22)) (-2322 (($ $) 16)) (-2210 (((-703) $) 24)))
+(((-119 |#1| |#2|) (-10 -8 (-15 -1213 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -2322 (|#1| |#1|))) (-120 |#2|) (-1003)) (T -119))
+NIL
+(-10 -8 (-15 -1213 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -2322 (|#1| |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3088 ((|#1| $) 48)) (-1799 (((-107) $ (-703)) 8)) (-4072 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3900 (($ $ $) 52 (|has| $ (-6 -4184)))) (-3561 (($ $ $) 54 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) (($ $ "left" $) 55 (|has| $ (-6 -4184))) (($ $ "right" $) 53 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3473 (($) 7 T CONST)) (-3591 (($ $) 57)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 50)) (-1703 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-4111 (($ $ |#1| $) 60)) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3577 (($ $) 59)) (-3617 (((-583 |#1|) $) 45)) (-3762 (((-107) $) 49)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1482 (((-517) $ $) 44)) (-2562 (((-107) $) 46)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3935 (((-583 $) $) 51)) (-3172 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-120 |#1|) (-1185) (-1003)) (T -120))
+((-4111 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003)))))
+(-13 (-114 |t#1|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -4111 ($ $ |t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-114 |#1|) . T) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) 15)) (-1799 (((-107) $ (-703)) NIL)) (-4072 ((|#1| $ |#1|) 19 (|has| $ (-6 -4184)))) (-3900 (($ $ $) 20 (|has| $ (-6 -4184)))) (-3561 (($ $ $) 18 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-3591 (($ $) 21)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4111 (($ $ |#1| $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3577 (($ $) NIL)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3816 (($ |#1| $) 10)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 14)) (-1326 (($) 8)) (-1986 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1482 (((-517) $ $) NIL)) (-2562 (((-107) $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) 17)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3944 (($ (-583 |#1|)) 12)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4184) (-15 -3944 ($ (-583 |#1|))) (-15 -3816 ($ |#1| $)))) (-779)) (T -121))
+((-3944 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4184) (-15 -3944 ($ (-583 |#1|))) (-15 -3816 ($ |#1| $))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) 24)) (-1799 (((-107) $ (-703)) NIL)) (-4072 ((|#1| $ |#1|) 26 (|has| $ (-6 -4184)))) (-3900 (($ $ $) 30 (|has| $ (-6 -4184)))) (-3561 (($ $ $) 28 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-3591 (($ $) 20)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4111 (($ $ |#1| $) 15)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3577 (($ $) 19)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) 21)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 18)) (-1326 (($) 11)) (-1986 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1482 (((-517) $ $) NIL)) (-2562 (((-107) $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3782 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 10 (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -3782 ($ |#1|)) (-15 -3782 ($ $ |#1| $)))) (-1003)) (T -122))
+((-3782 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))))
+(-13 (-120 |#1|) (-10 -8 (-15 -3782 ($ |#1|)) (-15 -3782 ($ $ |#1| $))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15)))
+(((-123) (-1185)) (T -123))
+((-1387 (*1 *1 *1 *1) (|partial| -4 *1 (-123))))
+(-13 (-23) (-10 -8 (-15 -1387 ((-3 $ "failed") $ $))))
(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) 7)) (-3892 (((-1158) $ (-703)) 19)) (-2607 (((-703) $) 20)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
-(((-124) (-1184)) (T -124))
-((-2607 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-3892 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1158)))))
-(-13 (-779) (-10 -8 (-15 -2607 ((-703) $)) (-15 -3892 ((-1158) $ (-703)))))
+((-2571 (((-107) $ $) 7)) (-2221 (((-1159) $ (-703)) 19)) (-2446 (((-703) $) 20)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)))
+(((-124) (-1185)) (T -124))
+((-2446 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-2221 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1159)))))
+(-13 (-779) (-10 -8 (-15 -2446 ((-703) $)) (-15 -2221 ((-1159) $ (-703)))))
(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-703) "failed") $) 38)) (-3189 (((-703) $) 36)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) 26)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1584 (((-107)) 39)) (-1524 (((-107) (-107)) 41)) (-1515 (((-107) $) 23)) (-1633 (((-107) $) 35)) (-2256 (((-787) $) 22) (($ (-703)) 14)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 11 T CONST)) (-1426 (($ (-703)) 15)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 24)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 25)) (-1654 (((-3 $ "failed") $ $) 29)) (-1642 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-843) $) NIL) (($ $ $) 30)))
-(((-125) (-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4182 "*")) (-15 -1654 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1426 ($ (-703))) (-15 -1515 ((-107) $)) (-15 -1633 ((-107) $)) (-15 -1584 ((-107))) (-15 -1524 ((-107) (-107)))))) (T -125))
-((-1654 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1584 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4182 "*")) (-15 -1654 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1426 ($ (-703))) (-15 -1515 ((-107) $)) (-15 -1633 ((-107) $)) (-15 -1584 ((-107))) (-15 -1524 ((-107) (-107)))))
-((-2473 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-1893 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18)))
-(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1893 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2473 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1893 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|))))
-((-2750 (((-107) $ $) NIL)) (-4059 (($ (-583 |#3|)) 38)) (-2033 (($ $) 97) (($ $ (-517) (-517)) 96)) (-3092 (($) 17)) (-1772 (((-3 |#3| "failed") $) 58)) (-3189 ((|#3| $) NIL)) (-1354 (($ $ (-583 (-517))) 98)) (-2462 (((-583 |#3|) $) 34)) (-2261 (((-703) $) 42)) (-3485 (($ $ $) 91)) (-3625 (($) 41)) (-3985 (((-1056) $) NIL)) (-3062 (($) 16)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $) 44) ((|#3| $ (-517)) 45) ((|#3| $ (-517) (-517)) 46) ((|#3| $ (-517) (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517) (-517)) 48) ((|#3| $ (-583 (-517))) 50)) (-3688 (((-703) $) 43)) (-2920 (($ $ (-517) $ (-517)) 92) (($ $ (-517) (-517)) 94)) (-2256 (((-787) $) 65) (($ |#3|) 66) (($ (-214 |#2| |#3|)) 73) (($ (-1040 |#2| |#3|)) 76) (($ (-583 |#3|)) 51) (($ (-583 $)) 56)) (-2396 (($) 67 T CONST)) (-2409 (($) 68 T CONST)) (-1547 (((-107) $ $) 78)) (-1654 (($ $) 84) (($ $ $) 82)) (-1642 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-517)) 87) (($ (-517) $) 86) (($ $ $) 93)))
-(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2256 ($ (-214 |#2| |#3|))) (-15 -2256 ($ (-1040 |#2| |#3|))) (-15 -2256 ($ (-583 |#3|))) (-15 -2256 ($ (-583 $))) (-15 -2261 ((-703) $)) (-15 -1449 (|#3| $)) (-15 -1449 (|#3| $ (-517))) (-15 -1449 (|#3| $ (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-583 (-517)))) (-15 -3485 ($ $ $)) (-15 * ($ $ $)) (-15 -2920 ($ $ (-517) $ (-517))) (-15 -2920 ($ $ (-517) (-517))) (-15 -2033 ($ $)) (-15 -2033 ($ $ (-517) (-517))) (-15 -1354 ($ $ (-583 (-517)))) (-15 -3062 ($)) (-15 -3625 ($)) (-15 -2462 ((-583 |#3|) $)) (-15 -4059 ($ (-583 |#3|))) (-15 -3092 ($)))) (-517) (-703) (-156)) (T -127))
-((-3485 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1040 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-1449 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2920 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2920 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2033 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2033 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3062 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3625 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-3092 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
-(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2256 ($ (-214 |#2| |#3|))) (-15 -2256 ($ (-1040 |#2| |#3|))) (-15 -2256 ($ (-583 |#3|))) (-15 -2256 ($ (-583 $))) (-15 -2261 ((-703) $)) (-15 -1449 (|#3| $)) (-15 -1449 (|#3| $ (-517))) (-15 -1449 (|#3| $ (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-583 (-517)))) (-15 -3485 ($ $ $)) (-15 * ($ $ $)) (-15 -2920 ($ $ (-517) $ (-517))) (-15 -2920 ($ $ (-517) (-517))) (-15 -2033 ($ $)) (-15 -2033 ($ $ (-517) (-517))) (-15 -1354 ($ $ (-583 (-517)))) (-15 -3062 ($)) (-15 -3625 ($)) (-15 -2462 ((-583 |#3|) $)) (-15 -4059 ($ (-583 |#3|))) (-15 -3092 ($))))
-((-2750 (((-107) $ $) NIL)) (-3132 (($) 15 T CONST)) (-3416 (($) NIL (|has| (-131) (-338)))) (-1413 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-3245 (($ $ $) NIL)) (-3009 (((-107) $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| (-131) (-338)))) (-1362 (($) NIL) (($ (-583 (-131))) NIL)) (-2337 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3212 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (($ (-131) $) 51 (|has| $ (-6 -4180)))) (-2052 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3209 (($) NIL (|has| (-131) (-338)))) (-1536 (((-583 (-131)) $) 60 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2967 (((-131) $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3099 (((-131) $) NIL (|has| (-131) (-779)))) (-1433 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 55)) (-1285 (($) 16 T CONST)) (-1549 (((-843) $) NIL (|has| (-131) (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 29)) (-3309 (((-131) $) 52)) (-1710 (($ (-131) $) 50)) (-3448 (($ (-843)) NIL (|has| (-131) (-338)))) (-1789 (($) 14 T CONST)) (-3206 (((-1021) $) NIL)) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-4006 (((-131) $) 53)) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 48)) (-3121 (($) 13 T CONST)) (-3170 (($ $ $) 31) (($ $ (-131)) NIL)) (-3089 (($ (-583 (-131))) NIL) (($) NIL)) (-3217 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-1056) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2276 (($ (-583 (-131))) NIL)) (-1819 (($ $) 32 (|has| (-131) (-338)))) (-2256 (((-787) $) 46)) (-2585 (($ (-1056)) 12) (($ (-583 (-131))) 43)) (-2201 (((-703) $) NIL)) (-3167 (($) 49) (($ (-583 (-131))) NIL)) (-1222 (($ (-583 (-131))) NIL)) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2297 (($) 19 T CONST)) (-2389 (($) 18 T CONST)) (-1547 (((-107) $ $) 22)) (-1572 (((-107) $ $) NIL)) (-2296 (((-703) $) 47 (|has| $ (-6 -4180)))))
-(((-128) (-13 (-1003) (-558 (-1056)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -2585 ($ (-1056))) (-15 -2585 ($ (-583 (-131)))) (-15 -3121 ($) -1619) (-15 -1789 ($) -1619) (-15 -3132 ($) -1619) (-15 -1285 ($) -1619) (-15 -2389 ($) -1619) (-15 -2297 ($) -1619)))) (T -128))
-((-2585 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-128)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-3121 (*1 *1) (-5 *1 (-128))) (-1789 (*1 *1) (-5 *1 (-128))) (-3132 (*1 *1) (-5 *1 (-128))) (-1285 (*1 *1) (-5 *1 (-128))) (-2389 (*1 *1) (-5 *1 (-128))) (-2297 (*1 *1) (-5 *1 (-128))))
-(-13 (-1003) (-558 (-1056)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -2585 ($ (-1056))) (-15 -2585 ($ (-583 (-131)))) (-15 -3121 ($) -1619) (-15 -1789 ($) -1619) (-15 -3132 ($) -1619) (-15 -1285 ($) -1619) (-15 -2389 ($) -1619) (-15 -2297 ($) -1619)))
-((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3484 ((|#1| |#3|) 9)) (-1897 ((|#3| |#3|) 15)))
-(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-343 |#2|)) (T -129))
-((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-1897 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))))
-(-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3647 (($ $ $) 8)) (-3663 (($ $) 7)) (-1270 (($ $ $) 6)))
-(((-130) (-1184)) (T -130))
-((-3647 (*1 *1 *1 *1) (-4 *1 (-130))) (-3663 (*1 *1 *1) (-4 *1 (-130))) (-1270 (*1 *1 *1 *1) (-4 *1 (-130))))
-(-13 (-10 -8 (-15 -1270 ($ $ $)) (-15 -3663 ($ $)) (-15 -3647 ($ $ $))))
-((-2750 (((-107) $ $) NIL)) (-3543 (((-107) $) 38)) (-3132 (($ $) 50)) (-1379 (($) 25)) (-1611 (((-703)) 16)) (-3209 (($) 24)) (-3774 (($) 26)) (-3247 (((-517) $) 21)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1702 (((-107) $) 40)) (-1285 (($ $) 51)) (-1549 (((-843) $) 22)) (-3985 (((-1056) $) 46)) (-3448 (($ (-843)) 20)) (-3858 (((-107) $) 36)) (-3206 (((-1021) $) NIL)) (-1206 (($) 27)) (-2569 (((-107) $) 34)) (-2256 (((-787) $) 29)) (-1185 (($ (-517)) 18) (($ (-1056)) 49)) (-2551 (((-107) $) 44)) (-4017 (((-107) $) 42)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 13)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 14)))
-(((-131) (-13 (-773) (-10 -8 (-15 -3247 ((-517) $)) (-15 -1185 ($ (-517))) (-15 -1185 ($ (-1056))) (-15 -1379 ($)) (-15 -3774 ($)) (-15 -1206 ($)) (-15 -3132 ($ $)) (-15 -1285 ($ $)) (-15 -2569 ((-107) $)) (-15 -3858 ((-107) $)) (-15 -4017 ((-107) $)) (-15 -3543 ((-107) $)) (-15 -1702 ((-107) $)) (-15 -2551 ((-107) $))))) (T -131))
-((-3247 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-1185 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-1185 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-131)))) (-1379 (*1 *1) (-5 *1 (-131))) (-3774 (*1 *1) (-5 *1 (-131))) (-1206 (*1 *1) (-5 *1 (-131))) (-3132 (*1 *1 *1) (-5 *1 (-131))) (-1285 (*1 *1 *1) (-5 *1 (-131))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(-13 (-773) (-10 -8 (-15 -3247 ((-517) $)) (-15 -1185 ($ (-517))) (-15 -1185 ($ (-1056))) (-15 -1379 ($)) (-15 -3774 ($)) (-15 -1206 ($)) (-15 -3132 ($ $)) (-15 -1285 ($ $)) (-15 -2569 ((-107) $)) (-15 -3858 ((-107) $)) (-15 -4017 ((-107) $)) (-15 -3543 ((-107) $)) (-15 -1702 ((-107) $)) (-15 -2551 ((-107) $))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-1328 (((-3 $ "failed") $) 35)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-132) (-1184)) (T -132))
-((-1328 (*1 *1 *1) (|partial| -4 *1 (-132))))
-(-13 (-961) (-10 -8 (-15 -1328 ((-3 $ "failed") $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-703) "failed") $) 38)) (-3076 (((-703) $) 36)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) 26)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-3359 (((-107)) 39)) (-1334 (((-107) (-107)) 41)) (-2341 (((-107) $) 23)) (-1701 (((-107) $) 35)) (-2182 (((-787) $) 22) (($ (-703)) 14)) (-2146 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2297 (($) 12 T CONST)) (-2306 (($) 11 T CONST)) (-1515 (($ (-703)) 15)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 24)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 25)) (-1637 (((-3 $ "failed") $ $) 29)) (-1626 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-843) $) NIL) (($ $ $) 30)))
+(((-125) (-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4185 "*")) (-15 -1637 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1515 ($ (-703))) (-15 -2341 ((-107) $)) (-15 -1701 ((-107) $)) (-15 -3359 ((-107))) (-15 -1334 ((-107) (-107)))))) (T -125))
+((-1637 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-3359 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1334 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4185 "*")) (-15 -1637 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1515 ($ (-703))) (-15 -2341 ((-107) $)) (-15 -1701 ((-107) $)) (-15 -3359 ((-107))) (-15 -1334 ((-107) (-107)))))
+((-2357 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-1857 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18)))
+(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2357 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1857 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2357 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1857 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|))))
+((-2571 (((-107) $ $) NIL)) (-3311 (($ (-583 |#3|)) 38)) (-2729 (($ $) 97) (($ $ (-517) (-517)) 96)) (-3473 (($) 17)) (-1759 (((-3 |#3| "failed") $) 58)) (-3076 ((|#3| $) NIL)) (-2698 (($ $ (-583 (-517))) 98)) (-2348 (((-583 |#3|) $) 34)) (-3795 (((-703) $) 42)) (-2591 (($ $ $) 91)) (-1614 (($) 41)) (-3865 (((-1057) $) NIL)) (-3189 (($) 16)) (-3094 (((-1021) $) NIL)) (-1986 ((|#3| $) 44) ((|#3| $ (-517)) 45) ((|#3| $ (-517) (-517)) 46) ((|#3| $ (-517) (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517) (-517)) 48) ((|#3| $ (-583 (-517))) 50)) (-4007 (((-703) $) 43)) (-1506 (($ $ (-517) $ (-517)) 92) (($ $ (-517) (-517)) 94)) (-2182 (((-787) $) 65) (($ |#3|) 66) (($ (-214 |#2| |#3|)) 73) (($ (-1041 |#2| |#3|)) 76) (($ (-583 |#3|)) 51) (($ (-583 $)) 56)) (-2297 (($) 67 T CONST)) (-2306 (($) 68 T CONST)) (-1539 (((-107) $ $) 78)) (-1637 (($ $) 84) (($ $ $) 82)) (-1626 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-517)) 87) (($ (-517) $) 86) (($ $ $) 93)))
+(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2182 ($ (-214 |#2| |#3|))) (-15 -2182 ($ (-1041 |#2| |#3|))) (-15 -2182 ($ (-583 |#3|))) (-15 -2182 ($ (-583 $))) (-15 -3795 ((-703) $)) (-15 -1986 (|#3| $)) (-15 -1986 (|#3| $ (-517))) (-15 -1986 (|#3| $ (-517) (-517))) (-15 -1986 (|#3| $ (-517) (-517) (-517))) (-15 -1986 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1986 (|#3| $ (-583 (-517)))) (-15 -2591 ($ $ $)) (-15 * ($ $ $)) (-15 -1506 ($ $ (-517) $ (-517))) (-15 -1506 ($ $ (-517) (-517))) (-15 -2729 ($ $)) (-15 -2729 ($ $ (-517) (-517))) (-15 -2698 ($ $ (-583 (-517)))) (-15 -3189 ($)) (-15 -1614 ($)) (-15 -2348 ((-583 |#3|) $)) (-15 -3311 ($ (-583 |#3|))) (-15 -3473 ($)))) (-517) (-703) (-156)) (T -127))
+((-2591 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1041 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-1986 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1986 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1986 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1986 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1506 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1506 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2729 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2729 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2698 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3189 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1614 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3311 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-3473 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
+(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2182 ($ (-214 |#2| |#3|))) (-15 -2182 ($ (-1041 |#2| |#3|))) (-15 -2182 ($ (-583 |#3|))) (-15 -2182 ($ (-583 $))) (-15 -3795 ((-703) $)) (-15 -1986 (|#3| $)) (-15 -1986 (|#3| $ (-517))) (-15 -1986 (|#3| $ (-517) (-517))) (-15 -1986 (|#3| $ (-517) (-517) (-517))) (-15 -1986 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1986 (|#3| $ (-583 (-517)))) (-15 -2591 ($ $ $)) (-15 * ($ $ $)) (-15 -1506 ($ $ (-517) $ (-517))) (-15 -1506 ($ $ (-517) (-517))) (-15 -2729 ($ $)) (-15 -2729 ($ $ (-517) (-517))) (-15 -2698 ($ $ (-583 (-517)))) (-15 -3189 ($)) (-15 -1614 ($)) (-15 -2348 ((-583 |#3|) $)) (-15 -3311 ($ (-583 |#3|))) (-15 -3473 ($))))
+((-2571 (((-107) $ $) NIL)) (-2517 (($) 15 T CONST)) (-3242 (($) NIL (|has| (-131) (-338)))) (-1408 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-2321 (($ $ $) NIL)) (-4035 (((-107) $ $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-1598 (((-703)) NIL (|has| (-131) (-338)))) (-1361 (($) NIL) (($ (-583 (-131))) NIL)) (-2582 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2111 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183))) (($ (-131) $) 51 (|has| $ (-6 -4183)))) (-1971 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2521 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3098 (($) NIL (|has| (-131) (-338)))) (-3037 (((-583 (-131)) $) 60 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-1575 (((-131) $) NIL (|has| (-131) (-779)))) (-1196 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2986 (((-131) $) NIL (|has| (-131) (-779)))) (-1213 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-131) (-131)) $) 55)) (-2676 (($) 16 T CONST)) (-2903 (((-843) $) NIL (|has| (-131) (-338)))) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-2551 (($ $ $) 29)) (-1835 (((-131) $) 52)) (-3816 (($ (-131) $) 50)) (-3353 (($ (-843)) NIL (|has| (-131) (-338)))) (-2799 (($) 14 T CONST)) (-3094 (((-1021) $) NIL)) (-2293 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-4049 (((-131) $) 53)) (-2925 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 48)) (-2447 (($) 13 T CONST)) (-2852 (($ $ $) 31) (($ $ (-131)) NIL)) (-3429 (($ (-583 (-131))) NIL) (($) NIL)) (-3105 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-1057) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2197 (($ (-583 (-131))) NIL)) (-3750 (($ $) 32 (|has| (-131) (-338)))) (-2182 (((-787) $) 46)) (-3140 (($ (-1057)) 12) (($ (-583 (-131))) 43)) (-3863 (((-703) $) NIL)) (-3055 (($) 49) (($ (-583 (-131))) NIL)) (-2373 (($ (-583 (-131))) NIL)) (-3883 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3462 (($) 19 T CONST)) (-1992 (($) 18 T CONST)) (-1539 (((-107) $ $) 22)) (-1560 (((-107) $ $) NIL)) (-2210 (((-703) $) 47 (|has| $ (-6 -4183)))))
+(((-128) (-13 (-1003) (-558 (-1057)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -3140 ($ (-1057))) (-15 -3140 ($ (-583 (-131)))) (-15 -2447 ($) -1605) (-15 -2799 ($) -1605) (-15 -2517 ($) -1605) (-15 -2676 ($) -1605) (-15 -1992 ($) -1605) (-15 -3462 ($) -1605)))) (T -128))
+((-3140 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-128)))) (-3140 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-2447 (*1 *1) (-5 *1 (-128))) (-2799 (*1 *1) (-5 *1 (-128))) (-2517 (*1 *1) (-5 *1 (-128))) (-2676 (*1 *1) (-5 *1 (-128))) (-1992 (*1 *1) (-5 *1 (-128))) (-3462 (*1 *1) (-5 *1 (-128))))
+(-13 (-1003) (-558 (-1057)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -3140 ($ (-1057))) (-15 -3140 ($ (-583 (-131)))) (-15 -2447 ($) -1605) (-15 -2799 ($) -1605) (-15 -2517 ($) -1605) (-15 -2676 ($) -1605) (-15 -1992 ($) -1605) (-15 -3462 ($) -1605)))
+((-2558 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2583 ((|#1| |#3|) 9)) (-3882 ((|#3| |#3|) 15)))
+(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -2583 (|#1| |#3|)) (-15 -3882 (|#3| |#3|)) (-15 -2558 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-343 |#2|)) (T -129))
+((-2558 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-3882 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))))
+(-10 -7 (-15 -2583 (|#1| |#3|)) (-15 -3882 (|#3| |#3|)) (-15 -2558 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1808 (($ $ $) 8)) (-1938 (($ $) 7)) (-1679 (($ $ $) 6)))
+(((-130) (-1185)) (T -130))
+((-1808 (*1 *1 *1 *1) (-4 *1 (-130))) (-1938 (*1 *1 *1) (-4 *1 (-130))) (-1679 (*1 *1 *1 *1) (-4 *1 (-130))))
+(-13 (-10 -8 (-15 -1679 ($ $ $)) (-15 -1938 ($ $)) (-15 -1808 ($ $ $))))
+((-2571 (((-107) $ $) NIL)) (-2007 (((-107) $) 38)) (-2517 (($ $) 50)) (-2733 (($) 25)) (-1598 (((-703)) 16)) (-3098 (($) 24)) (-3501 (($) 26)) (-2329 (((-517) $) 21)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3714 (((-107) $) 40)) (-2676 (($ $) 51)) (-2903 (((-843) $) 22)) (-3865 (((-1057) $) 46)) (-3353 (($ (-843)) 20)) (-3050 (((-107) $) 36)) (-3094 (((-1021) $) NIL)) (-2693 (($) 27)) (-2424 (((-107) $) 34)) (-2182 (((-787) $) 29)) (-4156 (($ (-517)) 18) (($ (-1057)) 49)) (-4073 (((-107) $) 44)) (-1189 (((-107) $) 42)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 13)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 14)))
+(((-131) (-13 (-773) (-10 -8 (-15 -2329 ((-517) $)) (-15 -4156 ($ (-517))) (-15 -4156 ($ (-1057))) (-15 -2733 ($)) (-15 -3501 ($)) (-15 -2693 ($)) (-15 -2517 ($ $)) (-15 -2676 ($ $)) (-15 -2424 ((-107) $)) (-15 -3050 ((-107) $)) (-15 -1189 ((-107) $)) (-15 -2007 ((-107) $)) (-15 -3714 ((-107) $)) (-15 -4073 ((-107) $))))) (T -131))
+((-2329 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-131)))) (-2733 (*1 *1) (-5 *1 (-131))) (-3501 (*1 *1) (-5 *1 (-131))) (-2693 (*1 *1) (-5 *1 (-131))) (-2517 (*1 *1 *1) (-5 *1 (-131))) (-2676 (*1 *1 *1) (-5 *1 (-131))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1189 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(-13 (-773) (-10 -8 (-15 -2329 ((-517) $)) (-15 -4156 ($ (-517))) (-15 -4156 ($ (-1057))) (-15 -2733 ($)) (-15 -3501 ($)) (-15 -2693 ($)) (-15 -2517 ($ $)) (-15 -2676 ($ $)) (-15 -2424 ((-107) $)) (-15 -3050 ((-107) $)) (-15 -1189 ((-107) $)) (-15 -2007 ((-107) $)) (-15 -3714 ((-107) $)) (-15 -4073 ((-107) $))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1589 (((-3 $ "failed") $) 35)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-132) (-1185)) (T -132))
+((-1589 (*1 *1 *1) (|partial| -4 *1 (-132))))
+(-13 (-961) (-10 -8 (-15 -1589 ((-3 $ "failed") $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3669 ((|#1| (-623 |#1|) |#1|) 17)))
-(((-133 |#1|) (-10 -7 (-15 -3669 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133))
-((-3669 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))))
-(-10 -7 (-15 -3669 (|#1| (-623 |#1|) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-134) (-1184)) (T -134))
+((-3804 ((|#1| (-623 |#1|) |#1|) 17)))
+(((-133 |#1|) (-10 -7 (-15 -3804 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133))
+((-3804 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))))
+(-10 -7 (-15 -3804 (|#1| (-623 |#1|) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-134) (-1185)) (T -134))
NIL
(-13 (-961))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1889 (((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 69)) (-3636 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 51)) (-3754 (((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1895 ((|#1| |#3| |#3|) 39)) (-2051 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-2861 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 48)))
-(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -3754 ((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3636 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -1889 ((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1895 (|#1| |#3| |#3|)) (-15 -2051 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2861 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1112) (-1130 |#1|) (-1130 (-377 |#2|))) (T -135))
-((-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))) (-2051 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1130 *3)))) (-1895 (*1 *2 *3 *3) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-1112)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1130 *3)))) (-3636 (*1 *2 *3) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1931 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))))
-(-10 -7 (-15 -3754 ((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3636 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -1889 ((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1895 (|#1| |#3| |#3|)) (-15 -2051 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2861 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|)))
-((-3179 (((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)) 31)))
-(((-136 |#1| |#2|) (-10 -7 (-15 -3179 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)))) (-502) (-150 |#1|)) (T -136))
-((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))))
-(-10 -7 (-15 -3179 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|))))
-((-3536 (($ (-1 (-107) |#2|) $) 29)) (-1679 (($ $) 36)) (-2052 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-2048 (((-107) (-1 (-107) |#2|) $) 16)) (-3217 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-3675 (((-107) (-1 (-107) |#2|) $) 15)) (-2296 (((-703) $) 11)))
-(((-137 |#1| |#2|) (-10 -8 (-15 -1679 (|#1| |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|))) (-138 |#2|) (-1108)) (T -137))
-NIL
-(-10 -8 (-15 -1679 (|#1| |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3536 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 41 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180))) (($ |#1| $) 42 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 49)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-138 |#1|) (-1184) (-1108)) (T -138))
-((-2276 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-138 *3)))) (-2887 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-3225 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-3225 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) (-3225 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-2052 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-1679 (*1 *1 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))))
-(-13 (-456 |t#1|) (-10 -8 (-15 -2276 ($ (-583 |t#1|))) (-15 -2887 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2052 ($ (-1 (-107) |t#1|) $)) (-15 -3536 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2052 ($ |t#1| $)) (-15 -1679 ($ $))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 85)) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-583 (-843))) 56)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2122 (($ (-843)) 48)) (-3141 (((-125)) 23)) (-2256 (((-787) $) 68) (($ (-517)) 46) (($ |#2|) 47)) (-2720 ((|#2| $ (-583 (-843))) 58)) (-2961 (((-703)) 20)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 40 T CONST)) (-2409 (($) 44 T CONST)) (-1547 (((-107) $ $) 26)) (-1667 (($ $ |#2|) NIL)) (-1654 (($ $) 34) (($ $ $) 32)) (-1642 (($ $ $) 30)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-139 |#1| |#2| |#3|) (-13 (-961) (-37 |#2|) (-1160 |#2|) (-10 -8 (-15 -2122 ($ (-843))) (-15 -1339 ($ |#2| (-583 (-843)))) (-15 -2720 (|#2| $ (-583 (-843)))) (-15 -3621 ((-3 $ "failed") $)))) (-843) (-333) (-910 |#1| |#2|)) (T -139))
-((-3621 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))))
-(-13 (-961) (-37 |#2|) (-1160 |#2|) (-10 -8 (-15 -2122 ($ (-843))) (-15 -1339 ($ |#2| (-583 (-843)))) (-15 -2720 (|#2| $ (-583 (-843)))) (-15 -3621 ((-3 $ "failed") $))))
-((-1662 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199)) 39)) (-1979 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 64)) (-1810 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 59)))
-(((-140) (-10 -7 (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1662 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))) (T -140))
-((-1810 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) (-1810 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) (-1662 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))) (-1979 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))))
-(-10 -7 (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1662 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))
-((-2918 (((-583 (-153 |#2|)) |#1| |#2|) 45)))
-(((-141 |#1| |#2|) (-10 -7 (-15 -2918 ((-583 (-153 |#2|)) |#1| |#2|))) (-1130 (-153 (-517))) (-13 (-333) (-777))) (T -141))
-((-2918 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1130 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -2918 ((-583 (-153 |#2|)) |#1| |#2|)))
-((-2750 (((-107) $ $) NIL)) (-2638 (($) 15)) (-2817 (($) 14)) (-2295 (((-843)) 22)) (-3985 (((-1056) $) NIL)) (-3512 (((-517) $) 19)) (-3206 (((-1021) $) NIL)) (-1289 (($) 16)) (-1205 (($ (-517)) 23)) (-2256 (((-787) $) 29)) (-3337 (($) 17)) (-1547 (((-107) $ $) 13)) (-1642 (($ $ $) 11)) (* (($ (-843) $) 21) (($ (-199) $) 8)))
-(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1642 ($ $ $)) (-15 -2817 ($)) (-15 -2638 ($)) (-15 -1289 ($)) (-15 -3337 ($)) (-15 -3512 ((-517) $)) (-15 -2295 ((-843))) (-15 -1205 ($ (-517)))))) (T -142))
-((-1642 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-2817 (*1 *1) (-5 *1 (-142))) (-2638 (*1 *1) (-5 *1 (-142))) (-1289 (*1 *1) (-5 *1 (-142))) (-3337 (*1 *1) (-5 *1 (-142))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-2295 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (-1205 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1642 ($ $ $)) (-15 -2817 ($)) (-15 -2638 ($)) (-15 -1289 ($)) (-15 -3337 ($)) (-15 -3512 ((-517) $)) (-15 -2295 ((-843))) (-15 -1205 ($ (-517)))))
-((-3036 ((|#2| |#2| (-996 |#2|)) 87) ((|#2| |#2| (-1073)) 67)) (-3485 ((|#2| |#2| (-996 |#2|)) 86) ((|#2| |#2| (-1073)) 66)) (-3647 ((|#2| |#2| |#2|) 27)) (-3072 (((-109) (-109)) 97)) (-2249 ((|#2| (-583 |#2|)) 116)) (-3194 ((|#2| (-583 |#2|)) 134)) (-3673 ((|#2| (-583 |#2|)) 124)) (-3274 ((|#2| |#2|) 122)) (-3297 ((|#2| (-583 |#2|)) 109)) (-2686 ((|#2| (-583 |#2|)) 110)) (-1390 ((|#2| (-583 |#2|)) 132)) (-3210 ((|#2| |#2| (-1073)) 54) ((|#2| |#2|) 53)) (-3663 ((|#2| |#2|) 23)) (-1270 ((|#2| |#2| |#2|) 26)) (-4074 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38)))
-(((-143 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -3647 (|#2| |#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-996 |#2|))) (-15 -3485 (|#2| |#2| (-1073))) (-15 -3485 (|#2| |#2| (-996 |#2|))) (-15 -3274 (|#2| |#2|)) (-15 -1390 (|#2| (-583 |#2|))) (-15 -3673 (|#2| (-583 |#2|))) (-15 -3194 (|#2| (-583 |#2|))) (-15 -3297 (|#2| (-583 |#2|))) (-15 -2686 (|#2| (-583 |#2|))) (-15 -2249 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143))
-((-2249 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3485 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-3485 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3036 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-3036 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3647 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1270 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))))
-(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -3647 (|#2| |#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-996 |#2|))) (-15 -3485 (|#2| |#2| (-1073))) (-15 -3485 (|#2| |#2| (-996 |#2|))) (-15 -3274 (|#2| |#2|)) (-15 -1390 (|#2| (-583 |#2|))) (-15 -3673 (|#2| (-583 |#2|))) (-15 -3194 (|#2| (-583 |#2|))) (-15 -3297 (|#2| (-583 |#2|))) (-15 -2686 (|#2| (-583 |#2|))) (-15 -2249 (|#2| (-583 |#2|))))
-((-1295 ((|#1| |#1| |#1|) 52)) (-3030 ((|#1| |#1| |#1|) 49)) (-3647 ((|#1| |#1| |#1|) 43)) (-3790 ((|#1| |#1|) 34)) (-1807 ((|#1| |#1| (-583 |#1|)) 42)) (-3663 ((|#1| |#1|) 36)) (-1270 ((|#1| |#1| |#1|) 39)))
-(((-144 |#1|) (-10 -7 (-15 -1270 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1807 (|#1| |#1| (-583 |#1|))) (-15 -3790 (|#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|))) (-502)) (T -144))
-((-1295 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3030 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3647 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3790 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1807 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-3663 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1270 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(-10 -7 (-15 -1270 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1807 (|#1| |#1| (-583 |#1|))) (-15 -3790 (|#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|)))
-((-3036 (($ $ (-1073)) 12) (($ $ (-996 $)) 11)) (-3485 (($ $ (-1073)) 10) (($ $ (-996 $)) 9)) (-3647 (($ $ $) 8)) (-3210 (($ $) 14) (($ $ (-1073)) 13)) (-3663 (($ $) 7)) (-1270 (($ $ $) 6)))
-(((-145) (-1184)) (T -145))
-((-3210 (*1 *1 *1) (-4 *1 (-145))) (-3210 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3036 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) (-3485 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3485 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))))
-(-13 (-130) (-10 -8 (-15 -3210 ($ $)) (-15 -3210 ($ $ (-1073))) (-15 -3036 ($ $ (-1073))) (-15 -3036 ($ $ (-996 $))) (-15 -3485 ($ $ (-1073))) (-15 -3485 ($ $ (-996 $)))))
+((-3784 (((-2 (|:| -2059 (-703)) (|:| -1883 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 69)) (-1729 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 51)) (-3293 (((-2 (|:| -1883 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-3855 ((|#1| |#3| |#3|) 39)) (-1979 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-2106 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 48)))
+(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -3293 ((-2 (|:| -1883 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1729 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -3784 ((-2 (|:| -2059 (-703)) (|:| -1883 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -3855 (|#1| |#3| |#3|)) (-15 -1979 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2106 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1113) (-1131 |#1|) (-1131 (-377 |#2|))) (T -135))
+((-2106 (*1 *2 *3 *3) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))) (-1979 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1131 *3)))) (-3855 (*1 *2 *3 *3) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-1113)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1131 (-377 *4))))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1113)) (-4 *6 (-1131 *5)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1131 *3)))) (-1729 (*1 *2 *3) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))) (-3293 (*1 *2 *3) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -1883 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))))
+(-10 -7 (-15 -3293 ((-2 (|:| -1883 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1729 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -3784 ((-2 (|:| -2059 (-703)) (|:| -1883 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -3855 (|#1| |#3| |#3|)) (-15 -1979 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2106 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|)))
+((-2963 (((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|)) 31)))
+(((-136 |#1| |#2|) (-10 -7 (-15 -2963 ((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|)))) (-502) (-150 |#1|)) (T -136))
+((-2963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))))
+(-10 -7 (-15 -2963 ((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|))))
+((-3451 (($ (-1 (-107) |#2|) $) 29)) (-1667 (($ $) 36)) (-1971 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-2521 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2293 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-2925 (((-107) (-1 (-107) |#2|) $) 16)) (-3105 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-3883 (((-107) (-1 (-107) |#2|) $) 15)) (-2210 (((-703) $) 11)))
+(((-137 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1|)) (-15 -1971 (|#1| |#2| |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3451 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1971 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2293 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3105 ((-703) |#2| |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2210 ((-703) |#1|))) (-138 |#2|) (-1109)) (T -137))
+NIL
+(-10 -8 (-15 -1667 (|#1| |#1|)) (-15 -1971 (|#1| |#2| |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3451 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1971 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2293 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3105 ((-703) |#2| |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2210 ((-703) |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-3451 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1667 (($ $) 41 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183))) (($ |#1| $) 42 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 49)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-138 |#1|) (-1185) (-1109)) (T -138))
+((-2197 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-138 *3)))) (-2293 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) (-2521 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) (-2521 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) (-1971 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *3)) (-4 *3 (-1109)))) (-3451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *3)) (-4 *3 (-1109)))) (-2521 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) (-1971 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) (-1667 (*1 *1 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))))
+(-13 (-456 |t#1|) (-10 -8 (-15 -2197 ($ (-583 |t#1|))) (-15 -2293 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4183)) (PROGN (-15 -2521 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2521 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1971 ($ (-1 (-107) |t#1|) $)) (-15 -3451 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2521 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1971 ($ |t#1| $)) (-15 -1667 ($ $))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) 85)) (-2955 (((-107) $) NIL)) (-1343 (($ |#2| (-583 (-843))) 56)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2062 (($ (-843)) 48)) (-2586 (((-125)) 23)) (-2182 (((-787) $) 68) (($ (-517)) 46) (($ |#2|) 47)) (-3086 ((|#2| $ (-583 (-843))) 58)) (-1865 (((-703)) 20)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 40 T CONST)) (-2306 (($) 44 T CONST)) (-1539 (((-107) $ $) 26)) (-1649 (($ $ |#2|) NIL)) (-1637 (($ $) 34) (($ $ $) 32)) (-1626 (($ $ $) 30)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-139 |#1| |#2| |#3|) (-13 (-961) (-37 |#2|) (-1161 |#2|) (-10 -8 (-15 -2062 ($ (-843))) (-15 -1343 ($ |#2| (-583 (-843)))) (-15 -3086 (|#2| $ (-583 (-843)))) (-15 -1568 ((-3 $ "failed") $)))) (-843) (-333) (-910 |#1| |#2|)) (T -139))
+((-1568 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))))
+(-13 (-961) (-37 |#2|) (-1161 |#2|) (-10 -8 (-15 -2062 ($ (-843))) (-15 -1343 ($ |#2| (-583 (-843)))) (-15 -3086 (|#2| $ (-583 (-843)))) (-15 -1568 ((-3 $ "failed") $))))
+((-2900 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199)) 39)) (-3413 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 64)) (-1234 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 59)))
+(((-140) (-10 -7 (-15 -1234 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1234 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -3413 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -3413 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -2900 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -1234 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -1234 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))) (T -140))
+((-1234 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) (-1234 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) (-2900 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))) (-3413 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1234 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1234 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))))
+(-10 -7 (-15 -1234 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1234 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -3413 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -3413 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -2900 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -1234 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -1234 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))
+((-1487 (((-583 (-153 |#2|)) |#1| |#2|) 45)))
+(((-141 |#1| |#2|) (-10 -7 (-15 -1487 ((-583 (-153 |#2|)) |#1| |#2|))) (-1131 (-153 (-517))) (-13 (-333) (-777))) (T -141))
+((-1487 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1131 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -1487 ((-583 (-153 |#2|)) |#1| |#2|)))
+((-2571 (((-107) $ $) NIL)) (-3671 (($) 15)) (-2782 (($) 14)) (-3448 (((-843)) 22)) (-3865 (((-1057) $) NIL)) (-2845 (((-517) $) 19)) (-3094 (((-1021) $) NIL)) (-2713 (($) 16)) (-2681 (($ (-517)) 23)) (-2182 (((-787) $) 29)) (-3852 (($) 17)) (-1539 (((-107) $ $) 13)) (-1626 (($ $ $) 11)) (* (($ (-843) $) 21) (($ (-199) $) 8)))
+(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1626 ($ $ $)) (-15 -2782 ($)) (-15 -3671 ($)) (-15 -2713 ($)) (-15 -3852 ($)) (-15 -2845 ((-517) $)) (-15 -3448 ((-843))) (-15 -2681 ($ (-517)))))) (T -142))
+((-1626 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-2782 (*1 *1) (-5 *1 (-142))) (-3671 (*1 *1) (-5 *1 (-142))) (-2713 (*1 *1) (-5 *1 (-142))) (-3852 (*1 *1) (-5 *1 (-142))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-3448 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (-2681 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1626 ($ $ $)) (-15 -2782 ($)) (-15 -3671 ($)) (-15 -2713 ($)) (-15 -3852 ($)) (-15 -2845 ((-517) $)) (-15 -3448 ((-843))) (-15 -2681 ($ (-517)))))
+((-1272 ((|#2| |#2| (-996 |#2|)) 87) ((|#2| |#2| (-1074)) 67)) (-2591 ((|#2| |#2| (-996 |#2|)) 86) ((|#2| |#2| (-1074)) 66)) (-1808 ((|#2| |#2| |#2|) 27)) (-3270 (((-109) (-109)) 97)) (-1297 ((|#2| (-583 |#2|)) 116)) (-1983 ((|#2| (-583 |#2|)) 134)) (-3856 ((|#2| (-583 |#2|)) 124)) (-1492 ((|#2| |#2|) 122)) (-1723 ((|#2| (-583 |#2|)) 109)) (-2867 ((|#2| (-583 |#2|)) 110)) (-2856 ((|#2| (-583 |#2|)) 132)) (-2100 ((|#2| |#2| (-1074)) 54) ((|#2| |#2|) 53)) (-1938 ((|#2| |#2|) 23)) (-1679 ((|#2| |#2| |#2|) 26)) (-3494 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38)))
+(((-143 |#1| |#2|) (-10 -7 (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1679 (|#2| |#2| |#2|)) (-15 -1808 (|#2| |#2| |#2|)) (-15 -1938 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -2100 (|#2| |#2| (-1074))) (-15 -1272 (|#2| |#2| (-1074))) (-15 -1272 (|#2| |#2| (-996 |#2|))) (-15 -2591 (|#2| |#2| (-1074))) (-15 -2591 (|#2| |#2| (-996 |#2|))) (-15 -1492 (|#2| |#2|)) (-15 -2856 (|#2| (-583 |#2|))) (-15 -3856 (|#2| (-583 |#2|))) (-15 -1983 (|#2| (-583 |#2|))) (-15 -1723 (|#2| (-583 |#2|))) (-15 -2867 (|#2| (-583 |#2|))) (-15 -1297 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143))
+((-1297 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-2591 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-2591 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-1272 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-1272 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1938 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1808 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1679 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))))
+(-10 -7 (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1679 (|#2| |#2| |#2|)) (-15 -1808 (|#2| |#2| |#2|)) (-15 -1938 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -2100 (|#2| |#2| (-1074))) (-15 -1272 (|#2| |#2| (-1074))) (-15 -1272 (|#2| |#2| (-996 |#2|))) (-15 -2591 (|#2| |#2| (-1074))) (-15 -2591 (|#2| |#2| (-996 |#2|))) (-15 -1492 (|#2| |#2|)) (-15 -2856 (|#2| (-583 |#2|))) (-15 -3856 (|#2| (-583 |#2|))) (-15 -1983 (|#2| (-583 |#2|))) (-15 -1723 (|#2| (-583 |#2|))) (-15 -2867 (|#2| (-583 |#2|))) (-15 -1297 (|#2| (-583 |#2|))))
+((-2776 ((|#1| |#1| |#1|) 52)) (-1228 ((|#1| |#1| |#1|) 49)) (-1808 ((|#1| |#1| |#1|) 43)) (-3648 ((|#1| |#1|) 34)) (-1208 ((|#1| |#1| (-583 |#1|)) 42)) (-1938 ((|#1| |#1|) 36)) (-1679 ((|#1| |#1| |#1|) 39)))
+(((-144 |#1|) (-10 -7 (-15 -1679 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#1|)) (-15 -1208 (|#1| |#1| (-583 |#1|))) (-15 -3648 (|#1| |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1228 (|#1| |#1| |#1|)) (-15 -2776 (|#1| |#1| |#1|))) (-502)) (T -144))
+((-2776 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1228 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1808 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3648 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1208 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-1938 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1679 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(-10 -7 (-15 -1679 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#1|)) (-15 -1208 (|#1| |#1| (-583 |#1|))) (-15 -3648 (|#1| |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1228 (|#1| |#1| |#1|)) (-15 -2776 (|#1| |#1| |#1|)))
+((-1272 (($ $ (-1074)) 12) (($ $ (-996 $)) 11)) (-2591 (($ $ (-1074)) 10) (($ $ (-996 $)) 9)) (-1808 (($ $ $) 8)) (-2100 (($ $) 14) (($ $ (-1074)) 13)) (-1938 (($ $) 7)) (-1679 (($ $ $) 6)))
+(((-145) (-1185)) (T -145))
+((-2100 (*1 *1 *1) (-4 *1 (-145))) (-2100 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) (-1272 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) (-1272 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) (-2591 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) (-2591 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))))
+(-13 (-130) (-10 -8 (-15 -2100 ($ $)) (-15 -2100 ($ $ (-1074))) (-15 -1272 ($ $ (-1074))) (-15 -1272 ($ $ (-996 $))) (-15 -2591 ($ $ (-1074))) (-15 -2591 ($ $ (-996 $)))))
(((-130) . T))
-((-2750 (((-107) $ $) NIL)) (-2123 (($ (-517)) 13) (($ $ $) 14)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 17)) (-1547 (((-107) $ $) 9)))
-(((-146) (-13 (-1003) (-10 -8 (-15 -2123 ($ (-517))) (-15 -2123 ($ $ $))))) (T -146))
-((-2123 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-2123 (*1 *1 *1 *1) (-5 *1 (-146))))
-(-13 (-1003) (-10 -8 (-15 -2123 ($ (-517))) (-15 -2123 ($ $ $))))
-((-3072 (((-109) (-1073)) 97)))
-(((-147) (-10 -7 (-15 -3072 ((-109) (-1073))))) (T -147))
-((-3072 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-109)) (-5 *1 (-147)))))
-(-10 -7 (-15 -3072 ((-109) (-1073))))
-((-3137 ((|#3| |#3|) 19)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3137 (|#3| |#3|))) (-961) (-1130 |#1|) (-1130 |#2|)) (T -148))
-((-3137 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1130 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1130 *4)))))
-(-10 -7 (-15 -3137 (|#3| |#3|)))
-((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 215)) (-1472 ((|#2| $) 95)) (-1865 (($ $) 242)) (-1721 (($ $) 236)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 39)) (-1839 (($ $) 240)) (-1701 (($ $) 234)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 137)) (-2518 (($ $ $) 220)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 153) (((-623 |#2|) (-623 $)) 147)) (-3225 (($ (-1069 |#2|)) 118) (((-3 $ "failed") (-377 (-1069 |#2|))) NIL)) (-3621 (((-3 $ "failed") $) 207)) (-1256 (((-3 (-377 (-517)) "failed") $) 197)) (-1355 (((-107) $) 192)) (-3364 (((-377 (-517)) $) 195)) (-2261 (((-843)) 88)) (-2497 (($ $ $) 222)) (-2658 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2645 (($) 231)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 184) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 189)) (-1506 ((|#2| $) 93)) (-3777 (((-1069 |#2|) $) 120)) (-1893 (($ (-1 |#2| |#2|) $) 101)) (-1867 (($ $) 233)) (-3216 (((-1069 |#2|) $) 119)) (-4118 (($ $) 200)) (-2228 (($) 96)) (-2561 (((-388 (-1069 $)) (-1069 $)) 87)) (-2209 (((-388 (-1069 $)) (-1069 $)) 56)) (-2476 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-2624 (($ $) 232)) (-3146 (((-703) $) 217)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 226)) (-3010 ((|#2| (-1153 $)) NIL) ((|#2|) 90)) (-3127 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2135 (((-1069 |#2|)) 113)) (-1853 (($ $) 241)) (-1711 (($ $) 235)) (-4114 (((-1153 |#2|) $ (-1153 $)) 126) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) 109) (((-623 |#2|) (-1153 $)) NIL)) (-3645 (((-1153 |#2|) $) NIL) (($ (-1153 |#2|)) NIL) (((-1069 |#2|) $) NIL) (($ (-1069 |#2|)) NIL) (((-814 (-517)) $) 175) (((-814 (-349)) $) 179) (((-153 (-349)) $) 165) (((-153 (-199)) $) 160) (((-493) $) 171)) (-1487 (($ $) 97)) (-2256 (((-787) $) 136) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-3669 (((-1069 |#2|) $) 23)) (-2961 (((-703)) 99)) (-3707 (($ $) 245)) (-1788 (($ $) 239)) (-3683 (($ $) 243)) (-1765 (($ $) 237)) (-2921 ((|#2| $) 230)) (-3695 (($ $) 244)) (-1777 (($ $) 238)) (-3710 (($ $) 155)) (-1547 (((-107) $ $) 103)) (-1572 (((-107) $ $) 191)) (-1654 (($ $) 105) (($ $ $) NIL)) (-1642 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 264) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
-(((-149 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2256 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-153 (-199)) |#1|)) (-15 -3645 ((-153 (-349)) |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2645 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2658 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1487 (|#1| |#1|)) (-15 -2228 (|#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3225 ((-3 |#1| "failed") (-377 (-1069 |#2|)))) (-15 -3216 ((-1069 |#2|) |#1|)) (-15 -3645 (|#1| (-1069 |#2|))) (-15 -3225 (|#1| (-1069 |#2|))) (-15 -2135 ((-1069 |#2|))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -3669 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -1506 (|#2| |#1|)) (-15 -1472 (|#2| |#1|)) (-15 -2261 ((-843))) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149))
-((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-2261 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3010 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2135 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))))
-(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2256 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-153 (-199)) |#1|)) (-15 -3645 ((-153 (-349)) |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2645 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2658 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1487 (|#1| |#1|)) (-15 -2228 (|#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3225 ((-3 |#1| "failed") (-377 (-1069 |#2|)))) (-15 -3216 ((-1069 |#2|) |#1|)) (-15 -3645 (|#1| (-1069 |#2|))) (-15 -3225 (|#1| (-1069 |#2|))) (-15 -2135 ((-1069 |#2|))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -3669 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -1506 (|#2| |#1|)) (-15 -1472 (|#2| |#1|)) (-15 -2261 ((-843))) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1213 (($ $) 94 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-2454 (((-107) $) 96 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-1865 (($ $) 228 (|has| |#1| (-1094)))) (-1721 (($ $) 211 (|has| |#1| (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2535 (($ $) 113 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2759 (((-388 $) $) 114 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3766 (($ $) 241 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1707 (((-107) $ $) 104 (|has| |#1| (-278)))) (-1611 (((-703)) 87 (|has| |#1| (-338)))) (-1839 (($ $) 227 (|has| |#1| (-1094)))) (-1701 (($ $) 212 (|has| |#1| (-1094)))) (-1887 (($ $) 226 (|has| |#1| (-1094)))) (-1743 (($ $) 213 (|has| |#1| (-1094)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3189 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2518 (($ $ $) 108 (|has| |#1| (-278)))) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-3225 (($ (-1069 |#1|)) 158) (((-3 $ "failed") (-377 (-1069 |#1|))) 155 (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 253)) (-1256 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-1355 (((-107) $) 248 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| |#1| (-338)))) (-2497 (($ $ $) 107 (|has| |#1| (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-3442 (($) 149 (|has| |#1| (-319)))) (-3391 (((-107) $) 150 (|has| |#1| (-319)))) (-2378 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-3849 (((-107) $) 115 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2658 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-970)) (|has| |#1| (-1094))))) (-2645 (($) 238 (|has| |#1| (-1094)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 261 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 260 (|has| |#1| (-808 (-349))))) (-3972 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 240 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-1506 ((|#1| $) 51)) (-1319 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-3777 (((-1069 |#1|) $) 44 (|has| |#1| (-333)))) (-2967 (($ $ $) 207 (|has| |#1| (-779)))) (-3099 (($ $ $) 206 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 262)) (-1549 (((-843) $) 89 (|has| |#1| (-338)))) (-1867 (($ $) 235 (|has| |#1| (-1094)))) (-3216 (((-1069 |#1|) $) 156)) (-1365 (($ (-583 $)) 100 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 99 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 116 (|has| |#1| (-333)))) (-2836 (($) 143 (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| |#1| (-338)))) (-2228 (($) 257)) (-3785 ((|#1| $) 254)) (-3206 (((-1021) $) 10)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1401 (($ (-583 $)) 98 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 97 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3755 (((-388 $) $) 112 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| |#1| (-278)))) (-2476 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-2624 (($ $) 236 (|has| |#1| (-1094)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 263 (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) 105 (|has| |#1| (-278)))) (-1449 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| |#1| (-278)))) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-1620 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-3127 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1073)) (-583 (-703))) 130 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 131 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 132 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 133 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 135 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2135 (((-1069 |#1|)) 159)) (-1898 (($ $) 225 (|has| |#1| (-1094)))) (-1754 (($ $) 214 (|has| |#1| (-1094)))) (-1766 (($) 148 (|has| |#1| (-319)))) (-1876 (($ $) 224 (|has| |#1| (-1094)))) (-1732 (($ $) 215 (|has| |#1| (-1094)))) (-1853 (($ $) 223 (|has| |#1| (-1094)))) (-1711 (($ $) 216 (|has| |#1| (-1094)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62) (((-1069 |#1|) $) 171) (($ (-1069 |#1|)) 157) (((-814 (-517)) $) 259 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 258 (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-937))) (((-153 (-199)) $) 209 (|has| |#1| (-937))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 256)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (-3807 (-4035 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-319))))) (-3392 (($ |#1| |#1|) 255)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) 91 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1328 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3807 (-4035 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-132))))) (-3669 (((-1069 |#1|) $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-3707 (($ $) 234 (|has| |#1| (-1094)))) (-1788 (($ $) 222 (|has| |#1| (-1094)))) (-3329 (((-107) $ $) 95 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3683 (($ $) 233 (|has| |#1| (-1094)))) (-1765 (($ $) 221 (|has| |#1| (-1094)))) (-3731 (($ $) 232 (|has| |#1| (-1094)))) (-1814 (($ $) 220 (|has| |#1| (-1094)))) (-2921 ((|#1| $) 250 (|has| |#1| (-1094)))) (-1492 (($ $) 231 (|has| |#1| (-1094)))) (-1827 (($ $) 219 (|has| |#1| (-1094)))) (-3719 (($ $) 230 (|has| |#1| (-1094)))) (-1802 (($ $) 218 (|has| |#1| (-1094)))) (-3695 (($ $) 229 (|has| |#1| (-1094)))) (-1777 (($ $) 217 (|has| |#1| (-1094)))) (-3710 (($ $) 251 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1073)) (-583 (-703))) 126 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 127 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 128 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 129 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 134 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1606 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1667 (($ $ $) 121 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094)))) (($ $ $) 237 (|has| |#1| (-1094))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
-(((-150 |#1|) (-1184) (-156)) (T -150))
-((-1506 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2228 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1487 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3392 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3710 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1094)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
-(-13 (-657 |t#1| (-1069 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-806 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3392) (-15 -2228 ($)) (-15 -1487 ($ $)) (-15 -3392 ($ |t#1| |t#1|)) (-15 -3785 (|t#1| $)) (-15 -3775 (|t#1| $)) (-15 -1506 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |noBranch|) (IF (|has| |t#1| (-6 -4179)) (-6 -4179) |noBranch|) (IF (|has| |t#1| (-6 -4176)) (-6 -4176) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-937)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 ($ $)) |noBranch|) (IF (|has| |t#1| (-1094)) (PROGN (-6 (-1094)) (-15 -2921 (|t#1| $)) (IF (|has| |t#1| (-918)) (-6 (-918)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -2658 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-831)) (IF (|has| |t#1| (-278)) (-6 (-831)) |noBranch|) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1094)) ((-91) |has| |#1| (-1094)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-937)) ((-558 (-153 (-349))) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-558 (-1069 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3807 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1094)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3807 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| (-1069 |#1|)) . T) ((-379 |#1| (-1069 |#1|)) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1094)) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| (-1069 |#1|)) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) -12 (|has| |#1| (-278)) (|has| |#1| (-831))) ((-842) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-918) -12 (|has| |#1| (-918)) (|has| |#1| (-1094))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-319)) ((-1094) |has| |#1| (-1094)) ((-1097) |has| |#1| (-1094)) ((-1108) . T) ((-1112) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))
-((-3755 (((-388 |#2|) |#2|) 63)))
-(((-151 |#1| |#2|) (-10 -7 (-15 -3755 ((-388 |#2|) |#2|))) (-278) (-1130 (-153 |#1|))) (T -151))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
-(-10 -7 (-15 -3755 ((-388 |#2|) |#2|)))
-((-1893 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14)))
-(((-152 |#1| |#2|) (-10 -7 (-15 -1893 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))))
-(-10 -7 (-15 -1893 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3055 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-1472 ((|#1| $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-1094)))) (-1721 (($ $) NIL (|has| |#1| (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2535 (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2759 (((-388 $) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3766 (($ $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-278)))) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-1839 (($ $) NIL (|has| |#1| (-1094)))) (-1701 (($ $) NIL (|has| |#1| (-1094)))) (-1887 (($ $) NIL (|has| |#1| (-1094)))) (-1743 (($ $) NIL (|has| |#1| (-1094)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2518 (($ $ $) NIL (|has| |#1| (-278)))) (-2410 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3225 (($ (-1069 |#1|)) NIL) (((-3 $ "failed") (-377 (-1069 |#1|))) NIL (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 13)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-3442 (($) NIL (|has| |#1| (-319)))) (-3391 (((-107) $) NIL (|has| |#1| (-319)))) (-2378 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-3849 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2658 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-970)) (|has| |#1| (-1094))))) (-2645 (($) NIL (|has| |#1| (-1094)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-3972 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-3848 (((-107) $) 35)) (-3824 (($ $ (-517)) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-1506 ((|#1| $) 46)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-3777 (((-1069 |#1|) $) NIL (|has| |#1| (-333)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1867 (($ $) NIL (|has| |#1| (-1094)))) (-3216 (((-1069 |#1|) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2836 (($) NIL (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-2228 (($) NIL)) (-3785 ((|#1| $) 15)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-278)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3755 (((-388 $) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-278)))) (-2476 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-2624 (($ $) NIL (|has| |#1| (-1094)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) NIL (|has| |#1| (-278)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-278)))) (-3010 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-3127 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2135 (((-1069 |#1|)) NIL)) (-1898 (($ $) NIL (|has| |#1| (-1094)))) (-1754 (($ $) NIL (|has| |#1| (-1094)))) (-1766 (($) NIL (|has| |#1| (-319)))) (-1876 (($ $) NIL (|has| |#1| (-1094)))) (-1732 (($ $) NIL (|has| |#1| (-1094)))) (-1853 (($ $) NIL (|has| |#1| (-1094)))) (-1711 (($ $) NIL (|has| |#1| (-1094)))) (-4114 (((-1153 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL) (((-1069 |#1|) $) NIL) (($ (-1069 |#1|)) NIL) (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-937))) (((-153 (-199)) $) NIL (|has| |#1| (-937))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) 45)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-319))))) (-3392 (($ |#1| |#1|) 37)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1328 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-3669 (((-1069 |#1|) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL)) (-3707 (($ $) NIL (|has| |#1| (-1094)))) (-1788 (($ $) NIL (|has| |#1| (-1094)))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3683 (($ $) NIL (|has| |#1| (-1094)))) (-1765 (($ $) NIL (|has| |#1| (-1094)))) (-3731 (($ $) NIL (|has| |#1| (-1094)))) (-1814 (($ $) NIL (|has| |#1| (-1094)))) (-2921 ((|#1| $) NIL (|has| |#1| (-1094)))) (-1492 (($ $) NIL (|has| |#1| (-1094)))) (-1827 (($ $) NIL (|has| |#1| (-1094)))) (-3719 (($ $) NIL (|has| |#1| (-1094)))) (-1802 (($ $) NIL (|has| |#1| (-1094)))) (-3695 (($ $) NIL (|has| |#1| (-1094)))) (-1777 (($ $) NIL (|has| |#1| (-1094)))) (-3710 (($ $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 28 T CONST)) (-2409 (($) 30 T CONST)) (-2482 (((-1056) $) 23 (|has| |#1| (-760))) (((-1056) $ (-107)) 25 (|has| |#1| (-760))) (((-1158) (-754) $) 26 (|has| |#1| (-760))) (((-1158) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-2731 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 39)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094)))) (($ $ $) NIL (|has| |#1| (-1094))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
+((-2571 (((-107) $ $) NIL)) (-1356 (($ (-517)) 13) (($ $ $) 14)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 17)) (-1539 (((-107) $ $) 9)))
+(((-146) (-13 (-1003) (-10 -8 (-15 -1356 ($ (-517))) (-15 -1356 ($ $ $))))) (T -146))
+((-1356 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-1356 (*1 *1 *1 *1) (-5 *1 (-146))))
+(-13 (-1003) (-10 -8 (-15 -1356 ($ (-517))) (-15 -1356 ($ $ $))))
+((-3270 (((-109) (-1074)) 97)))
+(((-147) (-10 -7 (-15 -3270 ((-109) (-1074))))) (T -147))
+((-3270 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-109)) (-5 *1 (-147)))))
+(-10 -7 (-15 -3270 ((-109) (-1074))))
+((-2559 ((|#3| |#3|) 19)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2559 (|#3| |#3|))) (-961) (-1131 |#1|) (-1131 |#2|)) (T -148))
+((-2559 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1131 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1131 *4)))))
+(-10 -7 (-15 -2559 (|#3| |#3|)))
+((-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 215)) (-1470 ((|#2| $) 95)) (-1834 (($ $) 242)) (-1710 (($ $) 236)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 39)) (-1812 (($ $) 240)) (-1685 (($ $) 234)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-3076 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 137)) (-2383 (($ $ $) 220)) (-4012 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 153) (((-623 |#2|) (-623 $)) 147)) (-2521 (($ (-1070 |#2|)) 118) (((-3 $ "failed") (-377 (-1070 |#2|))) NIL)) (-1568 (((-3 $ "failed") $) 207)) (-1422 (((-3 (-377 (-517)) "failed") $) 197)) (-2712 (((-107) $) 192)) (-4078 (((-377 (-517)) $) 195)) (-3795 (((-843)) 88)) (-2366 (($ $ $) 222)) (-2587 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2475 (($) 231)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 184) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 189)) (-2289 ((|#2| $) 93)) (-3523 (((-1070 |#2|) $) 120)) (-1857 (($ (-1 |#2| |#2|) $) 101)) (-1826 (($ $) 233)) (-2511 (((-1070 |#2|) $) 119)) (-4123 (($ $) 200)) (-4077 (($) 96)) (-1206 (((-388 (-1070 $)) (-1070 $)) 87)) (-3923 (((-388 (-1070 $)) (-1070 $)) 56)) (-2349 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-2459 (($ $) 232)) (-2623 (((-703) $) 217)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 226)) (-4042 ((|#2| (-1154 $)) NIL) ((|#2|) 90)) (-1699 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-1457 (((-1070 |#2|)) 113)) (-1824 (($ $) 241)) (-1698 (($ $) 235)) (-2575 (((-1154 |#2|) $ (-1154 $)) 126) (((-623 |#2|) (-1154 $) (-1154 $)) NIL) (((-1154 |#2|) $) 109) (((-623 |#2|) (-1154 $)) NIL)) (-3582 (((-1154 |#2|) $) NIL) (($ (-1154 |#2|)) NIL) (((-1070 |#2|) $) NIL) (($ (-1070 |#2|)) NIL) (((-814 (-517)) $) 175) (((-814 (-349)) $) 179) (((-153 (-349)) $) 165) (((-153 (-199)) $) 160) (((-493) $) 171)) (-2013 (($ $) 97)) (-2182 (((-787) $) 136) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-3804 (((-1070 |#2|) $) 23)) (-1865 (((-703)) 99)) (-3642 (($ $) 245)) (-1773 (($ $) 239)) (-3622 (($ $) 243)) (-1751 (($ $) 237)) (-1516 ((|#2| $) 230)) (-3631 (($ $) 244)) (-1762 (($ $) 238)) (-1221 (($ $) 155)) (-1539 (((-107) $ $) 103)) (-1560 (((-107) $ $) 191)) (-1637 (($ $) 105) (($ $ $) NIL)) (-1626 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 264) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
+(((-149 |#1| |#2|) (-10 -8 (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -2182 (|#1| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1692 ((-2 (|:| -1697 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2623 ((-703) |#1|)) (-15 -1412 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -4123 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1560 ((-107) |#1| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3582 ((-153 (-199)) |#1|)) (-15 -3582 ((-153 (-349)) |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2475 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3923 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -1206 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2963 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -2587 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1516 (|#2| |#1|)) (-15 -1221 (|#1| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2013 (|#1| |#1|)) (-15 -4077 (|#1|)) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3289 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2521 ((-3 |#1| "failed") (-377 (-1070 |#2|)))) (-15 -2511 ((-1070 |#2|) |#1|)) (-15 -3582 (|#1| (-1070 |#2|))) (-15 -2521 (|#1| (-1070 |#2|))) (-15 -1457 ((-1070 |#2|))) (-15 -4012 ((-623 |#2|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -3582 ((-1070 |#2|) |#1|)) (-15 -4042 (|#2|)) (-15 -3582 (|#1| (-1154 |#2|))) (-15 -3582 ((-1154 |#2|) |#1|)) (-15 -2575 ((-623 |#2|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1|)) (-15 -3523 ((-1070 |#2|) |#1|)) (-15 -3804 ((-1070 |#2|) |#1|)) (-15 -4042 (|#2| (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2289 (|#2| |#1|)) (-15 -1470 (|#2| |#1|)) (-15 -3795 ((-843))) (-15 -2182 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1568 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1626 (|#1| |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149))
+((-1865 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3795 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-4042 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-1457 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))))
+(-10 -8 (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -2182 (|#1| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1692 ((-2 (|:| -1697 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2623 ((-703) |#1|)) (-15 -1412 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -4123 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1560 ((-107) |#1| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3582 ((-153 (-199)) |#1|)) (-15 -3582 ((-153 (-349)) |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2475 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3923 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -1206 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2963 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -2587 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1516 (|#2| |#1|)) (-15 -1221 (|#1| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2013 (|#1| |#1|)) (-15 -4077 (|#1|)) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3289 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2521 ((-3 |#1| "failed") (-377 (-1070 |#2|)))) (-15 -2511 ((-1070 |#2|) |#1|)) (-15 -3582 (|#1| (-1070 |#2|))) (-15 -2521 (|#1| (-1070 |#2|))) (-15 -1457 ((-1070 |#2|))) (-15 -4012 ((-623 |#2|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -3582 ((-1070 |#2|) |#1|)) (-15 -4042 (|#2|)) (-15 -3582 (|#1| (-1154 |#2|))) (-15 -3582 ((-1154 |#2|) |#1|)) (-15 -2575 ((-623 |#2|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1|)) (-15 -3523 ((-1070 |#2|) |#1|)) (-15 -3804 ((-1070 |#2|) |#1|)) (-15 -4042 (|#2| (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2289 (|#2| |#1|)) (-15 -1470 (|#2| |#1|)) (-15 -3795 ((-843))) (-15 -2182 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1568 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1626 (|#1| |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 93 (-3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3209 (($ $) 94 (-3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1452 (((-107) $) 96 (-3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3129 (((-623 |#1|) (-1154 $)) 46) (((-623 |#1|)) 61)) (-1470 ((|#1| $) 52)) (-1834 (($ $) 228 (|has| |#1| (-1095)))) (-1710 (($ $) 211 (|has| |#1| (-1095)))) (-4160 (((-1083 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-1387 (((-3 $ "failed") $ $) 19)) (-2594 (((-388 (-1070 $)) (-1070 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3938 (($ $) 113 (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3490 (((-388 $) $) 114 (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3706 (($ $) 241 (-12 (|has| |#1| (-918)) (|has| |#1| (-1095))))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3765 (((-107) $ $) 104 (|has| |#1| (-278)))) (-1598 (((-703)) 87 (|has| |#1| (-338)))) (-1812 (($ $) 227 (|has| |#1| (-1095)))) (-1685 (($ $) 212 (|has| |#1| (-1095)))) (-1851 (($ $) 226 (|has| |#1| (-1095)))) (-1731 (($ $) 213 (|has| |#1| (-1095)))) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3076 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-3291 (($ (-1154 |#1|) (-1154 $)) 48) (($ (-1154 |#1|)) 64)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2383 (($ $ $) 108 (|has| |#1| (-278)))) (-2148 (((-623 |#1|) $ (-1154 $)) 53) (((-623 |#1|) $) 59)) (-4012 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-2521 (($ (-1070 |#1|)) 158) (((-3 $ "failed") (-377 (-1070 |#1|))) 155 (|has| |#1| (-333)))) (-1568 (((-3 $ "failed") $) 34)) (-3720 ((|#1| $) 253)) (-1422 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-2712 (((-107) $) 248 (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-3795 (((-843)) 54)) (-3098 (($) 90 (|has| |#1| (-338)))) (-2366 (($ $ $) 107 (|has| |#1| (-278)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-3493 (($) 149 (|has| |#1| (-319)))) (-1337 (((-107) $) 150 (|has| |#1| (-319)))) (-2990 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-2965 (((-107) $) 115 (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2587 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-970)) (|has| |#1| (-1095))))) (-2475 (($) 238 (|has| |#1| (-1095)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 261 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 260 (|has| |#1| (-808 (-349))))) (-1921 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 240 (-12 (|has| |#1| (-918)) (|has| |#1| (-1095))))) (-2289 ((|#1| $) 51)) (-3744 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-3523 (((-1070 |#1|) $) 44 (|has| |#1| (-333)))) (-1575 (($ $ $) 207 (|has| |#1| (-779)))) (-2986 (($ $ $) 206 (|has| |#1| (-779)))) (-1857 (($ (-1 |#1| |#1|) $) 262)) (-2903 (((-843) $) 89 (|has| |#1| (-338)))) (-1826 (($ $) 235 (|has| |#1| (-1095)))) (-2511 (((-1070 |#1|) $) 156)) (-1368 (($ (-583 $)) 100 (-3763 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 99 (-3763 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3865 (((-1057) $) 9)) (-4123 (($ $) 116 (|has| |#1| (-333)))) (-2663 (($) 143 (|has| |#1| (-319)) CONST)) (-3353 (($ (-843)) 88 (|has| |#1| (-338)))) (-4077 (($) 257)) (-3732 ((|#1| $) 254)) (-3094 (((-1021) $) 10)) (-3107 (($) 160)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 101 (-3763 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1396 (($ (-583 $)) 98 (-3763 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 97 (-3763 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 146 (|has| |#1| (-319)))) (-1206 (((-388 (-1070 $)) (-1070 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3923 (((-388 (-1070 $)) (-1070 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3693 (((-388 $) $) 112 (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 109 (|has| |#1| (-278)))) (-2349 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-2459 (($ $) 236 (|has| |#1| (-1095)))) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) 263 (|has| |#1| (-478 (-1074) |#1|)))) (-2623 (((-703) $) 105 (|has| |#1| (-278)))) (-1986 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 106 (|has| |#1| (-278)))) (-4042 ((|#1| (-1154 $)) 47) ((|#1|) 60)) (-3654 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-1699 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1074)) (-583 (-703))) 130 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 131 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 132 (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 133 (|has| |#1| (-822 (-1074)))) (($ $ (-703)) 135 (-3763 (-1651 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-1651 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3763 (-1651 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-1651 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-3680 (((-623 |#1|) (-1154 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-1457 (((-1070 |#1|)) 159)) (-1860 (($ $) 225 (|has| |#1| (-1095)))) (-1741 (($ $) 214 (|has| |#1| (-1095)))) (-3788 (($) 148 (|has| |#1| (-319)))) (-1842 (($ $) 224 (|has| |#1| (-1095)))) (-1722 (($ $) 215 (|has| |#1| (-1095)))) (-1824 (($ $) 223 (|has| |#1| (-1095)))) (-1698 (($ $) 216 (|has| |#1| (-1095)))) (-2575 (((-1154 |#1|) $ (-1154 $)) 50) (((-623 |#1|) (-1154 $) (-1154 $)) 49) (((-1154 |#1|) $) 66) (((-623 |#1|) (-1154 $)) 65)) (-3582 (((-1154 |#1|) $) 63) (($ (-1154 |#1|)) 62) (((-1070 |#1|) $) 171) (($ (-1070 |#1|)) 157) (((-814 (-517)) $) 259 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 258 (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-937))) (((-153 (-199)) $) 209 (|has| |#1| (-937))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-2013 (($ $) 256)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 145 (-3763 (-1651 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-319))))) (-3295 (($ |#1| |#1|) 255)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3763 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) 91 (-3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1589 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3763 (-1651 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-132))))) (-3804 (((-1070 |#1|) $) 45)) (-1865 (((-703)) 29)) (-3809 (((-1154 $)) 67)) (-3642 (($ $) 234 (|has| |#1| (-1095)))) (-1773 (($ $) 222 (|has| |#1| (-1095)))) (-3767 (((-107) $ $) 95 (-3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3622 (($ $) 233 (|has| |#1| (-1095)))) (-1751 (($ $) 221 (|has| |#1| (-1095)))) (-3661 (($ $) 232 (|has| |#1| (-1095)))) (-1794 (($ $) 220 (|has| |#1| (-1095)))) (-1516 ((|#1| $) 250 (|has| |#1| (-1095)))) (-1279 (($ $) 231 (|has| |#1| (-1095)))) (-1803 (($ $) 219 (|has| |#1| (-1095)))) (-3650 (($ $) 230 (|has| |#1| (-1095)))) (-1784 (($ $) 218 (|has| |#1| (-1095)))) (-3631 (($ $) 229 (|has| |#1| (-1095)))) (-1762 (($ $) 217 (|has| |#1| (-1095)))) (-1221 (($ $) 251 (|has| |#1| (-970)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1074)) (-583 (-703))) 126 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 127 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 128 (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 129 (|has| |#1| (-822 (-1074)))) (($ $ (-703)) 134 (-3763 (-1651 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-1651 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3763 (-1651 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-1651 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1593 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1649 (($ $ $) 121 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-918)) (|has| |#1| (-1095)))) (($ $ $) 237 (|has| |#1| (-1095))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
+(((-150 |#1|) (-1185) (-156)) (T -150))
+((-2289 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-4077 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3295 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2349 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1221 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1095)))) (-2587 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1095)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1422 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
+(-13 (-657 |t#1| (-1070 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-806 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3295) (-15 -4077 ($)) (-15 -2013 ($ $)) (-15 -3295 ($ |t#1| |t#1|)) (-15 -3732 (|t#1| $)) (-15 -3720 (|t#1| $)) (-15 -2289 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2349 ((-3 $ "failed") $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |noBranch|) (IF (|has| |t#1| (-6 -4182)) (-6 -4182) |noBranch|) (IF (|has| |t#1| (-6 -4179)) (-6 -4179) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-937)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -1221 ($ $)) |noBranch|) (IF (|has| |t#1| (-1095)) (PROGN (-6 (-1095)) (-15 -1516 (|t#1| $)) (IF (|has| |t#1| (-918)) (-6 (-918)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -2587 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-831)) (IF (|has| |t#1| (-278)) (-6 (-831)) |noBranch|) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1095)) ((-91) |has| |#1| (-1095)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3763 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-937)) ((-558 (-153 (-349))) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-558 (-1070 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3763 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1095)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3763 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3763 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3763 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| (-1070 |#1|)) . T) ((-379 |#1| (-1070 |#1|)) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3763 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1095)) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3763 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| (-1070 |#1|)) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) -12 (|has| |#1| (-278)) (|has| |#1| (-831))) ((-842) -3763 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-918) -12 (|has| |#1| (-918)) (|has| |#1| (-1095))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-319)) ((-1095) |has| |#1| (-1095)) ((-1098) |has| |#1| (-1095)) ((-1109) . T) ((-1113) -3763 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))
+((-3693 (((-388 |#2|) |#2|) 63)))
+(((-151 |#1| |#2|) (-10 -7 (-15 -3693 ((-388 |#2|) |#2|))) (-278) (-1131 (-153 |#1|))) (T -151))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
+(-10 -7 (-15 -3693 ((-388 |#2|) |#2|)))
+((-1857 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14)))
+(((-152 |#1| |#2|) (-10 -7 (-15 -1857 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))))
+(-10 -7 (-15 -1857 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 33)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3209 (($ $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1452 (((-107) $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3129 (((-623 |#1|) (-1154 $)) NIL) (((-623 |#1|)) NIL)) (-1470 ((|#1| $) NIL)) (-1834 (($ $) NIL (|has| |#1| (-1095)))) (-1710 (($ $) NIL (|has| |#1| (-1095)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3938 (($ $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3490 (((-388 $) $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3706 (($ $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1095))))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-278)))) (-1598 (((-703)) NIL (|has| |#1| (-338)))) (-1812 (($ $) NIL (|has| |#1| (-1095)))) (-1685 (($ $) NIL (|has| |#1| (-1095)))) (-1851 (($ $) NIL (|has| |#1| (-1095)))) (-1731 (($ $) NIL (|has| |#1| (-1095)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-3291 (($ (-1154 |#1|) (-1154 $)) NIL) (($ (-1154 |#1|)) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2383 (($ $ $) NIL (|has| |#1| (-278)))) (-2148 (((-623 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2521 (($ (-1070 |#1|)) NIL) (((-3 $ "failed") (-377 (-1070 |#1|))) NIL (|has| |#1| (-333)))) (-1568 (((-3 $ "failed") $) NIL)) (-3720 ((|#1| $) 13)) (-1422 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-2712 (((-107) $) NIL (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3795 (((-843)) NIL)) (-3098 (($) NIL (|has| |#1| (-338)))) (-2366 (($ $ $) NIL (|has| |#1| (-278)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-3493 (($) NIL (|has| |#1| (-319)))) (-1337 (((-107) $) NIL (|has| |#1| (-319)))) (-2990 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-2965 (((-107) $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2587 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-970)) (|has| |#1| (-1095))))) (-2475 (($) NIL (|has| |#1| (-1095)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-1921 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-2955 (((-107) $) 35)) (-2666 (($ $ (-517)) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1095))))) (-2289 ((|#1| $) 46)) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-3523 (((-1070 |#1|) $) NIL (|has| |#1| (-333)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2903 (((-843) $) NIL (|has| |#1| (-338)))) (-1826 (($ $) NIL (|has| |#1| (-1095)))) (-2511 (((-1070 |#1|) $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-2663 (($) NIL (|has| |#1| (-319)) CONST)) (-3353 (($ (-843)) NIL (|has| |#1| (-338)))) (-4077 (($) NIL)) (-3732 ((|#1| $) 15)) (-3094 (((-1021) $) NIL)) (-3107 (($) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-278)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| |#1| (-319)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3693 (((-388 $) $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-278)))) (-2349 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-2459 (($ $) NIL (|has| |#1| (-1095)))) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|)))) (-2623 (((-703) $) NIL (|has| |#1| (-278)))) (-1986 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-278)))) (-4042 ((|#1| (-1154 $)) NIL) ((|#1|) NIL)) (-3654 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-1699 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3680 (((-623 |#1|) (-1154 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1457 (((-1070 |#1|)) NIL)) (-1860 (($ $) NIL (|has| |#1| (-1095)))) (-1741 (($ $) NIL (|has| |#1| (-1095)))) (-3788 (($) NIL (|has| |#1| (-319)))) (-1842 (($ $) NIL (|has| |#1| (-1095)))) (-1722 (($ $) NIL (|has| |#1| (-1095)))) (-1824 (($ $) NIL (|has| |#1| (-1095)))) (-1698 (($ $) NIL (|has| |#1| (-1095)))) (-2575 (((-1154 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) (-1154 $) (-1154 $)) NIL) (((-1154 |#1|) $) NIL) (((-623 |#1|) (-1154 $)) NIL)) (-3582 (((-1154 |#1|) $) NIL) (($ (-1154 |#1|)) NIL) (((-1070 |#1|) $) NIL) (($ (-1070 |#1|)) NIL) (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-937))) (((-153 (-199)) $) NIL (|has| |#1| (-937))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2013 (($ $) 45)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-319))))) (-3295 (($ |#1| |#1|) 37)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1589 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-3804 (((-1070 |#1|) $) NIL)) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL)) (-3642 (($ $) NIL (|has| |#1| (-1095)))) (-1773 (($ $) NIL (|has| |#1| (-1095)))) (-3767 (((-107) $ $) NIL (-3763 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3622 (($ $) NIL (|has| |#1| (-1095)))) (-1751 (($ $) NIL (|has| |#1| (-1095)))) (-3661 (($ $) NIL (|has| |#1| (-1095)))) (-1794 (($ $) NIL (|has| |#1| (-1095)))) (-1516 ((|#1| $) NIL (|has| |#1| (-1095)))) (-1279 (($ $) NIL (|has| |#1| (-1095)))) (-1803 (($ $) NIL (|has| |#1| (-1095)))) (-3650 (($ $) NIL (|has| |#1| (-1095)))) (-1784 (($ $) NIL (|has| |#1| (-1095)))) (-3631 (($ $) NIL (|has| |#1| (-1095)))) (-1762 (($ $) NIL (|has| |#1| (-1095)))) (-1221 (($ $) NIL (|has| |#1| (-970)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 28 T CONST)) (-2306 (($) 30 T CONST)) (-1693 (((-1057) $) 23 (|has| |#1| (-760))) (((-1057) $ (-107)) 25 (|has| |#1| (-760))) (((-1159) (-754) $) 26 (|has| |#1| (-760))) (((-1159) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-2553 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ $) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 39)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1095)))) (($ $ $) NIL (|has| |#1| (-1095))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
(((-153 |#1|) (-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) (-156)) (T -153))
NIL
(-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|)))
-((-3645 (((-814 |#1|) |#3|) 22)))
-(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3645 ((-814 |#1|) |#3|))) (-1003) (-13 (-558 (-814 |#1|)) (-156)) (-150 |#2|)) (T -154))
-((-3645 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))))
-(-10 -7 (-15 -3645 ((-814 |#1|) |#3|)))
-((-2750 (((-107) $ $) NIL)) (-3226 (((-107) $) 9)) (-3001 (((-107) $ (-107)) 11)) (-3462 (($) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2433 (($ $) 13)) (-2256 (((-787) $) 17)) (-2145 (((-107) $) 8)) (-1210 (((-107) $ (-107)) 10)) (-1547 (((-107) $ $) NIL)))
-(((-155) (-13 (-1003) (-10 -8 (-15 -3462 ($)) (-15 -2145 ((-107) $)) (-15 -3226 ((-107) $)) (-15 -1210 ((-107) $ (-107))) (-15 -3001 ((-107) $ (-107))) (-15 -2433 ($ $))))) (T -155))
-((-3462 (*1 *1) (-5 *1 (-155))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1210 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3001 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2433 (*1 *1 *1) (-5 *1 (-155))))
-(-13 (-1003) (-10 -8 (-15 -3462 ($)) (-15 -2145 ((-107) $)) (-15 -3226 ((-107) $)) (-15 -1210 ((-107) $ (-107))) (-15 -3001 ((-107) $ (-107))) (-15 -2433 ($ $))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-156) (-1184)) (T -156))
-NIL
-(-13 (-961) (-106 $ $) (-10 -7 (-6 (-4182 "*"))))
+((-3582 (((-814 |#1|) |#3|) 22)))
+(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3582 ((-814 |#1|) |#3|))) (-1003) (-13 (-558 (-814 |#1|)) (-156)) (-150 |#2|)) (T -154))
+((-3582 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))))
+(-10 -7 (-15 -3582 ((-814 |#1|) |#3|)))
+((-2571 (((-107) $ $) NIL)) (-2180 (((-107) $) 9)) (-3976 (((-107) $ (-107)) 11)) (-3366 (($) 12)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2322 (($ $) 13)) (-2182 (((-787) $) 17)) (-1541 (((-107) $) 8)) (-1215 (((-107) $ (-107)) 10)) (-1539 (((-107) $ $) NIL)))
+(((-155) (-13 (-1003) (-10 -8 (-15 -3366 ($)) (-15 -1541 ((-107) $)) (-15 -2180 ((-107) $)) (-15 -1215 ((-107) $ (-107))) (-15 -3976 ((-107) $ (-107))) (-15 -2322 ($ $))))) (T -155))
+((-3366 (*1 *1) (-5 *1 (-155))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1215 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3976 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2322 (*1 *1 *1) (-5 *1 (-155))))
+(-13 (-1003) (-10 -8 (-15 -3366 ($)) (-15 -1541 ((-107) $)) (-15 -2180 ((-107) $)) (-15 -1215 ((-107) $ (-107))) (-15 -3976 ((-107) $ (-107))) (-15 -2322 ($ $))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-156) (-1185)) (T -156))
+NIL
+(-13 (-961) (-106 $ $) (-10 -7 (-6 (-4185 "*"))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#1| $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-4007 (($ $) 19)) (-3088 (($ |#1| (-1054 |#1|)) 47)) (-3621 (((-3 $ "failed") $) 116)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3815 (((-1054 |#1|) $) 81)) (-3379 (((-1054 |#1|) $) 78)) (-2214 (((-1054 |#1|) $) 79)) (-3848 (((-107) $) NIL)) (-2553 (((-1054 |#1|) $) 87)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-1672 (($ $ (-517)) 90)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1464 (((-1054 |#1|) $) 88)) (-3171 (((-1054 (-377 |#1|)) $) 13)) (-2005 (($ (-377 |#1|)) 17) (($ |#1| (-1054 |#1|) (-1054 |#1|)) 37)) (-1545 (($ $) 92)) (-2256 (((-787) $) 126) (($ (-517)) 50) (($ |#1|) 51) (($ (-377 |#1|)) 35) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2961 (((-703)) 63)) (-3329 (((-107) $ $) NIL)) (-1943 (((-1054 (-377 |#1|)) $) 18)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 28 T CONST)) (-1547 (((-107) $ $) 34)) (-1667 (($ $ $) 114)) (-1654 (($ $) 105) (($ $ $) 102)) (-1642 (($ $ $) 100)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-377 |#1|) $) 110) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
-(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2005 ($ (-377 |#1|))) (-15 -2005 ($ |#1| (-1054 |#1|) (-1054 |#1|))) (-15 -3088 ($ |#1| (-1054 |#1|))) (-15 -3379 ((-1054 |#1|) $)) (-15 -2214 ((-1054 |#1|) $)) (-15 -3815 ((-1054 |#1|) $)) (-15 -2668 (|#1| $)) (-15 -4007 ($ $)) (-15 -1943 ((-1054 (-377 |#1|)) $)) (-15 -3171 ((-1054 (-377 |#1|)) $)) (-15 -2553 ((-1054 |#1|) $)) (-15 -1464 ((-1054 |#1|) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $)))) (-278)) (T -157))
-((-2005 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-2005 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3088 (*1 *1 *2 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2668 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-4007 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1545 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
-(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2005 ($ (-377 |#1|))) (-15 -2005 ($ |#1| (-1054 |#1|) (-1054 |#1|))) (-15 -3088 ($ |#1| (-1054 |#1|))) (-15 -3379 ((-1054 |#1|) $)) (-15 -2214 ((-1054 |#1|) $)) (-15 -3815 ((-1054 |#1|) $)) (-15 -2668 (|#1| $)) (-15 -4007 ($ $)) (-15 -1943 ((-1054 (-377 |#1|)) $)) (-15 -3171 ((-1054 (-377 |#1|)) $)) (-15 -2553 ((-1054 |#1|) $)) (-15 -1464 ((-1054 |#1|) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $))))
-((-3617 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 40)) (-3752 (((-865 |#1|) (-865 |#1|)) 19)) (-2839 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 36)) (-3627 (((-865 |#1|) (-865 |#1|)) 17)) (-2673 (((-865 |#1|) (-865 |#1|)) 25)) (-2850 (((-865 |#1|) (-865 |#1|)) 24)) (-3691 (((-865 |#1|) (-865 |#1|)) 23)) (-3440 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 37)) (-1573 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 35)) (-3259 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 34)) (-2483 (((-865 |#1|) (-865 |#1|)) 18)) (-3701 (((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|) 43)) (-2931 (((-865 |#1|) (-865 |#1|)) 8)) (-1740 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 39)) (-2603 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 38)))
-(((-158 |#1|) (-10 -7 (-15 -2931 ((-865 |#1|) (-865 |#1|))) (-15 -3627 ((-865 |#1|) (-865 |#1|))) (-15 -2483 ((-865 |#1|) (-865 |#1|))) (-15 -3752 ((-865 |#1|) (-865 |#1|))) (-15 -3691 ((-865 |#1|) (-865 |#1|))) (-15 -2850 ((-865 |#1|) (-865 |#1|))) (-15 -2673 ((-865 |#1|) (-865 |#1|))) (-15 -3259 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1573 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2839 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3440 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2603 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1740 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3617 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3701 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|))) (-13 (-333) (-1094) (-918))) (T -158))
-((-3701 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3617 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-1740 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2603 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2839 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-1573 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3259 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
-(-10 -7 (-15 -2931 ((-865 |#1|) (-865 |#1|))) (-15 -3627 ((-865 |#1|) (-865 |#1|))) (-15 -2483 ((-865 |#1|) (-865 |#1|))) (-15 -3752 ((-865 |#1|) (-865 |#1|))) (-15 -3691 ((-865 |#1|) (-865 |#1|))) (-15 -2850 ((-865 |#1|) (-865 |#1|))) (-15 -2673 ((-865 |#1|) (-865 |#1|))) (-15 -3259 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1573 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2839 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3440 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2603 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1740 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3617 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3701 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|)))
-((-3669 ((|#2| |#3|) 27)))
-(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -3669 (|#2| |#3|))) (-156) (-1130 |#1|) (-657 |#1| |#2|)) (T -159))
-((-3669 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1130 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))))
-(-10 -7 (-15 -3669 (|#2| |#3|)))
-((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 47 (|has| (-874 |#2|) (-808 |#1|)))))
-(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |noBranch|)) (-1003) (-13 (-808 |#1|) (-156)) (-150 |#2|)) (T -160))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |noBranch|))
-((-1656 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-2563 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-1659 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29)))
-(((-161 |#1|) (-10 -7 (-15 -2563 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -1659 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -1659 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1656 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161))
-((-1656 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-1659 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-1659 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-2563 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
-(-10 -7 (-15 -2563 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -1659 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -1659 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1656 ((-583 |#1|) (-583 |#1|) |#1|)))
-((-1429 (((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|) 61)) (-2801 ((|#1| |#1|) 54)) (-3058 (((-153 |#1|) |#2|) 82)) (-3390 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-2445 ((|#2| |#2|) 81)) (-1720 (((-388 |#2|) |#2| |#1|) 112) (((-388 |#2|) |#2| |#1| (-107)) 79)) (-1506 ((|#1| |#2|) 111)) (-3373 ((|#2| |#2|) 118)) (-3755 (((-388 |#2|) |#2|) 133) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 132)) (-1731 (((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|) 131) (((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107)) 75)) (-2918 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41)))
-(((-162 |#1| |#2|) (-10 -7 (-15 -2918 ((-583 (-153 |#1|)) |#2|)) (-15 -2918 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107))) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|)) (-15 -3755 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3755 ((-388 |#2|) |#2| |#1|)) (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3373 (|#2| |#2|)) (-15 -1506 (|#1| |#2|)) (-15 -1720 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1720 ((-388 |#2|) |#2| |#1|)) (-15 -2445 (|#2| |#2|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3390 (|#1| |#2|)) (-15 -3058 ((-153 |#1|) |#2|)) (-15 -2801 (|#1| |#1|)) (-15 -1429 ((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1130 (-153 |#1|))) (T -162))
-((-1429 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2879 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-2801 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3058 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1130 *2)))) (-3390 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3390 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))) (-1720 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1720 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1506 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3373 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-3755 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-3755 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1731 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1731 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1130 (-153 *5))))) (-2918 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-2918 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
-(-10 -7 (-15 -2918 ((-583 (-153 |#1|)) |#2|)) (-15 -2918 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107))) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|)) (-15 -3755 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3755 ((-388 |#2|) |#2| |#1|)) (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3373 (|#2| |#2|)) (-15 -1506 (|#1| |#2|)) (-15 -1720 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1720 ((-388 |#2|) |#2| |#1|)) (-15 -2445 (|#2| |#2|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3390 (|#1| |#2|)) (-15 -3058 ((-153 |#1|) |#2|)) (-15 -2801 (|#1| |#1|)) (-15 -1429 ((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|)))
-((-2639 (((-3 |#2| "failed") |#2|) 14)) (-3931 (((-703) |#2|) 16)) (-1854 ((|#2| |#2| |#2|) 18)))
-(((-163 |#1| |#2|) (-10 -7 (-15 -2639 ((-3 |#2| "failed") |#2|)) (-15 -3931 ((-703) |#2|)) (-15 -1854 (|#2| |#2| |#2|))) (-1108) (-610 |#1|)) (T -163))
-((-1854 (*1 *2 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-2639 (*1 *2 *2) (|partial| -12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
-(-10 -7 (-15 -2639 ((-3 |#2| "failed") |#2|)) (-15 -3931 ((-703) |#2|)) (-15 -1854 (|#2| |#2| |#2|)))
-((-4090 ((|#2| |#2|) 28)) (-1908 (((-107) |#2|) 19)) (-3775 (((-286 |#1|) |#2|) 12)) (-3785 (((-286 |#1|) |#2|) 14)) (-2769 ((|#2| |#2| (-1073)) 68) ((|#2| |#2|) 69)) (-2858 (((-153 (-286 |#1|)) |#2|) 9)) (-2637 ((|#2| |#2| (-1073)) 65) ((|#2| |#2|) 58)))
-(((-164 |#1| |#2|) (-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -3775 ((-286 |#1|) |#2|)) (-15 -3785 ((-286 |#1|) |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -2858 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-952 (-517))) (-13 (-27) (-1094) (-400 (-153 |#1|)))) (T -164))
-((-2858 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-3775 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2637 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) (-2769 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))))
-(-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -3775 ((-286 |#1|) |#2|)) (-15 -3785 ((-286 |#1|) |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -2858 ((-153 (-286 |#1|)) |#2|)))
-((-2852 (((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|))) 22)) (-2256 (((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|))) 30)))
-(((-165 |#1|) (-10 -7 (-15 -2852 ((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|)))) (-15 -2256 ((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|))))) (-156)) (T -165))
-((-2256 (*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-874 *4)))) (-5 *1 (-165 *4)))))
-(-10 -7 (-15 -2852 ((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|)))) (-15 -2256 ((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|)))))
-((-2748 (((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 66)) (-4135 (((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-2709 (((-1075 (-377 (-517))) (-517)) 40)) (-2003 (((-1075 (-377 (-517))) (-517)) 52)) (-2051 (((-377 (-517)) (-1075 (-377 (-517)))) 62)) (-3481 (((-1075 (-377 (-517))) (-517)) 32)) (-2768 (((-1075 (-377 (-517))) (-517)) 48)) (-3033 (((-1075 (-377 (-517))) (-517)) 46)) (-1980 (((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 60)) (-1545 (((-1075 (-377 (-517))) (-517)) 25)) (-2428 (((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 64)) (-2634 (((-1075 (-377 (-517))) (-517)) 30)) (-3761 (((-1075 (-377 (-517))) (-583 (-517))) 71)))
-(((-166) (-10 -7 (-15 -1545 ((-1075 (-377 (-517))) (-517))) (-15 -2709 ((-1075 (-377 (-517))) (-517))) (-15 -3481 ((-1075 (-377 (-517))) (-517))) (-15 -2634 ((-1075 (-377 (-517))) (-517))) (-15 -3033 ((-1075 (-377 (-517))) (-517))) (-15 -2768 ((-1075 (-377 (-517))) (-517))) (-15 -2003 ((-1075 (-377 (-517))) (-517))) (-15 -2428 ((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -1980 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -2051 ((-377 (-517)) (-1075 (-377 (-517))))) (-15 -2748 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -3761 ((-1075 (-377 (-517))) (-583 (-517)))) (-15 -4135 ((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166))
-((-4135 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2748 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-1980 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2428 (*1 *2 *3 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-2003 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2768 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3033 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2634 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1545 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(-10 -7 (-15 -1545 ((-1075 (-377 (-517))) (-517))) (-15 -2709 ((-1075 (-377 (-517))) (-517))) (-15 -3481 ((-1075 (-377 (-517))) (-517))) (-15 -2634 ((-1075 (-377 (-517))) (-517))) (-15 -3033 ((-1075 (-377 (-517))) (-517))) (-15 -2768 ((-1075 (-377 (-517))) (-517))) (-15 -2003 ((-1075 (-377 (-517))) (-517))) (-15 -2428 ((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -1980 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -2051 ((-377 (-517)) (-1075 (-377 (-517))))) (-15 -2748 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -3761 ((-1075 (-377 (-517))) (-583 (-517)))) (-15 -4135 ((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517)))))
-((-3017 (((-388 (-1069 (-517))) (-517)) 28)) (-3933 (((-583 (-1069 (-517))) (-517)) 23)) (-2765 (((-1069 (-517)) (-517)) 21)))
-(((-167) (-10 -7 (-15 -3933 ((-583 (-1069 (-517))) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3017 ((-388 (-1069 (-517))) (-517))))) (T -167))
-((-3017 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-2765 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-583 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
-(-10 -7 (-15 -3933 ((-583 (-1069 (-517))) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3017 ((-388 (-1069 (-517))) (-517))))
-((-2743 (((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-4053 (((-583 (-1056)) (-1054 (-199))) NIL)) (-2695 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-1218 (((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199)))) NIL)) (-2024 (((-583 (-1056)) (-583 (-199))) NIL)) (-3339 (((-199) (-998 (-772 (-199)))) 22)) (-3191 (((-199) (-998 (-772 (-199)))) 23)) (-2692 (((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-1644 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-2129 (((-1056) (-199)) NIL)) (-3517 (((-1056) (-583 (-1056))) 19)) (-2742 (((-950) (-1073) (-1073) (-950)) 12)))
-(((-168) (-10 -7 (-15 -2695 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1644 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2692 ((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3517 ((-1056) (-583 (-1056)))) (-15 -2742 ((-950) (-1073) (-1073) (-950))))) (T -168))
-((-2742 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-168)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-168)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-168)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-168)))) (-1218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
-(-10 -7 (-15 -2695 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1644 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2692 ((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3517 ((-1056) (-583 (-1056)))) (-15 -2742 ((-950) (-1073) (-1073) (-950))))
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 53) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 ((|#1| $) 74)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-4057 (($ $) 19)) (-3415 (($ |#1| (-1055 |#1|)) 47)) (-1568 (((-3 $ "failed") $) 116)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2596 (((-1055 |#1|) $) 81)) (-1236 (((-1055 |#1|) $) 78)) (-3970 (((-1055 |#1|) $) 79)) (-2955 (((-107) $) NIL)) (-4093 (((-1055 |#1|) $) 87)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL)) (-3467 (($ $ (-517)) 90)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3802 (((-1055 |#1|) $) 88)) (-2865 (((-1055 (-377 |#1|)) $) 13)) (-2463 (($ (-377 |#1|)) 17) (($ |#1| (-1055 |#1|) (-1055 |#1|)) 37)) (-2860 (($ $) 92)) (-2182 (((-787) $) 126) (($ (-517)) 50) (($ |#1|) 51) (($ (-377 |#1|)) 35) (($ (-377 (-517))) NIL) (($ $) NIL)) (-1865 (((-703)) 63)) (-3767 (((-107) $ $) NIL)) (-3058 (((-1055 (-377 |#1|)) $) 18)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 25 T CONST)) (-2306 (($) 28 T CONST)) (-1539 (((-107) $ $) 34)) (-1649 (($ $ $) 114)) (-1637 (($ $) 105) (($ $ $) 102)) (-1626 (($ $ $) 100)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-377 |#1|) $) 110) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
+(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2463 ($ (-377 |#1|))) (-15 -2463 ($ |#1| (-1055 |#1|) (-1055 |#1|))) (-15 -3415 ($ |#1| (-1055 |#1|))) (-15 -1236 ((-1055 |#1|) $)) (-15 -3970 ((-1055 |#1|) $)) (-15 -2596 ((-1055 |#1|) $)) (-15 -2667 (|#1| $)) (-15 -4057 ($ $)) (-15 -3058 ((-1055 (-377 |#1|)) $)) (-15 -2865 ((-1055 (-377 |#1|)) $)) (-15 -4093 ((-1055 |#1|) $)) (-15 -3802 ((-1055 |#1|) $)) (-15 -3467 ($ $ (-517))) (-15 -2860 ($ $)))) (-278)) (T -157))
+((-2463 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-2463 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3415 (*1 *1 *2 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-1236 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2667 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-4057 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-1055 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-1055 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2860 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
+(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2463 ($ (-377 |#1|))) (-15 -2463 ($ |#1| (-1055 |#1|) (-1055 |#1|))) (-15 -3415 ($ |#1| (-1055 |#1|))) (-15 -1236 ((-1055 |#1|) $)) (-15 -3970 ((-1055 |#1|) $)) (-15 -2596 ((-1055 |#1|) $)) (-15 -2667 (|#1| $)) (-15 -4057 ($ $)) (-15 -3058 ((-1055 (-377 |#1|)) $)) (-15 -2865 ((-1055 (-377 |#1|)) $)) (-15 -4093 ((-1055 |#1|) $)) (-15 -3802 ((-1055 |#1|) $)) (-15 -3467 ($ $ (-517))) (-15 -2860 ($ $))))
+((-1526 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 40)) (-3269 (((-865 |#1|) (-865 |#1|)) 19)) (-1937 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 36)) (-1635 (((-865 |#1|) (-865 |#1|)) 17)) (-2730 (((-865 |#1|) (-865 |#1|)) 25)) (-2014 (((-865 |#1|) (-865 |#1|)) 24)) (-4028 (((-865 |#1|) (-865 |#1|)) 23)) (-3466 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 37)) (-2056 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 35)) (-1357 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 34)) (-1706 (((-865 |#1|) (-865 |#1|)) 18)) (-4115 (((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|) 43)) (-1578 (((-865 |#1|) (-865 |#1|)) 8)) (-4010 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 39)) (-3323 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 38)))
+(((-158 |#1|) (-10 -7 (-15 -1578 ((-865 |#1|) (-865 |#1|))) (-15 -1635 ((-865 |#1|) (-865 |#1|))) (-15 -1706 ((-865 |#1|) (-865 |#1|))) (-15 -3269 ((-865 |#1|) (-865 |#1|))) (-15 -4028 ((-865 |#1|) (-865 |#1|))) (-15 -2014 ((-865 |#1|) (-865 |#1|))) (-15 -2730 ((-865 |#1|) (-865 |#1|))) (-15 -1357 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2056 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1937 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3466 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3323 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -4010 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1526 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -4115 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|))) (-13 (-333) (-1095) (-918))) (T -158))
+((-4115 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-1526 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-4010 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-3323 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-3466 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-1937 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-2056 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-1357 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-2730 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-4028 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-3269 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
+(-10 -7 (-15 -1578 ((-865 |#1|) (-865 |#1|))) (-15 -1635 ((-865 |#1|) (-865 |#1|))) (-15 -1706 ((-865 |#1|) (-865 |#1|))) (-15 -3269 ((-865 |#1|) (-865 |#1|))) (-15 -4028 ((-865 |#1|) (-865 |#1|))) (-15 -2014 ((-865 |#1|) (-865 |#1|))) (-15 -2730 ((-865 |#1|) (-865 |#1|))) (-15 -1357 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2056 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1937 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3466 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3323 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -4010 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1526 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -4115 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|)))
+((-3804 ((|#2| |#3|) 27)))
+(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -3804 (|#2| |#3|))) (-156) (-1131 |#1|) (-657 |#1| |#2|)) (T -159))
+((-3804 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1131 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))))
+(-10 -7 (-15 -3804 (|#2| |#3|)))
+((-3289 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 47 (|has| (-874 |#2|) (-808 |#1|)))))
+(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -3289 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |noBranch|)) (-1003) (-13 (-808 |#1|) (-156)) (-150 |#2|)) (T -160))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -3289 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |noBranch|))
+((-1944 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-1230 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-2887 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29)))
+(((-161 |#1|) (-10 -7 (-15 -1230 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2887 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2887 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1944 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161))
+((-1944 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-2887 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-2887 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-1230 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(-10 -7 (-15 -1230 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2887 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2887 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1944 ((-583 |#1|) (-583 |#1|) |#1|)))
+((-2057 (((-2 (|:| |start| |#2|) (|:| -2232 (-388 |#2|))) |#2|) 61)) (-2617 ((|#1| |#1|) 54)) (-3149 (((-153 |#1|) |#2|) 82)) (-1327 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-2413 ((|#2| |#2|) 81)) (-1642 (((-388 |#2|) |#2| |#1|) 112) (((-388 |#2|) |#2| |#1| (-107)) 79)) (-2289 ((|#1| |#2|) 111)) (-4150 ((|#2| |#2|) 118)) (-3693 (((-388 |#2|) |#2|) 133) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 132)) (-3940 (((-583 (-2 (|:| -2232 (-583 |#2|)) (|:| -2033 |#1|))) |#2| |#2|) 131) (((-583 (-2 (|:| -2232 (-583 |#2|)) (|:| -2033 |#1|))) |#2| |#2| (-107)) 75)) (-1487 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41)))
+(((-162 |#1| |#2|) (-10 -7 (-15 -1487 ((-583 (-153 |#1|)) |#2|)) (-15 -1487 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -3940 ((-583 (-2 (|:| -2232 (-583 |#2|)) (|:| -2033 |#1|))) |#2| |#2| (-107))) (-15 -3940 ((-583 (-2 (|:| -2232 (-583 |#2|)) (|:| -2033 |#1|))) |#2| |#2|)) (-15 -3693 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3693 ((-388 |#2|) |#2| |#1|)) (-15 -3693 ((-388 |#2|) |#2|)) (-15 -4150 (|#2| |#2|)) (-15 -2289 (|#1| |#2|)) (-15 -1642 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1642 ((-388 |#2|) |#2| |#1|)) (-15 -2413 (|#2| |#2|)) (-15 -1327 (|#1| |#2| |#1|)) (-15 -1327 (|#1| |#2|)) (-15 -3149 ((-153 |#1|) |#2|)) (-15 -2617 (|#1| |#1|)) (-15 -2057 ((-2 (|:| |start| |#2|) (|:| -2232 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1131 (-153 |#1|))) (T -162))
+((-2057 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2232 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-2617 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) (-3149 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1131 *2)))) (-1327 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) (-1327 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1131 (-153 *3))))) (-1642 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-1642 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-2289 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1131 (-153 *3))))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-3693 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-3940 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2232 (-583 *3)) (|:| -2033 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-3940 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2232 (-583 *3)) (|:| -2033 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1131 (-153 *5))))) (-1487 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-1487 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
+(-10 -7 (-15 -1487 ((-583 (-153 |#1|)) |#2|)) (-15 -1487 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -3940 ((-583 (-2 (|:| -2232 (-583 |#2|)) (|:| -2033 |#1|))) |#2| |#2| (-107))) (-15 -3940 ((-583 (-2 (|:| -2232 (-583 |#2|)) (|:| -2033 |#1|))) |#2| |#2|)) (-15 -3693 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3693 ((-388 |#2|) |#2| |#1|)) (-15 -3693 ((-388 |#2|) |#2|)) (-15 -4150 (|#2| |#2|)) (-15 -2289 (|#1| |#2|)) (-15 -1642 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1642 ((-388 |#2|) |#2| |#1|)) (-15 -2413 (|#2| |#2|)) (-15 -1327 (|#1| |#2| |#1|)) (-15 -1327 (|#1| |#2|)) (-15 -3149 ((-153 |#1|) |#2|)) (-15 -2617 (|#1| |#1|)) (-15 -2057 ((-2 (|:| |start| |#2|) (|:| -2232 (-388 |#2|))) |#2|)))
+((-3683 (((-3 |#2| "failed") |#2|) 14)) (-1501 (((-703) |#2|) 16)) (-4054 ((|#2| |#2| |#2|) 18)))
+(((-163 |#1| |#2|) (-10 -7 (-15 -3683 ((-3 |#2| "failed") |#2|)) (-15 -1501 ((-703) |#2|)) (-15 -4054 (|#2| |#2| |#2|))) (-1109) (-610 |#1|)) (T -163))
+((-4054 (*1 *2 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-1501 (*1 *2 *3) (-12 (-4 *4 (-1109)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-3683 (*1 *2 *2) (|partial| -12 (-4 *3 (-1109)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(-10 -7 (-15 -3683 ((-3 |#2| "failed") |#2|)) (-15 -1501 ((-703) |#2|)) (-15 -4054 (|#2| |#2| |#2|)))
+((-3655 ((|#2| |#2|) 28)) (-3977 (((-107) |#2|) 19)) (-3720 (((-286 |#1|) |#2|) 12)) (-3732 (((-286 |#1|) |#2|) 14)) (-2388 ((|#2| |#2| (-1074)) 68) ((|#2| |#2|) 69)) (-2086 (((-153 (-286 |#1|)) |#2|) 9)) (-3659 ((|#2| |#2| (-1074)) 65) ((|#2| |#2|) 58)))
+(((-164 |#1| |#2|) (-10 -7 (-15 -2388 (|#2| |#2|)) (-15 -2388 (|#2| |#2| (-1074))) (-15 -3659 (|#2| |#2|)) (-15 -3659 (|#2| |#2| (-1074))) (-15 -3720 ((-286 |#1|) |#2|)) (-15 -3732 ((-286 |#1|) |#2|)) (-15 -3977 ((-107) |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -2086 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-952 (-517))) (-13 (-27) (-1095) (-400 (-153 |#1|)))) (T -164))
+((-2086 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-3720 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-3659 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) (-2388 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))))
+(-10 -7 (-15 -2388 (|#2| |#2|)) (-15 -2388 (|#2| |#2| (-1074))) (-15 -3659 (|#2| |#2|)) (-15 -3659 (|#2| |#2| (-1074))) (-15 -3720 ((-286 |#1|) |#2|)) (-15 -3732 ((-286 |#1|) |#2|)) (-15 -3977 ((-107) |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -2086 ((-153 (-286 |#1|)) |#2|)))
+((-2023 (((-1154 (-623 (-874 |#1|))) (-1154 (-623 |#1|))) 22)) (-2182 (((-1154 (-623 (-377 (-874 |#1|)))) (-1154 (-623 |#1|))) 30)))
+(((-165 |#1|) (-10 -7 (-15 -2023 ((-1154 (-623 (-874 |#1|))) (-1154 (-623 |#1|)))) (-15 -2182 ((-1154 (-623 (-377 (-874 |#1|)))) (-1154 (-623 |#1|))))) (-156)) (T -165))
+((-2182 (*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1154 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1154 (-623 (-874 *4)))) (-5 *1 (-165 *4)))))
+(-10 -7 (-15 -2023 ((-1154 (-623 (-874 |#1|))) (-1154 (-623 |#1|)))) (-15 -2182 ((-1154 (-623 (-377 (-874 |#1|)))) (-1154 (-623 |#1|)))))
+((-3352 (((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517)))) 66)) (-2748 (((-1076 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-2987 (((-1076 (-377 (-517))) (-517)) 40)) (-2448 (((-1076 (-377 (-517))) (-517)) 52)) (-1979 (((-377 (-517)) (-1076 (-377 (-517)))) 62)) (-2556 (((-1076 (-377 (-517))) (-517)) 32)) (-3600 (((-1076 (-377 (-517))) (-517)) 48)) (-1251 (((-1076 (-377 (-517))) (-517)) 46)) (-3427 (((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517)))) 60)) (-2860 (((-1076 (-377 (-517))) (-517)) 25)) (-2286 (((-377 (-517)) (-1076 (-377 (-517))) (-1076 (-377 (-517)))) 64)) (-3629 (((-1076 (-377 (-517))) (-517)) 30)) (-3350 (((-1076 (-377 (-517))) (-583 (-517))) 71)))
+(((-166) (-10 -7 (-15 -2860 ((-1076 (-377 (-517))) (-517))) (-15 -2987 ((-1076 (-377 (-517))) (-517))) (-15 -2556 ((-1076 (-377 (-517))) (-517))) (-15 -3629 ((-1076 (-377 (-517))) (-517))) (-15 -1251 ((-1076 (-377 (-517))) (-517))) (-15 -3600 ((-1076 (-377 (-517))) (-517))) (-15 -2448 ((-1076 (-377 (-517))) (-517))) (-15 -2286 ((-377 (-517)) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -3427 ((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -1979 ((-377 (-517)) (-1076 (-377 (-517))))) (-15 -3352 ((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -3350 ((-1076 (-377 (-517))) (-583 (-517)))) (-15 -2748 ((-1076 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166))
+((-2748 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))) (-3352 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-1076 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3427 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))) (-2286 (*1 *2 *3 *3) (-12 (-5 *3 (-1076 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-2448 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3600 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1251 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3629 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2556 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2987 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2860 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2860 ((-1076 (-377 (-517))) (-517))) (-15 -2987 ((-1076 (-377 (-517))) (-517))) (-15 -2556 ((-1076 (-377 (-517))) (-517))) (-15 -3629 ((-1076 (-377 (-517))) (-517))) (-15 -1251 ((-1076 (-377 (-517))) (-517))) (-15 -3600 ((-1076 (-377 (-517))) (-517))) (-15 -2448 ((-1076 (-377 (-517))) (-517))) (-15 -2286 ((-377 (-517)) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -3427 ((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -1979 ((-377 (-517)) (-1076 (-377 (-517))))) (-15 -3352 ((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -3350 ((-1076 (-377 (-517))) (-583 (-517)))) (-15 -2748 ((-1076 (-377 (-517))) (-583 (-517)) (-583 (-517)))))
+((-4091 (((-388 (-1070 (-517))) (-517)) 28)) (-1523 (((-583 (-1070 (-517))) (-517)) 23)) (-3564 (((-1070 (-517)) (-517)) 21)))
+(((-167) (-10 -7 (-15 -1523 ((-583 (-1070 (-517))) (-517))) (-15 -3564 ((-1070 (-517)) (-517))) (-15 -4091 ((-388 (-1070 (-517))) (-517))))) (T -167))
+((-4091 (*1 *2 *3) (-12 (-5 *2 (-388 (-1070 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-3564 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-1523 (*1 *2 *3) (-12 (-5 *2 (-583 (-1070 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(-10 -7 (-15 -1523 ((-583 (-1070 (-517))) (-517))) (-15 -3564 ((-1070 (-517)) (-517))) (-15 -4091 ((-388 (-1070 (-517))) (-517))))
+((-3296 (((-1055 (-199)) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-3243 (((-583 (-1057)) (-1055 (-199))) NIL)) (-2974 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-3256 (((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199)))) NIL)) (-2622 (((-583 (-1057)) (-583 (-199))) NIL)) (-3875 (((-199) (-998 (-772 (-199)))) 22)) (-1969 (((-199) (-998 (-772 (-199)))) 23)) (-2951 (((-349) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-1787 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-1410 (((-1057) (-199)) NIL)) (-2888 (((-1057) (-583 (-1057))) 19)) (-3285 (((-950) (-1074) (-1074) (-950)) 12)))
+(((-168) (-10 -7 (-15 -2974 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1787 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3875 ((-199) (-998 (-772 (-199))))) (-15 -1969 ((-199) (-998 (-772 (-199))))) (-15 -2951 ((-349) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3256 ((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199))))) (-15 -3296 ((-1055 (-199)) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1410 ((-1057) (-199))) (-15 -2622 ((-583 (-1057)) (-583 (-199)))) (-15 -3243 ((-583 (-1057)) (-1055 (-199)))) (-15 -2888 ((-1057) (-583 (-1057)))) (-15 -3285 ((-950) (-1074) (-1074) (-950))))) (T -168))
+((-3285 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1074)) (-5 *1 (-168)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-168)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-168)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-168)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-168)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-168)))) (-3256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
+(-10 -7 (-15 -2974 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1787 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3875 ((-199) (-998 (-772 (-199))))) (-15 -1969 ((-199) (-998 (-772 (-199))))) (-15 -2951 ((-349) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3256 ((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199))))) (-15 -3296 ((-1055 (-199)) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1410 ((-1057) (-199))) (-15 -2622 ((-583 (-1057)) (-583 (-199)))) (-15 -3243 ((-583 (-1057)) (-1055 (-199)))) (-15 -2888 ((-1057) (-583 (-1057)))) (-15 -3285 ((-950) (-1074) (-1074) (-950))))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 53) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-169) (-719)) (T -169))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 58) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 58) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-170) (-719)) (T -170))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 67) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 67) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-171) (-719)) (T -171))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-172) (-719)) (T -172))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 65) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 65) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-173) (-719)) (T -173))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 71) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 71) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-174) (-719)) (T -174))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 78) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 78) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-175) (-719)) (T -175))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 68) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 68) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-176) (-719)) (T -176))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 62)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 62)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-177) (-719)) (T -177))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 60)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 60)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-178) (-719)) (T -178))
NIL
(-719)
-((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 89) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 89) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-179) (-719)) (T -179))
NIL
(-719)
-((-2060 (((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 80)) (-2148 (((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-3762 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69)))
-(((-180) (-10 -7 (-15 -2060 ((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3762 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2148 ((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180))
-((-2148 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-3762 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-2060 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3837 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
-(-10 -7 (-15 -2060 ((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3762 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2148 ((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2848 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-2304 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 127)) (-3664 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 87)) (-3727 (((-349) (-623 (-286 (-199)))) 110)) (-1367 (((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073))) 107)) (-2001 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-2403 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-2051 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199)))) 99)) (-2829 (((-349) (-349) (-583 (-349))) 104) (((-349) (-349) (-349)) 102)) (-2073 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)))
-(((-181) (-10 -7 (-15 -2829 ((-349) (-349) (-349))) (-15 -2829 ((-349) (-349) (-583 (-349)))) (-15 -3727 ((-349) (-623 (-286 (-199))))) (-15 -1367 ((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073)))) (-15 -2051 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199))))) (-15 -3664 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -2304 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2848 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2403 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2073 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2001 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181))
-((-2001 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-2051 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1073))) (-5 *4 (-1153 (-286 (-199)))) (-5 *1 (-181)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2829 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))))
-(-10 -7 (-15 -2829 ((-349) (-349) (-349))) (-15 -2829 ((-349) (-349) (-583 (-349)))) (-15 -3727 ((-349) (-623 (-286 (-199))))) (-15 -1367 ((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073)))) (-15 -2051 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199))))) (-15 -3664 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -2304 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2848 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2403 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2073 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2001 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1547 (((-107) $ $) NIL)))
+((-1950 (((-3 (-2 (|:| -3812 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 80)) (-1561 (((-517) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-3363 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69)))
+(((-180) (-10 -7 (-15 -1950 ((-3 (-2 (|:| -3812 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3363 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1561 ((-517) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180))
+((-1561 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-3363 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-1950 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3812 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
+(-10 -7 (-15 -1950 ((-3 (-2 (|:| -3812 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3363 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1561 ((-517) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-1998 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3537 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 127)) (-1948 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 87)) (-1365 (((-349) (-623 (-286 (-199)))) 110)) (-3835 (((-623 (-286 (-199))) (-1154 (-286 (-199))) (-583 (-1074))) 107)) (-2432 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-2098 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-1979 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1074)) (-1154 (-286 (-199)))) 99)) (-2930 (((-349) (-349) (-583 (-349))) 104) (((-349) (-349) (-349)) 102)) (-2038 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)))
+(((-181) (-10 -7 (-15 -2930 ((-349) (-349) (-349))) (-15 -2930 ((-349) (-349) (-583 (-349)))) (-15 -1365 ((-349) (-623 (-286 (-199))))) (-15 -3835 ((-623 (-286 (-199))) (-1154 (-286 (-199))) (-583 (-1074)))) (-15 -1979 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1074)) (-1154 (-286 (-199))))) (-15 -1948 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -3537 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1998 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2098 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2038 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2432 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181))
+((-2432 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-1979 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1074))) (-5 *4 (-1154 (-286 (-199)))) (-5 *1 (-181)))) (-3835 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *4 (-583 (-1074))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2930 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2930 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))))
+(-10 -7 (-15 -2930 ((-349) (-349) (-349))) (-15 -2930 ((-349) (-349) (-583 (-349)))) (-15 -1365 ((-349) (-623 (-286 (-199))))) (-15 -3835 ((-623 (-286 (-199))) (-1154 (-286 (-199))) (-583 (-1074)))) (-15 -1979 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1074)) (-1154 (-286 (-199))))) (-15 -1948 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -3537 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1998 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2098 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2038 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2432 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-2571 (((-107) $ $) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-2219 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1539 (((-107) $ $) NIL)))
(((-182) (-732)) (T -182))
NIL
(-732)
-((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-2219 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1539 (((-107) $ $) NIL)))
(((-183) (-732)) (T -183))
NIL
(-732)
-((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-2219 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1539 (((-107) $ $) NIL)))
(((-184) (-732)) (T -184))
NIL
(-732)
-((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-2219 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1539 (((-107) $ $) NIL)))
(((-185) (-732)) (T -185))
NIL
(-732)
-((-3463 (((-583 (-1073)) (-1073) (-703)) 22)) (-2093 (((-286 (-199)) (-286 (-199))) 29)) (-2943 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 67)) (-3511 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43)))
-(((-186) (-10 -7 (-15 -3463 ((-583 (-1073)) (-1073) (-703))) (-15 -2093 ((-286 (-199)) (-286 (-199)))) (-15 -3511 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -2943 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))))) (T -186))
-((-2943 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-3511 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-2093 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-186)) (-5 *3 (-1073)))))
-(-10 -7 (-15 -3463 ((-583 (-1073)) (-1073) (-703))) (-15 -2093 ((-286 (-199)) (-286 (-199)))) (-15 -3511 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -2943 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))))
-((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 17)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 55)) (-1547 (((-107) $ $) NIL)))
+((-3367 (((-583 (-1074)) (-1074) (-703)) 22)) (-2188 (((-286 (-199)) (-286 (-199))) 29)) (-1705 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 67)) (-2829 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43)))
+(((-186) (-10 -7 (-15 -3367 ((-583 (-1074)) (-1074) (-703))) (-15 -2188 ((-286 (-199)) (-286 (-199)))) (-15 -2829 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -1705 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))))) (T -186))
+((-1705 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-2829 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1074))) (-5 *1 (-186)) (-5 *3 (-1074)))))
+(-10 -7 (-15 -3367 ((-583 (-1074)) (-1074) (-703))) (-15 -2188 ((-286 (-199)) (-286 (-199)))) (-15 -2829 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -1705 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))))
+((-2571 (((-107) $ $) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 17)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-4152 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 55)) (-1539 (((-107) $ $) NIL)))
(((-187) (-817)) (T -187))
NIL
(-817)
-((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 12)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-4152 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) NIL)) (-1539 (((-107) $ $) NIL)))
(((-188) (-817)) (T -188))
NIL
(-817)
-((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3307 (((-1158) $) 36) (((-1158) $ (-843) (-843)) 38)) (-1449 (($ $ (-906)) 19) (((-219 (-1056)) $ (-1073)) 15)) (-1242 (((-1158) $) 34)) (-2256 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $ $) 27)) (-1642 (($ $ $) 22)))
-(((-189 |#1|) (-13 (-1003) (-10 -8 (-15 -1449 ($ $ (-906))) (-15 -1449 ((-219 (-1056)) $ (-1073))) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -2256 ($ (-583 |#1|))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -3307 ((-1158) $ (-843) (-843))))) (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (T -189))
-((-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-219 (-1056))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ *3)) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1642 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1654 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (-5 *1 (-189 *3)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) (-3307 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))))
-(-13 (-1003) (-10 -8 (-15 -1449 ($ $ (-906))) (-15 -1449 ((-219 (-1056)) $ (-1073))) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -2256 ($ (-583 |#1|))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -3307 ((-1158) $ (-843) (-843)))))
-((-1602 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190))
-((-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1130 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
-(-10 -7 (-15 -1602 (|#2| |#4| (-1 |#2| |#2|))))
-((-3544 ((|#2| |#2| (-703) |#2|) 41)) (-3289 ((|#2| |#2| (-703) |#2|) 37)) (-3988 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|)))) 55)) (-3743 (((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|) 51)) (-2504 (((-107) |#2|) 48)) (-3432 (((-388 |#2|) |#2|) 74)) (-3755 (((-388 |#2|) |#2|) 73)) (-1458 ((|#2| |#2| (-703) |#2|) 35)) (-3158 (((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107)) 66)))
-(((-191 |#1| |#2|) (-10 -7 (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3432 ((-388 |#2|) |#2|)) (-15 -3158 ((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107))) (-15 -3743 ((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|)) (-15 -3988 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))))) (-15 -1458 (|#2| |#2| (-703) |#2|)) (-15 -3289 (|#2| |#2| (-703) |#2|)) (-15 -3544 (|#2| |#2| (-703) |#2|)) (-15 -2504 ((-107) |#2|))) (-319) (-1130 |#1|)) (T -191))
-((-2504 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3544 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-3289 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-1458 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *5)))) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1130 *5)))) (-3432 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3432 ((-388 |#2|) |#2|)) (-15 -3158 ((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107))) (-15 -3743 ((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|)) (-15 -3988 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))))) (-15 -1458 (|#2| |#2| (-703) |#2|)) (-15 -3289 (|#2| |#2| (-703) |#2|)) (-15 -3544 (|#2| |#2| (-703) |#2|)) (-15 -2504 ((-107) |#2|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-2398 (($ (-377 (-517))) 8)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 10) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-192) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 10) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -2398 ($ (-377 (-517))))))) (T -192))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
-(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 10) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -2398 ($ (-377 (-517))))))
-((-4151 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|))) 23)) (-1402 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107)) 16)))
-(((-193 |#1| |#2|) (-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056))) (-15 -1402 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -193))
-((-1402 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1073)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1094) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1056)) (-4 *3 (-13 (-1094) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1094) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))))
-(-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056))) (-15 -1402 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107))))
-((-4151 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|)))) 17)))
-(((-194 |#1|) (-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (T -194))
-((-4151 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1056)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))))
-(-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056))))
-((-3225 (((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|)) 20)) (-3502 (((-583 (-286 |#2|)) (-286 |#2|) (-843)) 42)))
-(((-195 |#1| |#2|) (-10 -7 (-15 -3225 ((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|))) (-15 -3502 ((-583 (-286 |#2|)) (-286 |#2|) (-843)))) (-961) (-13 (-509) (-779))) (T -195))
-((-3502 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) (-3225 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -1913 (-1069 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-13 (-509) (-779))))))
-(-10 -7 (-15 -3225 ((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|))) (-15 -3502 ((-583 (-286 |#2|)) (-286 |#2|) (-843))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3026 ((|#1| $) NIL)) (-4139 ((|#1| $) 25)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-3186 (($ $) NIL)) (-4020 (($ $) 31)) (-2886 ((|#1| |#1| $) NIL)) (-1200 ((|#1| $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-2195 (((-703) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) NIL)) (-2164 ((|#1| |#1| $) 28)) (-3968 ((|#1| |#1| $) 30)) (-1710 (($ |#1| $) NIL)) (-1881 (((-703) $) 27)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2578 ((|#1| $) NIL)) (-4018 ((|#1| $) 26)) (-3561 ((|#1| $) 24)) (-4006 ((|#1| $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3838 ((|#1| |#1| $) NIL)) (-3619 (((-107) $) 9)) (-1746 (($) NIL)) (-3129 ((|#1| $) NIL)) (-2277 (($) NIL) (($ (-583 |#1|)) 16)) (-1694 (((-703) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-2738 ((|#1| $) 13)) (-1222 (($ (-583 |#1|)) NIL)) (-2028 ((|#1| $) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -2277 ($ (-583 |#1|))))) (-1003)) (T -196))
-((-2277 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))))
-(-13 (-227 |#1|) (-10 -8 (-15 -2277 ($ (-583 |#1|)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1905 (($ (-286 |#1|)) 23)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3153 (((-107) $) NIL)) (-1772 (((-3 (-286 |#1|) "failed") $) NIL)) (-3189 (((-286 |#1|) $) NIL)) (-1212 (($ $) 31)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1893 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-1191 (((-286 |#1|) $) NIL)) (-3105 (($ $) 30)) (-3985 (((-1056) $) NIL)) (-3593 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) NIL)) (-3151 (($ $) 32)) (-3688 (((-517) $) NIL)) (-2256 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-2720 (((-286 |#1|) $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 50 T CONST)) (-1547 (((-107) $ $) 28)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18)))
-(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1191 ((-286 |#1|) $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 ((-286 |#1|) $ $)) (-15 -3220 ($ (-703))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -1893 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1905 ($ (-286 |#1|))) (-15 -3151 ($ $)))) (-13 (-961) (-779)) (-583 (-1073))) (T -197))
-((-1191 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3105 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) (-2720 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) (-3151 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))))
-(-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1191 ((-286 |#1|) $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 ((-286 |#1|) $ $)) (-15 -3220 ($ (-703))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -1893 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1905 ($ (-286 |#1|))) (-15 -3151 ($ $))))
-((-3069 (((-107) (-1056)) 22)) (-3268 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-1832 (((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107)) 74)))
-(((-198 |#1| |#2|) (-10 -7 (-15 -3069 ((-107) (-1056))) (-15 -3268 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-29 |#1|))) (T -198))
-((-1832 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1069 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1094) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-1832 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1073)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1094) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-3268 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1094) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1094) (-29 *4))))))
-(-10 -7 (-15 -3069 ((-107) (-1056))) (-15 -3268 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 89)) (-2668 (((-517) $) 99)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) NIL)) (-1865 (($ $) 77)) (-1721 (($ $) 65)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) 56)) (-1707 (((-107) $ $) NIL)) (-1839 (($ $) 75)) (-1701 (($ $) 63)) (-3709 (((-517) $) 116)) (-1887 (($ $) 80)) (-1743 (($ $) 67)) (-3092 (($) NIL T CONST)) (-2531 (($ $) NIL)) (-1772 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3189 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 92)) (-3934 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 29) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-3556 (((-107) $) NIL)) (-2645 (($) 39)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3972 (((-517) $) 35)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (($ $) NIL)) (-2475 (((-107) $) 88)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) 53) (($) 34 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3099 (($ $ $) 52) (($) 33 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 27)) (-2365 (($ $) 30)) (-3720 (($ $) 57)) (-1867 (($ $) 62)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2138 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL) (((-517) $) 90)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL)) (-2597 (($ $) NIL)) (-4005 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) 100)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 28)) (-3963 (($) 38)) (-2624 (($ $) 61)) (-3146 (((-703) $) NIL)) (-1826 (((-1056) (-1056)) 8)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-3127 (($ $ (-703)) NIL) (($ $) 93)) (-2646 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-1898 (($ $) 78)) (-1754 (($ $) 68)) (-1876 (($ $) 79)) (-1732 (($ $) 66)) (-1853 (($ $) 76)) (-1711 (($ $) 64)) (-3645 (((-349) $) 104) (((-199) $) 101) (((-814 (-349)) $) NIL) (((-493) $) 45)) (-2256 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-2961 (((-703)) NIL)) (-1949 (($ $) NIL)) (-1398 (((-843)) 32) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2372 (((-843)) 25)) (-3707 (($ $) 83)) (-1788 (($ $) 71) (($ $ $) 109)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 81)) (-1765 (($ $) 69)) (-3731 (($ $) 86)) (-1814 (($ $) 74)) (-1492 (($ $) 84)) (-1827 (($ $) 72)) (-3719 (($ $) 85)) (-1802 (($ $) 73)) (-3695 (($ $) 82)) (-1777 (($ $) 70)) (-3710 (($ $) 117)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 36 T CONST)) (-2409 (($) 37 T CONST)) (-2482 (((-1056) $) 19) (((-1056) $ (-107)) 21) (((-1158) (-754) $) 22) (((-1158) (-754) $ (-107)) 23)) (-1564 (($ $) 96)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-2350 (($ $ $) 98)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 54)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 46)) (-1667 (($ $ $) 87) (($ $ (-517)) 55)) (-1654 (($ $) 47) (($ $ $) 49)) (-1642 (($ $ $) 48)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-843) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-199) (-13 (-374) (-207) (-760) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -3963 ($)) (-15 -3206 ((-517) $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -1788 ($ $ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -1826 ((-1056) (-1056))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703)))))) (T -199))
-((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-3963 (*1 *1) (-5 *1 (-199))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2365 (*1 *1 *1) (-5 *1 (-199))) (-3720 (*1 *1 *1) (-5 *1 (-199))) (-1788 (*1 *1 *1 *1) (-5 *1 (-199))) (-1564 (*1 *1 *1) (-5 *1 (-199))) (-2350 (*1 *1 *1 *1) (-5 *1 (-199))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-199)))) (-3934 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-3934 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))))
-(-13 (-374) (-207) (-760) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -3963 ($)) (-15 -3206 ((-517) $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -1788 ($ $ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -1826 ((-1056) (-1056))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703)))))
-((-1264 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-2432 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-1221 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-2150 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-2570 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-2480 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-3233 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-1324 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-3312 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-1730 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-1564 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-2350 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26)))
-(((-200) (-10 -7 (-15 -1564 ((-199) (-199))) (-15 -1564 ((-153 (-199)) (-153 (-199)))) (-15 -2350 ((-199) (-199) (-199))) (-15 -2350 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2432 ((-199) (-199))) (-15 -2432 ((-153 (-199)) (-153 (-199)))) (-15 -2150 ((-199) (-199))) (-15 -2150 ((-153 (-199)) (-153 (-199)))) (-15 -1264 ((-199) (-703) (-199))) (-15 -1264 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -3233 ((-199) (-199) (-199))) (-15 -3233 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2570 ((-199) (-199) (-199))) (-15 -2570 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1324 ((-199) (-199) (-199))) (-15 -1324 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2480 ((-199) (-199) (-199))) (-15 -2480 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1730 ((-153 (-199)) (-153 (-199)))) (-15 -1730 ((-199) (-199))) (-15 -3312 ((-199) (-199))) (-15 -3312 ((-153 (-199)) (-153 (-199)))) (-15 -1221 ((-199) (-199) (-199))) (-15 -1221 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200))
-((-1221 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1221 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1324 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1324 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2570 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2570 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3233 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3233 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1264 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-1264 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2350 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2350 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))))
-(-10 -7 (-15 -1564 ((-199) (-199))) (-15 -1564 ((-153 (-199)) (-153 (-199)))) (-15 -2350 ((-199) (-199) (-199))) (-15 -2350 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2432 ((-199) (-199))) (-15 -2432 ((-153 (-199)) (-153 (-199)))) (-15 -2150 ((-199) (-199))) (-15 -2150 ((-153 (-199)) (-153 (-199)))) (-15 -1264 ((-199) (-703) (-199))) (-15 -1264 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -3233 ((-199) (-199) (-199))) (-15 -3233 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2570 ((-199) (-199) (-199))) (-15 -2570 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1324 ((-199) (-199) (-199))) (-15 -1324 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2480 ((-199) (-199) (-199))) (-15 -2480 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1730 ((-153 (-199)) (-153 (-199)))) (-15 -1730 ((-199) (-199))) (-15 -3312 ((-199) (-199))) (-15 -3312 ((-153 (-199)) (-153 (-199)))) (-15 -1221 ((-199) (-199) (-199))) (-15 -1221 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) NIL)) (-1231 (($ $ $) NIL)) (-2033 (($ (-1153 |#1|)) NIL) (($ $) NIL)) (-2444 (($ |#1| |#1| |#1|) 32)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) NIL)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-1153 |#1|)) NIL)) (-3739 (($ $ (-517) (-1153 |#1|)) NIL)) (-1278 (($ |#1| |#1| |#1|) 31)) (-3487 (($ (-703) |#1|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) NIL (|has| |#1| (-278)))) (-1939 (((-1153 |#1|) $ (-517)) NIL)) (-1356 (($ |#1|) 30)) (-1370 (($ |#1|) 29)) (-1428 (($ |#1|) 28)) (-2261 (((-703) $) NIL (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) NIL (|has| |#1| (-509)))) (-3706 (((-583 (-1153 |#1|)) $) NIL (|has| |#1| (-509)))) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) NIL (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#1|))) 10)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-1438 (($) 11)) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) NIL (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-1153 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1153 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1153 |#1|) $ (-1153 |#1|)) 14) (((-1153 |#1|) (-1153 |#1|) $) NIL) (((-865 |#1|) $ (-865 |#1|)) 20)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-201 |#1|) (-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -1438 ($)) (-15 -1428 ($ |#1|)) (-15 -1370 ($ |#1|)) (-15 -1356 ($ |#1|)) (-15 -1278 ($ |#1| |#1| |#1|)) (-15 -2444 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1094))) (T -201))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094))) (-5 *1 (-201 *3)))) (-1438 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1428 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1370 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1356 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1278 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-2444 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
-(-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -1438 ($)) (-15 -1428 ($ |#1|)) (-15 -1370 ($ |#1|)) (-15 -1356 ($ |#1|)) (-15 -1278 ($ |#1| |#1| |#1|)) (-15 -2444 ($ |#1| |#1| |#1|))))
-((-2337 (($ (-1 (-107) |#2|) $) 17)) (-3212 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 25)) (-3089 (($) NIL) (($ (-583 |#2|)) 11)) (-1547 (((-107) $ $) 23)))
-(((-202 |#1| |#2|) (-10 -8 (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-203 |#2|) (-1003)) (T -202))
-NIL
-(-10 -8 (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -1547 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-203 |#1|) (-1184) (-1003)) (T -203))
+((-2571 (((-107) $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1815 (((-1159) $) 36) (((-1159) $ (-843) (-843)) 38)) (-1986 (($ $ (-906)) 19) (((-219 (-1057)) $ (-1074)) 15)) (-1250 (((-1159) $) 34)) (-2182 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $ $) 27)) (-1626 (($ $ $) 22)))
+(((-189 |#1|) (-13 (-1003) (-10 -8 (-15 -1986 ($ $ (-906))) (-15 -1986 ((-219 (-1057)) $ (-1074))) (-15 -1626 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -2182 ($ (-583 |#1|))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $)) (-15 -1815 ((-1159) $ (-843) (-843))))) (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))) (T -189))
+((-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-219 (-1057))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ *3)) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))))) (-1626 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))))) (-1637 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))) (-5 *1 (-189 *3)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 (*2 $)) (-15 -1815 (*2 $))))))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 (*2 $)) (-15 -1815 (*2 $))))))) (-1815 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 (*2 $)) (-15 -1815 (*2 $))))))))
+(-13 (-1003) (-10 -8 (-15 -1986 ($ $ (-906))) (-15 -1986 ((-219 (-1057)) $ (-1074))) (-15 -1626 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -2182 ($ (-583 |#1|))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $)) (-15 -1815 ((-1159) $ (-843) (-843)))))
+((-4090 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4090 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190))
+((-4090 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1131 (-377 *2))) (-4 *2 (-1131 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
+(-10 -7 (-15 -4090 (|#2| |#4| (-1 |#2| |#2|))))
+((-2015 ((|#2| |#2| (-703) |#2|) 41)) (-1640 ((|#2| |#2| (-703) |#2|) 37)) (-3902 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -2204 |#2|)))) 55)) (-3190 (((-583 (-2 (|:| |deg| (-703)) (|:| -2204 |#2|))) |#2|) 51)) (-1873 (((-107) |#2|) 48)) (-3397 (((-388 |#2|) |#2|) 74)) (-3693 (((-388 |#2|) |#2|) 73)) (-3755 ((|#2| |#2| (-703) |#2|) 35)) (-2750 (((-2 (|:| |cont| |#1|) (|:| -2232 (-583 (-2 (|:| |irr| |#2|) (|:| -1671 (-517)))))) |#2| (-107)) 66)))
+(((-191 |#1| |#2|) (-10 -7 (-15 -3693 ((-388 |#2|) |#2|)) (-15 -3397 ((-388 |#2|) |#2|)) (-15 -2750 ((-2 (|:| |cont| |#1|) (|:| -2232 (-583 (-2 (|:| |irr| |#2|) (|:| -1671 (-517)))))) |#2| (-107))) (-15 -3190 ((-583 (-2 (|:| |deg| (-703)) (|:| -2204 |#2|))) |#2|)) (-15 -3902 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -2204 |#2|))))) (-15 -3755 (|#2| |#2| (-703) |#2|)) (-15 -1640 (|#2| |#2| (-703) |#2|)) (-15 -2015 (|#2| |#2| (-703) |#2|)) (-15 -1873 ((-107) |#2|))) (-319) (-1131 |#1|)) (T -191))
+((-1873 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) (-2015 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))) (-1640 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))) (-3755 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -2204 *5)))) (-4 *5 (-1131 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-3190 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2204 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2232 (-583 (-2 (|:| |irr| *3) (|:| -1671 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1131 *5)))) (-3397 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -3693 ((-388 |#2|) |#2|)) (-15 -3397 ((-388 |#2|) |#2|)) (-15 -2750 ((-2 (|:| |cont| |#1|) (|:| -2232 (-583 (-2 (|:| |irr| |#2|) (|:| -1671 (-517)))))) |#2| (-107))) (-15 -3190 ((-583 (-2 (|:| |deg| (-703)) (|:| -2204 |#2|))) |#2|)) (-15 -3902 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -2204 |#2|))))) (-15 -3755 (|#2| |#2| (-703) |#2|)) (-15 -1640 (|#2| |#2| (-703) |#2|)) (-15 -2015 (|#2| |#2| (-703) |#2|)) (-15 -1873 ((-107) |#2|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 (((-517) $) NIL (|has| (-517) (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| (-517) (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-517) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3076 (((-517) $) NIL) (((-1074) $) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-517) (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) NIL (|has| (-517) (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL)) (-1772 (((-517) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| (-517) (-1050)))) (-1624 (((-107) $) NIL (|has| (-517) (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| (-517) (-779)))) (-1857 (($ (-1 (-517) (-517)) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-517) (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-3263 (((-517) $) NIL (|has| (-517) (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1074)) (-583 (-517))) NIL (|has| (-517) (-478 (-1074) (-517)))) (($ $ (-1074) (-517)) NIL (|has| (-517) (-478 (-1074) (-517))))) (-2623 (((-703) $) NIL)) (-1986 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-3691 (($ $) NIL)) (-1783 (((-517) $) NIL)) (-2042 (($ (-377 (-517))) 8)) (-3582 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1074)) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL) (((-920 10) $) 9)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-1865 (((-703)) NIL)) (-3112 (((-517) $) NIL (|has| (-517) (-502)))) (-3767 (((-107) $ $) NIL)) (-1221 (($ $) NIL (|has| (-517) (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1593 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1560 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1649 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-192) (-13 (-909 (-517)) (-10 -8 (-15 -2182 ((-377 (-517)) $)) (-15 -2182 ((-920 10) $)) (-15 -1194 ((-377 (-517)) $)) (-15 -2042 ($ (-377 (-517))))))) (T -192))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) (-1194 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
+(-13 (-909 (-517)) (-10 -8 (-15 -2182 ((-377 (-517)) $)) (-15 -2182 ((-920 10) $)) (-15 -1194 ((-377 (-517)) $)) (-15 -2042 ($ (-377 (-517))))))
+((-2863 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1057)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|))) 23)) (-1912 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074) (-772 |#2|) (-772 |#2|) (-107)) 16)))
+(((-193 |#1| |#2|) (-10 -7 (-15 -2863 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -2863 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1057))) (-15 -1912 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-880) (-29 |#1|))) (T -193))
+((-1912 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1074)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1095) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-2863 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1057)) (-4 *3 (-13 (-1095) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1095) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))))
+(-10 -7 (-15 -2863 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -2863 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1057))) (-15 -1912 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074) (-772 |#2|) (-772 |#2|) (-107))))
+((-2863 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1057)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1057)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|)))) 17)))
+(((-194 |#1|) (-10 -7 (-15 -2863 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -2863 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1057))) (-15 -2863 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -2863 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1057)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (T -194))
+((-2863 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1057)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-2863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1057)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))))
+(-10 -7 (-15 -2863 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -2863 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1057))) (-15 -2863 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -2863 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1057))))
+((-2521 (((-2 (|:| -4026 (-1070 |#1|)) (|:| |deg| (-843))) (-1070 |#1|)) 20)) (-3408 (((-583 (-286 |#2|)) (-286 |#2|) (-843)) 42)))
+(((-195 |#1| |#2|) (-10 -7 (-15 -2521 ((-2 (|:| -4026 (-1070 |#1|)) (|:| |deg| (-843))) (-1070 |#1|))) (-15 -3408 ((-583 (-286 |#2|)) (-286 |#2|) (-843)))) (-961) (-13 (-509) (-779))) (T -195))
+((-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -4026 (-1070 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-13 (-509) (-779))))))
+(-10 -7 (-15 -2521 ((-2 (|:| -4026 (-1070 |#1|)) (|:| |deg| (-843))) (-1070 |#1|))) (-15 -3408 ((-583 (-286 |#2|)) (-286 |#2|) (-843))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1193 ((|#1| $) NIL)) (-4143 ((|#1| $) 25)) (-1799 (((-107) $ (-703)) NIL)) (-3473 (($) NIL T CONST)) (-1942 (($ $) NIL)) (-1227 (($ $) 31)) (-2284 ((|#1| |#1| $) NIL)) (-2646 ((|#1| $) NIL)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-2542 (((-703) $) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1835 ((|#1| $) NIL)) (-1742 ((|#1| |#1| $) 28)) (-1886 ((|#1| |#1| $) 30)) (-3816 (($ |#1| $) NIL)) (-1846 (((-703) $) 27)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1376 ((|#1| $) NIL)) (-1200 ((|#1| $) 26)) (-2140 ((|#1| $) 24)) (-4049 ((|#1| $) NIL)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-2813 ((|#1| |#1| $) NIL)) (-1546 (((-107) $) 9)) (-1326 (($) NIL)) (-2490 ((|#1| $) NIL)) (-3241 (($) NIL) (($ (-583 |#1|)) 16)) (-2824 (((-703) $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3240 ((|#1| $) 13)) (-2373 (($ (-583 |#1|)) NIL)) (-2665 ((|#1| $) NIL)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -3241 ($ (-583 |#1|))))) (-1003)) (T -196))
+((-3241 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))))
+(-13 (-227 |#1|) (-10 -8 (-15 -3241 ($ (-583 |#1|)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-3956 (($ (-286 |#1|)) 23)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-2690 (((-107) $) NIL)) (-1759 (((-3 (-286 |#1|) "failed") $) NIL)) (-3076 (((-286 |#1|) $) NIL)) (-1217 (($ $) 31)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-1857 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-1192 (((-286 |#1|) $) NIL)) (-3569 (($ $) 30)) (-3865 (((-1057) $) NIL)) (-2378 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-3107 (($ (-703)) NIL)) (-2675 (($ $) 32)) (-4007 (((-517) $) NIL)) (-2182 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-3086 (((-286 |#1|) $ $) NIL)) (-1865 (((-703)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 25 T CONST)) (-2306 (($) 50 T CONST)) (-1539 (((-107) $ $) 28)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18)))
+(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1192 ((-286 |#1|) $)) (-15 -3569 ($ $)) (-15 -1217 ($ $)) (-15 -3086 ((-286 |#1|) $ $)) (-15 -3107 ($ (-703))) (-15 -2378 ((-107) $)) (-15 -2690 ((-107) $)) (-15 -4007 ((-517) $)) (-15 -1857 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -3956 ($ (-286 |#1|))) (-15 -2675 ($ $)))) (-13 (-961) (-779)) (-583 (-1074))) (T -197))
+((-1192 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))) (-1217 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))) (-3086 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1074))))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1074))))) (-2675 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))))
+(-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1192 ((-286 |#1|) $)) (-15 -3569 ($ $)) (-15 -1217 ($ $)) (-15 -3086 ((-286 |#1|) $ $)) (-15 -3107 ($ (-703))) (-15 -2378 ((-107) $)) (-15 -2690 ((-107) $)) (-15 -4007 ((-517) $)) (-15 -1857 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -3956 ($ (-286 |#1|))) (-15 -2675 ($ $))))
+((-3247 (((-107) (-1057)) 22)) (-1444 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-3899 (((-3 (-107) "failed") (-1070 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-874 |#1|) (-1074) (-772 |#2|) (-772 |#2|) (-107)) 74)))
+(((-198 |#1| |#2|) (-10 -7 (-15 -3247 ((-107) (-1057))) (-15 -1444 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -3899 ((-3 (-107) "failed") (-874 |#1|) (-1074) (-772 |#2|) (-772 |#2|) (-107))) (-15 -3899 ((-3 (-107) "failed") (-1070 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-29 |#1|))) (T -198))
+((-3899 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1070 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1095) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-3899 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1074)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1095) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-1444 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1095) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1095) (-29 *4))))))
+(-10 -7 (-15 -3247 ((-107) (-1057))) (-15 -1444 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -3899 ((-3 (-107) "failed") (-874 |#1|) (-1074) (-772 |#2|) (-772 |#2|) (-107))) (-15 -3899 ((-3 (-107) "failed") (-1070 |#2|) (-772 |#2|) (-772 |#2|) (-107))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 89)) (-2667 (((-517) $) 99)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3349 (($ $) NIL)) (-1834 (($ $) 77)) (-1710 (($ $) 65)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3706 (($ $) 56)) (-3765 (((-107) $ $) NIL)) (-1812 (($ $) 75)) (-1685 (($ $) 63)) (-1207 (((-517) $) 116)) (-1851 (($ $) 80)) (-1731 (($ $) 67)) (-3473 (($) NIL T CONST)) (-3896 (($ $) NIL)) (-1759 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3076 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) 92)) (-1532 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-3373 (((-843)) 29) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-2099 (((-107) $) NIL)) (-2475 (($) 39)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-1921 (((-517) $) 35)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL)) (-2289 (($ $) NIL)) (-1624 (((-107) $) 88)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) 53) (($) 34 (-12 (-2455 (|has| $ (-6 -4166))) (-2455 (|has| $ (-6 -4174)))))) (-2986 (($ $ $) 52) (($) 33 (-12 (-2455 (|has| $ (-6 -4166))) (-2455 (|has| $ (-6 -4174)))))) (-3272 (((-517) $) 27)) (-2841 (($ $) 30)) (-1302 (($ $) 57)) (-1826 (($ $) 62)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-1483 (((-843) (-517)) NIL (|has| $ (-6 -4174)))) (-3094 (((-1021) $) NIL) (((-517) $) 90)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL)) (-3263 (($ $) NIL)) (-4009 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) 100)) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2059 (((-517) $) 28)) (-1845 (($) 38)) (-2459 (($ $) 61)) (-2623 (((-703) $) NIL)) (-3838 (((-1057) (-1057)) 8)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1567 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-1699 (($ $ (-703)) NIL) (($ $) 93)) (-2481 (((-843) (-517)) NIL (|has| $ (-6 -4174)))) (-1860 (($ $) 78)) (-1741 (($ $) 68)) (-1842 (($ $) 79)) (-1722 (($ $) 66)) (-1824 (($ $) 76)) (-1698 (($ $) 64)) (-3582 (((-349) $) 104) (((-199) $) 101) (((-814 (-349)) $) NIL) (((-493) $) 45)) (-2182 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-1865 (((-703)) NIL)) (-3112 (($ $) NIL)) (-2931 (((-843)) 32) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-4103 (((-843)) 25)) (-3642 (($ $) 83)) (-1773 (($ $) 71) (($ $ $) 109)) (-3767 (((-107) $ $) NIL)) (-3622 (($ $) 81)) (-1751 (($ $) 69)) (-3661 (($ $) 86)) (-1794 (($ $) 74)) (-1279 (($ $) 84)) (-1803 (($ $) 72)) (-3650 (($ $) 85)) (-1784 (($ $) 73)) (-3631 (($ $) 82)) (-1762 (($ $) 70)) (-1221 (($ $) 117)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 36 T CONST)) (-2306 (($) 37 T CONST)) (-1693 (((-1057) $) 19) (((-1057) $ (-107)) 21) (((-1159) (-754) $) 22) (((-1159) (-754) $ (-107)) 23)) (-3030 (($ $) 96)) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-2685 (($ $ $) 98)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 54)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 46)) (-1649 (($ $ $) 87) (($ $ (-517)) 55)) (-1637 (($ $) 47) (($ $ $) 49)) (-1626 (($ $ $) 48)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-843) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-199) (-13 (-374) (-207) (-760) (-1095) (-558 (-493)) (-10 -8 (-15 -1649 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -1845 ($)) (-15 -3094 ((-517) $)) (-15 -2841 ($ $)) (-15 -1302 ($ $)) (-15 -1773 ($ $ $)) (-15 -3030 ($ $)) (-15 -2685 ($ $ $)) (-15 -3838 ((-1057) (-1057))) (-15 -1532 ((-377 (-517)) $ (-703))) (-15 -1532 ((-377 (-517)) $ (-703) (-703)))))) (T -199))
+((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1649 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-1845 (*1 *1) (-5 *1 (-199))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2841 (*1 *1 *1) (-5 *1 (-199))) (-1302 (*1 *1 *1) (-5 *1 (-199))) (-1773 (*1 *1 *1 *1) (-5 *1 (-199))) (-3030 (*1 *1 *1) (-5 *1 (-199))) (-2685 (*1 *1 *1 *1) (-5 *1 (-199))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-199)))) (-1532 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-1532 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))))
+(-13 (-374) (-207) (-760) (-1095) (-558 (-493)) (-10 -8 (-15 -1649 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -1845 ($)) (-15 -3094 ((-517) $)) (-15 -2841 ($ $)) (-15 -1302 ($ $)) (-15 -1773 ($ $ $)) (-15 -3030 ($ $)) (-15 -2685 ($ $ $)) (-15 -3838 ((-1057) (-1057))) (-15 -1532 ((-377 (-517)) $ (-703))) (-15 -1532 ((-377 (-517)) $ (-703) (-703)))))
+((-1425 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-2319 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-2362 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-1583 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-1294 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-1672 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-2228 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-1555 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-1853 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-2940 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-3030 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-2685 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26)))
+(((-200) (-10 -7 (-15 -3030 ((-199) (-199))) (-15 -3030 ((-153 (-199)) (-153 (-199)))) (-15 -2685 ((-199) (-199) (-199))) (-15 -2685 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2319 ((-199) (-199))) (-15 -2319 ((-153 (-199)) (-153 (-199)))) (-15 -1583 ((-199) (-199))) (-15 -1583 ((-153 (-199)) (-153 (-199)))) (-15 -1425 ((-199) (-703) (-199))) (-15 -1425 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -2228 ((-199) (-199) (-199))) (-15 -2228 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1294 ((-199) (-199) (-199))) (-15 -1294 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1555 ((-199) (-199) (-199))) (-15 -1555 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1672 ((-199) (-199) (-199))) (-15 -1672 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2940 ((-153 (-199)) (-153 (-199)))) (-15 -2940 ((-199) (-199))) (-15 -1853 ((-199) (-199))) (-15 -1853 ((-153 (-199)) (-153 (-199)))) (-15 -2362 ((-199) (-199) (-199))) (-15 -2362 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200))
+((-2362 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2362 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1672 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1672 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1555 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1555 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1294 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1294 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2228 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2228 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1425 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-1425 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2685 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2685 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3030 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3030 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))))
+(-10 -7 (-15 -3030 ((-199) (-199))) (-15 -3030 ((-153 (-199)) (-153 (-199)))) (-15 -2685 ((-199) (-199) (-199))) (-15 -2685 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2319 ((-199) (-199))) (-15 -2319 ((-153 (-199)) (-153 (-199)))) (-15 -1583 ((-199) (-199))) (-15 -1583 ((-153 (-199)) (-153 (-199)))) (-15 -1425 ((-199) (-703) (-199))) (-15 -1425 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -2228 ((-199) (-199) (-199))) (-15 -2228 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1294 ((-199) (-199) (-199))) (-15 -1294 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1555 ((-199) (-199) (-199))) (-15 -1555 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1672 ((-199) (-199) (-199))) (-15 -1672 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2940 ((-153 (-199)) (-153 (-199)))) (-15 -2940 ((-199) (-199))) (-15 -1853 ((-199) (-199))) (-15 -1853 ((-153 (-199)) (-153 (-199)))) (-15 -2362 ((-199) (-199) (-199))) (-15 -2362 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3437 (($ (-703) (-703)) NIL)) (-3497 (($ $ $) NIL)) (-2729 (($ (-1154 |#1|)) NIL) (($ $) NIL)) (-2331 (($ |#1| |#1| |#1|) 32)) (-2794 (((-107) $) NIL)) (-3758 (($ $ (-517) (-517)) NIL)) (-2443 (($ $ (-517) (-517)) NIL)) (-3834 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4068 (($ $) NIL)) (-2119 (((-107) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-2165 (($ $ (-517) (-517) $) NIL)) (-2307 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3635 (($ $ (-517) (-1154 |#1|)) NIL)) (-3160 (($ $ (-517) (-1154 |#1|)) NIL)) (-3721 (($ |#1| |#1| |#1|) 31)) (-2609 (($ (-703) |#1|) NIL)) (-3473 (($) NIL T CONST)) (-1558 (($ $) NIL (|has| |#1| (-278)))) (-3023 (((-1154 |#1|) $ (-517)) NIL)) (-2718 (($ |#1|) 30)) (-3867 (($ |#1|) 29)) (-2046 (($ |#1|) 28)) (-3795 (((-703) $) NIL (|has| |#1| (-509)))) (-1226 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4020 ((|#1| $ (-517) (-517)) NIL)) (-3037 (((-583 |#1|) $) NIL)) (-3101 (((-703) $) NIL (|has| |#1| (-509)))) (-4163 (((-583 (-1154 |#1|)) $) NIL (|has| |#1| (-509)))) (-4122 (((-703) $) NIL)) (-3366 (($ (-703) (-703) |#1|) NIL)) (-1875 (((-703) $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-3464 ((|#1| $) NIL (|has| |#1| (-6 (-4185 "*"))))) (-2734 (((-517) $) NIL)) (-2397 (((-517) $) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3070 (((-517) $) NIL)) (-2820 (((-517) $) NIL)) (-1813 (($ (-583 (-583 |#1|))) 10)) (-1213 (($ (-1 |#1| |#1|) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1263 (((-583 (-583 |#1|)) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2263 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-2261 (($) 11)) (-3773 (($ $ $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1254 (($ $ |#1|) NIL)) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3681 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1274 (((-107) $) NIL)) (-3139 ((|#1| $) NIL (|has| |#1| (-6 (-4185 "*"))))) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-1377 (((-1154 |#1|) $ (-517)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1154 |#1|)) NIL)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3565 (((-107) $) NIL)) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $ $) NIL) (($ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1154 |#1|) $ (-1154 |#1|)) 14) (((-1154 |#1|) (-1154 |#1|) $) NIL) (((-865 |#1|) $ (-865 |#1|)) 20)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-201 |#1|) (-13 (-621 |#1| (-1154 |#1|) (-1154 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -2261 ($)) (-15 -2046 ($ |#1|)) (-15 -3867 ($ |#1|)) (-15 -2718 ($ |#1|)) (-15 -3721 ($ |#1| |#1| |#1|)) (-15 -2331 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1095))) (T -201))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095))) (-5 *1 (-201 *3)))) (-2261 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-2046 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-3867 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-2718 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-3721 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-2331 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
+(-13 (-621 |#1| (-1154 |#1|) (-1154 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -2261 ($)) (-15 -2046 ($ |#1|)) (-15 -3867 ($ |#1|)) (-15 -2718 ($ |#1|)) (-15 -3721 ($ |#1| |#1| |#1|)) (-15 -2331 ($ |#1| |#1| |#1|))))
+((-2582 (($ (-1 (-107) |#2|) $) 17)) (-2111 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 25)) (-3429 (($) NIL) (($ (-583 |#2|)) 11)) (-1539 (((-107) $ $) 23)))
+(((-202 |#1| |#2|) (-10 -8 (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2111 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2111 (|#1| |#2| |#1|)) (-15 -3429 (|#1| (-583 |#2|))) (-15 -3429 (|#1|)) (-15 -1539 ((-107) |#1| |#1|))) (-203 |#2|) (-1003)) (T -202))
+NIL
+(-10 -8 (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2111 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2111 (|#1| |#2| |#1|)) (-15 -3429 (|#1| (-583 |#2|))) (-15 -3429 (|#1|)) (-15 -1539 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1667 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-1971 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3429 (($) 49) (($ (-583 |#1|)) 48)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 50)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-203 |#1|) (-1185) (-1003)) (T -203))
NIL
(-13 (-209 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-2731 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)))
-(((-204 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1073))) (-15 -2731 (|#1| |#1| (-583 (-1073)))) (-15 -2731 (|#1| |#1| (-1073) (-703))) (-15 -2731 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-961)) (T -204))
-NIL
-(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1073))) (-15 -2731 (|#1| |#1| (-583 (-1073)))) (-15 -2731 (|#1| |#1| (-1073) (-703))) (-15 -2731 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1073)) (-583 (-703))) 44 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 43 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 42 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 41 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1073)) (-583 (-703))) 48 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 47 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 46 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 45 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-205 |#1|) (-1184) (-961)) (T -205))
-((-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))))
-(-13 (-961) (-10 -8 (-15 -3127 ($ $ (-1 |t#1| |t#1|))) (-15 -3127 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -2731 ($ $ (-1 |t#1| |t#1|))) (-15 -2731 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |noBranch|) (IF (|has| |t#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3127 (($ $) NIL) (($ $ (-703)) 10)) (-2731 (($ $) 8) (($ $ (-703)) 12)))
-(((-206 |#1|) (-10 -8 (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1|))) (-207)) (T -206))
-NIL
-(-10 -8 (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $) 38) (($ $ (-703)) 36)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 37) (($ $ (-703)) 35)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-207) (-1184)) (T -207))
-((-3127 (*1 *1 *1) (-4 *1 (-207))) (-2731 (*1 *1 *1) (-4 *1 (-207))) (-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))))
-(-13 (-961) (-10 -8 (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703)))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-1699 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-2553 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)))
+(((-204 |#1| |#2|) (-10 -8 (-15 -1699 (|#1| |#1|)) (-15 -2553 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -2553 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2553 (|#1| |#1| (-1074))) (-15 -2553 (|#1| |#1| (-583 (-1074)))) (-15 -2553 (|#1| |#1| (-1074) (-703))) (-15 -2553 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2553 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-961)) (T -204))
+NIL
+(-10 -8 (-15 -1699 (|#1| |#1|)) (-15 -2553 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -2553 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2553 (|#1| |#1| (-1074))) (-15 -2553 (|#1| |#1| (-583 (-1074)))) (-15 -2553 (|#1| |#1| (-1074) (-703))) (-15 -2553 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2553 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-1699 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1074)) (-583 (-703))) 44 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 43 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 42 (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 41 (|has| |#1| (-822 (-1074)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1074)) (-583 (-703))) 48 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 47 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 46 (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 45 (|has| |#1| (-822 (-1074)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-205 |#1|) (-1185) (-961)) (T -205))
+((-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-1699 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) (-2553 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-2553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))))
+(-13 (-961) (-10 -8 (-15 -1699 ($ $ (-1 |t#1| |t#1|))) (-15 -1699 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -2553 ($ $ (-1 |t#1| |t#1|))) (-15 -2553 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |noBranch|) (IF (|has| |t#1| (-822 (-1074))) (-6 (-822 (-1074))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1699 (($ $) NIL) (($ $ (-703)) 10)) (-2553 (($ $) 8) (($ $ (-703)) 12)))
+(((-206 |#1|) (-10 -8 (-15 -2553 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-703))) (-15 -2553 (|#1| |#1|)) (-15 -1699 (|#1| |#1|))) (-207)) (T -206))
+NIL
+(-10 -8 (-15 -2553 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-703))) (-15 -2553 (|#1| |#1|)) (-15 -1699 (|#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-1699 (($ $) 38) (($ $ (-703)) 36)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $) 37) (($ $ (-703)) 35)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-207) (-1185)) (T -207))
+((-1699 (*1 *1 *1) (-4 *1 (-207))) (-2553 (*1 *1 *1) (-4 *1 (-207))) (-1699 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-2553 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))))
+(-13 (-961) (-10 -8 (-15 -1699 ($ $)) (-15 -2553 ($ $)) (-15 -1699 ($ $ (-703))) (-15 -2553 ($ $ (-703)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3089 (($) 12) (($ (-583 |#2|)) NIL)) (-2433 (($ $) 14)) (-2276 (($ (-583 |#2|)) 10)) (-2256 (((-787) $) 21)))
-(((-208 |#1| |#2|) (-10 -8 (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2256 ((-787) |#1|)) (-15 -2433 (|#1| |#1|))) (-209 |#2|) (-1003)) (T -208))
-NIL
-(-10 -8 (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2256 ((-787) |#1|)) (-15 -2433 (|#1| |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-209 |#1|) (-1184) (-1003)) (T -209))
-((-3089 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) (-3212 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) (-2337 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))))
-(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3089 ($)) (-15 -3089 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3212 ($ |t#1| $)) (-15 -3212 ($ (-1 (-107) |t#1|) $)) (-15 -2337 ($ (-1 (-107) |t#1|) $))) |noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-3342 (((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517)))) 25)))
-(((-210) (-10 -7 (-15 -3342 ((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517))))))) (T -210))
-((-3342 (*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703)))))) (-5 *1 (-210)))))
-(-10 -7 (-15 -3342 ((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517))))))
-((-1611 (((-703)) 51)) (-3355 (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3141 (((-125)) 57)) (-3127 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 15)) (-1667 (($ $ |#3|) 54)))
-(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)) (-15 -2961 ((-703))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -1611 ((-703))) (-15 -1667 (|#1| |#1| |#3|)) (-15 -3141 ((-125))) (-15 -2256 ((-1153 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1108)) (T -211))
-((-3141 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1108)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1611 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-2961 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))))
-(-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)) (-15 -2961 ((-703))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -1611 ((-703))) (-15 -1667 (|#1| |#1| |#3|)) (-15 -3141 ((-125))) (-15 -2256 ((-1153 |#3|) |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-2814 (((-107) $) 72 (|has| |#2| (-123)))) (-2847 (($ (-843)) 127 (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1640 (($ $ $) 123 (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) 8)) (-1611 (((-703)) 109 (|has| |#2| (-338)))) (-3709 (((-517) $) 121 (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1772 (((-3 (-517) "failed") $) 67 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) 64 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1003)))) (-3189 (((-517) $) 68 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) 65 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 60 (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) 108 (-4035 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 107 (-4035 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 106 (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) 99 (|has| |#2| (-961)))) (-3209 (($) 112 (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 51)) (-3556 (((-107) $) 119 (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) 30 (|has| $ (-6 -4180)))) (-3848 (((-107) $) 102 (|has| |#2| (-961)))) (-2475 (((-107) $) 120 (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 118 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2560 (((-583 |#2|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 117 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1433 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 35)) (-1549 (((-843) $) 111 (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3448 (($ (-843)) 110 (|has| |#2| (-338)))) (-3206 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1647 ((|#2| $) 42 (|has| (-517) (-779)))) (-2565 (($ $ |#2|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-3501 ((|#2| $ $) 126 (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) 128)) (-3141 (((-125)) 125 (|has| |#2| (-333)))) (-3127 (($ $) 92 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 90 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) 88 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) 87 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) 86 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) 85 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4180))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-1153 |#2|) $) 129) (((-787) $) 20 (|has| |#2| (-1003))) (($ (-517)) 66 (-3807 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) 63 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 62 (|has| |#2| (-1003)))) (-2961 (((-703)) 104 (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4180)))) (-3710 (($ $) 122 (|has| |#2| (-777)))) (-2207 (($ $ (-703)) 100 (|has| |#2| (-961))) (($ $ (-843)) 96 (|has| |#2| (-961)))) (-2396 (($) 71 (|has| |#2| (-123)) CONST)) (-2409 (($) 103 (|has| |#2| (-961)) CONST)) (-2731 (($ $) 91 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 89 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) 84 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) 83 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) 82 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) 81 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-961)))) (-1606 (((-107) $ $) 115 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1583 (((-107) $ $) 114 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1547 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-1595 (((-107) $ $) 116 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1572 (((-107) $ $) 113 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1667 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1654 (($ $ $) 94 (|has| |#2| (-961))) (($ $) 93 (|has| |#2| (-961)))) (-1642 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-961))) (($ $ (-843)) 97 (|has| |#2| (-961)))) (* (($ $ $) 98 (|has| |#2| (-961))) (($ (-517) $) 95 (|has| |#2| (-961))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-843) $) 70 (|has| |#2| (-25)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-212 |#1| |#2|) (-1184) (-703) (-1108)) (T -212))
-((-3794 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1108)) (-4 *1 (-212 *3 *4)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1108)))) (-3501 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))))
-(-13 (-550 (-517) |t#2|) (-557 (-1153 |t#2|)) (-10 -8 (-6 -4180) (-15 -3794 ($ (-1153 |t#2|))) (IF (|has| |t#2| (-1003)) (-6 (-381 |t#2|)) |noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -2847 ($ (-843))) (-15 -3501 (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |noBranch|) (IF (|has| |t#2| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1160 |t#2|)) |noBranch|)))
-(((-21) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1153 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-961)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-961))) ((-258 (-517) |#2|) . T) ((-260 (-517) |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-961)) ((-381 |#2|) |has| |#2| (-1003)) ((-456 |#2|) . T) ((-550 (-517) |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))) ((-579 |#2|) |has| |#2| (-961)) ((-650 |#2|) -3807 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-822 (-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))) ((-952 (-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))) ((-952 (-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) ((-952 |#2|) |has| |#2| (-1003)) ((-967 |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-967 $) |has| |#2| (-156)) ((-961) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-968) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1015) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1003) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1108) . T) ((-1160 |#2|) |has| |#2| (-333)))
-((-3905 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-3225 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-1893 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18)))
-(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -3905 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3225 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1893 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1108) (-1108)) (T -213))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-213 *5 *6 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1108)) (-4 *5 (-1108)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))))
-(-10 -7 (-15 -3905 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3225 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1893 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|))))
-((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) 56 (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) 60 (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) 17)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 27 (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) 53 (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 51)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) 15 (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 20 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) 50 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) 18)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) 10) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 13 (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) 35 (|has| |#2| (-123)) CONST)) (-2409 (($) 38 (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) 26 (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 58 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) 49 (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1108)) (T -214))
+((-3429 (($) 12) (($ (-583 |#2|)) NIL)) (-2322 (($ $) 14)) (-2197 (($ (-583 |#2|)) 10)) (-2182 (((-787) $) 21)))
+(((-208 |#1| |#2|) (-10 -8 (-15 -3429 (|#1| (-583 |#2|))) (-15 -3429 (|#1|)) (-15 -2197 (|#1| (-583 |#2|))) (-15 -2182 ((-787) |#1|)) (-15 -2322 (|#1| |#1|))) (-209 |#2|) (-1003)) (T -208))
+NIL
+(-10 -8 (-15 -3429 (|#1| (-583 |#2|))) (-15 -3429 (|#1|)) (-15 -2197 (|#1| (-583 |#2|))) (-15 -2182 ((-787) |#1|)) (-15 -2322 (|#1| |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1667 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-1971 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3429 (($) 49) (($ (-583 |#1|)) 48)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 50)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-209 |#1|) (-1185) (-1003)) (T -209))
+((-3429 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-3429 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) (-2111 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-2111 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) (-2582 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))))
+(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3429 ($)) (-15 -3429 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4183)) (PROGN (-15 -2111 ($ |t#1| $)) (-15 -2111 ($ (-1 (-107) |t#1|) $)) (-15 -2582 ($ (-1 (-107) |t#1|) $))) |noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-3912 (((-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703))))) (-265 (-874 (-517)))) 25)))
+(((-210) (-10 -7 (-15 -3912 ((-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703))))) (-265 (-874 (-517))))))) (T -210))
+((-3912 (*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703)))))) (-5 *1 (-210)))))
+(-10 -7 (-15 -3912 ((-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703))))) (-265 (-874 (-517))))))
+((-1598 (((-703)) 51)) (-4012 (((-2 (|:| -2522 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 $) (-1154 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-2586 (((-125)) 57)) (-1699 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2182 (((-1154 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-1865 (((-703)) 15)) (-1649 (($ $ |#3|) 54)))
+(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)) (-15 -1865 ((-703))) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2182 (|#1| |#3|)) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -4012 ((-623 |#3|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 |#1|) (-1154 |#1|))) (-15 -1598 ((-703))) (-15 -1649 (|#1| |#1| |#3|)) (-15 -2586 ((-125))) (-15 -2182 ((-1154 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1109)) (T -211))
+((-2586 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1109)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1598 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1109)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1865 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1109)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))))
+(-10 -8 (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)) (-15 -1865 ((-703))) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2182 (|#1| |#3|)) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -4012 ((-623 |#3|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 |#1|) (-1154 |#1|))) (-15 -1598 ((-703))) (-15 -1649 (|#1| |#1| |#3|)) (-15 -2586 ((-125))) (-15 -2182 ((-1154 |#3|) |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-2745 (((-107) $) 72 (|has| |#2| (-123)))) (-1991 (($ (-843)) 127 (|has| |#2| (-961)))) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-1754 (($ $ $) 123 (|has| |#2| (-725)))) (-1387 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-1799 (((-107) $ (-703)) 8)) (-1598 (((-703)) 109 (|has| |#2| (-338)))) (-1207 (((-517) $) 121 (|has| |#2| (-777)))) (-2307 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4184)))) (-3473 (($) 7 T CONST)) (-1759 (((-3 (-517) "failed") $) 67 (-1651 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) 64 (-1651 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1003)))) (-3076 (((-517) $) 68 (-1651 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) 65 (-1651 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 60 (|has| |#2| (-1003)))) (-4012 (((-623 (-517)) (-623 $)) 108 (-1651 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 107 (-1651 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 106 (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-961)))) (-1568 (((-3 $ "failed") $) 99 (|has| |#2| (-961)))) (-3098 (($) 112 (|has| |#2| (-338)))) (-1226 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4184)))) (-4020 ((|#2| $ (-517)) 51)) (-2099 (((-107) $) 119 (|has| |#2| (-777)))) (-3037 (((-583 |#2|) $) 30 (|has| $ (-6 -4183)))) (-2955 (((-107) $) 102 (|has| |#2| (-961)))) (-1624 (((-107) $) 120 (|has| |#2| (-777)))) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-1575 (($ $ $) 118 (-3763 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1196 (((-583 |#2|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-2986 (($ $ $) 117 (-3763 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1213 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#2| |#2|) $) 35)) (-2903 (((-843) $) 111 (|has| |#2| (-338)))) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#2| (-1003)))) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3353 (($ (-843)) 110 (|has| |#2| (-338)))) (-3094 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1631 ((|#2| $) 42 (|has| (-517) (-779)))) (-1254 (($ $ |#2|) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-2736 ((|#2| $ $) 126 (|has| |#2| (-961)))) (-3739 (($ (-1154 |#2|)) 128)) (-2586 (((-125)) 125 (|has| |#2| (-333)))) (-1699 (($ $) 92 (-1651 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 90 (-1651 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) 88 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) 87 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) 86 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) 85 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-961)))) (-3105 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4183))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-1154 |#2|) $) 129) (((-787) $) 20 (|has| |#2| (-1003))) (($ (-517)) 66 (-3763 (-1651 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) 63 (-1651 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 62 (|has| |#2| (-1003)))) (-1865 (((-703)) 104 (|has| |#2| (-961)))) (-3883 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4183)))) (-1221 (($ $) 122 (|has| |#2| (-777)))) (-2146 (($ $ (-703)) 100 (|has| |#2| (-961))) (($ $ (-843)) 96 (|has| |#2| (-961)))) (-2297 (($) 71 (|has| |#2| (-123)) CONST)) (-2306 (($) 103 (|has| |#2| (-961)) CONST)) (-2553 (($ $) 91 (-1651 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 89 (-1651 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) 84 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) 83 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) 82 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) 81 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-961)))) (-1593 (((-107) $ $) 115 (-3763 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1570 (((-107) $ $) 114 (-3763 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1539 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-1582 (((-107) $ $) 116 (-3763 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1560 (((-107) $ $) 113 (-3763 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1649 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1637 (($ $ $) 94 (|has| |#2| (-961))) (($ $) 93 (|has| |#2| (-961)))) (-1626 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-961))) (($ $ (-843)) 97 (|has| |#2| (-961)))) (* (($ $ $) 98 (|has| |#2| (-961))) (($ (-517) $) 95 (|has| |#2| (-961))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-843) $) 70 (|has| |#2| (-25)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-212 |#1| |#2|) (-1185) (-703) (-1109)) (T -212))
+((-3739 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1109)) (-4 *1 (-212 *3 *4)))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1109)))) (-2736 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))))
+(-13 (-550 (-517) |t#2|) (-557 (-1154 |t#2|)) (-10 -8 (-6 -4183) (-15 -3739 ($ (-1154 |t#2|))) (IF (|has| |t#2| (-1003)) (-6 (-381 |t#2|)) |noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -1991 ($ (-843))) (-15 -2736 (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |noBranch|) (IF (|has| |t#2| (-6 -4180)) (-6 -4180) |noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1161 |t#2|)) |noBranch|)))
+(((-21) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3763 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3763 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3763 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1154 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-961)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-961))) ((-258 (-517) |#2|) . T) ((-260 (-517) |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-961)) ((-381 |#2|) |has| |#2| (-1003)) ((-456 |#2|) . T) ((-550 (-517) |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) -3763 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))) ((-579 |#2|) |has| |#2| (-961)) ((-650 |#2|) -3763 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3763 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3763 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3763 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3763 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-822 (-1074)) -12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961))) ((-952 (-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))) ((-952 (-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) ((-952 |#2|) |has| |#2| (-1003)) ((-967 |#2|) -3763 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-967 $) |has| |#2| (-156)) ((-961) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-968) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1015) -3763 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1003) -3763 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1109) . T) ((-1161 |#2|) |has| |#2| (-333)))
+((-2325 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-2521 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-1857 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18)))
+(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -2325 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -2521 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1857 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1109) (-1109)) (T -213))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1109)) (-4 *2 (-1109)) (-5 *1 (-213 *5 *6 *2)))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1109)) (-4 *5 (-1109)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))))
+(-10 -7 (-15 -2325 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -2521 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1857 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|))))
+((-2571 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2745 (((-107) $) NIL (|has| |#2| (-123)))) (-1991 (($ (-843)) 56 (|has| |#2| (-961)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1754 (($ $ $) 60 (|has| |#2| (-725)))) (-1387 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-1799 (((-107) $ (-703)) 17)) (-1598 (((-703)) NIL (|has| |#2| (-338)))) (-1207 (((-517) $) NIL (|has| |#2| (-777)))) (-2307 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1003)))) (-3076 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 27 (|has| |#2| (-1003)))) (-4012 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-1568 (((-3 $ "failed") $) 53 (|has| |#2| (-961)))) (-3098 (($) NIL (|has| |#2| (-338)))) (-1226 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ (-517)) 51)) (-2099 (((-107) $) NIL (|has| |#2| (-777)))) (-3037 (((-583 |#2|) $) 15 (|has| $ (-6 -4183)))) (-2955 (((-107) $) NIL (|has| |#2| (-961)))) (-1624 (((-107) $) NIL (|has| |#2| (-777)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) 20 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1196 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 (((-517) $) 50 (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1213 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#2| |#2|) $) 41)) (-2903 (((-843) $) NIL (|has| |#2| (-338)))) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#2| (-1003)))) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3353 (($ (-843)) NIL (|has| |#2| (-338)))) (-3094 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1631 ((|#2| $) NIL (|has| (-517) (-779)))) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-2736 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3739 (($ (-1154 |#2|)) 18)) (-2586 (((-125)) NIL (|has| |#2| (-333)))) (-1699 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3105 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-1154 |#2|) $) 10) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3763 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 13 (|has| |#2| (-1003)))) (-1865 (((-703)) NIL (|has| |#2| (-961)))) (-3883 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1221 (($ $) NIL (|has| |#2| (-777)))) (-2146 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2297 (($) 35 (|has| |#2| (-123)) CONST)) (-2306 (($) 38 (|has| |#2| (-961)) CONST)) (-2553 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1593 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1570 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1539 (((-107) $ $) 26 (|has| |#2| (-1003)))) (-1582 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1560 (((-107) $ $) 58 (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1626 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) 49 (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1109)) (T -214))
NIL
(-212 |#1| |#2|)
-((-2632 (((-517) (-583 (-1056))) 24) (((-517) (-1056)) 19)) (-1678 (((-1158) (-583 (-1056))) 29) (((-1158) (-1056)) 28)) (-2124 (((-1056)) 14)) (-1382 (((-1056) (-517) (-1056)) 16)) (-2986 (((-583 (-1056)) (-583 (-1056)) (-517) (-1056)) 25) (((-1056) (-1056) (-517) (-1056)) 23)) (-2012 (((-583 (-1056)) (-583 (-1056))) 13) (((-583 (-1056)) (-1056)) 11)))
-(((-215) (-10 -7 (-15 -2012 ((-583 (-1056)) (-1056))) (-15 -2012 ((-583 (-1056)) (-583 (-1056)))) (-15 -2124 ((-1056))) (-15 -1382 ((-1056) (-517) (-1056))) (-15 -2986 ((-1056) (-1056) (-517) (-1056))) (-15 -2986 ((-583 (-1056)) (-583 (-1056)) (-517) (-1056))) (-15 -1678 ((-1158) (-1056))) (-15 -1678 ((-1158) (-583 (-1056)))) (-15 -2632 ((-517) (-1056))) (-15 -2632 ((-517) (-583 (-1056)))))) (T -215))
-((-2632 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-517)) (-5 *1 (-215)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-215)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1158)) (-5 *1 (-215)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-215)))) (-2986 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1056))) (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *1 (-215)))) (-2986 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) (-1382 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) (-2124 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-215)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)))) (-2012 (*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)) (-5 *3 (-1056)))))
-(-10 -7 (-15 -2012 ((-583 (-1056)) (-1056))) (-15 -2012 ((-583 (-1056)) (-583 (-1056)))) (-15 -2124 ((-1056))) (-15 -1382 ((-1056) (-517) (-1056))) (-15 -2986 ((-1056) (-1056) (-517) (-1056))) (-15 -2986 ((-583 (-1056)) (-583 (-1056)) (-517) (-1056))) (-15 -1678 ((-1158) (-1056))) (-15 -1678 ((-1158) (-583 (-1056)))) (-15 -2632 ((-517) (-1056))) (-15 -2632 ((-517) (-583 (-1056)))))
-((-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL)))
-(((-216 |#1|) (-10 -8 (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2207 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-217)) (T -216))
-NIL
-(-10 -8 (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2207 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 39)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42)))
-(((-217) (-1184)) (T -217))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-4118 (*1 *1 *1) (-4 *1 (-217))))
-(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2207 ($ $ (-517))) (-15 -4118 ($ $))))
+((-3610 (((-517) (-583 (-1057))) 24) (((-517) (-1057)) 19)) (-1661 (((-1159) (-583 (-1057))) 29) (((-1159) (-1057)) 28)) (-1369 (((-1057)) 14)) (-2768 (((-1057) (-517) (-1057)) 16)) (-2840 (((-583 (-1057)) (-583 (-1057)) (-517) (-1057)) 25) (((-1057) (-1057) (-517) (-1057)) 23)) (-1943 (((-583 (-1057)) (-583 (-1057))) 13) (((-583 (-1057)) (-1057)) 11)))
+(((-215) (-10 -7 (-15 -1943 ((-583 (-1057)) (-1057))) (-15 -1943 ((-583 (-1057)) (-583 (-1057)))) (-15 -1369 ((-1057))) (-15 -2768 ((-1057) (-517) (-1057))) (-15 -2840 ((-1057) (-1057) (-517) (-1057))) (-15 -2840 ((-583 (-1057)) (-583 (-1057)) (-517) (-1057))) (-15 -1661 ((-1159) (-1057))) (-15 -1661 ((-1159) (-583 (-1057)))) (-15 -3610 ((-517) (-1057))) (-15 -3610 ((-517) (-583 (-1057)))))) (T -215))
+((-3610 (*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-517)) (-5 *1 (-215)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-517)) (-5 *1 (-215)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1159)) (-5 *1 (-215)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-215)))) (-2840 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1057))) (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *1 (-215)))) (-2840 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-215)))) (-2768 (*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-215)))) (-1369 (*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-215)))) (-1943 (*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-215)))) (-1943 (*1 *2 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-215)) (-5 *3 (-1057)))))
+(-10 -7 (-15 -1943 ((-583 (-1057)) (-1057))) (-15 -1943 ((-583 (-1057)) (-583 (-1057)))) (-15 -1369 ((-1057))) (-15 -2768 ((-1057) (-517) (-1057))) (-15 -2840 ((-1057) (-1057) (-517) (-1057))) (-15 -2840 ((-583 (-1057)) (-583 (-1057)) (-517) (-1057))) (-15 -1661 ((-1159) (-1057))) (-15 -1661 ((-1159) (-583 (-1057)))) (-15 -3610 ((-517) (-1057))) (-15 -3610 ((-517) (-583 (-1057)))))
+((-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL)))
+(((-216 |#1|) (-10 -8 (-15 -2146 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2146 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2146 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-217)) (T -216))
+NIL
+(-10 -8 (-15 -2146 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2146 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2146 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 39)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42)))
+(((-217) (-1185)) (T -217))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2146 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-4123 (*1 *1 *1) (-4 *1 (-217))))
+(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2146 ($ $ (-517))) (-15 -4123 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-262) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-659) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2779 (($ $) 57)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-1254 (($ $ $) 53 (|has| $ (-6 -4181)))) (-3748 (($ $ $) 52 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-2493 (($ $) 56)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3098 (($ $) 55)) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 59)) (-3059 (($ $) 58)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2568 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-218 |#1|) (-1184) (-1108)) (T -218))
-((-2068 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3059 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3098 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-1254 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3748 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
-(-13 (-926 |t#1|) (-10 -8 (-15 -2068 (|t#1| $)) (-15 -3059 ($ $)) (-15 -2779 ($ $)) (-15 -2493 ($ $)) (-15 -3098 ($ $)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2568 ($ $ $)) (-15 -1254 ($ $ $)) (-15 -3748 ($ $ $))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $) NIL) (($ $ (-703)) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) 7 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3891 (($ (-583 |#1|)) 22)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 14 (|has| $ (-6 -4180)))))
-(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2256 ($ (-583 |#1|))) (-15 -2256 ((-583 |#1|) $)) (-15 -3891 ($ (-583 |#1|))) (-15 -1449 ($ $ "unique")) (-15 -1449 ($ $ "sort")) (-15 -1449 ((-703) $ "count")))) (-779)) (T -219))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))))
-(-13 (-603 |#1|) (-10 -8 (-15 -2256 ($ (-583 |#1|))) (-15 -2256 ((-583 |#1|) $)) (-15 -3891 ($ (-583 |#1|))) (-15 -1449 ($ $ "unique")) (-15 -1449 ($ $ "sort")) (-15 -1449 ((-703) $ "count"))))
-((-2063 (((-3 (-703) "failed") |#1| |#1| (-703)) 26)))
-(((-220 |#1|) (-10 -7 (-15 -2063 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220))
-((-2063 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
-(-10 -7 (-15 -2063 ((-3 (-703) "failed") |#1| |#1| (-703))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) NIL)) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-214 (-2296 |#1|) (-703)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-214 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-214 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-214 (-2296 |#1|) (-703)) (-214 (-2296 |#1|) (-703))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-214 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-214 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-221 |#1| |#2|) (-13 (-871 |#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961)) (T -221))
-((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))))
-(-13 (-871 |#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517))))))
-((-2256 (((-787) $) 7)))
-(((-222) (-557 (-787))) (T -222))
-NIL
-(-557 (-787))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2847 (($ (-843)) NIL (|has| |#4| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#4| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#4| (-338)))) (-3709 (((-517) $) NIL (|has| |#4| (-777)))) (-2411 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-3189 ((|#4| $) NIL (|has| |#4| (-1003))) (((-517) $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-3355 (((-2 (|:| -2790 (-623 |#4|)) (|:| |vec| (-1153 |#4|))) (-623 $) (-1153 $)) NIL (|has| |#4| (-961))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961))))) (-3621 (((-3 $ "failed") $) NIL (|has| |#4| (-961)))) (-3209 (($) NIL (|has| |#4| (-338)))) (-1445 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#4| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#4| (-777)))) (-1536 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#4| (-961)))) (-2475 (((-107) $) NIL (|has| |#4| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2560 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1433 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#4| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#4| (-338)))) (-3206 (((-1021) $) NIL)) (-1647 ((|#4| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#4|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1941 (((-583 |#4|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-3501 ((|#4| $ $) NIL (|has| |#4| (-961)))) (-3794 (($ (-1153 |#4|)) NIL)) (-3141 (((-125)) NIL (|has| |#4| (-333)))) (-3127 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-3217 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003))) (|has| |#4| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-2961 (((-703)) NIL (|has| |#4| (-961)))) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#4| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL (|has| |#4| (-961)) CONST)) (-2731 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1572 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1667 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-961)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3088 ((|#1| $) 48)) (-2602 (($ $) 57)) (-1799 (((-107) $ (-703)) 8)) (-4072 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-1407 (($ $ $) 53 (|has| $ (-6 -4184)))) (-3250 (($ $ $) 52 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3473 (($) 7 T CONST)) (-1252 (($ $) 56)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 50)) (-1703 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2981 (($ $) 55)) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3617 (((-583 |#1|) $) 45)) (-3762 (((-107) $) 49)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1988 ((|#1| $) 59)) (-3159 (($ $) 58)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ "value") 47)) (-1482 (((-517) $ $) 44)) (-2562 (((-107) $) 46)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-1286 (($ $ $) 54 (|has| $ (-6 -4184)))) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3935 (((-583 $) $) 51)) (-3172 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-218 |#1|) (-1185) (-1109)) (T -218))
+((-1988 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-3159 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-2602 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-1252 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-2981 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-1286 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-1407 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-3250 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
+(-13 (-926 |t#1|) (-10 -8 (-15 -1988 (|t#1| $)) (-15 -3159 ($ $)) (-15 -2602 ($ $)) (-15 -1252 ($ $)) (-15 -2981 ($ $)) (IF (|has| $ (-6 -4184)) (PROGN (-15 -1286 ($ $ $)) (-15 -1407 ($ $ $)) (-15 -3250 ($ $ $))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) NIL)) (-2864 ((|#1| $) NIL)) (-2602 (($ $) NIL)) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2740 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-3056 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-4072 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3499 (($ $ $) NIL (|has| $ (-6 -4184)))) (-3573 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3043 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "rest" $) NIL (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2849 ((|#1| $) NIL)) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1644 (($ $) NIL) (($ $ (-703)) NIL)) (-2573 (($ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $) 7 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2111 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-1971 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2570 (((-107) $) NIL)) (-2446 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3366 (($ (-703) |#1|) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2581 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2262 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1524 (($ |#1|) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1988 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3816 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2454 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-2660 (((-107) $) NIL)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1122 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-1482 (((-517) $ $) NIL)) (-1628 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3685 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3985 (($ (-583 |#1|)) 22)) (-2562 (((-107) $) NIL)) (-4084 (($ $) NIL)) (-3145 (($ $) NIL (|has| $ (-6 -4184)))) (-2943 (((-703) $) NIL)) (-2103 (($ $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-1286 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2337 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2182 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-1003)))) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2210 (((-703) $) 14 (|has| $ (-6 -4183)))))
+(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2182 ($ (-583 |#1|))) (-15 -2182 ((-583 |#1|) $)) (-15 -3985 ($ (-583 |#1|))) (-15 -1986 ($ $ "unique")) (-15 -1986 ($ $ "sort")) (-15 -1986 ((-703) $ "count")))) (-779)) (T -219))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))))
+(-13 (-603 |#1|) (-10 -8 (-15 -2182 ($ (-583 |#1|))) (-15 -2182 ((-583 |#1|) $)) (-15 -3985 ($ (-583 |#1|))) (-15 -1986 ($ $ "unique")) (-15 -1986 ($ $ "sort")) (-15 -1986 ((-703) $ "count"))))
+((-1963 (((-3 (-703) "failed") |#1| |#1| (-703)) 26)))
+(((-220 |#1|) (-10 -7 (-15 -1963 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220))
+((-1963 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
+(-10 -7 (-15 -1963 ((-3 (-703) "failed") |#1| |#1| (-703))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-789 |#1|)) $) NIL)) (-2255 (((-1070 $) $ (-789 |#1|)) NIL) (((-1070 |#2|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3209 (($ $) NIL (|has| |#2| (-509)))) (-1452 (((-107) $) NIL (|has| |#2| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3938 (($ $) NIL (|has| |#2| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3076 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-1309 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1436 (($ $ (-583 (-517))) NIL)) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#2| (-831)))) (-2253 (($ $ |#2| (-214 (-2210 |#1|) (-703)) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-1352 (($ (-1070 |#2|) (-789 |#1|)) NIL) (($ (-1070 $) (-789 |#1|)) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#2| (-214 (-2210 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-789 |#1|)) NIL)) (-2672 (((-214 (-2210 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-1575 (($ $ $) NIL (|has| |#2| (-779)))) (-2986 (($ $ $) NIL (|has| |#2| (-779)))) (-3751 (($ (-1 (-214 (-2210 |#1|) (-703)) (-214 (-2210 |#1|) (-703))) $) NIL)) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-1954 (((-3 (-789 |#1|) "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#2| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3865 (((-1057) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2059 (-703))) "failed") $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#2| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2349 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-4042 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1699 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-4007 (((-214 (-2210 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-1423 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3763 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ (-214 (-2210 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1593 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-221 |#1| |#2|) (-13 (-871 |#2| (-214 (-2210 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -1436 ($ $ (-583 (-517)))))) (-583 (-1074)) (-961)) (T -221))
+((-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1074))) (-4 *4 (-961)))))
+(-13 (-871 |#2| (-214 (-2210 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -1436 ($ $ (-583 (-517))))))
+((-3239 (((-1079) $) 11)) (-2182 (((-787) $) 7)))
+(((-222) (-13 (-557 (-787)) (-10 -8 (-15 -3239 ((-1079) $))))) (T -222))
+((-3239 (*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-222)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -3239 ((-1079) $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1991 (($ (-843)) NIL (|has| |#4| (-961)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1754 (($ $ $) NIL (|has| |#4| (-725)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-1598 (((-703)) NIL (|has| |#4| (-338)))) (-1207 (((-517) $) NIL (|has| |#4| (-777)))) (-2307 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-3076 ((|#4| $) NIL (|has| |#4| (-1003))) (((-517) $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-4012 (((-2 (|:| -2522 (-623 |#4|)) (|:| |vec| (-1154 |#4|))) (-623 $) (-1154 $)) NIL (|has| |#4| (-961))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-961))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961))))) (-1568 (((-3 $ "failed") $) NIL (|has| |#4| (-961)))) (-3098 (($) NIL (|has| |#4| (-338)))) (-1226 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#4| $ (-517)) NIL)) (-2099 (((-107) $) NIL (|has| |#4| (-777)))) (-3037 (((-583 |#4|) $) NIL (|has| $ (-6 -4183)))) (-2955 (((-107) $) NIL (|has| |#4| (-961)))) (-1624 (((-107) $) NIL (|has| |#4| (-777)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (-3763 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1196 (((-583 |#4|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (-3763 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1213 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) NIL)) (-2903 (((-843) $) NIL (|has| |#4| (-338)))) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3353 (($ (-843)) NIL (|has| |#4| (-338)))) (-3094 (((-1021) $) NIL)) (-1631 ((|#4| $) NIL (|has| (-517) (-779)))) (-1254 (($ $ |#4|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-3042 (((-583 |#4|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-2736 ((|#4| $ $) NIL (|has| |#4| (-961)))) (-3739 (($ (-1154 |#4|)) NIL)) (-2586 (((-125)) NIL (|has| |#4| (-333)))) (-1699 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-3105 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-1154 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1003))) (($ (-517)) NIL (-3763 (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003))) (|has| |#4| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-1865 (((-703)) NIL (|has| |#4| (-961)))) (-3883 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1221 (($ $) NIL (|has| |#4| (-777)))) (-2146 (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (-2297 (($) NIL T CONST)) (-2306 (($) NIL (|has| |#4| (-961)) CONST)) (-2553 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-1593 (((-107) $ $) NIL (-3763 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1570 (((-107) $ $) NIL (-3763 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (-3763 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1560 (((-107) $ $) NIL (-3763 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1649 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1637 (($ $ $) NIL) (($ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-961)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
(((-223 |#1| |#2| |#3| |#4|) (-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-843) (-961) (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-585 |#2|)) (T -223))
NIL
(-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2847 (($ (-843)) NIL (|has| |#3| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#3| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#3| (-338)))) (-3709 (((-517) $) NIL (|has| |#3| (-777)))) (-2411 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-3189 ((|#3| $) NIL (|has| |#3| (-1003))) (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-3355 (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))) (-3621 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-3209 (($) NIL (|has| |#3| (-338)))) (-1445 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#3| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#3| (-777)))) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#3| (-961)))) (-2475 (((-107) $) NIL (|has| |#3| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#3| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#3| (-338)))) (-3206 (((-1021) $) NIL)) (-1647 ((|#3| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#3|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-1941 (((-583 |#3|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-3501 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-3794 (($ (-1153 |#3|)) NIL)) (-3141 (((-125)) NIL (|has| |#3| (-333)))) (-3127 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-3217 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-2961 (((-703)) NIL (|has| |#3| (-961)))) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#3| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL (|has| |#3| (-961)) CONST)) (-2731 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-961)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1991 (($ (-843)) NIL (|has| |#3| (-961)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1754 (($ $ $) NIL (|has| |#3| (-725)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-1598 (((-703)) NIL (|has| |#3| (-338)))) (-1207 (((-517) $) NIL (|has| |#3| (-777)))) (-2307 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-3076 ((|#3| $) NIL (|has| |#3| (-1003))) (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-4012 (((-2 (|:| -2522 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 $) (-1154 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))) (-1568 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-3098 (($) NIL (|has| |#3| (-338)))) (-1226 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#3| $ (-517)) NIL)) (-2099 (((-107) $) NIL (|has| |#3| (-777)))) (-3037 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-2955 (((-107) $) NIL (|has| |#3| (-961)))) (-1624 (((-107) $) NIL (|has| |#3| (-777)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1196 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1213 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#3| |#3|) $) NIL)) (-2903 (((-843) $) NIL (|has| |#3| (-338)))) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3353 (($ (-843)) NIL (|has| |#3| (-338)))) (-3094 (((-1021) $) NIL)) (-1631 ((|#3| $) NIL (|has| (-517) (-779)))) (-1254 (($ $ |#3|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-3042 (((-583 |#3|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-2736 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-3739 (($ (-1154 |#3|)) NIL)) (-2586 (((-125)) NIL (|has| |#3| (-333)))) (-1699 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-3105 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-1154 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3763 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-1865 (((-703)) NIL (|has| |#3| (-961)))) (-3883 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-1221 (($ $) NIL (|has| |#3| (-777)))) (-2146 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2297 (($) NIL T CONST)) (-2306 (($) NIL (|has| |#3| (-961)) CONST)) (-2553 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-1593 (((-107) $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1570 (((-107) $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1560 (((-107) $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1649 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1637 (($ $ $) NIL) (($ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-961)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
(((-224 |#1| |#2| |#3|) (-13 (-212 |#1| |#3|) (-585 |#2|)) (-703) (-961) (-585 |#2|)) (T -224))
NIL
(-13 (-212 |#1| |#3|) (-585 |#2|))
-((-3469 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-2932 (((-703) $) 49) (((-703) $ |#3|) 52)) (-3960 (($ $) 65)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3972 (((-703) $ |#3|) 39) (((-703) $) 36)) (-2656 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-2133 ((|#4| $) 58)) (-2982 (((-107) $) 56)) (-2604 (($ $) 64)) (-2051 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-3127 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1890 (((-583 |#3|) $) 75)) (-3688 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL)))
-(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#3| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#3| |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2133 (|#4| |#1|)) (-15 -2982 ((-107) |#1|)) (-15 -2932 ((-703) |#1| |#3|)) (-15 -3469 ((-583 (-703)) |#1| |#3|)) (-15 -2932 ((-703) |#1|)) (-15 -3469 ((-583 (-703)) |#1|)) (-15 -3688 ((-703) |#1| |#3|)) (-15 -3972 ((-703) |#1|)) (-15 -3972 ((-703) |#1| |#3|)) (-15 -1890 ((-583 |#3|) |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#3|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3688 ((-703) |#1| |#4|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 (|#5| |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3127 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#4| (-703))) (-15 -3127 (|#1| |#1| (-583 |#4|))) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-961) (-779) (-239 |#3|) (-725)) (T -225))
-NIL
-(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#3| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#3| |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2133 (|#4| |#1|)) (-15 -2982 ((-107) |#1|)) (-15 -2932 ((-703) |#1| |#3|)) (-15 -3469 ((-583 (-703)) |#1| |#3|)) (-15 -2932 ((-703) |#1|)) (-15 -3469 ((-583 (-703)) |#1|)) (-15 -3688 ((-703) |#1| |#3|)) (-15 -3972 ((-703) |#1|)) (-15 -3972 ((-703) |#1| |#3|)) (-15 -1890 ((-583 |#3|) |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#3|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3688 ((-703) |#1| |#4|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 (|#5| |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3127 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#4| (-703))) (-15 -3127 (|#1| |#1| (-583 |#4|))) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3469 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-2932 (((-703) $) 213) (((-703) $ |#2|) 211)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3960 (($ $) 207)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| |#4| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ |#2|) 217) (((-703) $) 216)) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-2349 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#4| |#4|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-2656 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-1409 (((-3 |#3| "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-2133 ((|#3| $) 209)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-2982 (((-107) $) 210)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-2604 (($ $) 208)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1073)) 234 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 233 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 232 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 231 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1890 (((-583 |#2|) $) 218)) (-3688 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1073)) 230 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 229 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 228 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 227 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-226 |#1| |#2| |#3| |#4|) (-1184) (-961) (-779) (-239 |t#2|) (-725)) (T -226))
-((-2656 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-3972 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3688 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3469 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-2932 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2604 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-2656 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))))
-(-13 (-871 |t#1| |t#4| |t#3|) (-205 |t#1|) (-952 |t#2|) (-10 -8 (-15 -2656 ((-1 $ (-703)) |t#2|)) (-15 -1890 ((-583 |t#2|) $)) (-15 -3972 ((-703) $ |t#2|)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $ |t#2|)) (-15 -3469 ((-583 (-703)) $)) (-15 -2932 ((-703) $)) (-15 -3469 ((-583 (-703)) $ |t#2|)) (-15 -2932 ((-703) $ |t#2|)) (-15 -2982 ((-107) $)) (-15 -2133 (|t#3| $)) (-15 -2604 ($ $)) (-15 -3960 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -2656 ((-1 $ (-703)) $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#4| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#2|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3026 ((|#1| $) 54)) (-4139 ((|#1| $) 44)) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-3186 (($ $) 60)) (-4020 (($ $) 48)) (-2886 ((|#1| |#1| $) 46)) (-1200 ((|#1| $) 45)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-2195 (((-703) $) 61)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-2164 ((|#1| |#1| $) 52)) (-3968 ((|#1| |#1| $) 51)) (-1710 (($ |#1| $) 40)) (-1881 (((-703) $) 55)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2578 ((|#1| $) 62)) (-4018 ((|#1| $) 50)) (-3561 ((|#1| $) 49)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3838 ((|#1| |#1| $) 58)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3129 ((|#1| $) 59)) (-2277 (($) 57) (($ (-583 |#1|)) 56)) (-1694 (((-703) $) 43)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-2738 ((|#1| $) 53)) (-1222 (($ (-583 |#1|)) 42)) (-2028 ((|#1| $) 63)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-227 |#1|) (-1184) (-1108)) (T -227))
-((-2277 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-227 *3)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2164 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-3968 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-4020 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
-(-13 (-1022 |t#1|) (-911 |t#1|) (-10 -8 (-15 -2277 ($)) (-15 -2277 ($ (-583 |t#1|))) (-15 -1881 ((-703) $)) (-15 -3026 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -2164 (|t#1| |t#1| $)) (-15 -3968 (|t#1| |t#1| $)) (-15 -4018 (|t#1| $)) (-15 -3561 (|t#1| $)) (-15 -4020 ($ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-911 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1022 |#1|) . T) ((-1108) . T))
-((-3612 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1907 (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 160) (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 158) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 163) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 159) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 150) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 149) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349))) 129) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 127) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349))) 128) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 125)) (-1863 (((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 162) (((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 161) (((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 165) (((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 164) (((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 152) (((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 151) (((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349))) 135) (((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 134) (((-1155) (-802 (-1 (-199) (-199))) (-998 (-349))) 133) (((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 132) (((-1154) (-800 (-1 (-199) (-199))) (-998 (-349))) 99) (((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 98) (((-1154) (-1 (-199) (-199)) (-998 (-349))) 95) (((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236))) 94)))
-(((-228) (-10 -7 (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -3612 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228))
-((-3612 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))))
-(-10 -7 (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -3612 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
-((-1863 (((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236))) 93)))
-(((-229 |#1| |#2|) (-10 -7 (-15 -1863 ((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236))))) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|)) (T -229))
-((-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1073)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1154)) (-5 *1 (-229 *6 *7)))))
-(-10 -7 (-15 -1863 ((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236)))))
-((-4136 (((-517) (-517)) 50)) (-3574 (((-517) (-517)) 51)) (-2419 (((-199) (-199)) 52)) (-2995 (((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199))) 49)) (-2523 (((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107)) 47)))
-(((-230) (-10 -7 (-15 -2523 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -2995 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -4136 ((-517) (-517))) (-15 -3574 ((-517) (-517))) (-15 -2419 ((-199) (-199))))) (T -230))
-((-2419 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-2995 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1155)) (-5 *1 (-230)))) (-2523 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1155)) (-5 *1 (-230)))))
-(-10 -7 (-15 -2523 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -2995 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -4136 ((-517) (-517))) (-15 -3574 ((-517) (-517))) (-15 -2419 ((-199) (-199))))
-((-2256 (((-996 (-349)) (-996 (-286 |#1|))) 16)))
-(((-231 |#1|) (-10 -7 (-15 -2256 ((-996 (-349)) (-996 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231))
-((-2256 (*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))))
-(-10 -7 (-15 -2256 ((-996 (-349)) (-996 (-286 |#1|)))))
-((-1907 (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))) 69) (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 68) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349))) 59) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 58) (((-1034 (-199)) (-802 |#1|) (-996 (-349))) 50) (((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236))) 49)) (-1863 (((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349))) 72) (((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 71) (((-1155) |#1| (-996 (-349)) (-996 (-349))) 62) (((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 61) (((-1155) (-802 |#1|) (-996 (-349))) 54) (((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236))) 53) (((-1154) (-800 |#1|) (-996 (-349))) 41) (((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236))) 40) (((-1154) |#1| (-996 (-349))) 33) (((-1154) |#1| (-996 (-349)) (-583 (-236))) 32)))
-(((-232 |#1|) (-10 -7 (-15 -1863 ((-1154) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) |#1| (-996 (-349)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))))) (-13 (-558 (-493)) (-1003))) (T -232))
-((-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))))
-(-10 -7 (-15 -1863 ((-1154) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) |#1| (-996 (-349)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)))))
-((-1863 (((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1154) (-583 (-865 (-199))) (-583 (-236))) 13) (((-1154) (-583 (-865 (-199)))) 14) (((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1154) (-583 (-199)) (-583 (-199))) 19)))
-(((-233) (-10 -7 (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1863 ((-1154) (-583 (-865 (-199))))) (-15 -1863 ((-1154) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233))
-((-1863 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154)) (-5 *1 (-233)))))
-(-10 -7 (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1863 ((-1154) (-583 (-865 (-199))))) (-15 -1863 ((-1154) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))
-((-3222 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-1703 (((-843) (-583 (-236)) (-843)) 49)) (-3082 (((-843) (-583 (-236)) (-843)) 48)) (-3029 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-3588 (((-349) (-583 (-236)) (-349)) 55)) (-3560 (((-843) (-583 (-236)) (-843)) 50)) (-1591 (((-107) (-583 (-236)) (-107)) 26)) (-4150 (((-1056) (-583 (-236)) (-1056)) 19)) (-3228 (((-1056) (-583 (-236)) (-1056)) 25)) (-1379 (((-1034 (-199)) (-583 (-236))) 43)) (-1868 (((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349)))) 37)) (-2558 (((-797) (-583 (-236)) (-797)) 31)) (-2896 (((-797) (-583 (-236)) (-797)) 32)) (-1499 (((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199)))) 60)) (-2827 (((-107) (-583 (-236)) (-107)) 15)) (-2594 (((-107) (-583 (-236)) (-107)) 14)))
-(((-234) (-10 -7 (-15 -2594 ((-107) (-583 (-236)) (-107))) (-15 -2827 ((-107) (-583 (-236)) (-107))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ((-1056) (-583 (-236)) (-1056))) (-15 -3228 ((-1056) (-583 (-236)) (-1056))) (-15 -1591 ((-107) (-583 (-236)) (-107))) (-15 -2558 ((-797) (-583 (-236)) (-797))) (-15 -2896 ((-797) (-583 (-236)) (-797))) (-15 -1868 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3082 ((-843) (-583 (-236)) (-843))) (-15 -1703 ((-843) (-583 (-236)) (-843))) (-15 -1379 ((-1034 (-199)) (-583 (-236)))) (-15 -3560 ((-843) (-583 (-236)) (-843))) (-15 -3588 ((-349) (-583 (-236)) (-349))) (-15 -1499 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -3029 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234))
-((-3029 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1499 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3588 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3560 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) (-1703 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3082 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1868 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2896 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2558 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1591 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3228 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4150 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3222 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2827 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2594 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(-10 -7 (-15 -2594 ((-107) (-583 (-236)) (-107))) (-15 -2827 ((-107) (-583 (-236)) (-107))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ((-1056) (-583 (-236)) (-1056))) (-15 -3228 ((-1056) (-583 (-236)) (-1056))) (-15 -1591 ((-107) (-583 (-236)) (-107))) (-15 -2558 ((-797) (-583 (-236)) (-797))) (-15 -2896 ((-797) (-583 (-236)) (-797))) (-15 -1868 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3082 ((-843) (-583 (-236)) (-843))) (-15 -1703 ((-843) (-583 (-236)) (-843))) (-15 -1379 ((-1034 (-199)) (-583 (-236)))) (-15 -3560 ((-843) (-583 (-236)) (-843))) (-15 -3588 ((-349) (-583 (-236)) (-349))) (-15 -1499 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -3029 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))
-((-2075 (((-3 |#1| "failed") (-583 (-236)) (-1073)) 17)))
-(((-235 |#1|) (-10 -7 (-15 -2075 ((-3 |#1| "failed") (-583 (-236)) (-1073)))) (-1108)) (T -235))
-((-2075 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *1 (-235 *2)) (-4 *2 (-1108)))))
-(-10 -7 (-15 -2075 ((-3 |#1| "failed") (-583 (-236)) (-1073))))
-((-2750 (((-107) $ $) NIL)) (-3222 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-1703 (($ (-843)) 70)) (-3082 (($ (-843)) 69)) (-3295 (($ (-583 (-349))) 76)) (-3588 (($ (-349)) 55)) (-3560 (($ (-843)) 71)) (-1591 (($ (-107)) 22)) (-4150 (($ (-1056)) 17)) (-3228 (($ (-1056)) 18)) (-1379 (($ (-1034 (-199))) 65)) (-1868 (($ (-583 (-998 (-349)))) 61)) (-2919 (($ (-583 (-998 (-349)))) 56) (($ (-583 (-998 (-377 (-517))))) 60)) (-1480 (($ (-349)) 28) (($ (-797)) 32)) (-2305 (((-107) (-583 $) (-1073)) 85)) (-2075 (((-3 (-51) "failed") (-583 $) (-1073)) 87)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1728 (($ (-349)) 33) (($ (-797)) 34)) (-4114 (($ (-1 (-865 (-199)) (-865 (-199)))) 54)) (-1499 (($ (-1 (-865 (-199)) (-865 (-199)))) 72)) (-3590 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2256 (((-787) $) 81)) (-1810 (($ (-107)) 23) (($ (-583 (-998 (-349)))) 50)) (-2594 (($ (-107)) 24)) (-1547 (((-107) $ $) 83)))
-(((-236) (-13 (-1003) (-10 -8 (-15 -2594 ($ (-107))) (-15 -1810 ($ (-107))) (-15 -3222 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ($ (-1056))) (-15 -3228 ($ (-1056))) (-15 -1591 ($ (-107))) (-15 -1810 ($ (-583 (-998 (-349))))) (-15 -4114 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1480 ($ (-349))) (-15 -1480 ($ (-797))) (-15 -1728 ($ (-349))) (-15 -1728 ($ (-797))) (-15 -3590 ($ (-1 (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3588 ($ (-349))) (-15 -2919 ($ (-583 (-998 (-349))))) (-15 -2919 ($ (-583 (-998 (-377 (-517)))))) (-15 -1868 ($ (-583 (-998 (-349))))) (-15 -1379 ($ (-1034 (-199)))) (-15 -3082 ($ (-843))) (-15 -1703 ($ (-843))) (-15 -3560 ($ (-843))) (-15 -1499 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -3295 ($ (-583 (-349)))) (-15 -2075 ((-3 (-51) "failed") (-583 $) (-1073))) (-15 -2305 ((-107) (-583 $) (-1073)))))) (T -236))
-((-2594 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-3560 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-3295 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-2075 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-51)) (-5 *1 (-236)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-107)) (-5 *1 (-236)))))
-(-13 (-1003) (-10 -8 (-15 -2594 ($ (-107))) (-15 -1810 ($ (-107))) (-15 -3222 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ($ (-1056))) (-15 -3228 ($ (-1056))) (-15 -1591 ($ (-107))) (-15 -1810 ($ (-583 (-998 (-349))))) (-15 -4114 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1480 ($ (-349))) (-15 -1480 ($ (-797))) (-15 -1728 ($ (-349))) (-15 -1728 ($ (-797))) (-15 -3590 ($ (-1 (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3588 ($ (-349))) (-15 -2919 ($ (-583 (-998 (-349))))) (-15 -2919 ($ (-583 (-998 (-377 (-517)))))) (-15 -1868 ($ (-583 (-998 (-349))))) (-15 -1379 ($ (-1034 (-199)))) (-15 -3082 ($ (-843))) (-15 -1703 ($ (-843))) (-15 -3560 ($ (-843))) (-15 -1499 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -3295 ($ (-583 (-349)))) (-15 -2075 ((-3 (-51) "failed") (-583 $) (-1073))) (-15 -2305 ((-107) (-583 $) (-1073)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-2932 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-1364 (((-583 |#3|) $) NIL)) (-2352 (((-1069 $) $ |#3|) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1026 |#1| |#2|) "failed") $) 20)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1026 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 |#3|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))))) (-3972 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) |#3|) NIL) (($ (-1069 $) |#3|) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) NIL)) (-2349 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 |#3| "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 |#2|) $) NIL)) (-3688 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1026 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-2460 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-1587 (((-703) $) 49) (((-703) $ |#3|) 52)) (-1816 (($ $) 65)) (-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1921 (((-703) $ |#3|) 39) (((-703) $) 36)) (-2569 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-2076 ((|#4| $) 58)) (-3831 (((-107) $) 56)) (-2442 (($ $) 64)) (-1979 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-1699 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3803 (((-583 |#3|) $) 75)) (-4007 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL)))
+(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2182 (|#1| |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1979 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#3| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#3| |#1|)) (-15 -2569 ((-1 |#1| (-703)) |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#4| |#1|)) (-15 -3831 ((-107) |#1|)) (-15 -1587 ((-703) |#1| |#3|)) (-15 -2460 ((-583 (-703)) |#1| |#3|)) (-15 -1587 ((-703) |#1|)) (-15 -2460 ((-583 (-703)) |#1|)) (-15 -4007 ((-703) |#1| |#3|)) (-15 -1921 ((-703) |#1|)) (-15 -1921 ((-703) |#1| |#3|)) (-15 -3803 ((-583 |#3|) |#1|)) (-15 -2569 ((-1 |#1| (-703)) |#3|)) (-15 -1759 ((-3 |#3| "failed") |#1|)) (-15 -2182 (|#1| |#3|)) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1|)) (-15 -4007 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -4007 ((-703) |#1| |#4|)) (-15 -1759 ((-3 |#4| "failed") |#1|)) (-15 -2182 (|#1| |#4|)) (-15 -1979 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#4| |#1|)) (-15 -1979 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#4| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -4007 (|#5| |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -1699 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1699 (|#1| |#1| |#4| (-703))) (-15 -1699 (|#1| |#1| (-583 |#4|))) (-15 -1699 (|#1| |#1| |#4|)) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-961) (-779) (-239 |#3|) (-725)) (T -225))
+NIL
+(-10 -8 (-15 -2182 (|#1| |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1979 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#3| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#3| |#1|)) (-15 -2569 ((-1 |#1| (-703)) |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#4| |#1|)) (-15 -3831 ((-107) |#1|)) (-15 -1587 ((-703) |#1| |#3|)) (-15 -2460 ((-583 (-703)) |#1| |#3|)) (-15 -1587 ((-703) |#1|)) (-15 -2460 ((-583 (-703)) |#1|)) (-15 -4007 ((-703) |#1| |#3|)) (-15 -1921 ((-703) |#1|)) (-15 -1921 ((-703) |#1| |#3|)) (-15 -3803 ((-583 |#3|) |#1|)) (-15 -2569 ((-1 |#1| (-703)) |#3|)) (-15 -1759 ((-3 |#3| "failed") |#1|)) (-15 -2182 (|#1| |#3|)) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1|)) (-15 -4007 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -4007 ((-703) |#1| |#4|)) (-15 -1759 ((-3 |#4| "failed") |#1|)) (-15 -2182 (|#1| |#4|)) (-15 -1979 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#4| |#1|)) (-15 -1979 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#4| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -4007 (|#5| |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -1699 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1699 (|#1| |#1| |#4| (-703))) (-15 -1699 (|#1| |#1| (-583 |#4|))) (-15 -1699 (|#1| |#1| |#4|)) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-2460 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-1587 (((-703) $) 213) (((-703) $ |#2|) 211)) (-1363 (((-583 |#3|) $) 110)) (-2255 (((-1070 $) $ |#3|) 125) (((-1070 |#1|) $) 124)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-3209 (($ $) 88 (|has| |#1| (-509)))) (-1452 (((-107) $) 90 (|has| |#1| (-509)))) (-3860 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1387 (((-3 $ "failed") $ $) 19)) (-2594 (((-388 (-1070 $)) (-1070 $)) 100 (|has| |#1| (-831)))) (-3938 (($ $) 98 (|has| |#1| (-421)))) (-3490 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-831)))) (-1816 (($ $) 207)) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3076 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-1309 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1217 (($ $) 154)) (-4012 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-1568 (((-3 $ "failed") $) 34)) (-3039 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1203 (((-583 $) $) 109)) (-2965 (((-107) $) 96 (|has| |#1| (-831)))) (-2253 (($ $ |#1| |#4| $) 172)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-1921 (((-703) $ |#2|) 217) (((-703) $) 216)) (-2955 (((-107) $) 31)) (-2091 (((-703) $) 169)) (-1352 (($ (-1070 |#1|) |#3|) 117) (($ (-1070 $) |#3|) 116)) (-3704 (((-583 $) $) 126)) (-1331 (((-107) $) 152)) (-1343 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ |#3|) 120)) (-2672 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-1575 (($ $ $) 79 (|has| |#1| (-779)))) (-2986 (($ $ $) 78 (|has| |#1| (-779)))) (-3751 (($ (-1 |#4| |#4|) $) 171)) (-1857 (($ (-1 |#1| |#1|) $) 151)) (-2569 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-1954 (((-3 |#3| "failed") $) 123)) (-4159 (($ $) 149)) (-1192 ((|#1| $) 148)) (-2076 ((|#3| $) 209)) (-1368 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3865 (((-1057) $) 9)) (-3831 (((-107) $) 210)) (-4128 (((-3 (-583 $) "failed") $) 114)) (-3116 (((-3 (-583 $) "failed") $) 115)) (-2911 (((-3 (-2 (|:| |var| |#3|) (|:| -2059 (-703))) "failed") $) 113)) (-2442 (($ $) 208)) (-3094 (((-1021) $) 10)) (-4134 (((-107) $) 166)) (-4144 ((|#1| $) 167)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 95 (|has| |#1| (-421)))) (-1396 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) 101 (|has| |#1| (-831)))) (-3693 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2349 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-4042 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-1699 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1074)) 234 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 233 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 232 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 231 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3803 (((-583 |#2|) $) 218)) (-4007 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3582 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 104 (-1651 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3763 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) 168)) (-3086 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1589 (((-3 $ "failed") $) 73 (-3763 (-1651 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) 29)) (-2962 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3767 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1074)) 230 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 229 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 228 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 227 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1593 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1649 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-226 |#1| |#2| |#3| |#4|) (-1185) (-961) (-779) (-239 |t#2|) (-725)) (T -226))
+((-2569 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-1921 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-4007 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2460 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-1587 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2442 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-1816 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-2569 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))))
+(-13 (-871 |t#1| |t#4| |t#3|) (-205 |t#1|) (-952 |t#2|) (-10 -8 (-15 -2569 ((-1 $ (-703)) |t#2|)) (-15 -3803 ((-583 |t#2|) $)) (-15 -1921 ((-703) $ |t#2|)) (-15 -1921 ((-703) $)) (-15 -4007 ((-703) $ |t#2|)) (-15 -2460 ((-583 (-703)) $)) (-15 -1587 ((-703) $)) (-15 -2460 ((-583 (-703)) $ |t#2|)) (-15 -1587 ((-703) $ |t#2|)) (-15 -3831 ((-107) $)) (-15 -2076 (|t#3| $)) (-15 -2442 ($ $)) (-15 -1816 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -2569 ((-1 $ (-703)) $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3763 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#4| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#2|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) |has| |#1| (-831)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1193 ((|#1| $) 54)) (-4143 ((|#1| $) 44)) (-1799 (((-107) $ (-703)) 8)) (-3473 (($) 7 T CONST)) (-1942 (($ $) 60)) (-1227 (($ $) 48)) (-2284 ((|#1| |#1| $) 46)) (-2646 ((|#1| $) 45)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-2542 (((-703) $) 61)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1835 ((|#1| $) 39)) (-1742 ((|#1| |#1| $) 52)) (-1886 ((|#1| |#1| $) 51)) (-3816 (($ |#1| $) 40)) (-1846 (((-703) $) 55)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1376 ((|#1| $) 62)) (-1200 ((|#1| $) 50)) (-2140 ((|#1| $) 49)) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-2813 ((|#1| |#1| $) 58)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-2490 ((|#1| $) 59)) (-3241 (($) 57) (($ (-583 |#1|)) 56)) (-2824 (((-703) $) 43)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3240 ((|#1| $) 53)) (-2373 (($ (-583 |#1|)) 42)) (-2665 ((|#1| $) 63)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-227 |#1|) (-1185) (-1109)) (T -227))
+((-3241 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-227 *3)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) (-1193 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-1742 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-1886 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-1200 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-1227 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
+(-13 (-1022 |t#1|) (-911 |t#1|) (-10 -8 (-15 -3241 ($)) (-15 -3241 ($ (-583 |t#1|))) (-15 -1846 ((-703) $)) (-15 -1193 (|t#1| $)) (-15 -3240 (|t#1| $)) (-15 -1742 (|t#1| |t#1| $)) (-15 -1886 (|t#1| |t#1| $)) (-15 -1200 (|t#1| $)) (-15 -2140 (|t#1| $)) (-15 -1227 ($ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-911 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1022 |#1|) . T) ((-1109) . T))
+((-1488 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1868 (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 160) (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 158) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 163) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 159) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 150) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 149) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349))) 129) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 127) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349))) 128) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 125)) (-1833 (((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 162) (((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 161) (((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 165) (((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 164) (((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 152) (((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 151) (((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349))) 135) (((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 134) (((-1156) (-802 (-1 (-199) (-199))) (-998 (-349))) 133) (((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 132) (((-1155) (-800 (-1 (-199) (-199))) (-998 (-349))) 99) (((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 98) (((-1155) (-1 (-199) (-199)) (-998 (-349))) 95) (((-1155) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236))) 94)))
+(((-228) (-10 -7 (-15 -1833 ((-1155) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1155) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1833 ((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1833 ((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1833 ((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1833 ((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1833 ((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1833 ((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1488 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228))
+((-1488 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))))
+(-10 -7 (-15 -1833 ((-1155) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1155) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1833 ((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1833 ((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1833 ((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1833 ((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1833 ((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1833 ((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1868 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1488 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
+((-1833 (((-1155) (-265 |#2|) (-1074) (-1074) (-583 (-236))) 93)))
+(((-229 |#1| |#2|) (-10 -7 (-15 -1833 ((-1155) (-265 |#2|) (-1074) (-1074) (-583 (-236))))) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|)) (T -229))
+((-1833 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1074)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1155)) (-5 *1 (-229 *6 *7)))))
+(-10 -7 (-15 -1833 ((-1155) (-265 |#2|) (-1074) (-1074) (-583 (-236)))))
+((-2761 (((-517) (-517)) 50)) (-2216 (((-517) (-517)) 51)) (-2208 (((-199) (-199)) 52)) (-3926 (((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199))) 49)) (-3818 (((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107)) 47)))
+(((-230) (-10 -7 (-15 -3818 ((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -3926 ((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -2761 ((-517) (-517))) (-15 -2216 ((-517) (-517))) (-15 -2208 ((-199) (-199))))) (T -230))
+((-2208 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-3926 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1156)) (-5 *1 (-230)))) (-3818 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1156)) (-5 *1 (-230)))))
+(-10 -7 (-15 -3818 ((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -3926 ((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -2761 ((-517) (-517))) (-15 -2216 ((-517) (-517))) (-15 -2208 ((-199) (-199))))
+((-2182 (((-996 (-349)) (-996 (-286 |#1|))) 16)))
+(((-231 |#1|) (-10 -7 (-15 -2182 ((-996 (-349)) (-996 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231))
+((-2182 (*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))))
+(-10 -7 (-15 -2182 ((-996 (-349)) (-996 (-286 |#1|)))))
+((-1868 (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))) 69) (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 68) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349))) 59) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 58) (((-1034 (-199)) (-802 |#1|) (-996 (-349))) 50) (((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236))) 49)) (-1833 (((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349))) 72) (((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 71) (((-1156) |#1| (-996 (-349)) (-996 (-349))) 62) (((-1156) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 61) (((-1156) (-802 |#1|) (-996 (-349))) 54) (((-1156) (-802 |#1|) (-996 (-349)) (-583 (-236))) 53) (((-1155) (-800 |#1|) (-996 (-349))) 41) (((-1155) (-800 |#1|) (-996 (-349)) (-583 (-236))) 40) (((-1155) |#1| (-996 (-349))) 33) (((-1155) |#1| (-996 (-349)) (-583 (-236))) 32)))
+(((-232 |#1|) (-10 -7 (-15 -1833 ((-1155) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1155) |#1| (-996 (-349)))) (-15 -1833 ((-1155) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1155) (-800 |#1|) (-996 (-349)))) (-15 -1833 ((-1156) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-802 |#1|) (-996 (-349)))) (-15 -1868 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1833 ((-1156) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1868 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1833 ((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1868 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))))) (-13 (-558 (-493)) (-1003))) (T -232))
+((-1868 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1868 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1833 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *5)))) (-1833 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *6)))) (-1868 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1868 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1833 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1156)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1833 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1868 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *5)))) (-1833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *6)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) (-1833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1833 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))))
+(-10 -7 (-15 -1833 ((-1155) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1155) |#1| (-996 (-349)))) (-15 -1833 ((-1155) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1155) (-800 |#1|) (-996 (-349)))) (-15 -1833 ((-1156) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-802 |#1|) (-996 (-349)))) (-15 -1868 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1833 ((-1156) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1868 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1833 ((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1833 ((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1868 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1868 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)))))
+((-1833 (((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1155) (-583 (-865 (-199))) (-583 (-236))) 13) (((-1155) (-583 (-865 (-199)))) 14) (((-1155) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1155) (-583 (-199)) (-583 (-199))) 19)))
+(((-233) (-10 -7 (-15 -1833 ((-1155) (-583 (-199)) (-583 (-199)))) (-15 -1833 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1833 ((-1155) (-583 (-865 (-199))))) (-15 -1833 ((-1155) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1833 ((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1833 ((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233))
+((-1833 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-233)))) (-1833 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1156)) (-5 *1 (-233)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1833 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1833 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))))
+(-10 -7 (-15 -1833 ((-1155) (-583 (-199)) (-583 (-199)))) (-15 -1833 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1833 ((-1155) (-583 (-865 (-199))))) (-15 -1833 ((-1155) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1833 ((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1833 ((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))
+((-2159 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-3727 (((-843) (-583 (-236)) (-843)) 49)) (-3361 (((-843) (-583 (-236)) (-843)) 48)) (-2899 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-2335 (((-349) (-583 (-236)) (-349)) 55)) (-2132 (((-843) (-583 (-236)) (-843)) 50)) (-3414 (((-107) (-583 (-236)) (-107)) 26)) (-4153 (((-1057) (-583 (-236)) (-1057)) 19)) (-2195 (((-1057) (-583 (-236)) (-1057)) 25)) (-2733 (((-1034 (-199)) (-583 (-236))) 43)) (-1186 (((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349)))) 37)) (-4148 (((-797) (-583 (-236)) (-797)) 31)) (-2354 (((-797) (-583 (-236)) (-797)) 32)) (-2105 (((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199)))) 60)) (-2901 (((-107) (-583 (-236)) (-107)) 15)) (-3225 (((-107) (-583 (-236)) (-107)) 14)))
+(((-234) (-10 -7 (-15 -3225 ((-107) (-583 (-236)) (-107))) (-15 -2901 ((-107) (-583 (-236)) (-107))) (-15 -2159 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4153 ((-1057) (-583 (-236)) (-1057))) (-15 -2195 ((-1057) (-583 (-236)) (-1057))) (-15 -3414 ((-107) (-583 (-236)) (-107))) (-15 -4148 ((-797) (-583 (-236)) (-797))) (-15 -2354 ((-797) (-583 (-236)) (-797))) (-15 -1186 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3361 ((-843) (-583 (-236)) (-843))) (-15 -3727 ((-843) (-583 (-236)) (-843))) (-15 -2733 ((-1034 (-199)) (-583 (-236)))) (-15 -2132 ((-843) (-583 (-236)) (-843))) (-15 -2335 ((-349) (-583 (-236)) (-349))) (-15 -2105 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -2899 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234))
+((-2899 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2105 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2335 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2132 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) (-3727 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3361 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1186 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2354 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4148 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3414 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2195 (*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4153 (*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2159 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2901 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3225 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(-10 -7 (-15 -3225 ((-107) (-583 (-236)) (-107))) (-15 -2901 ((-107) (-583 (-236)) (-107))) (-15 -2159 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4153 ((-1057) (-583 (-236)) (-1057))) (-15 -2195 ((-1057) (-583 (-236)) (-1057))) (-15 -3414 ((-107) (-583 (-236)) (-107))) (-15 -4148 ((-797) (-583 (-236)) (-797))) (-15 -2354 ((-797) (-583 (-236)) (-797))) (-15 -1186 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3361 ((-843) (-583 (-236)) (-843))) (-15 -3727 ((-843) (-583 (-236)) (-843))) (-15 -2733 ((-1034 (-199)) (-583 (-236)))) (-15 -2132 ((-843) (-583 (-236)) (-843))) (-15 -2335 ((-349) (-583 (-236)) (-349))) (-15 -2105 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -2899 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))
+((-2001 (((-3 |#1| "failed") (-583 (-236)) (-1074)) 17)))
+(((-235 |#1|) (-10 -7 (-15 -2001 ((-3 |#1| "failed") (-583 (-236)) (-1074)))) (-1109)) (T -235))
+((-2001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *1 (-235 *2)) (-4 *2 (-1109)))))
+(-10 -7 (-15 -2001 ((-3 |#1| "failed") (-583 (-236)) (-1074))))
+((-2571 (((-107) $ $) NIL)) (-2159 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-3727 (($ (-843)) 70)) (-3361 (($ (-843)) 69)) (-1697 (($ (-583 (-349))) 76)) (-2335 (($ (-349)) 55)) (-2132 (($ (-843)) 71)) (-3414 (($ (-107)) 22)) (-4153 (($ (-1057)) 17)) (-2195 (($ (-1057)) 18)) (-2733 (($ (-1034 (-199))) 65)) (-1186 (($ (-583 (-998 (-349)))) 61)) (-1495 (($ (-583 (-998 (-349)))) 56) (($ (-583 (-998 (-377 (-517))))) 60)) (-3945 (($ (-349)) 28) (($ (-797)) 32)) (-3550 (((-107) (-583 $) (-1074)) 85)) (-2001 (((-3 (-51) "failed") (-583 $) (-1074)) 87)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2910 (($ (-349)) 33) (($ (-797)) 34)) (-2575 (($ (-1 (-865 (-199)) (-865 (-199)))) 54)) (-2105 (($ (-1 (-865 (-199)) (-865 (-199)))) 72)) (-2355 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2182 (((-787) $) 81)) (-1234 (($ (-107)) 23) (($ (-583 (-998 (-349)))) 50)) (-3225 (($ (-107)) 24)) (-1539 (((-107) $ $) 83)))
+(((-236) (-13 (-1003) (-10 -8 (-15 -3225 ($ (-107))) (-15 -1234 ($ (-107))) (-15 -2159 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4153 ($ (-1057))) (-15 -2195 ($ (-1057))) (-15 -3414 ($ (-107))) (-15 -1234 ($ (-583 (-998 (-349))))) (-15 -2575 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -3945 ($ (-349))) (-15 -3945 ($ (-797))) (-15 -2910 ($ (-349))) (-15 -2910 ($ (-797))) (-15 -2355 ($ (-1 (-199) (-199)))) (-15 -2355 ($ (-1 (-199) (-199) (-199)))) (-15 -2355 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -2335 ($ (-349))) (-15 -1495 ($ (-583 (-998 (-349))))) (-15 -1495 ($ (-583 (-998 (-377 (-517)))))) (-15 -1186 ($ (-583 (-998 (-349))))) (-15 -2733 ($ (-1034 (-199)))) (-15 -3361 ($ (-843))) (-15 -3727 ($ (-843))) (-15 -2132 ($ (-843))) (-15 -2105 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1697 ($ (-583 (-349)))) (-15 -2001 ((-3 (-51) "failed") (-583 $) (-1074))) (-15 -3550 ((-107) (-583 $) (-1074)))))) (T -236))
+((-3225 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1234 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-2159 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-4153 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-236)))) (-2195 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-236)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1234 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) (-1186 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-2733 (*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-3727 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-2105 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-1697 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-2001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *2 (-51)) (-5 *1 (-236)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *2 (-107)) (-5 *1 (-236)))))
+(-13 (-1003) (-10 -8 (-15 -3225 ($ (-107))) (-15 -1234 ($ (-107))) (-15 -2159 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4153 ($ (-1057))) (-15 -2195 ($ (-1057))) (-15 -3414 ($ (-107))) (-15 -1234 ($ (-583 (-998 (-349))))) (-15 -2575 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -3945 ($ (-349))) (-15 -3945 ($ (-797))) (-15 -2910 ($ (-349))) (-15 -2910 ($ (-797))) (-15 -2355 ($ (-1 (-199) (-199)))) (-15 -2355 ($ (-1 (-199) (-199) (-199)))) (-15 -2355 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -2335 ($ (-349))) (-15 -1495 ($ (-583 (-998 (-349))))) (-15 -1495 ($ (-583 (-998 (-377 (-517)))))) (-15 -1186 ($ (-583 (-998 (-349))))) (-15 -2733 ($ (-1034 (-199)))) (-15 -3361 ($ (-843))) (-15 -3727 ($ (-843))) (-15 -2132 ($ (-843))) (-15 -2105 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1697 ($ (-583 (-349)))) (-15 -2001 ((-3 (-51) "failed") (-583 $) (-1074))) (-15 -3550 ((-107) (-583 $) (-1074)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2460 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-1587 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-1363 (((-583 |#3|) $) NIL)) (-2255 (((-1070 $) $ |#3|) NIL) (((-1070 |#1|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1816 (($ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1026 |#1| |#2|) "failed") $) 20)) (-3076 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1026 |#1| |#2|) $) NIL)) (-1309 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-2253 (($ $ |#1| (-489 |#3|) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))))) (-1921 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-1352 (($ (-1070 |#1|) |#3|) NIL) (($ (-1070 $) |#3|) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ |#3|) NIL)) (-2672 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2569 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1954 (((-3 |#3| "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-2076 ((|#3| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3865 (((-1057) $) NIL)) (-3831 (((-107) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| |#3|) (|:| -2059 (-703))) "failed") $) NIL)) (-2442 (($ $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-4042 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-1699 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3803 (((-583 |#2|) $) NIL)) (-4007 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-1423 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1026 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-237 |#1| |#2| |#3|) (-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-952 (-1026 |#1| |#2|))) (-961) (-779) (-239 |#2|)) (T -237))
NIL
(-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-952 (-1026 |#1| |#2|)))
-((-2932 (((-703) $) 30)) (-1772 (((-3 |#2| "failed") $) 17)) (-3189 ((|#2| $) 27)) (-3127 (($ $) 12) (($ $ (-703)) 15)) (-2256 (((-787) $) 26) (($ |#2|) 10)) (-1547 (((-107) $ $) 20)) (-1572 (((-107) $ $) 29)))
-(((-238 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -2932 ((-703) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238))
-NIL
-(-10 -8 (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -2932 ((-703) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2932 (((-703) $) 22)) (-1638 ((|#1| $) 23)) (-1772 (((-3 |#1| "failed") $) 27)) (-3189 ((|#1| $) 26)) (-3972 (((-703) $) 24)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-2656 (($ |#1| (-703)) 25)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $) 21) (($ $ (-703)) 20)) (-2256 (((-787) $) 11) (($ |#1|) 28)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
-(((-239 |#1|) (-1184) (-779)) (T -239))
-((-2256 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2656 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-952 |t#1|) (-10 -8 (-15 -2656 ($ |t#1| (-703))) (-15 -3972 ((-703) $)) (-15 -1638 (|t#1| $)) (-15 -2932 ((-703) $)) (-15 -3127 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2256 ($ |t#1|))))
+((-1587 (((-703) $) 30)) (-1759 (((-3 |#2| "failed") $) 17)) (-3076 ((|#2| $) 27)) (-1699 (($ $) 12) (($ $ (-703)) 15)) (-2182 (((-787) $) 26) (($ |#2|) 10)) (-1539 (((-107) $ $) 20)) (-1560 (((-107) $ $) 29)))
+(((-238 |#1| |#2|) (-10 -8 (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1|)) (-15 -1587 ((-703) |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238))
+NIL
+(-10 -8 (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1|)) (-15 -1587 ((-703) |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-1587 (((-703) $) 22)) (-1625 ((|#1| $) 23)) (-1759 (((-3 |#1| "failed") $) 27)) (-3076 ((|#1| $) 26)) (-1921 (((-703) $) 24)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-2569 (($ |#1| (-703)) 25)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-1699 (($ $) 21) (($ $ (-703)) 20)) (-2182 (((-787) $) 11) (($ |#1|) 28)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)))
+(((-239 |#1|) (-1185) (-779)) (T -239))
+((-2182 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2569 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1699 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-952 |t#1|) (-10 -8 (-15 -2569 ($ |t#1| (-703))) (-15 -1921 ((-703) $)) (-15 -1625 (|t#1| $)) (-15 -1587 ((-703) $)) (-15 -1699 ($ $)) (-15 -1699 ($ $ (-703))) (-15 -2182 ($ |t#1|))))
(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-952 |#1|) . T) ((-1003) . T))
-((-1364 (((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 40)) (-3463 (((-583 (-1073)) (-286 (-199)) (-703)) 79)) (-2438 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-2172 (((-286 (-199)) (-286 (-199))) 65)) (-4062 (((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-3648 (((-107) (-583 (-286 (-199)))) 83)) (-2792 (((-107) (-286 (-199))) 24)) (-1815 (((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) 104)) (-3162 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 86)) (-3919 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-3564 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 93)) (-2035 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-3795 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-2455 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 99)) (-3878 (((-950) (-1073) (-950)) 33)))
-(((-240) (-10 -7 (-15 -3795 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -4062 ((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2438 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2172 ((-286 (-199)) (-286 (-199)))) (-15 -3648 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-286 (-199)))) (-15 -3564 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -3919 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3162 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2792 ((-107) (-286 (-199)))) (-15 -1364 ((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3463 ((-583 (-1073)) (-286 (-199)) (-703))) (-15 -3878 ((-950) (-1073) (-950))) (-15 -2455 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -1815 ((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))))) (T -240))
-((-1815 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *2 (-583 (-1056))) (-5 *1 (-240)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-3878 (*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-240)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-3564 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2172 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-2438 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-3795 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
-(-10 -7 (-15 -3795 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -4062 ((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2438 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2172 ((-286 (-199)) (-286 (-199)))) (-15 -3648 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-286 (-199)))) (-15 -3564 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -3919 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3162 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2792 ((-107) (-286 (-199)))) (-15 -1364 ((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3463 ((-583 (-1073)) (-286 (-199)) (-703))) (-15 -3878 ((-950) (-1073) (-950))) (-15 -2455 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -1815 ((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))))
-((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-1363 (((-583 (-1074)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 40)) (-3367 (((-583 (-1074)) (-286 (-199)) (-703)) 79)) (-2364 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-1814 (((-286 (-199)) (-286 (-199))) 65)) (-3346 (((-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-1820 (((-107) (-583 (-286 (-199)))) 83)) (-2541 (((-107) (-286 (-199))) 24)) (-3697 (((-583 (-1057)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))))) 104)) (-2788 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 86)) (-2423 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-2155 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 93)) (-2753 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-3695 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-1464 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 99)) (-2145 (((-950) (-1074) (-950)) 33)))
+(((-240) (-10 -7 (-15 -3695 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -3346 ((-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2364 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1814 ((-286 (-199)) (-286 (-199)))) (-15 -1820 ((-107) (-583 (-286 (-199))))) (-15 -2753 ((-107) (-583 (-286 (-199))))) (-15 -2753 ((-107) (-286 (-199)))) (-15 -2155 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2423 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2788 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2541 ((-107) (-286 (-199)))) (-15 -1363 ((-583 (-1074)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) (-15 -3367 ((-583 (-1074)) (-286 (-199)) (-703))) (-15 -2145 ((-950) (-1074) (-950))) (-15 -1464 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) (-15 -3697 ((-583 (-1057)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))))))) (T -240))
+((-3697 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))))) (-5 *2 (-583 (-1057))) (-5 *1 (-240)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-2145 (*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1074)) (-5 *1 (-240)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1074))) (-5 *1 (-240)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *2 (-583 (-1074))) (-5 *1 (-240)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2788 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-2364 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-3346 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
+(-10 -7 (-15 -3695 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -3346 ((-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2364 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1814 ((-286 (-199)) (-286 (-199)))) (-15 -1820 ((-107) (-583 (-286 (-199))))) (-15 -2753 ((-107) (-583 (-286 (-199))))) (-15 -2753 ((-107) (-286 (-199)))) (-15 -2155 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2423 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2788 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2541 ((-107) (-286 (-199)))) (-15 -1363 ((-583 (-1074)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) (-15 -3367 ((-583 (-1074)) (-286 (-199)) (-703))) (-15 -2145 ((-950) (-1074) (-950))) (-15 -1464 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) (-15 -3697 ((-583 (-1057)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))))))
+((-2571 (((-107) $ $) NIL)) (-2691 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-241) (-768)) (T -241))
NIL
(-768)
-((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 31)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2691 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 31)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-242) (-768)) (T -242))
NIL
(-768)
-((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 73) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 51)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2691 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 73) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 51)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-243) (-768)) (T -243))
NIL
(-768)
-((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2691 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-244) (-768)) (T -244))
NIL
(-768)
-((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2691 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-245) (-768)) (T -245))
NIL
(-768)
-((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2691 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-246) (-768)) (T -246))
NIL
(-768)
-((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2691 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1539 (((-107) $ $) NIL)))
(((-247) (-768)) (T -247))
NIL
(-768)
-((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3242 (((-583 (-517)) $) 16)) (-3688 (((-703) $) 14)) (-2256 (((-787) $) 20) (($ (-583 (-517))) 12)) (-1384 (($ (-703)) 17)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 9)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 10)))
-(((-248) (-13 (-779) (-10 -8 (-15 -2256 ($ (-583 (-517)))) (-15 -3688 ((-703) $)) (-15 -3242 ((-583 (-517)) $)) (-15 -1384 ($ (-703)))))) (T -248))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
-(-13 (-779) (-10 -8 (-15 -2256 ($ (-583 (-517)))) (-15 -3688 ((-703) $)) (-15 -3242 ((-583 (-517)) $)) (-15 -1384 ($ (-703)))))
-((-1865 ((|#2| |#2|) 77)) (-1721 ((|#2| |#2|) 65)) (-2857 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-1839 ((|#2| |#2|) 75)) (-1701 ((|#2| |#2|) 63)) (-1887 ((|#2| |#2|) 79)) (-1743 ((|#2| |#2|) 67)) (-2645 ((|#2|) 46)) (-3072 (((-109) (-109)) 95)) (-1867 ((|#2| |#2|) 61)) (-3300 (((-107) |#2|) 134)) (-3638 ((|#2| |#2|) 180)) (-2989 ((|#2| |#2|) 156)) (-3828 ((|#2|) 59)) (-3756 ((|#2|) 58)) (-3523 ((|#2| |#2|) 176)) (-2511 ((|#2| |#2|) 152)) (-2983 ((|#2| |#2|) 184)) (-1682 ((|#2| |#2|) 160)) (-2794 ((|#2| |#2|) 148)) (-1990 ((|#2| |#2|) 150)) (-4095 ((|#2| |#2|) 186)) (-2318 ((|#2| |#2|) 162)) (-3393 ((|#2| |#2|) 182)) (-3276 ((|#2| |#2|) 158)) (-1745 ((|#2| |#2|) 178)) (-2516 ((|#2| |#2|) 154)) (-3772 ((|#2| |#2|) 192)) (-2853 ((|#2| |#2|) 168)) (-2370 ((|#2| |#2|) 188)) (-2143 ((|#2| |#2|) 164)) (-2168 ((|#2| |#2|) 196)) (-1509 ((|#2| |#2|) 172)) (-2622 ((|#2| |#2|) 198)) (-3280 ((|#2| |#2|) 174)) (-2137 ((|#2| |#2|) 194)) (-2019 ((|#2| |#2|) 170)) (-1430 ((|#2| |#2|) 190)) (-3332 ((|#2| |#2|) 166)) (-2624 ((|#2| |#2|) 62)) (-1898 ((|#2| |#2|) 80)) (-1754 ((|#2| |#2|) 68)) (-1876 ((|#2| |#2|) 78)) (-1732 ((|#2| |#2|) 66)) (-1853 ((|#2| |#2|) 76)) (-1711 ((|#2| |#2|) 64)) (-4074 (((-107) (-109)) 93)) (-3707 ((|#2| |#2|) 83)) (-1788 ((|#2| |#2|) 71)) (-3683 ((|#2| |#2|) 81)) (-1765 ((|#2| |#2|) 69)) (-3731 ((|#2| |#2|) 85)) (-1814 ((|#2| |#2|) 73)) (-1492 ((|#2| |#2|) 86)) (-1827 ((|#2| |#2|) 74)) (-3719 ((|#2| |#2|) 84)) (-1802 ((|#2| |#2|) 72)) (-3695 ((|#2| |#2|) 82)) (-1777 ((|#2| |#2|) 70)))
-(((-249 |#1| |#2|) (-10 -7 (-15 -2624 (|#2| |#2|)) (-15 -1867 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1711 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -1814 (|#2| |#2|)) (-15 -1827 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -2645 (|#2|)) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3756 (|#2|)) (-15 -3828 (|#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3523 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -2857 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3300 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918))) (T -249))
-((-3300 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))) (-2857 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-2622 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2137 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2983 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2019 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2143 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3828 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3756 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) (-2645 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(-10 -7 (-15 -2624 (|#2| |#2|)) (-15 -1867 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1711 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -1814 (|#2| |#2|)) (-15 -1827 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -2645 (|#2|)) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3756 (|#2|)) (-15 -3828 (|#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3523 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -2857 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3300 ((-107) |#2|)))
-((-3951 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073)) 133)) (-2596 ((|#2| (-377 (-517)) |#2|) 50)) (-2170 ((|#2| |#2| (-556 |#2|)) 126)) (-3133 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073)) 125)) (-2849 ((|#2| |#2| (-1073)) 19) ((|#2| |#2|) 22)) (-2485 ((|#2| |#2| (-1073)) 139) ((|#2| |#2|) 137)))
-(((-250 |#1| |#2|) (-10 -7 (-15 -2485 (|#2| |#2|)) (-15 -2485 (|#2| |#2| (-1073))) (-15 -3133 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073))) (-15 -2849 (|#2| |#2|)) (-15 -2849 (|#2| |#2| (-1073))) (-15 -3951 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073))) (-15 -2170 (|#2| |#2| (-556 |#2|))) (-15 -2596 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -250))
-((-2596 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2170 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-3951 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1073)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-2849 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2849 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2485 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
-(-10 -7 (-15 -2485 (|#2| |#2|)) (-15 -2485 (|#2| |#2| (-1073))) (-15 -3133 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073))) (-15 -2849 (|#2| |#2|)) (-15 -2849 (|#2| |#2| (-1073))) (-15 -3951 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073))) (-15 -2170 (|#2| |#2| (-556 |#2|))) (-15 -2596 (|#2| (-377 (-517)) |#2|)))
-((-3885 (((-3 |#3| "failed") |#3|) 110)) (-1865 ((|#3| |#3|) 131)) (-1878 (((-3 |#3| "failed") |#3|) 82)) (-1721 ((|#3| |#3|) 121)) (-4078 (((-3 |#3| "failed") |#3|) 58)) (-1839 ((|#3| |#3|) 129)) (-3113 (((-3 |#3| "failed") |#3|) 46)) (-1701 ((|#3| |#3|) 119)) (-2944 (((-3 |#3| "failed") |#3|) 112)) (-1887 ((|#3| |#3|) 133)) (-3413 (((-3 |#3| "failed") |#3|) 84)) (-1743 ((|#3| |#3|) 123)) (-2492 (((-3 |#3| "failed") |#3| (-703)) 36)) (-2064 (((-3 |#3| "failed") |#3|) 74)) (-1867 ((|#3| |#3|) 118)) (-3930 (((-3 |#3| "failed") |#3|) 44)) (-2624 ((|#3| |#3|) 117)) (-3608 (((-3 |#3| "failed") |#3|) 113)) (-1898 ((|#3| |#3|) 134)) (-2011 (((-3 |#3| "failed") |#3|) 85)) (-1754 ((|#3| |#3|) 124)) (-1779 (((-3 |#3| "failed") |#3|) 111)) (-1876 ((|#3| |#3|) 132)) (-1312 (((-3 |#3| "failed") |#3|) 83)) (-1732 ((|#3| |#3|) 122)) (-1282 (((-3 |#3| "failed") |#3|) 60)) (-1853 ((|#3| |#3|) 130)) (-3518 (((-3 |#3| "failed") |#3|) 48)) (-1711 ((|#3| |#3|) 120)) (-1266 (((-3 |#3| "failed") |#3|) 66)) (-3707 ((|#3| |#3|) 137)) (-3884 (((-3 |#3| "failed") |#3|) 104)) (-1788 ((|#3| |#3|) 142)) (-2460 (((-3 |#3| "failed") |#3|) 62)) (-3683 ((|#3| |#3|) 135)) (-2895 (((-3 |#3| "failed") |#3|) 50)) (-1765 ((|#3| |#3|) 125)) (-3829 (((-3 |#3| "failed") |#3|) 70)) (-3731 ((|#3| |#3|) 139)) (-1778 (((-3 |#3| "failed") |#3|) 54)) (-1814 ((|#3| |#3|) 127)) (-1240 (((-3 |#3| "failed") |#3|) 72)) (-1492 ((|#3| |#3|) 140)) (-3363 (((-3 |#3| "failed") |#3|) 56)) (-1827 ((|#3| |#3|) 128)) (-1403 (((-3 |#3| "failed") |#3|) 68)) (-3719 ((|#3| |#3|) 138)) (-1297 (((-3 |#3| "failed") |#3|) 107)) (-1802 ((|#3| |#3|) 143)) (-2828 (((-3 |#3| "failed") |#3|) 64)) (-3695 ((|#3| |#3|) 136)) (-1247 (((-3 |#3| "failed") |#3|) 52)) (-1777 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
-(((-251 |#1| |#2| |#3|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)))) (-37 (-377 (-517))) (-1145 |#1|) (-1116 |#1| |#2|)) (T -251))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1116 *4 *5)))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))))
-(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|))))
-((-3885 (((-3 |#3| "failed") |#3|) 66)) (-1865 ((|#3| |#3|) 133)) (-1878 (((-3 |#3| "failed") |#3|) 50)) (-1721 ((|#3| |#3|) 121)) (-4078 (((-3 |#3| "failed") |#3|) 62)) (-1839 ((|#3| |#3|) 131)) (-3113 (((-3 |#3| "failed") |#3|) 46)) (-1701 ((|#3| |#3|) 119)) (-2944 (((-3 |#3| "failed") |#3|) 70)) (-1887 ((|#3| |#3|) 135)) (-3413 (((-3 |#3| "failed") |#3|) 54)) (-1743 ((|#3| |#3|) 123)) (-2492 (((-3 |#3| "failed") |#3| (-703)) 35)) (-2064 (((-3 |#3| "failed") |#3|) 44)) (-1867 ((|#3| |#3|) 112)) (-3930 (((-3 |#3| "failed") |#3|) 42)) (-2624 ((|#3| |#3|) 118)) (-3608 (((-3 |#3| "failed") |#3|) 72)) (-1898 ((|#3| |#3|) 136)) (-2011 (((-3 |#3| "failed") |#3|) 56)) (-1754 ((|#3| |#3|) 124)) (-1779 (((-3 |#3| "failed") |#3|) 68)) (-1876 ((|#3| |#3|) 134)) (-1312 (((-3 |#3| "failed") |#3|) 52)) (-1732 ((|#3| |#3|) 122)) (-1282 (((-3 |#3| "failed") |#3|) 64)) (-1853 ((|#3| |#3|) 132)) (-3518 (((-3 |#3| "failed") |#3|) 48)) (-1711 ((|#3| |#3|) 120)) (-1266 (((-3 |#3| "failed") |#3|) 78)) (-3707 ((|#3| |#3|) 139)) (-3884 (((-3 |#3| "failed") |#3|) 58)) (-1788 ((|#3| |#3|) 127)) (-2460 (((-3 |#3| "failed") |#3|) 74)) (-3683 ((|#3| |#3|) 137)) (-2895 (((-3 |#3| "failed") |#3|) 102)) (-1765 ((|#3| |#3|) 125)) (-3829 (((-3 |#3| "failed") |#3|) 82)) (-3731 ((|#3| |#3|) 141)) (-1778 (((-3 |#3| "failed") |#3|) 109)) (-1814 ((|#3| |#3|) 129)) (-1240 (((-3 |#3| "failed") |#3|) 84)) (-1492 ((|#3| |#3|) 142)) (-3363 (((-3 |#3| "failed") |#3|) 111)) (-1827 ((|#3| |#3|) 130)) (-1403 (((-3 |#3| "failed") |#3|) 80)) (-3719 ((|#3| |#3|) 140)) (-1297 (((-3 |#3| "failed") |#3|) 60)) (-1802 ((|#3| |#3|) 128)) (-2828 (((-3 |#3| "failed") |#3|) 76)) (-3695 ((|#3| |#3|) 138)) (-1247 (((-3 |#3| "failed") |#3|) 105)) (-1777 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
-(((-252 |#1| |#2| |#3| |#4|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)))) (-37 (-377 (-517))) (-1114 |#1|) (-1137 |#1| |#2|) (-900 |#2|)) (T -252))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1114 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1137 *4 *5)) (-4 *6 (-900 *5)))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))))
-(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|))))
-((-3536 (($ (-1 (-107) |#2|) $) 23)) (-1679 (($ $) 36)) (-3212 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-2052 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2797 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2620 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3750 (($ $ (-517)) 11) (($ $ (-1121 (-517))) 14)) (-2568 (($ $ |#2|) 29) (($ $ $) NIL)) (-2452 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL)))
-(((-253 |#1| |#2|) (-10 -8 (-15 -2797 (|#1| |#1| |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -1679 (|#1| |#1|))) (-254 |#2|) (-1108)) (T -253))
-NIL
-(-10 -8 (-15 -2797 (|#1| |#1| |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -1679 (|#1| |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 85)) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 83 (|has| |#1| (-1003)))) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1003)))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2797 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-1710 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-2154 (($ $ (-517)) 91) (($ $ (-1121 (-517))) 90)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2568 (($ $ |#1|) 93) (($ $ $) 92)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-254 |#1|) (-1184) (-1108)) (T -254))
-((-2568 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-1710 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-1710 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2797 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2337 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-3212 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-2797 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))))
-(-13 (-588 |t#1|) (-10 -8 (-6 -4181) (-15 -2568 ($ $ |t#1|)) (-15 -2568 ($ $ $)) (-15 -2154 ($ $ (-517))) (-15 -2154 ($ $ (-1121 (-517)))) (-15 -3212 ($ (-1 (-107) |t#1|) $)) (-15 -1710 ($ |t#1| $ (-517))) (-15 -1710 ($ $ $ (-517))) (-15 -2797 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -2337 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3212 ($ |t#1| $)) (-15 -3483 ($ $))) |noBranch|) (IF (|has| |t#1| (-779)) (-15 -2797 ($ $ $)) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-2571 (((-107) $ $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2298 (((-583 (-517)) $) 16)) (-4007 (((-703) $) 14)) (-2182 (((-787) $) 20) (($ (-583 (-517))) 12)) (-2793 (($ (-703)) 17)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 9)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 10)))
+(((-248) (-13 (-779) (-10 -8 (-15 -2182 ($ (-583 (-517)))) (-15 -4007 ((-703) $)) (-15 -2298 ((-583 (-517)) $)) (-15 -2793 ($ (-703)))))) (T -248))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-2793 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
+(-13 (-779) (-10 -8 (-15 -2182 ($ (-583 (-517)))) (-15 -4007 ((-703) $)) (-15 -2298 ((-583 (-517)) $)) (-15 -2793 ($ (-703)))))
+((-1834 ((|#2| |#2|) 77)) (-1710 ((|#2| |#2|) 65)) (-2074 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-1812 ((|#2| |#2|) 75)) (-1685 ((|#2| |#2|) 63)) (-1851 ((|#2| |#2|) 79)) (-1731 ((|#2| |#2|) 67)) (-2475 ((|#2|) 46)) (-3270 (((-109) (-109)) 95)) (-1826 ((|#2| |#2|) 61)) (-1752 (((-107) |#2|) 134)) (-1747 ((|#2| |#2|) 180)) (-3893 ((|#2| |#2|) 156)) (-2717 ((|#2|) 59)) (-3304 ((|#2|) 58)) (-2956 ((|#2| |#2|) 176)) (-1924 ((|#2| |#2|) 152)) (-3844 ((|#2| |#2|) 184)) (-3553 ((|#2| |#2|) 160)) (-2563 ((|#2| |#2|) 148)) (-3556 ((|#2| |#2|) 150)) (-3715 ((|#2| |#2|) 186)) (-2444 ((|#2| |#2|) 162)) (-3052 ((|#2| |#2|) 182)) (-1509 ((|#2| |#2|) 158)) (-1316 ((|#2| |#2|) 178)) (-1949 ((|#2| |#2|) 154)) (-3474 ((|#2| |#2|) 192)) (-2032 ((|#2| |#2|) 168)) (-2915 ((|#2| |#2|) 188)) (-1519 ((|#2| |#2|) 164)) (-1774 ((|#2| |#2|) 196)) (-2309 ((|#2| |#2|) 172)) (-3522 ((|#2| |#2|) 198)) (-1550 ((|#2| |#2|) 174)) (-1475 ((|#2| |#2|) 194)) (-2585 ((|#2| |#2|) 170)) (-2066 ((|#2| |#2|) 190)) (-3796 ((|#2| |#2|) 166)) (-2459 ((|#2| |#2|) 62)) (-1860 ((|#2| |#2|) 80)) (-1741 ((|#2| |#2|) 68)) (-1842 ((|#2| |#2|) 78)) (-1722 ((|#2| |#2|) 66)) (-1824 ((|#2| |#2|) 76)) (-1698 ((|#2| |#2|) 64)) (-3494 (((-107) (-109)) 93)) (-3642 ((|#2| |#2|) 83)) (-1773 ((|#2| |#2|) 71)) (-3622 ((|#2| |#2|) 81)) (-1751 ((|#2| |#2|) 69)) (-3661 ((|#2| |#2|) 85)) (-1794 ((|#2| |#2|) 73)) (-1279 ((|#2| |#2|) 86)) (-1803 ((|#2| |#2|) 74)) (-3650 ((|#2| |#2|) 84)) (-1784 ((|#2| |#2|) 72)) (-3631 ((|#2| |#2|) 82)) (-1762 ((|#2| |#2|) 70)))
+(((-249 |#1| |#2|) (-10 -7 (-15 -2459 (|#2| |#2|)) (-15 -1826 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1741 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -1773 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -1794 (|#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -1812 (|#2| |#2|)) (-15 -1824 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -2475 (|#2|)) (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -3304 (|#2|)) (-15 -2717 (|#2|)) (-15 -3556 (|#2| |#2|)) (-15 -2563 (|#2| |#2|)) (-15 -1924 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -2956 (|#2| |#2|)) (-15 -1316 (|#2| |#2|)) (-15 -1747 (|#2| |#2|)) (-15 -3052 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3715 (|#2| |#2|)) (-15 -2915 (|#2| |#2|)) (-15 -2066 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -3522 (|#2| |#2|)) (-15 -2074 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -1752 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918))) (T -249))
+((-1752 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))) (-2074 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-3522 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1774 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2066 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3715 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1316 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2956 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1924 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2563 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3556 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2717 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3304 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) (-2475 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1824 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1794 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1773 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1762 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1741 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1826 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(-10 -7 (-15 -2459 (|#2| |#2|)) (-15 -1826 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1741 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -1773 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -1794 (|#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -1812 (|#2| |#2|)) (-15 -1824 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -2475 (|#2|)) (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -3304 (|#2|)) (-15 -2717 (|#2|)) (-15 -3556 (|#2| |#2|)) (-15 -2563 (|#2| |#2|)) (-15 -1924 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -2956 (|#2| |#2|)) (-15 -1316 (|#2| |#2|)) (-15 -1747 (|#2| |#2|)) (-15 -3052 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3715 (|#2| |#2|)) (-15 -2915 (|#2| |#2|)) (-15 -2066 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -3522 (|#2| |#2|)) (-15 -2074 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -1752 ((-107) |#2|)))
+((-1725 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1074)) 133)) (-3251 ((|#2| (-377 (-517)) |#2|) 50)) (-1795 ((|#2| |#2| (-556 |#2|)) 126)) (-2528 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1074)) 125)) (-2006 ((|#2| |#2| (-1074)) 19) ((|#2| |#2|) 22)) (-1730 ((|#2| |#2| (-1074)) 139) ((|#2| |#2|) 137)))
+(((-250 |#1| |#2|) (-10 -7 (-15 -1730 (|#2| |#2|)) (-15 -1730 (|#2| |#2| (-1074))) (-15 -2528 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1074))) (-15 -2006 (|#2| |#2|)) (-15 -2006 (|#2| |#2| (-1074))) (-15 -1725 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1074))) (-15 -1795 (|#2| |#2| (-556 |#2|))) (-15 -3251 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -250))
+((-3251 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-1795 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-1725 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1074)) (-4 *2 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-2006 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-2528 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1730 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-1730 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
+(-10 -7 (-15 -1730 (|#2| |#2|)) (-15 -1730 (|#2| |#2| (-1074))) (-15 -2528 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1074))) (-15 -2006 (|#2| |#2|)) (-15 -2006 (|#2| |#2| (-1074))) (-15 -1725 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1074))) (-15 -1795 (|#2| |#2| (-556 |#2|))) (-15 -3251 (|#2| (-377 (-517)) |#2|)))
+((-2190 (((-3 |#3| "failed") |#3|) 110)) (-1834 ((|#3| |#3|) 131)) (-3669 (((-3 |#3| "failed") |#3|) 82)) (-1710 ((|#3| |#3|) 121)) (-3542 (((-3 |#3| "failed") |#3|) 58)) (-1812 ((|#3| |#3|) 129)) (-3639 (((-3 |#3| "failed") |#3|) 46)) (-1685 ((|#3| |#3|) 119)) (-1717 (((-3 |#3| "failed") |#3|) 112)) (-1851 ((|#3| |#3|) 133)) (-3218 (((-3 |#3| "failed") |#3|) 84)) (-1731 ((|#3| |#3|) 123)) (-1792 (((-3 |#3| "failed") |#3| (-703)) 36)) (-1970 (((-3 |#3| "failed") |#3|) 74)) (-1826 ((|#3| |#3|) 118)) (-1493 (((-3 |#3| "failed") |#3|) 44)) (-2459 ((|#3| |#3|) 117)) (-1465 (((-3 |#3| "failed") |#3|) 113)) (-1860 ((|#3| |#3|) 134)) (-2516 (((-3 |#3| "failed") |#3|) 85)) (-1741 ((|#3| |#3|) 124)) (-2654 (((-3 |#3| "failed") |#3|) 111)) (-1842 ((|#3| |#3|) 132)) (-2846 (((-3 |#3| "failed") |#3|) 83)) (-1722 ((|#3| |#3|) 122)) (-3778 (((-3 |#3| "failed") |#3|) 60)) (-1824 ((|#3| |#3|) 130)) (-2907 (((-3 |#3| "failed") |#3|) 48)) (-1698 ((|#3| |#3|) 120)) (-1437 (((-3 |#3| "failed") |#3|) 66)) (-3642 ((|#3| |#3|) 137)) (-2183 (((-3 |#3| "failed") |#3|) 104)) (-1773 ((|#3| |#3|) 142)) (-1490 (((-3 |#3| "failed") |#3|) 62)) (-3622 ((|#3| |#3|) 135)) (-2345 (((-3 |#3| "failed") |#3|) 50)) (-1751 ((|#3| |#3|) 125)) (-2731 (((-3 |#3| "failed") |#3|) 70)) (-3661 ((|#3| |#3|) 139)) (-2633 (((-3 |#3| "failed") |#3|) 54)) (-1794 ((|#3| |#3|) 127)) (-3571 (((-3 |#3| "failed") |#3|) 72)) (-1279 ((|#3| |#3|) 140)) (-4067 (((-3 |#3| "failed") |#3|) 56)) (-1803 ((|#3| |#3|) 128)) (-1922 (((-3 |#3| "failed") |#3|) 68)) (-3650 ((|#3| |#3|) 138)) (-1339 (((-3 |#3| "failed") |#3|) 107)) (-1784 ((|#3| |#3|) 143)) (-2920 (((-3 |#3| "failed") |#3|) 64)) (-3631 ((|#3| |#3|) 136)) (-2199 (((-3 |#3| "failed") |#3|) 52)) (-1762 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
+(((-251 |#1| |#2| |#3|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2459 (|#3| |#3|)) (-15 -1826 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1741 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1762 (|#3| |#3|)) (-15 -1773 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1794 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1812 (|#3| |#3|)) (-15 -1824 (|#3| |#3|)) (-15 -1834 (|#3| |#3|)) (-15 -1842 (|#3| |#3|)) (-15 -1851 (|#3| |#3|)) (-15 -1860 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3650 (|#3| |#3|)) (-15 -3661 (|#3| |#3|)) (-15 -1279 (|#3| |#3|)))) (-37 (-377 (-517))) (-1146 |#1|) (-1117 |#1| |#2|)) (T -251))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1146 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1117 *4 *5)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1826 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1741 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1762 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1773 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1794 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1824 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))))
+(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2459 (|#3| |#3|)) (-15 -1826 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1741 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1762 (|#3| |#3|)) (-15 -1773 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1794 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1812 (|#3| |#3|)) (-15 -1824 (|#3| |#3|)) (-15 -1834 (|#3| |#3|)) (-15 -1842 (|#3| |#3|)) (-15 -1851 (|#3| |#3|)) (-15 -1860 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3650 (|#3| |#3|)) (-15 -3661 (|#3| |#3|)) (-15 -1279 (|#3| |#3|))))
+((-2190 (((-3 |#3| "failed") |#3|) 66)) (-1834 ((|#3| |#3|) 133)) (-3669 (((-3 |#3| "failed") |#3|) 50)) (-1710 ((|#3| |#3|) 121)) (-3542 (((-3 |#3| "failed") |#3|) 62)) (-1812 ((|#3| |#3|) 131)) (-3639 (((-3 |#3| "failed") |#3|) 46)) (-1685 ((|#3| |#3|) 119)) (-1717 (((-3 |#3| "failed") |#3|) 70)) (-1851 ((|#3| |#3|) 135)) (-3218 (((-3 |#3| "failed") |#3|) 54)) (-1731 ((|#3| |#3|) 123)) (-1792 (((-3 |#3| "failed") |#3| (-703)) 35)) (-1970 (((-3 |#3| "failed") |#3|) 44)) (-1826 ((|#3| |#3|) 112)) (-1493 (((-3 |#3| "failed") |#3|) 42)) (-2459 ((|#3| |#3|) 118)) (-1465 (((-3 |#3| "failed") |#3|) 72)) (-1860 ((|#3| |#3|) 136)) (-2516 (((-3 |#3| "failed") |#3|) 56)) (-1741 ((|#3| |#3|) 124)) (-2654 (((-3 |#3| "failed") |#3|) 68)) (-1842 ((|#3| |#3|) 134)) (-2846 (((-3 |#3| "failed") |#3|) 52)) (-1722 ((|#3| |#3|) 122)) (-3778 (((-3 |#3| "failed") |#3|) 64)) (-1824 ((|#3| |#3|) 132)) (-2907 (((-3 |#3| "failed") |#3|) 48)) (-1698 ((|#3| |#3|) 120)) (-1437 (((-3 |#3| "failed") |#3|) 78)) (-3642 ((|#3| |#3|) 139)) (-2183 (((-3 |#3| "failed") |#3|) 58)) (-1773 ((|#3| |#3|) 127)) (-1490 (((-3 |#3| "failed") |#3|) 74)) (-3622 ((|#3| |#3|) 137)) (-2345 (((-3 |#3| "failed") |#3|) 102)) (-1751 ((|#3| |#3|) 125)) (-2731 (((-3 |#3| "failed") |#3|) 82)) (-3661 ((|#3| |#3|) 141)) (-2633 (((-3 |#3| "failed") |#3|) 109)) (-1794 ((|#3| |#3|) 129)) (-3571 (((-3 |#3| "failed") |#3|) 84)) (-1279 ((|#3| |#3|) 142)) (-4067 (((-3 |#3| "failed") |#3|) 111)) (-1803 ((|#3| |#3|) 130)) (-1922 (((-3 |#3| "failed") |#3|) 80)) (-3650 ((|#3| |#3|) 140)) (-1339 (((-3 |#3| "failed") |#3|) 60)) (-1784 ((|#3| |#3|) 128)) (-2920 (((-3 |#3| "failed") |#3|) 76)) (-3631 ((|#3| |#3|) 138)) (-2199 (((-3 |#3| "failed") |#3|) 105)) (-1762 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
+(((-252 |#1| |#2| |#3| |#4|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2459 (|#3| |#3|)) (-15 -1826 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1741 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1762 (|#3| |#3|)) (-15 -1773 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1794 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1812 (|#3| |#3|)) (-15 -1824 (|#3| |#3|)) (-15 -1834 (|#3| |#3|)) (-15 -1842 (|#3| |#3|)) (-15 -1851 (|#3| |#3|)) (-15 -1860 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3650 (|#3| |#3|)) (-15 -3661 (|#3| |#3|)) (-15 -1279 (|#3| |#3|)))) (-37 (-377 (-517))) (-1115 |#1|) (-1138 |#1| |#2|) (-900 |#2|)) (T -252))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1115 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1138 *4 *5)) (-4 *6 (-900 *5)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1826 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1741 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1762 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1773 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1794 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1824 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))))
+(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2459 (|#3| |#3|)) (-15 -1826 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1741 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1762 (|#3| |#3|)) (-15 -1773 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1794 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1812 (|#3| |#3|)) (-15 -1824 (|#3| |#3|)) (-15 -1834 (|#3| |#3|)) (-15 -1842 (|#3| |#3|)) (-15 -1851 (|#3| |#3|)) (-15 -1860 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3650 (|#3| |#3|)) (-15 -3661 (|#3| |#3|)) (-15 -1279 (|#3| |#3|))))
+((-3451 (($ (-1 (-107) |#2|) $) 23)) (-1667 (($ $) 36)) (-2111 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-1971 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2581 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2454 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3685 (($ $ (-517)) 11) (($ $ (-1122 (-517))) 14)) (-1286 (($ $ |#2|) 29) (($ $ $) NIL)) (-2337 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL)))
+(((-253 |#1| |#2|) (-10 -8 (-15 -2581 (|#1| |#1| |#1|)) (-15 -2111 (|#1| |#2| |#1|)) (-15 -2581 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2111 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1286 (|#1| |#1| |#1|)) (-15 -1286 (|#1| |#1| |#2|)) (-15 -2454 (|#1| |#1| |#1| (-517))) (-15 -2454 (|#1| |#2| |#1| (-517))) (-15 -3685 (|#1| |#1| (-1122 (-517)))) (-15 -3685 (|#1| |#1| (-517))) (-15 -2337 (|#1| (-583 |#1|))) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#2|)) (-15 -1971 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3451 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1971 (|#1| |#2| |#1|)) (-15 -1667 (|#1| |#1|))) (-254 |#2|) (-1109)) (T -253))
+NIL
+(-10 -8 (-15 -2581 (|#1| |#1| |#1|)) (-15 -2111 (|#1| |#2| |#1|)) (-15 -2581 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2111 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1286 (|#1| |#1| |#1|)) (-15 -1286 (|#1| |#1| |#2|)) (-15 -2454 (|#1| |#1| |#1| (-517))) (-15 -2454 (|#1| |#2| |#1| (-517))) (-15 -3685 (|#1| |#1| (-1122 (-517)))) (-15 -3685 (|#1| |#1| (-517))) (-15 -2337 (|#1| (-583 |#1|))) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#2|)) (-15 -1971 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3451 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1971 (|#1| |#2| |#1|)) (-15 -1667 (|#1| |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-2582 (($ (-1 (-107) |#1|) $) 85)) (-3451 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-2573 (($ $) 83 (|has| |#1| (-1003)))) (-1667 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1003)))) (-1971 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 51)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3366 (($ (-703) |#1|) 69)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-2581 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3816 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-2454 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 42 (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-1254 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-1628 (($ $ (-517)) 91) (($ $ (-1122 (-517))) 90)) (-3685 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 70)) (-1286 (($ $ |#1|) 93) (($ $ $) 92)) (-2337 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-254 |#1|) (-1185) (-1109)) (T -254))
+((-1286 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)))) (-1286 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-2111 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-3816 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1109)))) (-3816 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-2581 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-2582 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-2111 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) (-2573 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) (-2581 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))))
+(-13 (-588 |t#1|) (-10 -8 (-6 -4184) (-15 -1286 ($ $ |t#1|)) (-15 -1286 ($ $ $)) (-15 -1628 ($ $ (-517))) (-15 -1628 ($ $ (-1122 (-517)))) (-15 -2111 ($ (-1 (-107) |t#1|) $)) (-15 -3816 ($ |t#1| $ (-517))) (-15 -3816 ($ $ $ (-517))) (-15 -2581 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -2582 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2111 ($ |t#1| $)) (-15 -2573 ($ $))) |noBranch|) (IF (|has| |t#1| (-779)) (-15 -2581 ($ $ $)) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
((** (($ $ $) 10)))
(((-255 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-256)) (T -255))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-1867 (($ $) 6)) (-2624 (($ $) 7)) (** (($ $ $) 8)))
-(((-256) (-1184)) (T -256))
-((** (*1 *1 *1 *1) (-4 *1 (-256))) (-2624 (*1 *1 *1) (-4 *1 (-256))) (-1867 (*1 *1 *1) (-4 *1 (-256))))
-(-13 (-10 -8 (-15 -1867 ($ $)) (-15 -2624 ($ $)) (-15 ** ($ $ $))))
-((-1371 (((-583 (-1054 |#1|)) (-1054 |#1|) |#1|) 35)) (-1535 ((|#2| |#2| |#1|) 38)) (-1932 ((|#2| |#2| |#1|) 40)) (-2456 ((|#2| |#2| |#1|) 39)))
-(((-257 |#1| |#2|) (-10 -7 (-15 -1535 (|#2| |#2| |#1|)) (-15 -2456 (|#2| |#2| |#1|)) (-15 -1932 (|#2| |#2| |#1|)) (-15 -1371 ((-583 (-1054 |#1|)) (-1054 |#1|) |#1|))) (-333) (-1145 |#1|)) (T -257))
-((-1371 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1054 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1054 *4)) (-4 *5 (-1145 *4)))) (-1932 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))) (-2456 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))) (-1535 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))))
-(-10 -7 (-15 -1535 (|#2| |#2| |#1|)) (-15 -2456 (|#2| |#2| |#1|)) (-15 -1932 (|#2| |#2| |#1|)) (-15 -1371 ((-583 (-1054 |#1|)) (-1054 |#1|) |#1|)))
-((-1449 ((|#2| $ |#1|) 6)))
-(((-258 |#1| |#2|) (-1184) (-1003) (-1108)) (T -258))
-((-1449 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))))
-(-13 (-10 -8 (-15 -1449 (|t#2| $ |t#1|))))
-((-1445 ((|#3| $ |#2| |#3|) 12)) (-1377 ((|#3| $ |#2|) 10)))
-(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -1445 (|#3| |#1| |#2| |#3|)) (-15 -1377 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1003) (-1108)) (T -259))
-NIL
-(-10 -8 (-15 -1445 (|#3| |#1| |#2| |#3|)) (-15 -1377 (|#3| |#1| |#2|)))
-((-2411 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4181)))) (-1445 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 11)) (-1449 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-260 |#1| |#2|) (-1184) (-1003) (-1108)) (T -260))
-((-1449 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1377 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1445 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))))
-(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -1449 (|t#2| $ |t#1| |t#2|)) (-15 -1377 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2411 (|t#2| $ |t#1| |t#2|)) (-15 -1445 (|t#2| $ |t#1| |t#2|))) |noBranch|)))
+((-1826 (($ $) 6)) (-2459 (($ $) 7)) (** (($ $ $) 8)))
+(((-256) (-1185)) (T -256))
+((** (*1 *1 *1 *1) (-4 *1 (-256))) (-2459 (*1 *1 *1) (-4 *1 (-256))) (-1826 (*1 *1 *1) (-4 *1 (-256))))
+(-13 (-10 -8 (-15 -1826 ($ $)) (-15 -2459 ($ $)) (-15 ** ($ $ $))))
+((-3880 (((-583 (-1055 |#1|)) (-1055 |#1|) |#1|) 35)) (-1420 ((|#2| |#2| |#1|) 38)) (-1239 ((|#2| |#2| |#1|) 40)) (-2343 ((|#2| |#2| |#1|) 39)))
+(((-257 |#1| |#2|) (-10 -7 (-15 -1420 (|#2| |#2| |#1|)) (-15 -2343 (|#2| |#2| |#1|)) (-15 -1239 (|#2| |#2| |#1|)) (-15 -3880 ((-583 (-1055 |#1|)) (-1055 |#1|) |#1|))) (-333) (-1146 |#1|)) (T -257))
+((-3880 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1055 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1055 *4)) (-4 *5 (-1146 *4)))) (-1239 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))) (-2343 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))) (-1420 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))))
+(-10 -7 (-15 -1420 (|#2| |#2| |#1|)) (-15 -2343 (|#2| |#2| |#1|)) (-15 -1239 (|#2| |#2| |#1|)) (-15 -3880 ((-583 (-1055 |#1|)) (-1055 |#1|) |#1|)))
+((-1986 ((|#2| $ |#1|) 6)))
+(((-258 |#1| |#2|) (-1185) (-1003) (-1109)) (T -258))
+((-1986 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))))
+(-13 (-10 -8 (-15 -1986 (|t#2| $ |t#1|))))
+((-1226 ((|#3| $ |#2| |#3|) 12)) (-4020 ((|#3| $ |#2|) 10)))
+(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -1226 (|#3| |#1| |#2| |#3|)) (-15 -4020 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1003) (-1109)) (T -259))
+NIL
+(-10 -8 (-15 -1226 (|#3| |#1| |#2| |#3|)) (-15 -4020 (|#3| |#1| |#2|)))
+((-2307 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4184)))) (-1226 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) 11)) (-1986 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-260 |#1| |#2|) (-1185) (-1003) (-1109)) (T -260))
+((-1986 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) (-4020 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) (-2307 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) (-1226 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))))
+(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -1986 (|t#2| $ |t#1| |t#2|)) (-15 -4020 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4184)) (PROGN (-15 -2307 (|t#2| $ |t#1| |t#2|)) (-15 -1226 (|t#2| $ |t#1| |t#2|))) |noBranch|)))
(((-258 |#1| |#2|) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 34)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 39)) (-1213 (($ $) 37)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) 32)) (-3225 (($ |#2| |#3|) 19)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 ((|#3| $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 20)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3841 (((-3 $ "failed") $ $) NIL)) (-3146 (((-703) $) 33)) (-1449 ((|#2| $ |#2|) 41)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 24)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 27 T CONST)) (-2409 (($) 35 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36)))
-(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -1734 (|#3| $)) (-15 -2256 (|#2| $)) (-15 -3225 ($ |#2| |#3|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)) (-15 -1449 (|#2| $ |#2|)))) (-156) (-1130 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261))
-((-3621 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1734 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1130 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3225 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1130 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4118 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1449 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1130 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-278) (-10 -8 (-15 -1734 (|#3| $)) (-15 -2256 (|#2| $)) (-15 -3225 ($ |#2| |#3|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)) (-15 -1449 (|#2| $ |#2|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-262) (-1184)) (T -262))
-NIL
-(-13 (-961) (-106 $ $) (-10 -7 (-6 -4173)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 34)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 39)) (-3209 (($ $) 37)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-2383 (($ $ $) 32)) (-2521 (($ |#2| |#3|) 19)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2955 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3962 ((|#3| $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 20)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-2623 (((-703) $) 33)) (-1986 ((|#2| $ |#2|) 41)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 24)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1865 (((-703)) NIL)) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 27 T CONST)) (-2306 (($) 35 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36)))
+(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -3962 (|#3| $)) (-15 -2182 (|#2| $)) (-15 -2521 ($ |#2| |#3|)) (-15 -2853 ((-3 $ "failed") $ $)) (-15 -1568 ((-3 $ "failed") $)) (-15 -4123 ($ $)) (-15 -1986 (|#2| $ |#2|)))) (-156) (-1131 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261))
+((-1568 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3962 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1131 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2182 (*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2521 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1131 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2853 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4123 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1986 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1131 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-278) (-10 -8 (-15 -3962 (|#3| $)) (-15 -2182 (|#2| $)) (-15 -2521 ($ |#2| |#3|)) (-15 -2853 ((-3 $ "failed") $ $)) (-15 -1568 ((-3 $ "failed") $)) (-15 -4123 ($ $)) (-15 -1986 (|#2| $ |#2|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-262) (-1185)) (T -262))
+NIL
+(-13 (-961) (-106 $ $) (-10 -7 (-6 -4176)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1357 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 83)) (-2735 (((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|)))) 78) (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703)) 36)) (-1850 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 80)) (-1817 (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|)))) 60)) (-2964 (((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|)))) 59)) (-3669 (((-874 |#1|) (-623 (-377 (-874 |#1|)))) 47) (((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073)) 48)))
-(((-263 |#1|) (-10 -7 (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073))) (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -2964 ((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -1817 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -1357 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -1850 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))))) (-421)) (T -263))
-((-1850 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-2735 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1063 (-1073) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) (-1817 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4))))) (-5 *1 (-263 *4)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1073)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))))
-(-10 -7 (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073))) (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -2964 ((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -1817 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -1357 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -1850 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))))
-((-1893 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14)))
-(((-264 |#1| |#2|) (-10 -7 (-15 -1893 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1108) (-1108)) (T -264))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))))
-(-10 -7 (-15 -1893 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-3137 (($ $) 22)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2302 (($ $ $) 93 (|has| |#1| (-273)))) (-3092 (($) NIL (-3807 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-1596 (($ $) 8 (|has| |#1| (-21)))) (-1542 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-3616 ((|#1| $) 21)) (-3621 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-3848 (((-107) $) NIL (|has| |#1| (-659)))) (-1893 (($ (-1 |#1| |#1|) $) 24)) (-3603 ((|#1| $) 9)) (-3375 (($ $) 57 (|has| |#1| (-21)))) (-3862 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-4118 (($ $) 70 (-3807 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2367 (((-583 $) $) 19 (|has| |#1| (-509)))) (-2051 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-1073) |#1|) 27 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1073) |#1|)))) (-2126 (($ |#1| |#1|) 17)) (-3141 (((-125)) 88 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 85 (|has| |#1| (-822 (-1073))))) (-1487 (($ $ $) NIL (|has| |#1| (-442)))) (-3394 (($ $ $) NIL (|has| |#1| (-442)))) (-2256 (($ (-517)) NIL (|has| |#1| (-961))) (((-107) $) 45 (|has| |#1| (-1003))) (((-787) $) 44 (|has| |#1| (-1003)))) (-2961 (((-703)) 73 (|has| |#1| (-961)))) (-2207 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (-2396 (($) 55 (|has| |#1| (-21)) CONST)) (-2409 (($) 63 (|has| |#1| (-659)) CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073))))) (-1547 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3807 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1654 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1642 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (* (($ $ |#1|) 61 (|has| |#1| (-1015))) (($ |#1| $) 60 (|has| |#1| (-1015))) (($ $ $) 59 (|has| |#1| (-1015))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-25)))))
-(((-265 |#1|) (-13 (-1108) (-10 -8 (-15 -1547 ($ |#1| |#1|)) (-15 -2126 ($ |#1| |#1|)) (-15 -3137 ($ $)) (-15 -3603 (|#1| $)) (-15 -3616 (|#1| $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1073) |#1|)) (-6 (-478 (-1073) |#1|)) |noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -2051 ($ $ $)) (-15 -2051 ($ $ (-583 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1642 ($ |#1| $)) (-15 -1642 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3375 ($ $)) (-15 -1596 ($ $)) (-15 -1654 ($ |#1| $)) (-15 -1654 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|) (IF (|has| |#1| (-509)) (-15 -2367 ((-583 $) $)) |noBranch|) (IF (|has| |#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1160 |#1|)) (-15 -1667 ($ $ $)) (-15 -4118 ($ $))) |noBranch|) (IF (|has| |#1| (-273)) (-15 -2302 ($ $ $)) |noBranch|))) (-1108)) (T -265))
-((-1547 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-2126 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3603 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3616 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) (-2051 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)) (-5 *1 (-265 *2)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) (-1642 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) (-1642 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) (-3375 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1654 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1654 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-3862 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))) (-1542 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1108)))) (-2302 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1108)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) (-1667 (*1 *1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) (-4118 (*1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))))
-(-13 (-1108) (-10 -8 (-15 -1547 ($ |#1| |#1|)) (-15 -2126 ($ |#1| |#1|)) (-15 -3137 ($ $)) (-15 -3603 (|#1| $)) (-15 -3616 (|#1| $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1073) |#1|)) (-6 (-478 (-1073) |#1|)) |noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -2051 ($ $ $)) (-15 -2051 ($ $ (-583 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1642 ($ |#1| $)) (-15 -1642 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3375 ($ $)) (-15 -1596 ($ $)) (-15 -1654 ($ |#1| $)) (-15 -1654 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|) (IF (|has| |#1| (-509)) (-15 -2367 ((-583 $) $)) |noBranch|) (IF (|has| |#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1160 |#1|)) (-15 -1667 ($ $ $)) (-15 -4118 ($ $))) |noBranch|) (IF (|has| |#1| (-273)) (-15 -2302 ($ $ $)) |noBranch|)))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-266 |#1| |#2|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003)) (T -266))
-NIL
-(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))
-((-2101 (((-282) (-1056) (-583 (-1056))) 16) (((-282) (-1056) (-1056)) 15) (((-282) (-583 (-1056))) 14) (((-282) (-1056)) 12)))
-(((-267) (-10 -7 (-15 -2101 ((-282) (-1056))) (-15 -2101 ((-282) (-583 (-1056)))) (-15 -2101 ((-282) (-1056) (-1056))) (-15 -2101 ((-282) (-1056) (-583 (-1056)))))) (T -267))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1056))) (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))))
-(-10 -7 (-15 -2101 ((-282) (-1056))) (-15 -2101 ((-282) (-583 (-1056)))) (-15 -2101 ((-282) (-1056) (-1056))) (-15 -2101 ((-282) (-1056) (-583 (-1056)))))
-((-1893 ((|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|)) 17)))
-(((-268 |#1| |#2|) (-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|)))) (-273) (-1108)) (T -268))
-((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1056)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1108)) (-5 *1 (-268 *6 *2)))))
-(-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|))))
-((-1893 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17)))
-(((-269 |#1| |#2|) (-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))))
-(-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-556 |#1|))))
-((-1204 (((-107) (-199)) 10)))
-(((-270 |#1| |#2|) (-10 -7 (-15 -1204 ((-107) (-199)))) (-199) (-199)) (T -270))
-((-1204 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1204 ((-107) (-199))))
-((-2888 (((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199)))) 88)) (-2743 (((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199)))) 103) (((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199)))) 58)) (-4053 (((-583 (-1056)) (-1054 (-199))) NIL)) (-1218 (((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199)))) 55)) (-2826 (((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199)))) 47)) (-2024 (((-583 (-1056)) (-583 (-199))) NIL)) (-3339 (((-199) (-998 (-772 (-199)))) 23)) (-3191 (((-199) (-998 (-772 (-199)))) 24)) (-4096 (((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-2129 (((-1056) (-199)) NIL)))
-(((-271) (-10 -7 (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -4096 ((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2888 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2826 ((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))))) (T -271))
-((-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-271)))) (-2826 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-2888 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-1218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))))
-(-10 -7 (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -4096 ((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2888 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2826 ((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))))
-((-3726 (((-583 (-556 $)) $) 28)) (-2302 (($ $ (-265 $)) 80) (($ $ (-583 (-265 $))) 120) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) 110)) (-3189 (((-556 $) $) 109)) (-3374 (($ $) 19) (($ (-583 $)) 54)) (-4001 (((-583 (-109)) $) 37)) (-3072 (((-109) (-109)) 90)) (-1769 (((-107) $) 128)) (-1893 (($ (-1 $ $) (-556 $)) 88)) (-1783 (((-3 (-556 $) "failed") $) 92)) (-1851 (($ (-109) $) 60) (($ (-109) (-583 $)) 98)) (-1609 (((-107) $ (-109)) 114) (((-107) $ (-1073)) 113)) (-1881 (((-703) $) 45)) (-3832 (((-107) $ $) 58) (((-107) $ (-1073)) 49)) (-3998 (((-107) $) 126)) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 118) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 83) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) 68) (($ $ (-1073) (-1 $ $)) 74) (($ $ (-583 (-109)) (-583 (-1 $ $))) 82) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 84) (($ $ (-109) (-1 $ (-583 $))) 70) (($ $ (-109) (-1 $ $)) 76)) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 62) (($ (-109) $ $ $) 63) (($ (-109) $ $ $ $) 64) (($ (-109) (-583 $)) 106)) (-1630 (($ $) 51) (($ $ $) 116)) (-4148 (($ $) 17) (($ (-583 $)) 53)) (-4074 (((-107) (-109)) 22)))
-(((-272 |#1|) (-10 -8 (-15 -1769 ((-107) |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -3832 ((-107) |#1| (-1073))) (-15 -3832 ((-107) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1851 (|#1| (-109) (-583 |#1|))) (-15 -1851 (|#1| (-109) |#1|)) (-15 -1609 ((-107) |#1| (-1073))) (-15 -1609 ((-107) |#1| (-109))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -4001 ((-583 (-109)) |#1|)) (-15 -3726 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1881 ((-703) |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -3374 (|#1| (-583 |#1|))) (-15 -3374 (|#1| |#1|)) (-15 -4148 (|#1| (-583 |#1|))) (-15 -4148 (|#1| |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272))
-((-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))))
-(-10 -8 (-15 -1769 ((-107) |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -3832 ((-107) |#1| (-1073))) (-15 -3832 ((-107) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1851 (|#1| (-109) (-583 |#1|))) (-15 -1851 (|#1| (-109) |#1|)) (-15 -1609 ((-107) |#1| (-1073))) (-15 -1609 ((-107) |#1| (-109))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -4001 ((-583 (-109)) |#1|)) (-15 -3726 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1881 ((-703) |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -3374 (|#1| (-583 |#1|))) (-15 -3374 (|#1| |#1|)) (-15 -4148 (|#1| (-583 |#1|))) (-15 -4148 (|#1| |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|)))
-((-2750 (((-107) $ $) 7)) (-3726 (((-583 (-556 $)) $) 44)) (-2302 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-1772 (((-3 (-556 $) "failed") $) 69)) (-3189 (((-556 $) $) 68)) (-3374 (($ $) 51) (($ (-583 $)) 50)) (-4001 (((-583 (-109)) $) 43)) (-3072 (((-109) (-109)) 42)) (-1769 (((-107) $) 22 (|has| $ (-952 (-517))))) (-1607 (((-1069 $) (-556 $)) 25 (|has| $ (-961)))) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1893 (($ (-1 $ $) (-556 $)) 36)) (-1783 (((-3 (-556 $) "failed") $) 46)) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 45)) (-1851 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-1609 (((-107) $ (-109)) 40) (((-107) $ (-1073)) 39)) (-1881 (((-703) $) 47)) (-3206 (((-1021) $) 10)) (-3832 (((-107) $ $) 35) (((-107) $ (-1073)) 34)) (-3998 (((-107) $) 23 (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1073) (-1 $ (-583 $))) 31) (($ $ (-1073) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1630 (($ $) 49) (($ $ $) 48)) (-2135 (($ $) 24 (|has| $ (-961)))) (-2256 (((-787) $) 11) (($ (-556 $)) 70)) (-4148 (($ $) 53) (($ (-583 $)) 52)) (-4074 (((-107) (-109)) 41)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
-(((-273) (-1184)) (T -273))
-((-1449 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-4148 (*1 *1 *1) (-4 *1 (-273))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-3374 (*1 *1 *1) (-4 *1 (-273))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1630 (*1 *1 *1) (-4 *1 (-273))) (-1630 (*1 *1 *1 *1) (-4 *1 (-273))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-3072 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-4074 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-1609 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-1609 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) (-1851 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1851 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-3832 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-3832 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1069 *1)))) (-2135 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))))
-(-13 (-779) (-952 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -1449 ($ (-109) $)) (-15 -1449 ($ (-109) $ $)) (-15 -1449 ($ (-109) $ $ $)) (-15 -1449 ($ (-109) $ $ $ $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -2302 ($ $ (-265 $))) (-15 -2302 ($ $ (-583 (-265 $)))) (-15 -2302 ($ $ (-583 (-556 $)) (-583 $))) (-15 -4148 ($ $)) (-15 -4148 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -1630 ($ $)) (-15 -1630 ($ $ $)) (-15 -1881 ((-703) $)) (-15 -1783 ((-3 (-556 $) "failed") $)) (-15 -2343 ((-583 (-556 $)) $)) (-15 -3726 ((-583 (-556 $)) $)) (-15 -4001 ((-583 (-109)) $)) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (-15 -1851 ($ (-109) $)) (-15 -1851 ($ (-109) (-583 $))) (-15 -1893 ($ (-1 $ $) (-556 $))) (-15 -3832 ((-107) $ $)) (-15 -3832 ((-107) $ (-1073))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-1073) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-1073) (-1 $ $))) (-15 -2051 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-109) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1607 ((-1069 $) (-556 $))) (-15 -2135 ($ $))) |noBranch|) (IF (|has| $ (-952 (-517))) (PROGN (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $))) |noBranch|)))
+((-2737 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 83)) (-3204 (((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|)))) 78) (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703)) 36)) (-4038 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 80)) (-3724 (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|)))) 60)) (-1888 (((-583 (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (-623 (-377 (-874 |#1|)))) 59)) (-3804 (((-874 |#1|) (-623 (-377 (-874 |#1|)))) 47) (((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1074)) 48)))
+(((-263 |#1|) (-10 -7 (-15 -3804 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1074))) (-15 -3804 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -1888 ((-583 (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -3724 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -3204 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -3204 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -2737 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -4038 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))))) (-421)) (T -263))
+((-4038 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-2737 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1064 (-1074) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-3204 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1064 (-1074) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) (-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1064 (-1074) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4))))) (-5 *1 (-263 *4)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1074)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))))
+(-10 -7 (-15 -3804 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1074))) (-15 -3804 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -1888 ((-583 (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -3724 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -3204 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -3204 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -2737 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -4038 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))))
+((-1857 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14)))
+(((-264 |#1| |#2|) (-10 -7 (-15 -1857 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1109) (-1109)) (T -264))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))))
+(-10 -7 (-15 -1857 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2745 (((-107) $) NIL (|has| |#1| (-21)))) (-2559 (($ $) 22)) (-1387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2173 (($ $ $) 93 (|has| |#1| (-273)))) (-3473 (($) NIL (-3763 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-3470 (($ $) 8 (|has| |#1| (-21)))) (-1708 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-3548 ((|#1| $) 21)) (-1568 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-2955 (((-107) $) NIL (|has| |#1| (-659)))) (-1857 (($ (-1 |#1| |#1|) $) 24)) (-3536 ((|#1| $) 9)) (-1198 (($ $) 57 (|has| |#1| (-21)))) (-1997 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-4123 (($ $) 70 (-3763 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2869 (((-583 $) $) 19 (|has| |#1| (-509)))) (-1979 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-1074) |#1|) 27 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1074) |#1|)))) (-2070 (($ |#1| |#1|) 17)) (-2586 (((-125)) 88 (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 85 (|has| |#1| (-822 (-1074))))) (-2013 (($ $ $) NIL (|has| |#1| (-442)))) (-3064 (($ $ $) NIL (|has| |#1| (-442)))) (-2182 (($ (-517)) NIL (|has| |#1| (-961))) (((-107) $) 45 (|has| |#1| (-1003))) (((-787) $) 44 (|has| |#1| (-1003)))) (-1865 (((-703)) 73 (|has| |#1| (-961)))) (-2146 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (-2297 (($) 55 (|has| |#1| (-21)) CONST)) (-2306 (($) 63 (|has| |#1| (-659)) CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074))))) (-1539 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1003)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3763 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1637 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1626 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (* (($ $ |#1|) 61 (|has| |#1| (-1015))) (($ |#1| $) 60 (|has| |#1| (-1015))) (($ $ $) 59 (|has| |#1| (-1015))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-25)))))
+(((-265 |#1|) (-13 (-1109) (-10 -8 (-15 -1539 ($ |#1| |#1|)) (-15 -2070 ($ |#1| |#1|)) (-15 -2559 ($ $)) (-15 -3536 (|#1| $)) (-15 -3548 (|#1| $)) (-15 -1857 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1074) |#1|)) (-6 (-478 (-1074) |#1|)) |noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -1979 ($ $ $)) (-15 -1979 ($ $ (-583 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1626 ($ |#1| $)) (-15 -1626 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1198 ($ $)) (-15 -3470 ($ $)) (-15 -1637 ($ |#1| $)) (-15 -1637 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -1997 ((-3 $ "failed") $)) (-15 -1708 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -1997 ((-3 $ "failed") $)) (-15 -1708 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|) (IF (|has| |#1| (-509)) (-15 -2869 ((-583 $) $)) |noBranch|) (IF (|has| |#1| (-822 (-1074))) (-6 (-822 (-1074))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1161 |#1|)) (-15 -1649 ($ $ $)) (-15 -4123 ($ $))) |noBranch|) (IF (|has| |#1| (-273)) (-15 -2173 ($ $ $)) |noBranch|))) (-1109)) (T -265))
+((-1539 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-2070 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-2559 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-3536 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-3548 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-265 *3)))) (-1979 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)) (-5 *1 (-265 *2)))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)) (-5 *1 (-265 *3)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1109)))) (-1626 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1109)))) (-1198 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) (-3470 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) (-1637 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) (-1637 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) (-1997 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1109)))) (-1708 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1109)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1109)))) (-2173 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1109)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1109)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1109)))) (-1649 (*1 *1 *1 *1) (-3763 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1109))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1109))))) (-4123 (*1 *1 *1) (-3763 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1109))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1109))))))
+(-13 (-1109) (-10 -8 (-15 -1539 ($ |#1| |#1|)) (-15 -2070 ($ |#1| |#1|)) (-15 -2559 ($ $)) (-15 -3536 (|#1| $)) (-15 -3548 (|#1| $)) (-15 -1857 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1074) |#1|)) (-6 (-478 (-1074) |#1|)) |noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -1979 ($ $ $)) (-15 -1979 ($ $ (-583 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1626 ($ |#1| $)) (-15 -1626 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1198 ($ $)) (-15 -3470 ($ $)) (-15 -1637 ($ |#1| $)) (-15 -1637 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -1997 ((-3 $ "failed") $)) (-15 -1708 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -1997 ((-3 $ "failed") $)) (-15 -1708 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|) (IF (|has| |#1| (-509)) (-15 -2869 ((-583 $) $)) |noBranch|) (IF (|has| |#1| (-822 (-1074))) (-6 (-822 (-1074))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1161 |#1|)) (-15 -1649 ($ $ $)) (-15 -4123 ($ $))) |noBranch|) (IF (|has| |#1| (-273)) (-15 -2173 ($ $ $)) |noBranch|)))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3423 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 |#2| "failed") |#1| $) NIL)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) NIL)) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) NIL)) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 ((|#1| $) NIL (|has| |#1| (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 ((|#1| $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3799 (((-583 |#1|) $) NIL)) (-2555 (((-107) |#1| $) NIL)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-4086 (((-583 |#1|) $) NIL)) (-3646 (((-107) |#1| $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1631 ((|#2| $) NIL (|has| |#1| (-779)))) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-266 |#1| |#2|) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183))) (-1003) (-1003)) (T -266))
+NIL
+(-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))
+((-2033 (((-282) (-1057) (-583 (-1057))) 16) (((-282) (-1057) (-1057)) 15) (((-282) (-583 (-1057))) 14) (((-282) (-1057)) 12)))
+(((-267) (-10 -7 (-15 -2033 ((-282) (-1057))) (-15 -2033 ((-282) (-583 (-1057)))) (-15 -2033 ((-282) (-1057) (-1057))) (-15 -2033 ((-282) (-1057) (-583 (-1057)))))) (T -267))
+((-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1057))) (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2033 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-282)) (-5 *1 (-267)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))))
+(-10 -7 (-15 -2033 ((-282) (-1057))) (-15 -2033 ((-282) (-583 (-1057)))) (-15 -2033 ((-282) (-1057) (-1057))) (-15 -2033 ((-282) (-1057) (-583 (-1057)))))
+((-1857 ((|#2| (-1 |#2| |#1|) (-1057) (-556 |#1|)) 17)))
+(((-268 |#1| |#2|) (-10 -7 (-15 -1857 (|#2| (-1 |#2| |#1|) (-1057) (-556 |#1|)))) (-273) (-1109)) (T -268))
+((-1857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1057)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1109)) (-5 *1 (-268 *6 *2)))))
+(-10 -7 (-15 -1857 (|#2| (-1 |#2| |#1|) (-1057) (-556 |#1|))))
+((-1857 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17)))
+(((-269 |#1| |#2|) (-10 -7 (-15 -1857 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))))
+(-10 -7 (-15 -1857 (|#2| (-1 |#2| |#1|) (-556 |#1|))))
+((-2668 (((-107) (-199)) 10)))
+(((-270 |#1| |#2|) (-10 -7 (-15 -2668 ((-107) (-199)))) (-199) (-199)) (T -270))
+((-2668 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2668 ((-107) (-199))))
+((-2302 (((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199)))) 88)) (-3296 (((-1055 (-199)) (-1154 (-286 (-199))) (-583 (-1074)) (-998 (-772 (-199)))) 103) (((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199)))) 58)) (-3243 (((-583 (-1057)) (-1055 (-199))) NIL)) (-3256 (((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199)))) 55)) (-2884 (((-583 (-199)) (-874 (-377 (-517))) (-1074) (-998 (-772 (-199)))) 47)) (-2622 (((-583 (-1057)) (-583 (-199))) NIL)) (-3875 (((-199) (-998 (-772 (-199)))) 23)) (-1969 (((-199) (-998 (-772 (-199)))) 24)) (-3728 (((-107) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-1410 (((-1057) (-199)) NIL)))
+(((-271) (-10 -7 (-15 -3875 ((-199) (-998 (-772 (-199))))) (-15 -1969 ((-199) (-998 (-772 (-199))))) (-15 -3728 ((-107) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3256 ((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199))))) (-15 -2302 ((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -3296 ((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -3296 ((-1055 (-199)) (-1154 (-286 (-199))) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -2884 ((-583 (-199)) (-874 (-377 (-517))) (-1074) (-998 (-772 (-199))))) (-15 -1410 ((-1057) (-199))) (-15 -2622 ((-583 (-1057)) (-583 (-199)))) (-15 -3243 ((-583 (-1057)) (-1055 (-199)))))) (T -271))
+((-3243 (*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-271)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-271)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-271)))) (-2884 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))) (-2302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))) (-3256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))))
+(-10 -7 (-15 -3875 ((-199) (-998 (-772 (-199))))) (-15 -1969 ((-199) (-998 (-772 (-199))))) (-15 -3728 ((-107) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3256 ((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199))))) (-15 -2302 ((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -3296 ((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -3296 ((-1055 (-199)) (-1154 (-286 (-199))) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -2884 ((-583 (-199)) (-874 (-377 (-517))) (-1074) (-998 (-772 (-199))))) (-15 -1410 ((-1057) (-199))) (-15 -2622 ((-583 (-1057)) (-583 (-199)))) (-15 -3243 ((-583 (-1057)) (-1055 (-199)))))
+((-3656 (((-583 (-556 $)) $) 28)) (-2173 (($ $ (-265 $)) 80) (($ $ (-583 (-265 $))) 120) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1759 (((-3 (-556 $) "failed") $) 110)) (-3076 (((-556 $) $) 109)) (-1187 (($ $) 19) (($ (-583 $)) 54)) (-4025 (((-583 (-109)) $) 37)) (-3270 (((-109) (-109)) 90)) (-2393 (((-107) $) 128)) (-1857 (($ (-1 $ $) (-556 $)) 88)) (-2726 (((-3 (-556 $) "failed") $) 92)) (-1822 (($ (-109) $) 60) (($ (-109) (-583 $)) 98)) (-4158 (((-107) $ (-109)) 114) (((-107) $ (-1074)) 113)) (-1846 (((-703) $) 45)) (-2754 (((-107) $ $) 58) (((-107) $ (-1074)) 49)) (-3994 (((-107) $) 126)) (-1979 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 118) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) 83) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) 68) (($ $ (-1074) (-1 $ $)) 74) (($ $ (-583 (-109)) (-583 (-1 $ $))) 82) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 84) (($ $ (-109) (-1 $ (-583 $))) 70) (($ $ (-109) (-1 $ $)) 76)) (-1986 (($ (-109) $) 61) (($ (-109) $ $) 62) (($ (-109) $ $ $) 63) (($ (-109) $ $ $ $) 64) (($ (-109) (-583 $)) 106)) (-1662 (($ $) 51) (($ $ $) 116)) (-3549 (($ $) 17) (($ (-583 $)) 53)) (-3494 (((-107) (-109)) 22)))
+(((-272 |#1|) (-10 -8 (-15 -2393 ((-107) |#1|)) (-15 -3994 ((-107) |#1|)) (-15 -1979 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -1979 (|#1| |#1| (-1074) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-1074) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| |#1|)))) (-15 -2754 ((-107) |#1| (-1074))) (-15 -2754 ((-107) |#1| |#1|)) (-15 -1857 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1822 (|#1| (-109) (-583 |#1|))) (-15 -1822 (|#1| (-109) |#1|)) (-15 -4158 ((-107) |#1| (-1074))) (-15 -4158 ((-107) |#1| (-109))) (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -4025 ((-583 (-109)) |#1|)) (-15 -3656 ((-583 (-556 |#1|)) |#1|)) (-15 -2726 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1846 ((-703) |#1|)) (-15 -1662 (|#1| |#1| |#1|)) (-15 -1662 (|#1| |#1|)) (-15 -1187 (|#1| (-583 |#1|))) (-15 -1187 (|#1| |#1|)) (-15 -3549 (|#1| (-583 |#1|))) (-15 -3549 (|#1| |#1|)) (-15 -2173 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2173 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2173 (|#1| |#1| (-265 |#1|))) (-15 -1986 (|#1| (-109) (-583 |#1|))) (-15 -1986 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -1979 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3076 ((-556 |#1|) |#1|)) (-15 -1759 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272))
+((-3270 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))))
+(-10 -8 (-15 -2393 ((-107) |#1|)) (-15 -3994 ((-107) |#1|)) (-15 -1979 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -1979 (|#1| |#1| (-1074) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-1074) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| |#1|)))) (-15 -2754 ((-107) |#1| (-1074))) (-15 -2754 ((-107) |#1| |#1|)) (-15 -1857 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1822 (|#1| (-109) (-583 |#1|))) (-15 -1822 (|#1| (-109) |#1|)) (-15 -4158 ((-107) |#1| (-1074))) (-15 -4158 ((-107) |#1| (-109))) (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -4025 ((-583 (-109)) |#1|)) (-15 -3656 ((-583 (-556 |#1|)) |#1|)) (-15 -2726 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1846 ((-703) |#1|)) (-15 -1662 (|#1| |#1| |#1|)) (-15 -1662 (|#1| |#1|)) (-15 -1187 (|#1| (-583 |#1|))) (-15 -1187 (|#1| |#1|)) (-15 -3549 (|#1| (-583 |#1|))) (-15 -3549 (|#1| |#1|)) (-15 -2173 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2173 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2173 (|#1| |#1| (-265 |#1|))) (-15 -1986 (|#1| (-109) (-583 |#1|))) (-15 -1986 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -1979 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3076 ((-556 |#1|) |#1|)) (-15 -1759 ((-3 (-556 |#1|) "failed") |#1|)))
+((-2571 (((-107) $ $) 7)) (-3656 (((-583 (-556 $)) $) 44)) (-2173 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-1759 (((-3 (-556 $) "failed") $) 69)) (-3076 (((-556 $) $) 68)) (-1187 (($ $) 51) (($ (-583 $)) 50)) (-4025 (((-583 (-109)) $) 43)) (-3270 (((-109) (-109)) 42)) (-2393 (((-107) $) 22 (|has| $ (-952 (-517))))) (-4133 (((-1070 $) (-556 $)) 25 (|has| $ (-961)))) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1857 (($ (-1 $ $) (-556 $)) 36)) (-2726 (((-3 (-556 $) "failed") $) 46)) (-3865 (((-1057) $) 9)) (-2247 (((-583 (-556 $)) $) 45)) (-1822 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-4158 (((-107) $ (-109)) 40) (((-107) $ (-1074)) 39)) (-1846 (((-703) $) 47)) (-3094 (((-1021) $) 10)) (-2754 (((-107) $ $) 35) (((-107) $ (-1074)) 34)) (-3994 (((-107) $) 23 (|has| $ (-952 (-517))))) (-1979 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1074)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1074) (-1 $ (-583 $))) 31) (($ $ (-1074) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-1986 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1662 (($ $) 49) (($ $ $) 48)) (-1457 (($ $) 24 (|has| $ (-961)))) (-2182 (((-787) $) 11) (($ (-556 $)) 70)) (-3549 (($ $) 53) (($ (-583 $)) 52)) (-3494 (((-107) (-109)) 41)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)))
+(((-273) (-1185)) (T -273))
+((-1986 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1986 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1986 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1986 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-2173 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3549 (*1 *1 *1) (-4 *1 (-273))) (-3549 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1187 (*1 *1 *1) (-4 *1 (-273))) (-1187 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1662 (*1 *1 *1) (-4 *1 (-273))) (-1662 (*1 *1 *1 *1) (-4 *1 (-273))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-2726 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-3270 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-3494 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-4158 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-4158 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1074)) (-5 *2 (-107)))) (-1822 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1822 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-1857 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-2754 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-2754 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1074)) (-5 *2 (-107)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1070 *1)))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))))
+(-13 (-779) (-952 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -1986 ($ (-109) $)) (-15 -1986 ($ (-109) $ $)) (-15 -1986 ($ (-109) $ $ $)) (-15 -1986 ($ (-109) $ $ $ $)) (-15 -1986 ($ (-109) (-583 $))) (-15 -2173 ($ $ (-265 $))) (-15 -2173 ($ $ (-583 (-265 $)))) (-15 -2173 ($ $ (-583 (-556 $)) (-583 $))) (-15 -3549 ($ $)) (-15 -3549 ($ (-583 $))) (-15 -1187 ($ $)) (-15 -1187 ($ (-583 $))) (-15 -1662 ($ $)) (-15 -1662 ($ $ $)) (-15 -1846 ((-703) $)) (-15 -2726 ((-3 (-556 $) "failed") $)) (-15 -2247 ((-583 (-556 $)) $)) (-15 -3656 ((-583 (-556 $)) $)) (-15 -4025 ((-583 (-109)) $)) (-15 -3270 ((-109) (-109))) (-15 -3494 ((-107) (-109))) (-15 -4158 ((-107) $ (-109))) (-15 -4158 ((-107) $ (-1074))) (-15 -1822 ($ (-109) $)) (-15 -1822 ($ (-109) (-583 $))) (-15 -1857 ($ (-1 $ $) (-556 $))) (-15 -2754 ((-107) $ $)) (-15 -2754 ((-107) $ (-1074))) (-15 -1979 ($ $ (-583 (-1074)) (-583 (-1 $ $)))) (-15 -1979 ($ $ (-583 (-1074)) (-583 (-1 $ (-583 $))))) (-15 -1979 ($ $ (-1074) (-1 $ (-583 $)))) (-15 -1979 ($ $ (-1074) (-1 $ $))) (-15 -1979 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -1979 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -1979 ($ $ (-109) (-1 $ (-583 $)))) (-15 -1979 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -4133 ((-1070 $) (-556 $))) (-15 -1457 ($ $))) |noBranch|) (IF (|has| $ (-952 (-517))) (PROGN (-15 -3994 ((-107) $)) (-15 -2393 ((-107) $))) |noBranch|)))
(((-97) . T) ((-557 (-787)) . T) ((-280 $) . T) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-779) . T) ((-952 (-556 $)) . T) ((-1003) . T))
-((-1841 (((-583 |#1|) (-583 |#1|)) 10)))
-(((-274 |#1|) (-10 -7 (-15 -1841 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274))
-((-1841 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
-(-10 -7 (-15 -1841 ((-583 |#1|) (-583 |#1|))))
-((-1893 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15)))
-(((-275 |#1| |#2|) (-10 -7 (-15 -1893 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-961) (-961)) (T -275))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))))
-(-10 -7 (-15 -1893 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|))))
-((-3188 (((-1153 (-286 (-349))) (-1153 (-286 (-199)))) 105)) (-2096 (((-998 (-772 (-199))) (-998 (-772 (-349)))) 39)) (-4053 (((-583 (-1056)) (-1054 (-199))) 87)) (-2308 (((-286 (-349)) (-874 (-199))) 49)) (-2721 (((-199) (-874 (-199))) 45)) (-2952 (((-1056) (-349)) 167)) (-2287 (((-772 (-199)) (-772 (-349))) 33)) (-2430 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199)))) 142)) (-2326 (((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) 180) (((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) 178)) (-2790 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-3952 (((-1153 (-632)) (-583 (-199))) 94)) (-2024 (((-583 (-1056)) (-583 (-199))) 74)) (-2966 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-1204 (((-107) (-199) (-998 (-772 (-199)))) 109)) (-2660 (((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-3339 (((-199) (-998 (-772 (-199)))) 107)) (-3191 (((-199) (-998 (-772 (-199)))) 108)) (-1651 (((-199) (-377 (-517))) 26)) (-3180 (((-1056) (-349)) 72)) (-1836 (((-199) (-349)) 17)) (-2455 (((-349) (-1153 (-286 (-199)))) 153)) (-2648 (((-286 (-199)) (-286 (-349))) 23)) (-1828 (((-377 (-517)) (-286 (-199))) 52)) (-3007 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-4108 (((-286 (-349)) (-286 (-199))) 98)) (-2374 (((-199) (-286 (-199))) 53)) (-3856 (((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) 63)) (-2799 (((-998 (-772 (-199))) (-998 (-772 (-199)))) 60)) (-2129 (((-1056) (-199)) 71)) (-2979 (((-632) (-199)) 90)) (-2055 (((-377 (-517)) (-199)) 54)) (-3910 (((-286 (-349)) (-199)) 48)) (-3645 (((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349))))) 42)) (-2452 (((-950) (-583 (-950))) 163) (((-950) (-950) (-950)) 160)) (-3529 (((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
-(((-276) (-10 -7 (-15 -1836 ((-199) (-349))) (-15 -2648 ((-286 (-199)) (-286 (-349)))) (-15 -2287 ((-772 (-199)) (-772 (-349)))) (-15 -2096 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3645 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2055 ((-377 (-517)) (-199))) (-15 -1828 ((-377 (-517)) (-286 (-199)))) (-15 -2374 ((-199) (-286 (-199)))) (-15 -2966 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2455 ((-349) (-1153 (-286 (-199))))) (-15 -2430 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199))))) (-15 -3007 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -2799 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -3856 ((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-15 -2979 ((-632) (-199))) (-15 -3952 ((-1153 (-632)) (-583 (-199)))) (-15 -4108 ((-286 (-349)) (-286 (-199)))) (-15 -3188 ((-1153 (-286 (-349))) (-1153 (-286 (-199))))) (-15 -1204 ((-107) (-199) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -3180 ((-1056) (-349))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2452 ((-950) (-950) (-950))) (-15 -2452 ((-950) (-583 (-950)))) (-15 -2952 ((-1056) (-349))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))))) (-15 -3529 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2660 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -2308 ((-286 (-349)) (-874 (-199)))) (-15 -2721 ((-199) (-874 (-199)))) (-15 -3910 ((-286 (-349)) (-199))) (-15 -1651 ((-199) (-377 (-517)))) (-15 -2790 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2452 (*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-1204 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-1153 (-286 (-349)))) (-5 *1 (-276)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1153 (-632))) (-5 *1 (-276)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-2799 (*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-2966 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
-(-10 -7 (-15 -1836 ((-199) (-349))) (-15 -2648 ((-286 (-199)) (-286 (-349)))) (-15 -2287 ((-772 (-199)) (-772 (-349)))) (-15 -2096 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3645 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2055 ((-377 (-517)) (-199))) (-15 -1828 ((-377 (-517)) (-286 (-199)))) (-15 -2374 ((-199) (-286 (-199)))) (-15 -2966 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2455 ((-349) (-1153 (-286 (-199))))) (-15 -2430 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199))))) (-15 -3007 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -2799 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -3856 ((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-15 -2979 ((-632) (-199))) (-15 -3952 ((-1153 (-632)) (-583 (-199)))) (-15 -4108 ((-286 (-349)) (-286 (-199)))) (-15 -3188 ((-1153 (-286 (-349))) (-1153 (-286 (-199))))) (-15 -1204 ((-107) (-199) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -3180 ((-1056) (-349))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2452 ((-950) (-950) (-950))) (-15 -2452 ((-950) (-583 (-950)))) (-15 -2952 ((-1056) (-349))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))))) (-15 -3529 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2660 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -2308 ((-286 (-349)) (-874 (-199)))) (-15 -2721 ((-199) (-874 (-199)))) (-15 -3910 ((-286 (-349)) (-199))) (-15 -1651 ((-199) (-377 (-517)))) (-15 -2790 ((-623 (-199)) (-583 (-199)) (-703))))
-((-1707 (((-107) $ $) 11)) (-2518 (($ $ $) 15)) (-2497 (($ $ $) 14)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 43)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1401 (($ $ $) 20) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-2476 (((-3 $ "failed") $ $) 17)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 45)))
-(((-277 |#1|) (-10 -8 (-15 -2377 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2069 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -1707 ((-107) |#1| |#1|)) (-15 -1737 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1780 ((-2 (|:| -1931 (-583 |#1|)) (|:| -3220 |#1|)) (-583 |#1|))) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277))
-NIL
-(-10 -8 (-15 -2377 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2069 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -1707 ((-107) |#1| |#1|)) (-15 -1737 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1780 ((-2 (|:| -1931 (-583 |#1|)) (|:| -3220 |#1|)) (-583 |#1|))) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-278) (-1184)) (T -278))
-((-1707 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-1306 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-278)))) (-2497 (*1 *1 *1 *1) (-4 *1 (-278))) (-2518 (*1 *1 *1 *1) (-4 *1 (-278))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-278)))) (-2069 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-2377 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
-(-13 (-842) (-10 -8 (-15 -1707 ((-107) $ $)) (-15 -3146 ((-703) $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2069 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2069 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2377 ((-3 (-583 $) "failed") (-583 $) $))))
+((-3960 (((-583 |#1|) (-583 |#1|)) 10)))
+(((-274 |#1|) (-10 -7 (-15 -3960 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274))
+((-3960 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
+(-10 -7 (-15 -3960 ((-583 |#1|) (-583 |#1|))))
+((-1857 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -1857 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-961) (-961)) (T -275))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))))
+(-10 -7 (-15 -1857 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|))))
+((-1956 (((-1154 (-286 (-349))) (-1154 (-286 (-199)))) 105)) (-2203 (((-998 (-772 (-199))) (-998 (-772 (-349)))) 39)) (-3243 (((-583 (-1057)) (-1055 (-199))) 87)) (-3588 (((-286 (-349)) (-874 (-199))) 49)) (-3095 (((-199) (-874 (-199))) 45)) (-1790 (((-1057) (-349)) 167)) (-3344 (((-772 (-199)) (-772 (-349))) 33)) (-2303 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1154 (-286 (-199)))) 142)) (-2494 (((-950) (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) 180) (((-950) (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) 178)) (-2522 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-1734 (((-1154 (-632)) (-583 (-199))) 94)) (-2622 (((-583 (-1057)) (-583 (-199))) 74)) (-2816 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-2668 (((-107) (-199) (-998 (-772 (-199)))) 109)) (-2597 (((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-3875 (((-199) (-998 (-772 (-199)))) 107)) (-1969 (((-199) (-998 (-772 (-199)))) 108)) (-1920 (((-199) (-377 (-517))) 26)) (-2972 (((-1057) (-349)) 72)) (-3931 (((-199) (-349)) 17)) (-1464 (((-349) (-1154 (-286 (-199)))) 153)) (-2500 (((-286 (-199)) (-286 (-349))) 23)) (-3850 (((-377 (-517)) (-286 (-199))) 52)) (-4016 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-2536 (((-286 (-349)) (-286 (-199))) 98)) (-2944 (((-199) (-286 (-199))) 53)) (-3034 (((-583 (-199)) (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) 63)) (-2598 (((-998 (-772 (-199))) (-998 (-772 (-199)))) 60)) (-1410 (((-1057) (-199)) 71)) (-3786 (((-632) (-199)) 90)) (-2982 (((-377 (-517)) (-199)) 54)) (-2361 (((-286 (-349)) (-199)) 48)) (-3582 (((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349))))) 42)) (-2337 (((-950) (-583 (-950))) 163) (((-950) (-950) (-950)) 160)) (-3001 (((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
+(((-276) (-10 -7 (-15 -3931 ((-199) (-349))) (-15 -2500 ((-286 (-199)) (-286 (-349)))) (-15 -3344 ((-772 (-199)) (-772 (-349)))) (-15 -2203 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3582 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2982 ((-377 (-517)) (-199))) (-15 -3850 ((-377 (-517)) (-286 (-199)))) (-15 -2944 ((-199) (-286 (-199)))) (-15 -2816 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1464 ((-349) (-1154 (-286 (-199))))) (-15 -2303 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1154 (-286 (-199))))) (-15 -4016 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -2598 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -3034 ((-583 (-199)) (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))))) (-15 -3786 ((-632) (-199))) (-15 -1734 ((-1154 (-632)) (-583 (-199)))) (-15 -2536 ((-286 (-349)) (-286 (-199)))) (-15 -1956 ((-1154 (-286 (-349))) (-1154 (-286 (-199))))) (-15 -2668 ((-107) (-199) (-998 (-772 (-199))))) (-15 -1410 ((-1057) (-199))) (-15 -2972 ((-1057) (-349))) (-15 -2622 ((-583 (-1057)) (-583 (-199)))) (-15 -3243 ((-583 (-1057)) (-1055 (-199)))) (-15 -3875 ((-199) (-998 (-772 (-199))))) (-15 -1969 ((-199) (-998 (-772 (-199))))) (-15 -2337 ((-950) (-950) (-950))) (-15 -2337 ((-950) (-583 (-950)))) (-15 -1790 ((-1057) (-349))) (-15 -2494 ((-950) (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))))) (-15 -2494 ((-950) (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))))) (-15 -3001 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2597 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -3588 ((-286 (-349)) (-874 (-199)))) (-15 -3095 ((-199) (-874 (-199)))) (-15 -2361 ((-286 (-349)) (-199))) (-15 -1920 ((-199) (-377 (-517)))) (-15 -2522 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276))
+((-2522 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1057)) (-5 *1 (-276)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2337 (*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-276)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-276)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1057)) (-5 *1 (-276)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-276)))) (-2668 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-1154 (-286 (-349)))) (-5 *1 (-276)))) (-2536 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154 (-632))) (-5 *1 (-276)))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-2816 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
+(-10 -7 (-15 -3931 ((-199) (-349))) (-15 -2500 ((-286 (-199)) (-286 (-349)))) (-15 -3344 ((-772 (-199)) (-772 (-349)))) (-15 -2203 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3582 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2982 ((-377 (-517)) (-199))) (-15 -3850 ((-377 (-517)) (-286 (-199)))) (-15 -2944 ((-199) (-286 (-199)))) (-15 -2816 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1464 ((-349) (-1154 (-286 (-199))))) (-15 -2303 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1154 (-286 (-199))))) (-15 -4016 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -2598 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -3034 ((-583 (-199)) (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))))) (-15 -3786 ((-632) (-199))) (-15 -1734 ((-1154 (-632)) (-583 (-199)))) (-15 -2536 ((-286 (-349)) (-286 (-199)))) (-15 -1956 ((-1154 (-286 (-349))) (-1154 (-286 (-199))))) (-15 -2668 ((-107) (-199) (-998 (-772 (-199))))) (-15 -1410 ((-1057) (-199))) (-15 -2972 ((-1057) (-349))) (-15 -2622 ((-583 (-1057)) (-583 (-199)))) (-15 -3243 ((-583 (-1057)) (-1055 (-199)))) (-15 -3875 ((-199) (-998 (-772 (-199))))) (-15 -1969 ((-199) (-998 (-772 (-199))))) (-15 -2337 ((-950) (-950) (-950))) (-15 -2337 ((-950) (-583 (-950)))) (-15 -1790 ((-1057) (-349))) (-15 -2494 ((-950) (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))))) (-15 -2494 ((-950) (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))))) (-15 -3001 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2597 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -3588 ((-286 (-349)) (-874 (-199)))) (-15 -3095 ((-199) (-874 (-199)))) (-15 -2361 ((-286 (-349)) (-199))) (-15 -1920 ((-199) (-377 (-517)))) (-15 -2522 ((-623 (-199)) (-583 (-199)) (-703))))
+((-3765 (((-107) $ $) 11)) (-2383 (($ $ $) 15)) (-2366 (($ $ $) 14)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 43)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1396 (($ $ $) 20) (($ (-583 $)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-2349 (((-3 $ "failed") $ $) 17)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 45)))
+(((-277 |#1|) (-10 -8 (-15 -2976 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2002 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2002 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3107 |#1|)) |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -3765 ((-107) |#1| |#1|)) (-15 -3991 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2678 ((-2 (|:| -1883 (-583 |#1|)) (|:| -3107 |#1|)) (-583 |#1|))) (-15 -1396 (|#1| (-583 |#1|))) (-15 -1396 (|#1| |#1| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277))
+NIL
+(-10 -8 (-15 -2976 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2002 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2002 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3107 |#1|)) |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -3765 ((-107) |#1| |#1|)) (-15 -3991 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2678 ((-2 (|:| -1883 (-583 |#1|)) (|:| -3107 |#1|)) (-583 |#1|))) (-15 -1396 (|#1| (-583 |#1|))) (-15 -1396 (|#1| |#1| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3765 (((-107) $ $) 59)) (-3473 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2955 (((-107) $) 31)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-278) (-1185)) (T -278))
+((-3765 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-1412 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-278)))) (-2366 (*1 *1 *1 *1) (-4 *1 (-278))) (-2383 (*1 *1 *1 *1) (-4 *1 (-278))) (-2002 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3107 *1))) (-4 *1 (-278)))) (-2002 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-2976 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
+(-13 (-842) (-10 -8 (-15 -3765 ((-107) $ $)) (-15 -2623 ((-703) $)) (-15 -1412 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -2366 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2002 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $)) (-15 -2002 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2976 ((-3 (-583 $) "failed") (-583 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2051 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL)))
-(((-279 |#1| |#2|) (-10 -8 (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1003)) (T -279))
-NIL
-(-10 -8 (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))))
-((-2051 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10)))
-(((-280 |#1|) (-1184) (-1003)) (T -280))
-((-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))))
-(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -2051 ($ $ (-265 |t#1|))) (-15 -2051 ($ $ (-583 (-265 |t#1|))))))
+((-1979 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL)))
+(((-279 |#1| |#2|) (-10 -8 (-15 -1979 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1979 (|#1| |#1| (-265 |#2|))) (-15 -1979 (|#1| |#1| |#2| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1003)) (T -279))
+NIL
+(-10 -8 (-15 -1979 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1979 (|#1| |#1| (-265 |#2|))) (-15 -1979 (|#1| |#1| |#2| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#2|) (-583 |#2|))))
+((-1979 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10)))
+(((-280 |#1|) (-1185) (-1003)) (T -280))
+((-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))))
+(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -1979 ($ $ (-265 |t#1|))) (-15 -1979 ($ $ (-583 (-265 |t#1|))))))
(((-478 |#1| |#1|) . T))
-((-2051 ((|#1| (-1 |#1| (-517)) (-1075 (-377 (-517)))) 24)))
-(((-281 |#1|) (-10 -7 (-15 -2051 (|#1| (-1 |#1| (-517)) (-1075 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281))
-((-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1075 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))))
-(-10 -7 (-15 -2051 (|#1| (-1 |#1| (-517)) (-1075 (-377 (-517))))))
-((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) 9)))
+((-1979 ((|#1| (-1 |#1| (-517)) (-1076 (-377 (-517)))) 24)))
+(((-281 |#1|) (-10 -7 (-15 -1979 (|#1| (-1 |#1| (-517)) (-1076 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281))
+((-1979 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1076 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))))
+(-10 -7 (-15 -1979 (|#1| (-1 |#1| (-517)) (-1076 (-377 (-517))))))
+((-2571 (((-107) $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 7)) (-1539 (((-107) $ $) 9)))
(((-282) (-1003)) (T -282))
NIL
(-1003)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 62)) (-2668 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1140 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-1139 |#2| |#3| |#4|) "failed") $) 24)) (-3189 (((-1140 |#1| |#2| |#3| |#4|) $) NIL) (((-1073) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-517) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-1139 |#2| |#3| |#4|) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-1140 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1153 (-1140 |#1| |#2| |#3| |#4|)))) (-623 $) (-1153 $)) NIL) (((-623 (-1140 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-1140 |#1| |#2| |#3| |#4|) $) 21)) (-1319 (((-3 $ "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-3099 (($ $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1893 (($ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) $) NIL)) (-3020 (((-3 (-772 |#2|) "failed") $) 76)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-278)))) (-2597 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-1140 |#1| |#2| |#3| |#4|)) (-583 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1140 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1073)) (-583 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-1073) (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-258 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-1140 |#1| |#2| |#3| |#4|) $) 17)) (-3645 (((-814 (-517)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-937))) (((-199) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1140 |#1| |#2| |#3| |#4|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1140 |#1| |#2| |#3| |#4|)) 28) (($ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (($ (-1139 |#2| |#3| |#4|)) 36)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1140 |#1| |#2| |#3| |#4|) (-831))) (|has| (-1140 |#1| |#2| |#3| |#4|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 41 T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1667 (($ $ $) 33) (($ (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) 30)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1140 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1140 |#1| |#2| |#3| |#4|)) NIL)))
-(((-283 |#1| |#2| |#3| |#4|) (-13 (-909 (-1140 |#1| |#2| |#3| |#4|)) (-952 (-1139 |#2| |#3| |#4|)) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -2256 ($ (-1139 |#2| |#3| |#4|))))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -283))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))))
-(-13 (-909 (-1140 |#1| |#2| |#3| |#4|)) (-952 (-1139 |#2| |#3| |#4|)) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -2256 ($ (-1139 |#2| |#3| |#4|)))))
-((-1893 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -1893 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))))
-(-10 -7 (-15 -1893 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|))))
-((-1590 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1073)) 21)) (-2925 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1073)) 47)) (-1613 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1073)) 42)) (-1601 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1073)) 34)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -1590 ((-51) (-1073))) (-15 -1590 ((-51) |#2|)) (-15 -1590 ((-51) |#2| (-703))) (-15 -1590 ((-51) |#2| (-265 |#2|))) (-15 -1590 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1601 ((-51) (-1073))) (-15 -1601 ((-51) |#2|)) (-15 -1601 ((-51) |#2| (-517))) (-15 -1601 ((-51) |#2| (-265 |#2|))) (-15 -1601 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1613 ((-51) (-1073))) (-15 -1613 ((-51) |#2|)) (-15 -1613 ((-51) |#2| (-377 (-517)))) (-15 -1613 ((-51) |#2| (-265 |#2|))) (-15 -1613 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -2925 ((-51) (-1073))) (-15 -2925 ((-51) |#2|)) (-15 -2925 ((-51) |#2| (-377 (-517)))) (-15 -2925 ((-51) |#2| (-265 |#2|))) (-15 -2925 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -285))
-((-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1613 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1601 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))))
-(-10 -7 (-15 -1590 ((-51) (-1073))) (-15 -1590 ((-51) |#2|)) (-15 -1590 ((-51) |#2| (-703))) (-15 -1590 ((-51) |#2| (-265 |#2|))) (-15 -1590 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1601 ((-51) (-1073))) (-15 -1601 ((-51) |#2|)) (-15 -1601 ((-51) |#2| (-517))) (-15 -1601 ((-51) |#2| (-265 |#2|))) (-15 -1601 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1613 ((-51) (-1073))) (-15 -1613 ((-51) |#2|)) (-15 -1613 ((-51) |#2| (-377 (-517)))) (-15 -1613 ((-51) |#2| (-265 |#2|))) (-15 -1613 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -2925 ((-51) (-1073))) (-15 -2925 ((-51) |#2|)) (-15 -2925 ((-51) |#2| (-377 (-517)))) (-15 -2925 ((-51) |#2| (-265 |#2|))) (-15 -2925 ((-51) |#2| (-265 |#2|) (-377 (-517)))))
-((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) $ (-1073)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-3869 (($ $ (-1073)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (($ (-1069 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-2814 (((-107) $) 27 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1364 (((-583 (-1073)) $) 346)) (-2352 (((-377 (-1069 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-3726 (((-583 (-556 $)) $) NIL)) (-1865 (($ $) 156 (|has| |#1| (-509)))) (-1721 (($ $) 132 (|has| |#1| (-509)))) (-3036 (($ $ (-996 $)) 217 (|has| |#1| (-509))) (($ $ (-1073)) 213 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 362) (($ $ (-583 (-556 $)) (-583 $)) 405)) (-3143 (((-388 (-1069 $)) (-1069 $)) 290 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-2535 (($ $) NIL (|has| |#1| (-509)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3766 (($ $) NIL (|has| |#1| (-509)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1839 (($ $) 152 (|has| |#1| (-509)))) (-1701 (($ $) 128 (|has| |#1| (-509)))) (-4081 (($ $ (-517)) 68 (|has| |#1| (-509)))) (-1887 (($ $) 160 (|has| |#1| (-509)))) (-1743 (($ $) 136 (|has| |#1| (-509)))) (-3092 (($) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-1649 (((-583 $) $ (-1073)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-3267 (($ $ (-1073)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1069 $) (-1073)) 119 (|has| |#1| (-509))) (($ (-1069 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-1772 (((-3 (-556 $) "failed") $) 17) (((-3 (-1073) "failed") $) NIL) (((-3 |#1| "failed") $) 414) (((-3 (-47) "failed") $) 319 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-874 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) NIL (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 45 (-3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-556 $) $) 11) (((-1073) $) NIL) ((|#1| $) 396) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-874 |#1|)) $) NIL (|has| |#1| (-509))) (((-874 |#1|) $) NIL (|has| |#1| (-961))) (((-377 (-517)) $) 303 (-3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) NIL (|has| |#1| (-509)))) (-3355 (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 112 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 104 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (-3225 (($ $) 86 (|has| |#1| (-509)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2497 (($ $ $) NIL (|has| |#1| (-509)))) (-3485 (($ $ (-996 $)) 221 (|has| |#1| (-509))) (($ $ (-1073)) 219 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-3849 (((-107) $) NIL (|has| |#1| (-509)))) (-1264 (($ $ $) 187 (|has| |#1| (-509)))) (-2645 (($) 122 (|has| |#1| (-509)))) (-3647 (($ $ $) 207 (|has| |#1| (-509)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 368 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 374 (|has| |#1| (-808 (-349))))) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) 262)) (-3848 (((-107) $) 25 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1405 (($ $) 67 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 81 (|has| |#1| (-961)))) (-3509 (((-107) $) 60 (|has| |#1| (-509)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-1607 (((-1069 $) (-556 $)) 263 (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) 401)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1867 (($ $) 126 (|has| |#1| (-509)))) (-3139 (($ $) 232 (|has| |#1| (-509)))) (-1365 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) 48)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) 406)) (-3703 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) NIL (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 409 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 413 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) NIL (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) NIL (|has| |#1| (-961)))) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) 52)) (-4118 (($ $) NIL (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-2082 (($ $ (-1073)) 236 (|has| |#1| (-509))) (($ $ (-996 $)) 238 (|has| |#1| (-509)))) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 43)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 283 (|has| |#1| (-509)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3210 (($ $ (-1073)) 211 (|has| |#1| (-509))) (($ $) 209 (|has| |#1| (-509)))) (-3663 (($ $) 203 (|has| |#1| (-509)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 288 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-2624 (($ $) 124 (|has| |#1| (-509)))) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 400) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 356) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1073)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 344 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1073)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ $)) NIL (|has| |#1| (-961)))) (-3146 (((-703) $) NIL (|has| |#1| (-509)))) (-1655 (($ $) 224 (|has| |#1| (-509)))) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1630 (($ $) NIL) (($ $ $) NIL)) (-1689 (($ $) 234 (|has| |#1| (-509)))) (-2150 (($ $) 185 (|has| |#1| (-509)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-961))) (($ $ (-1073)) NIL (|has| |#1| (-961)))) (-2971 (($ $) 69 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 83 (|has| |#1| (-509)))) (-2135 (($ $) 301 (|has| $ (-961)))) (-1898 (($ $) 162 (|has| |#1| (-509)))) (-1754 (($ $) 138 (|has| |#1| (-509)))) (-1876 (($ $) 158 (|has| |#1| (-509)))) (-1732 (($ $) 134 (|has| |#1| (-509)))) (-1853 (($ $) 154 (|has| |#1| (-509)))) (-1711 (($ $) 130 (|has| |#1| (-509)))) (-3645 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 341 (|has| |#1| (-558 (-493))))) (-1487 (($ $ $) NIL (|has| |#1| (-442)))) (-3394 (($ $ $) NIL (|has| |#1| (-442)))) (-2256 (((-787) $) 399) (($ (-556 $)) 390) (($ (-1073)) 358) (($ |#1|) 320) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 295 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (($ (-1026 |#1| (-556 $))) 85 (|has| |#1| (-961))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) NIL (|has| |#1| (-509))) (($ (-874 |#1|)) NIL (|has| |#1| (-961))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-509)) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 34 (-3807 (|has| |#1| (-952 (-517))) (|has| |#1| (-961))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL (|has| |#1| (-961)))) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-1270 (($ $ $) 205 (|has| |#1| (-509)))) (-2570 (($ $ $) 191 (|has| |#1| (-509)))) (-2480 (($ $ $) 195 (|has| |#1| (-509)))) (-3233 (($ $ $) 189 (|has| |#1| (-509)))) (-1324 (($ $ $) 193 (|has| |#1| (-509)))) (-4074 (((-107) (-109)) 9)) (-3707 (($ $) 168 (|has| |#1| (-509)))) (-1788 (($ $) 144 (|has| |#1| (-509)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 164 (|has| |#1| (-509)))) (-1765 (($ $) 140 (|has| |#1| (-509)))) (-3731 (($ $) 172 (|has| |#1| (-509)))) (-1814 (($ $) 148 (|has| |#1| (-509)))) (-3760 (($ (-1073) $) NIL) (($ (-1073) $ $) NIL) (($ (-1073) $ $ $) NIL) (($ (-1073) $ $ $ $) NIL) (($ (-1073) (-583 $)) NIL)) (-3312 (($ $) 199 (|has| |#1| (-509)))) (-1730 (($ $) 197 (|has| |#1| (-509)))) (-1492 (($ $) 174 (|has| |#1| (-509)))) (-1827 (($ $) 150 (|has| |#1| (-509)))) (-3719 (($ $) 170 (|has| |#1| (-509)))) (-1802 (($ $) 146 (|has| |#1| (-509)))) (-3695 (($ $) 166 (|has| |#1| (-509)))) (-1777 (($ $) 142 (|has| |#1| (-509)))) (-3710 (($ $) 177 (|has| |#1| (-509)))) (-2207 (($ $ (-517)) NIL (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2396 (($) 20 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) CONST)) (-3362 (($ $) 228 (|has| |#1| (-509)))) (-2409 (($) 22 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-1564 (($ $) 179 (|has| |#1| (-509))) (($ $ $) 181 (|has| |#1| (-509)))) (-3452 (($ $) 226 (|has| |#1| (-509)))) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-961))) (($ $ (-1073)) NIL (|has| |#1| (-961)))) (-2037 (($ $) 230 (|has| |#1| (-509)))) (-2350 (($ $ $) 183 (|has| |#1| (-509)))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 78)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 77)) (-1667 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 95 (|has| |#1| (-509))) (($ $ $) 42 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1654 (($ $ $) 40 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ $) 29 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1642 (($ $ $) 38 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (** (($ $ $) 62 (|has| |#1| (-509))) (($ $ (-377 (-517))) 298 (|has| |#1| (-509))) (($ $ (-517)) 73 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 70 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) 75 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ (-517) $) 32 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-703) $) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-843) $) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))))
-(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1094)) (-6 (-145)) (-6 (-569)) (-6 (-1037)) (-15 -3225 ($ $)) (-15 -3509 ((-107) $)) (-15 -4081 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -3143 ((-388 (-1069 $)) (-1069 $)))) |noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |noBranch|)) |noBranch|))) (-779)) (T -286))
-((-3225 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2209 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))))
-(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1094)) (-6 (-145)) (-6 (-569)) (-6 (-1037)) (-15 -3225 ($ $)) (-15 -3509 ((-107) $)) (-15 -4081 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -3143 ((-388 (-1069 $)) (-1069 $)))) |noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |noBranch|)) |noBranch|)))
-((-3316 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83)))
-(((-287 |#1| |#2|) (-10 -7 (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287))
-((-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-3316 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3316 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))))
-(-10 -7 (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|))))
-((-2996 (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056)) 45) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517)) 46) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056)) 42) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517)) 43)) (-3002 (((-1 (-199) (-199)) (-199)) 44)))
-(((-288) (-10 -7 (-15 -3002 ((-1 (-199) (-199)) (-199))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056))))) (T -288))
-((-2996 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-3002 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
-(-10 -7 (-15 -3002 ((-1 (-199) (-199)) (-199))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 24)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 30)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1373 (((-377 (-517)) $) 16)) (-2697 (($ (-1139 |#1| |#2| |#3|)) 11)) (-2077 (((-1139 |#1| |#2| |#3|) $) 12)) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 10)) (-2256 (((-787) $) 36) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 28)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) NIL)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 31)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-289 |#1| |#2| |#3|) (-13 (-1135 |#1|) (-724) (-10 -8 (-15 -2697 ($ (-1139 |#1| |#2| |#3|))) (-15 -2077 ((-1139 |#1| |#2| |#3|) $)) (-15 -1373 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1073) |#1|) (T -289))
-((-2697 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-1139 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))))
-(-13 (-1135 |#1|) (-724) (-10 -8 (-15 -2697 ($ (-1139 |#1| |#2| |#3|))) (-15 -2077 ((-1139 |#1| |#2| |#3|) $)) (-15 -1373 ((-377 (-517)) $))))
-((-3824 (((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1867 (((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28)))
-(((-290 |#1|) (-10 -7 (-15 -3824 ((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1867 ((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290))
-((-1867 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1931 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))))
-(-10 -7 (-15 -3824 ((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1867 ((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|))))
-((-1364 (((-583 |#2|) (-1069 |#4|)) 43)) (-1435 ((|#3| (-517)) 46)) (-2951 (((-1069 |#4|) (-1069 |#3|)) 30)) (-2298 (((-1069 |#4|) (-1069 |#4|) (-517)) 55)) (-3864 (((-1069 |#3|) (-1069 |#4|)) 21)) (-3688 (((-583 (-703)) (-1069 |#4|) (-583 |#2|)) 40)) (-3465 (((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|)) 35)))
-(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3465 ((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3688 ((-583 (-703)) (-1069 |#4|) (-583 |#2|))) (-15 -1364 ((-583 |#2|) (-1069 |#4|))) (-15 -3864 ((-1069 |#3|) (-1069 |#4|))) (-15 -2951 ((-1069 |#4|) (-1069 |#3|))) (-15 -2298 ((-1069 |#4|) (-1069 |#4|) (-517))) (-15 -1435 (|#3| (-517)))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|)) (T -291))
-((-1435 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-1069 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1069 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3465 ((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3688 ((-583 (-703)) (-1069 |#4|) (-583 |#2|))) (-15 -1364 ((-583 |#2|) (-1069 |#4|))) (-15 -3864 ((-1069 |#3|) (-1069 |#4|))) (-15 -2951 ((-1069 |#4|) (-1069 |#3|))) (-15 -2298 ((-1069 |#4|) (-1069 |#4|) (-517))) (-15 -1435 (|#3| (-517))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 14)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $) 18)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-2902 (((-517) $ (-517)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3420 (($ (-1 |#1| |#1|) $) NIL)) (-2777 (($ (-1 (-517) (-517)) $) 10)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) NIL (|has| (-517) (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2720 (((-517) |#1| $) NIL)) (-2396 (($) 15 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1654 (($ $) 11) (($ $ $) 20)) (-1642 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 62)) (-2667 (((-1141 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-1141 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-1140 |#2| |#3| |#4|) "failed") $) 24)) (-3076 (((-1141 |#1| |#2| |#3| |#4|) $) NIL) (((-1074) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-517) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-1140 |#2| |#3| |#4|) $) NIL)) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-1141 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1154 (-1141 |#1| |#2| |#3| |#4|)))) (-623 $) (-1154 $)) NIL) (((-623 (-1141 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-808 (-349))))) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL)) (-1772 (((-1141 |#1| |#2| |#3| |#4|) $) 21)) (-3744 (((-3 $ "failed") $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-1050)))) (-1624 (((-107) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-2986 (($ $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1857 (($ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) $) NIL)) (-4126 (((-3 (-772 |#2|) "failed") $) 76)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-278)))) (-3263 (((-1141 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 (-1141 |#1| |#2| |#3| |#4|)) (-583 (-1141 |#1| |#2| |#3| |#4|))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1141 |#1| |#2| |#3| |#4|))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1141 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1074)) (-583 (-1141 |#1| |#2| |#3| |#4|))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-478 (-1074) (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-1074) (-1141 |#1| |#2| |#3| |#4|)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-478 (-1074) (-1141 |#1| |#2| |#3| |#4|))))) (-2623 (((-703) $) NIL)) (-1986 (($ $ (-1141 |#1| |#2| |#3| |#4|)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-258 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1074)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|))) NIL)) (-3691 (($ $) NIL)) (-1783 (((-1141 |#1| |#2| |#3| |#4|) $) 17)) (-3582 (((-814 (-517)) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-937))) (((-199) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-937)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1141 |#1| |#2| |#3| |#4|) (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1141 |#1| |#2| |#3| |#4|)) 28) (($ (-1074)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-1074)))) (($ (-1140 |#2| |#3| |#4|)) 36)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-1141 |#1| |#2| |#3| |#4|) (-831))) (|has| (-1141 |#1| |#2| |#3| |#4|) (-132))))) (-1865 (((-703)) NIL)) (-3112 (((-1141 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-502)))) (-3767 (((-107) $ $) NIL)) (-1221 (($ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 41 T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1074)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|))) NIL)) (-1593 (((-107) $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1560 (((-107) $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1649 (($ $ $) 33) (($ (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) 30)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1141 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1141 |#1| |#2| |#3| |#4|)) NIL)))
+(((-283 |#1| |#2| |#3| |#4|) (-13 (-909 (-1141 |#1| |#2| |#3| |#4|)) (-952 (-1140 |#2| |#3| |#4|)) (-10 -8 (-15 -4126 ((-3 (-772 |#2|) "failed") $)) (-15 -2182 ($ (-1140 |#2| |#3| |#4|))))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1095) (-400 |#1|)) (-1074) |#2|) (T -283))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1140 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-4126 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))))
+(-13 (-909 (-1141 |#1| |#2| |#3| |#4|)) (-952 (-1140 |#2| |#3| |#4|)) (-10 -8 (-15 -4126 ((-3 (-772 |#2|) "failed") $)) (-15 -2182 ($ (-1140 |#2| |#3| |#4|)))))
+((-1857 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -1857 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))))
+(-10 -7 (-15 -1857 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|))))
+((-1579 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1074)) 21)) (-1534 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1074)) 47)) (-1602 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1074)) 42)) (-1590 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1074)) 34)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -1579 ((-51) (-1074))) (-15 -1579 ((-51) |#2|)) (-15 -1579 ((-51) |#2| (-703))) (-15 -1579 ((-51) |#2| (-265 |#2|))) (-15 -1579 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1590 ((-51) (-1074))) (-15 -1590 ((-51) |#2|)) (-15 -1590 ((-51) |#2| (-517))) (-15 -1590 ((-51) |#2| (-265 |#2|))) (-15 -1590 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1602 ((-51) (-1074))) (-15 -1602 ((-51) |#2|)) (-15 -1602 ((-51) |#2| (-377 (-517)))) (-15 -1602 ((-51) |#2| (-265 |#2|))) (-15 -1602 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -1534 ((-51) (-1074))) (-15 -1534 ((-51) |#2|)) (-15 -1534 ((-51) |#2| (-377 (-517)))) (-15 -1534 ((-51) |#2| (-265 |#2|))) (-15 -1534 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -285))
+((-1534 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1534 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) (-1602 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) (-1579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1579 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))))
+(-10 -7 (-15 -1579 ((-51) (-1074))) (-15 -1579 ((-51) |#2|)) (-15 -1579 ((-51) |#2| (-703))) (-15 -1579 ((-51) |#2| (-265 |#2|))) (-15 -1579 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1590 ((-51) (-1074))) (-15 -1590 ((-51) |#2|)) (-15 -1590 ((-51) |#2| (-517))) (-15 -1590 ((-51) |#2| (-265 |#2|))) (-15 -1590 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1602 ((-51) (-1074))) (-15 -1602 ((-51) |#2|)) (-15 -1602 ((-51) |#2| (-377 (-517)))) (-15 -1602 ((-51) |#2| (-265 |#2|))) (-15 -1602 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -1534 ((-51) (-1074))) (-15 -1534 ((-51) |#2|)) (-15 -1534 ((-51) |#2| (-377 (-517)))) (-15 -1534 ((-51) |#2| (-265 |#2|))) (-15 -1534 ((-51) |#2| (-265 |#2|) (-377 (-517)))))
+((-2571 (((-107) $ $) NIL)) (-2302 (((-583 $) $ (-1074)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1070 $) (-1074)) NIL (|has| |#1| (-509))) (((-583 $) (-1070 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-2060 (($ $ (-1074)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1070 $) (-1074)) NIL (|has| |#1| (-509))) (($ (-1070 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-2745 (((-107) $) 27 (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1363 (((-583 (-1074)) $) 346)) (-2255 (((-377 (-1070 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3656 (((-583 (-556 $)) $) NIL)) (-1834 (($ $) 156 (|has| |#1| (-509)))) (-1710 (($ $) 132 (|has| |#1| (-509)))) (-1272 (($ $ (-996 $)) 217 (|has| |#1| (-509))) (($ $ (-1074)) 213 (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) NIL (-3763 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-2173 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 362) (($ $ (-583 (-556 $)) (-583 $)) 405)) (-2594 (((-388 (-1070 $)) (-1070 $)) 290 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3938 (($ $) NIL (|has| |#1| (-509)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3706 (($ $) NIL (|has| |#1| (-509)))) (-3765 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1812 (($ $) 152 (|has| |#1| (-509)))) (-1685 (($ $) 128 (|has| |#1| (-509)))) (-3567 (($ $ (-517)) 68 (|has| |#1| (-509)))) (-1851 (($ $) 160 (|has| |#1| (-509)))) (-1731 (($ $) 136 (|has| |#1| (-509)))) (-3473 (($) NIL (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-1899 (((-583 $) $ (-1074)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1070 $) (-1074)) NIL (|has| |#1| (-509))) (((-583 $) (-1070 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-1434 (($ $ (-1074)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1070 $) (-1074)) 119 (|has| |#1| (-509))) (($ (-1070 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-1759 (((-3 (-556 $) "failed") $) 17) (((-3 (-1074) "failed") $) NIL) (((-3 |#1| "failed") $) 414) (((-3 (-47) "failed") $) 319 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-874 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) NIL (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 45 (-3763 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3076 (((-556 $) $) 11) (((-1074) $) NIL) ((|#1| $) 396) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-874 |#1|)) $) NIL (|has| |#1| (-509))) (((-874 |#1|) $) NIL (|has| |#1| (-961))) (((-377 (-517)) $) 303 (-3763 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2383 (($ $ $) NIL (|has| |#1| (-509)))) (-4012 (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 112 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 104 (|has| |#1| (-961))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (-2521 (($ $) 86 (|has| |#1| (-509)))) (-1568 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2366 (($ $ $) NIL (|has| |#1| (-509)))) (-2591 (($ $ (-996 $)) 221 (|has| |#1| (-509))) (($ $ (-1074)) 219 (|has| |#1| (-509)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-2965 (((-107) $) NIL (|has| |#1| (-509)))) (-1425 (($ $ $) 187 (|has| |#1| (-509)))) (-2475 (($) 122 (|has| |#1| (-509)))) (-1808 (($ $ $) 207 (|has| |#1| (-509)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 368 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 374 (|has| |#1| (-808 (-349))))) (-1187 (($ $) NIL) (($ (-583 $)) NIL)) (-4025 (((-583 (-109)) $) NIL)) (-3270 (((-109) (-109)) 262)) (-2955 (((-107) $) 25 (-3763 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2393 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1936 (($ $) 67 (|has| |#1| (-961)))) (-1772 (((-1026 |#1| (-556 $)) $) 81 (|has| |#1| (-961)))) (-2806 (((-107) $) 60 (|has| |#1| (-509)))) (-2666 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-4133 (((-1070 $) (-556 $)) 263 (|has| $ (-961)))) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 $ $) (-556 $)) 401)) (-2726 (((-3 (-556 $) "failed") $) NIL)) (-1826 (($ $) 126 (|has| |#1| (-509)))) (-3026 (($ $) 232 (|has| |#1| (-509)))) (-1368 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3865 (((-1057) $) NIL)) (-2247 (((-583 (-556 $)) $) 48)) (-1822 (($ (-109) $) NIL) (($ (-109) (-583 $)) 406)) (-4128 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1015)))) (-3973 (((-3 (-2 (|:| |val| $) (|:| -2059 (-517))) "failed") $) NIL (|has| |#1| (-961)))) (-3116 (((-3 (-583 $) "failed") $) 409 (|has| |#1| (-25)))) (-2724 (((-3 (-2 (|:| -1883 (-517)) (|:| |var| (-556 $))) "failed") $) 413 (|has| |#1| (-25)))) (-2911 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $) NIL (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-1074)) NIL (|has| |#1| (-961)))) (-4158 (((-107) $ (-109)) NIL) (((-107) $ (-1074)) 52)) (-4123 (($ $) NIL (-3763 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-2110 (($ $ (-1074)) 236 (|has| |#1| (-509))) (($ $ (-996 $)) 238 (|has| |#1| (-509)))) (-1846 (((-703) $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) 43)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 283 (|has| |#1| (-509)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-2754 (((-107) $ $) NIL) (((-107) $ (-1074)) NIL)) (-2100 (($ $ (-1074)) 211 (|has| |#1| (-509))) (($ $) 209 (|has| |#1| (-509)))) (-1938 (($ $) 203 (|has| |#1| (-509)))) (-3923 (((-388 (-1070 $)) (-1070 $)) 288 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3693 (((-388 $) $) NIL (|has| |#1| (-509)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-2459 (($ $) 124 (|has| |#1| (-509)))) (-3994 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1979 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 400) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 356) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1074)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1074)) 344 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1074)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ $)) NIL (|has| |#1| (-961)))) (-2623 (((-703) $) NIL (|has| |#1| (-509)))) (-1638 (($ $) 224 (|has| |#1| (-509)))) (-1986 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-1662 (($ $) NIL) (($ $ $) NIL)) (-1674 (($ $) 234 (|has| |#1| (-509)))) (-1583 (($ $) 185 (|has| |#1| (-509)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-961))) (($ $ (-1074)) NIL (|has| |#1| (-961)))) (-3691 (($ $) 69 (|has| |#1| (-509)))) (-1783 (((-1026 |#1| (-556 $)) $) 83 (|has| |#1| (-509)))) (-1457 (($ $) 301 (|has| $ (-961)))) (-1860 (($ $) 162 (|has| |#1| (-509)))) (-1741 (($ $) 138 (|has| |#1| (-509)))) (-1842 (($ $) 158 (|has| |#1| (-509)))) (-1722 (($ $) 134 (|has| |#1| (-509)))) (-1824 (($ $) 154 (|has| |#1| (-509)))) (-1698 (($ $) 130 (|has| |#1| (-509)))) (-3582 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 341 (|has| |#1| (-558 (-493))))) (-2013 (($ $ $) NIL (|has| |#1| (-442)))) (-3064 (($ $ $) NIL (|has| |#1| (-442)))) (-2182 (((-787) $) 399) (($ (-556 $)) 390) (($ (-1074)) 358) (($ |#1|) 320) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 295 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (($ (-1026 |#1| (-556 $))) 85 (|has| |#1| (-961))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) NIL (|has| |#1| (-509))) (($ (-874 |#1|)) NIL (|has| |#1| (-961))) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-509)) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 34 (-3763 (|has| |#1| (-952 (-517))) (|has| |#1| (-961))))) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL (|has| |#1| (-961)))) (-3549 (($ $) NIL) (($ (-583 $)) NIL)) (-1679 (($ $ $) 205 (|has| |#1| (-509)))) (-1294 (($ $ $) 191 (|has| |#1| (-509)))) (-1672 (($ $ $) 195 (|has| |#1| (-509)))) (-2228 (($ $ $) 189 (|has| |#1| (-509)))) (-1555 (($ $ $) 193 (|has| |#1| (-509)))) (-3494 (((-107) (-109)) 9)) (-3642 (($ $) 168 (|has| |#1| (-509)))) (-1773 (($ $) 144 (|has| |#1| (-509)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) 164 (|has| |#1| (-509)))) (-1751 (($ $) 140 (|has| |#1| (-509)))) (-3661 (($ $) 172 (|has| |#1| (-509)))) (-1794 (($ $) 148 (|has| |#1| (-509)))) (-3698 (($ (-1074) $) NIL) (($ (-1074) $ $) NIL) (($ (-1074) $ $ $) NIL) (($ (-1074) $ $ $ $) NIL) (($ (-1074) (-583 $)) NIL)) (-1853 (($ $) 199 (|has| |#1| (-509)))) (-2940 (($ $) 197 (|has| |#1| (-509)))) (-1279 (($ $) 174 (|has| |#1| (-509)))) (-1803 (($ $) 150 (|has| |#1| (-509)))) (-3650 (($ $) 170 (|has| |#1| (-509)))) (-1784 (($ $) 146 (|has| |#1| (-509)))) (-3631 (($ $) 166 (|has| |#1| (-509)))) (-1762 (($ $) 142 (|has| |#1| (-509)))) (-1221 (($ $) 177 (|has| |#1| (-509)))) (-2146 (($ $ (-517)) NIL (-3763 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3763 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) NIL (-3763 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2297 (($) 20 (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) CONST)) (-4055 (($ $) 228 (|has| |#1| (-509)))) (-2306 (($) 22 (-3763 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-3030 (($ $) 179 (|has| |#1| (-509))) (($ $ $) 181 (|has| |#1| (-509)))) (-3604 (($ $) 226 (|has| |#1| (-509)))) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-961))) (($ $ (-1074)) NIL (|has| |#1| (-961)))) (-2777 (($ $) 230 (|has| |#1| (-509)))) (-2685 (($ $ $) 183 (|has| |#1| (-509)))) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 78)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 77)) (-1649 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 95 (|has| |#1| (-509))) (($ $ $) 42 (-3763 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1637 (($ $ $) 40 (-3763 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ $) 29 (-3763 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1626 (($ $ $) 38 (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (** (($ $ $) 62 (|has| |#1| (-509))) (($ $ (-377 (-517))) 298 (|has| |#1| (-509))) (($ $ (-517)) 73 (-3763 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 70 (-3763 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) 75 (-3763 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3763 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ (-517) $) 32 (-3763 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-703) $) NIL (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-843) $) NIL (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))))
+(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1095)) (-6 (-145)) (-6 (-569)) (-6 (-1038)) (-15 -2521 ($ $)) (-15 -2806 ((-107) $)) (-15 -3567 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -3923 ((-388 (-1070 $)) (-1070 $))) (-15 -2594 ((-388 (-1070 $)) (-1070 $)))) |noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |noBranch|)) |noBranch|))) (-779)) (T -286))
+((-2521 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-3923 (*1 *2 *3) (-12 (-5 *2 (-388 (-1070 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-2594 (*1 *2 *3) (-12 (-5 *2 (-388 (-1070 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))))
+(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1095)) (-6 (-145)) (-6 (-569)) (-6 (-1038)) (-15 -2521 ($ $)) (-15 -2806 ((-107) $)) (-15 -3567 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -3923 ((-388 (-1070 $)) (-1070 $))) (-15 -2594 ((-388 (-1070 $)) (-1070 $)))) |noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |noBranch|)) |noBranch|)))
+((-1876 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -1876 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -1876 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1876 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -1876 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -1876 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -1876 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -1876 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -1876 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -1876 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -1876 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287))
+((-1876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-1876 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-1876 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-1876 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-1876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-1876 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-1876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-1876 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-1876 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-1876 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))))
+(-10 -7 (-15 -1876 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -1876 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1876 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -1876 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -1876 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -1876 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -1876 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -1876 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -1876 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -1876 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|))))
+((-3936 (((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1057)) 45) (((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517)) 46) (((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1057)) 42) (((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517)) 43)) (-3986 (((-1 (-199) (-199)) (-199)) 44)))
+(((-288) (-10 -7 (-15 -3986 ((-1 (-199) (-199)) (-199))) (-15 -3936 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -3936 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1057))) (-15 -3936 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -3936 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1057))))) (T -288))
+((-3936 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1057)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) (-3936 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) (-3936 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1057)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) (-3936 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) (-3986 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
+(-10 -7 (-15 -3986 ((-1 (-199) (-199)) (-199))) (-15 -3936 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -3936 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1057))) (-15 -3936 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -3936 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1057))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 24)) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3349 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-4040 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-1834 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1812 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1851 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) 30)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1826 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-2863 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095)))))) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ (-377 (-517))) NIL)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2682 (((-377 (-517)) $) 16)) (-2997 (($ (-1140 |#1| |#2| |#3|)) 11)) (-2059 (((-1140 |#1| |#2| |#3|) $) 12)) (-2459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-4007 (((-377 (-517)) $) NIL)) (-1860 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 10)) (-2182 (((-787) $) 36) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3086 ((|#1| $ (-377 (-517))) 28)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-2840 ((|#1| $) NIL)) (-3642 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 26)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 31)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-289 |#1| |#2| |#3|) (-13 (-1136 |#1|) (-724) (-10 -8 (-15 -2997 ($ (-1140 |#1| |#2| |#3|))) (-15 -2059 ((-1140 |#1| |#2| |#3|) $)) (-15 -2682 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1074) |#1|) (T -289))
+((-2997 (*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-1140 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3))))
+(-13 (-1136 |#1|) (-724) (-10 -8 (-15 -2997 ($ (-1140 |#1| |#2| |#3|))) (-15 -2059 ((-1140 |#1| |#2| |#3|) $)) (-15 -2682 ((-377 (-517)) $))))
+((-2666 (((-2 (|:| -2059 (-703)) (|:| -1883 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1826 (((-583 (-2 (|:| -1883 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28)))
+(((-290 |#1|) (-10 -7 (-15 -2666 ((-2 (|:| -2059 (-703)) (|:| -1883 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1826 ((-583 (-2 (|:| -1883 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290))
+((-1826 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1883 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))))
+(-10 -7 (-15 -2666 ((-2 (|:| -2059 (-703)) (|:| -1883 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1826 ((-583 (-2 (|:| -1883 (-703)) (|:| |logand| |#1|))) (-388 |#1|))))
+((-1363 (((-583 |#2|) (-1070 |#4|)) 43)) (-2246 ((|#3| (-517)) 46)) (-1779 (((-1070 |#4|) (-1070 |#3|)) 30)) (-3476 (((-1070 |#4|) (-1070 |#4|) (-517)) 55)) (-2012 (((-1070 |#3|) (-1070 |#4|)) 21)) (-4007 (((-583 (-703)) (-1070 |#4|) (-583 |#2|)) 40)) (-2437 (((-1070 |#3|) (-1070 |#4|) (-583 |#2|) (-583 |#3|)) 35)))
+(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-1070 |#3|) (-1070 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -4007 ((-583 (-703)) (-1070 |#4|) (-583 |#2|))) (-15 -1363 ((-583 |#2|) (-1070 |#4|))) (-15 -2012 ((-1070 |#3|) (-1070 |#4|))) (-15 -1779 ((-1070 |#4|) (-1070 |#3|))) (-15 -3476 ((-1070 |#4|) (-1070 |#4|) (-517))) (-15 -2246 (|#3| (-517)))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|)) (T -291))
+((-2246 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))) (-3476 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1070 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1070 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1070 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-2437 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1070 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2437 ((-1070 |#3|) (-1070 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -4007 ((-583 (-703)) (-1070 |#4|) (-583 |#2|))) (-15 -1363 ((-583 |#2|) (-1070 |#4|))) (-15 -2012 ((-1070 |#3|) (-1070 |#4|))) (-15 -1779 ((-1070 |#4|) (-1070 |#3|))) (-15 -3476 ((-1070 |#4|) (-1070 |#4|) (-517))) (-15 -2246 (|#3| (-517))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 14)) (-4040 (((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-517)))) $) 18)) (-1387 (((-3 $ "failed") $ $) NIL)) (-1598 (((-703) $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-2445 ((|#1| $ (-517)) NIL)) (-1342 (((-517) $ (-517)) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3276 (($ (-1 |#1| |#1|) $) NIL)) (-2436 (($ (-1 (-517) (-517)) $) 10)) (-3865 (((-1057) $) NIL)) (-1743 (($ $ $) NIL (|has| (-517) (-724)))) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL) (($ |#1|) NIL)) (-3086 (((-517) |#1| $) NIL)) (-2297 (($) 15 T CONST)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1637 (($ $) 11) (($ $ $) 20)) (-1626 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19)))
(((-292 |#1|) (-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) (-1003)) (T -292))
NIL
(-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 27)) (-4038 (((-3 $ "failed") $ $) 19)) (-1611 (((-703) $) 28)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 32)) (-3189 ((|#1| $) 31)) (-3466 ((|#1| $ (-517)) 25)) (-2902 ((|#2| $ (-517)) 26)) (-3420 (($ (-1 |#1| |#1|) $) 22)) (-2777 (($ (-1 |#2| |#2|) $) 23)) (-3985 (((-1056) $) 9)) (-3299 (($ $ $) 21 (|has| |#2| (-724)))) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ |#1|) 33)) (-2720 ((|#2| |#1| $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29)))
-(((-293 |#1| |#2|) (-1184) (-1003) (-123)) (T -293))
-((-1642 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) (-2720 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-2777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-3299 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724)))))
-(-13 (-123) (-952 |t#1|) (-10 -8 (-15 -1642 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1611 ((-703) $)) (-15 -2223 ((-583 (-2 (|:| |gen| |t#1|) (|:| -2624 |t#2|))) $)) (-15 -2902 (|t#2| $ (-517))) (-15 -3466 (|t#1| $ (-517))) (-15 -2720 (|t#2| |t#1| $)) (-15 -2777 ($ (-1 |t#2| |t#2|) $)) (-15 -3420 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -3299 ($ $ $)) |noBranch|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-4040 (((-583 (-2 (|:| |gen| |#1|) (|:| -2459 |#2|))) $) 27)) (-1387 (((-3 $ "failed") $ $) 19)) (-1598 (((-703) $) 28)) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#1| "failed") $) 32)) (-3076 ((|#1| $) 31)) (-2445 ((|#1| $ (-517)) 25)) (-1342 ((|#2| $ (-517)) 26)) (-3276 (($ (-1 |#1| |#1|) $) 22)) (-2436 (($ (-1 |#2| |#2|) $) 23)) (-3865 (((-1057) $) 9)) (-1743 (($ $ $) 21 (|has| |#2| (-724)))) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ |#1|) 33)) (-3086 ((|#2| |#1| $) 24)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1626 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29)))
+(((-293 |#1| |#2|) (-1185) (-1003) (-123)) (T -293))
+((-1626 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 *4)))))) (-1342 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) (-3086 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-3276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-1743 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724)))))
+(-13 (-123) (-952 |t#1|) (-10 -8 (-15 -1626 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1598 ((-703) $)) (-15 -4040 ((-583 (-2 (|:| |gen| |t#1|) (|:| -2459 |t#2|))) $)) (-15 -1342 (|t#2| $ (-517))) (-15 -2445 (|t#1| $ (-517))) (-15 -3086 (|t#2| |t#1| $)) (-15 -2436 ($ (-1 |t#2| |t#2|) $)) (-15 -3276 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -1743 ($ $ $)) |noBranch|)))
(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-952 |#1|) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-2902 (((-703) $ (-517)) NIL)) (-3420 (($ (-1 |#1| |#1|) $) NIL)) (-2777 (($ (-1 (-703) (-703)) $) NIL)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) NIL (|has| (-703) (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2720 (((-703) |#1| $) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-4040 (((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-703)))) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-1598 (((-703) $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-2445 ((|#1| $ (-517)) NIL)) (-1342 (((-703) $ (-517)) NIL)) (-3276 (($ (-1 |#1| |#1|) $) NIL)) (-2436 (($ (-1 (-703) (-703)) $) NIL)) (-3865 (((-1057) $) NIL)) (-1743 (($ $ $) NIL (|has| (-703) (-724)))) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL) (($ |#1|) NIL)) (-3086 (((-703) |#1| $) NIL)) (-2297 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1626 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL)))
(((-294 |#1|) (-293 |#1| (-703)) (-1003)) (T -294))
NIL
(-293 |#1| (-703))
-((-3534 (($ $) 52)) (-1436 (($ $ |#2| |#3| $) 14)) (-3328 (($ (-1 |#3| |#3|) $) 35)) (-4127 (((-107) $) 27)) (-4141 ((|#2| $) 29)) (-2476 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-3266 ((|#2| $) 48)) (-1311 (((-583 |#2|) $) 38)) (-2053 (($ $ $ (-703)) 23)) (-1667 (($ $ |#2|) 42)))
-(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2053 (|#1| |#1| |#1| (-703))) (-15 -1436 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1667 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-961) (-724)) (T -295))
-NIL
-(-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2053 (|#1| |#1| |#1| (-703))) (-15 -1436 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1667 (|#1| |#1| |#2|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 90 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3189 (((-517) $) 91 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 86)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 75 (|has| |#1| (-421)))) (-1436 (($ $ |#1| |#2| $) 79)) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 82)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61)) (-2349 ((|#2| $) 81)) (-3328 (($ (-1 |#2| |#2|) $) 80)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 85)) (-4141 ((|#1| $) 84)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-3266 ((|#1| $) 76 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 83)) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-296 |#1| |#2|) (-1184) (-961) (-724)) (T -296))
-((-4127 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-1436 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-2053 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))))
-(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -4127 ((-107) $)) (-15 -4141 (|t#1| $)) (-15 -1311 ((-583 |t#1|) $)) (-15 -1577 ((-703) $)) (-15 -2349 (|t#2| $)) (-15 -3328 ($ (-1 |t#2| |t#2|) $)) (-15 -1436 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -2053 ($ $ $ (-703))) |noBranch|) (IF (|has| |t#1| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -3266 (|t#1| $)) (-15 -3534 ($ $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2484 (((-107) (-107)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3809 (($ $ (-517)) NIL)) (-4019 (((-703) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1977 (($ (-583 |#1|)) NIL)) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107))))) (-1108)) (T -297))
-((-1977 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-297 *3)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))))
-(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107)))))
-((-2909 (((-107) $) 42)) (-3250 (((-703)) 22)) (-1472 ((|#2| $) 46) (($ $ (-843)) 102)) (-1611 (((-703)) 96)) (-1967 (($ (-1153 |#2|)) 20)) (-2434 (((-107) $) 114)) (-1506 ((|#2| $) 48) (($ $ (-843)) 100)) (-3777 (((-1069 |#2|) $) NIL) (((-1069 $) $ (-843)) 93)) (-1704 (((-1069 |#2|) $) 83)) (-2729 (((-1069 |#2|) $) 80) (((-3 (-1069 |#2|) "failed") $ $) 77)) (-3600 (($ $ (-1069 |#2|)) 53)) (-3327 (((-765 (-843))) 28) (((-843)) 43)) (-3141 (((-125)) 25)) (-3688 (((-765 (-843)) $) 30) (((-843) $) 115)) (-1224 (($) 108)) (-4114 (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 39)) (-1328 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1871 (((-107) $) 41)))
-(((-298 |#1| |#2|) (-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1611 ((-703))) (-15 -1328 (|#1| |#1|)) (-15 -2729 ((-3 (-1069 |#2|) "failed") |#1| |#1|)) (-15 -2729 ((-1069 |#2|) |#1|)) (-15 -1704 ((-1069 |#2|) |#1|)) (-15 -3600 (|#1| |#1| (-1069 |#2|))) (-15 -2434 ((-107) |#1|)) (-15 -1224 (|#1|)) (-15 -1472 (|#1| |#1| (-843))) (-15 -1506 (|#1| |#1| (-843))) (-15 -3777 ((-1069 |#1|) |#1| (-843))) (-15 -1472 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3688 ((-843) |#1|)) (-15 -3327 ((-843))) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3250 ((-703))) (-15 -3327 ((-765 (-843)))) (-15 -3688 ((-765 (-843)) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|)) (-15 -3141 ((-125)))) (-299 |#2|) (-333)) (T -298))
-((-3141 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3327 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3250 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3327 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-1611 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))))
-(-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1611 ((-703))) (-15 -1328 (|#1| |#1|)) (-15 -2729 ((-3 (-1069 |#2|) "failed") |#1| |#1|)) (-15 -2729 ((-1069 |#2|) |#1|)) (-15 -1704 ((-1069 |#2|) |#1|)) (-15 -3600 (|#1| |#1| (-1069 |#2|))) (-15 -2434 ((-107) |#1|)) (-15 -1224 (|#1|)) (-15 -1472 (|#1| |#1| (-843))) (-15 -1506 (|#1| |#1| (-843))) (-15 -3777 ((-1069 |#1|) |#1| (-843))) (-15 -1472 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3688 ((-843) |#1|)) (-15 -3327 ((-843))) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3250 ((-703))) (-15 -3327 ((-765 (-843)))) (-15 -3688 ((-765 (-843)) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|)) (-15 -3141 ((-125))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2909 (((-107) $) 94)) (-3250 (((-703)) 90)) (-1472 ((|#1| $) 140) (($ $ (-843)) 137 (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-1611 (((-703)) 112 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 101)) (-3189 ((|#1| $) 100)) (-1967 (($ (-1153 |#1|)) 146)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 109 (|has| |#1| (-338)))) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3442 (($) 124 (|has| |#1| (-338)))) (-3391 (((-107) $) 125 (|has| |#1| (-338)))) (-2378 (($ $ (-703)) 87 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) 71)) (-3972 (((-843) $) 127 (|has| |#1| (-338))) (((-765 (-843)) $) 84 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) 31)) (-2453 (($) 135 (|has| |#1| (-338)))) (-2434 (((-107) $) 134 (|has| |#1| (-338)))) (-1506 ((|#1| $) 141) (($ $ (-843)) 138 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3777 (((-1069 |#1|) $) 145) (((-1069 $) $ (-843)) 139 (|has| |#1| (-338)))) (-1549 (((-843) $) 110 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) 131 (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) 132 (|has| |#1| (-338)))) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 114 (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 111 (|has| |#1| (-338)))) (-3202 (((-107) $) 93)) (-3206 (((-1021) $) 10)) (-3220 (($) 133 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 121 (|has| |#1| (-338)))) (-3755 (((-388 $) $) 74)) (-3327 (((-765 (-843))) 91) (((-843)) 143)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) 99)) (-3127 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) 92) (((-843) $) 142)) (-2135 (((-1069 |#1|)) 144)) (-1766 (($) 123 (|has| |#1| (-338)))) (-1224 (($) 136 (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 148) (((-623 |#1|) (-1153 $)) 147)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-1328 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 150) (((-1153 $) (-843)) 149)) (-3329 (((-107) $ $) 39)) (-1871 (((-107) $) 95)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-4103 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-2731 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64) (($ $ |#1|) 98)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-299 |#1|) (-1184) (-333)) (T -299))
-((-1753 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *3)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *4)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) (-2135 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) (-3327 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1069 *1)) (-4 *1 (-299 *4)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1472 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1224 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2453 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-3220 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3600 (*1 *1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) (-2729 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))))
-(-13 (-1170 |t#1|) (-952 |t#1|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -1753 ((-1153 $) (-843))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3777 ((-1069 |t#1|) $)) (-15 -2135 ((-1069 |t#1|))) (-15 -3327 ((-843))) (-15 -3688 ((-843) $)) (-15 -1506 (|t#1| $)) (-15 -1472 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -3777 ((-1069 $) $ (-843))) (-15 -1506 ($ $ (-843))) (-15 -1472 ($ $ (-843))) (-15 -1224 ($)) (-15 -2453 ($)) (-15 -2434 ((-107) $)) (-15 -3220 ($)) (-15 -3600 ($ $ (-1069 |t#1|))) (-15 -1704 ((-1069 |t#1|) $)) (-15 -2729 ((-1069 |t#1|) $)) (-15 -2729 ((-3 (-1069 |t#1|) "failed") $ $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1170 |#1|) . T) ((-333) . T) ((-372) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-338)) ((-1112) . T) ((-1160 |#1|) . T))
-((-2750 (((-107) $ $) NIL)) (-1823 (($ (-1072) $) 88)) (-3646 (($) 76)) (-2576 (((-1021) (-1021)) 11)) (-2338 (($) 77)) (-3361 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-3016 (($ (-1072) $) 89)) (-2220 (($ (-583 (-787))) 79)) (-3578 (((-1158) $) 73)) (-1796 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3715 (($ (-1021)) 45)) (-3986 (((-1007) $) 25)) (-1468 (($ (-996 (-874 (-517))) $) 85) (($ (-996 (-874 (-517))) (-874 (-517)) $) 86)) (-4147 (($ (-1021)) 87)) (-2618 (($ (-1072) $) 110) (($ (-1072) $ $) 111)) (-2537 (($ (-1073) (-583 (-1073))) 75)) (-3104 (($ (-1056)) 82) (($ (-583 (-1056))) 80)) (-2256 (((-787) $) 113)) (-3071 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2341 (($ (-1056)) 182)) (-2652 (($ (-583 $)) 109)) (-1946 (($ (-1073) (-1056)) 115) (($ (-1073) (-286 (-634))) 155) (($ (-1073) (-286 (-632))) 156) (($ (-1073) (-286 (-627))) 157) (($ (-1073) (-623 (-634))) 118) (($ (-1073) (-623 (-632))) 121) (($ (-1073) (-623 (-627))) 124) (($ (-1073) (-1153 (-634))) 127) (($ (-1073) (-1153 (-632))) 130) (($ (-1073) (-1153 (-627))) 133) (($ (-1073) (-623 (-286 (-634)))) 136) (($ (-1073) (-623 (-286 (-632)))) 139) (($ (-1073) (-623 (-286 (-627)))) 142) (($ (-1073) (-1153 (-286 (-634)))) 145) (($ (-1073) (-1153 (-286 (-632)))) 148) (($ (-1073) (-1153 (-286 (-627)))) 151) (($ (-1073) (-583 (-874 (-517))) (-286 (-634))) 152) (($ (-1073) (-583 (-874 (-517))) (-286 (-632))) 153) (($ (-1073) (-583 (-874 (-517))) (-286 (-627))) 154) (($ (-1073) (-286 (-517))) 179) (($ (-1073) (-286 (-349))) 180) (($ (-1073) (-286 (-153 (-349)))) 181) (($ (-1073) (-623 (-286 (-517)))) 160) (($ (-1073) (-623 (-286 (-349)))) 163) (($ (-1073) (-623 (-286 (-153 (-349))))) 166) (($ (-1073) (-1153 (-286 (-517)))) 169) (($ (-1073) (-1153 (-286 (-349)))) 172) (($ (-1073) (-1153 (-286 (-153 (-349))))) 175) (($ (-1073) (-583 (-874 (-517))) (-286 (-517))) 176) (($ (-1073) (-583 (-874 (-517))) (-286 (-349))) 177) (($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349)))) 178)) (-1547 (((-107) $ $) NIL)))
-(((-300) (-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -1468 ($ (-996 (-874 (-517))) $)) (-15 -1468 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -1823 ($ (-1072) $)) (-15 -3016 ($ (-1072) $)) (-15 -3715 ($ (-1021))) (-15 -4147 ($ (-1021))) (-15 -3104 ($ (-1056))) (-15 -3104 ($ (-583 (-1056)))) (-15 -2341 ($ (-1056))) (-15 -3361 ($)) (-15 -3361 ($ (-286 (-632)))) (-15 -3361 ($ (-286 (-634)))) (-15 -3361 ($ (-286 (-627)))) (-15 -3361 ($ (-286 (-349)))) (-15 -3361 ($ (-286 (-517)))) (-15 -3361 ($ (-286 (-153 (-349))))) (-15 -2618 ($ (-1072) $)) (-15 -2618 ($ (-1072) $ $)) (-15 -1946 ($ (-1073) (-1056))) (-15 -1946 ($ (-1073) (-286 (-634)))) (-15 -1946 ($ (-1073) (-286 (-632)))) (-15 -1946 ($ (-1073) (-286 (-627)))) (-15 -1946 ($ (-1073) (-623 (-634)))) (-15 -1946 ($ (-1073) (-623 (-632)))) (-15 -1946 ($ (-1073) (-623 (-627)))) (-15 -1946 ($ (-1073) (-1153 (-634)))) (-15 -1946 ($ (-1073) (-1153 (-632)))) (-15 -1946 ($ (-1073) (-1153 (-627)))) (-15 -1946 ($ (-1073) (-623 (-286 (-634))))) (-15 -1946 ($ (-1073) (-623 (-286 (-632))))) (-15 -1946 ($ (-1073) (-623 (-286 (-627))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-634))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-632))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-627))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-634)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-632)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-627)))) (-15 -1946 ($ (-1073) (-286 (-517)))) (-15 -1946 ($ (-1073) (-286 (-349)))) (-15 -1946 ($ (-1073) (-286 (-153 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-517))))) (-15 -1946 ($ (-1073) (-623 (-286 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-517))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-349))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-517)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-349)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2652 ($ (-583 $))) (-15 -3646 ($)) (-15 -2338 ($)) (-15 -2220 ($ (-583 (-787)))) (-15 -2537 ($ (-1073) (-583 (-1073)))) (-15 -1796 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3071 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3578 ((-1158) $)) (-15 -3986 ((-1007) $)) (-15 -2576 ((-1021) (-1021)))))) (T -300))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-1468 (*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))) (-1468 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) (-1823 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-3016 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-300)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))) (-3361 (*1 *1) (-5 *1 (-300))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2618 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-2618 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-634)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-632)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-627)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-517)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-3646 (*1 *1) (-5 *1 (-300))) (-2338 (*1 *1) (-5 *1 (-300))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-2537 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-300)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-300)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -1468 ($ (-996 (-874 (-517))) $)) (-15 -1468 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -1823 ($ (-1072) $)) (-15 -3016 ($ (-1072) $)) (-15 -3715 ($ (-1021))) (-15 -4147 ($ (-1021))) (-15 -3104 ($ (-1056))) (-15 -3104 ($ (-583 (-1056)))) (-15 -2341 ($ (-1056))) (-15 -3361 ($)) (-15 -3361 ($ (-286 (-632)))) (-15 -3361 ($ (-286 (-634)))) (-15 -3361 ($ (-286 (-627)))) (-15 -3361 ($ (-286 (-349)))) (-15 -3361 ($ (-286 (-517)))) (-15 -3361 ($ (-286 (-153 (-349))))) (-15 -2618 ($ (-1072) $)) (-15 -2618 ($ (-1072) $ $)) (-15 -1946 ($ (-1073) (-1056))) (-15 -1946 ($ (-1073) (-286 (-634)))) (-15 -1946 ($ (-1073) (-286 (-632)))) (-15 -1946 ($ (-1073) (-286 (-627)))) (-15 -1946 ($ (-1073) (-623 (-634)))) (-15 -1946 ($ (-1073) (-623 (-632)))) (-15 -1946 ($ (-1073) (-623 (-627)))) (-15 -1946 ($ (-1073) (-1153 (-634)))) (-15 -1946 ($ (-1073) (-1153 (-632)))) (-15 -1946 ($ (-1073) (-1153 (-627)))) (-15 -1946 ($ (-1073) (-623 (-286 (-634))))) (-15 -1946 ($ (-1073) (-623 (-286 (-632))))) (-15 -1946 ($ (-1073) (-623 (-286 (-627))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-634))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-632))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-627))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-634)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-632)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-627)))) (-15 -1946 ($ (-1073) (-286 (-517)))) (-15 -1946 ($ (-1073) (-286 (-349)))) (-15 -1946 ($ (-1073) (-286 (-153 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-517))))) (-15 -1946 ($ (-1073) (-623 (-286 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-517))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-349))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-517)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-349)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2652 ($ (-583 $))) (-15 -3646 ($)) (-15 -2338 ($)) (-15 -2220 ($ (-583 (-787)))) (-15 -2537 ($ (-1073) (-583 (-1073)))) (-15 -1796 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3071 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3578 ((-1158) $)) (-15 -3986 ((-1007) $)) (-15 -2576 ((-1021) (-1021)))))
-((-2750 (((-107) $ $) NIL)) (-1474 (((-107) $) 11)) (-1701 (($ |#1|) 8)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1711 (($ |#1|) 9)) (-2256 (((-787) $) 17)) (-2921 ((|#1| $) 12)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 19)))
-(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -1701 ($ |#1|)) (-15 -1711 ($ |#1|)) (-15 -1474 ((-107) $)) (-15 -2921 (|#1| $)))) (-779)) (T -301))
-((-1701 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1711 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-2921 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))))
-(-13 (-779) (-10 -8 (-15 -1701 ($ |#1|)) (-15 -1711 ($ |#1|)) (-15 -1474 ((-107) $)) (-15 -2921 (|#1| $))))
-((-2525 (((-300) (-1073) (-874 (-517))) 22)) (-2180 (((-300) (-1073) (-874 (-517))) 26)) (-3486 (((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517)))) 25) (((-300) (-1073) (-874 (-517)) (-874 (-517))) 23)) (-3684 (((-300) (-1073) (-874 (-517))) 30)))
-(((-302) (-10 -7 (-15 -2525 ((-300) (-1073) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-874 (-517)) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -2180 ((-300) (-1073) (-874 (-517)))) (-15 -3684 ((-300) (-1073) (-874 (-517)))))) (T -302))
-((-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(-10 -7 (-15 -2525 ((-300) (-1073) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-874 (-517)) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -2180 ((-300) (-1073) (-874 (-517)))) (-15 -3684 ((-300) (-1073) (-874 (-517)))))
-((-1893 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31)))
-(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1130 |#5|) (-1130 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1130 *9)) (-4 *11 (-1130 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))))
-(-10 -7 (-15 -1893 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|))))
-((-1470 (((-107) $) 14)))
-(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1470 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304))
-NIL
-(-10 -8 (-15 -1470 ((-107) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3225 (($ $) 26)) (-1470 (((-107) $) 25)) (-3985 (((-1056) $) 9)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-3206 (((-1021) $) 10)) (-3220 (((-3 |#4| "failed") $) 24)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
-(((-305 |#1| |#2| |#3| |#4|) (-1184) (-333) (-1130 |t#1|) (-1130 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305))
-((-4014 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-1966 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-1966 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-1966 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1130 *2)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3402 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-3225 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-3220 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-1966 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -4014 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -1966 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -1966 ($ |t#4|)) (-15 -1966 ($ |t#1| |t#1|)) (-15 -1966 ($ |t#1| |t#1| (-517))) (-15 -2132 ((-2 (|:| -3402 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3225 ($ $)) (-15 -1470 ((-107) $)) (-15 -3220 ((-3 |t#4| "failed") $)) (-15 -1966 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+((-3039 (($ $) 52)) (-2253 (($ $ |#2| |#3| $) 14)) (-3751 (($ (-1 |#3| |#3|) $) 35)) (-4134 (((-107) $) 27)) (-4144 ((|#2| $) 29)) (-2349 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-1423 ((|#2| $) 48)) (-2834 (((-583 |#2|) $) 38)) (-2962 (($ $ $ (-703)) 23)) (-1649 (($ $ |#2|) 42)))
+(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -3039 (|#1| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2962 (|#1| |#1| |#1| (-703))) (-15 -2253 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2834 ((-583 |#2|) |#1|)) (-15 -4144 (|#2| |#1|)) (-15 -4134 ((-107) |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1649 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-961) (-724)) (T -295))
+NIL
+(-10 -8 (-15 -3039 (|#1| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2962 (|#1| |#1| |#1| (-703))) (-15 -2253 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2834 ((-583 |#2|) |#1|)) (-15 -4144 (|#2| |#1|)) (-15 -4134 ((-107) |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1649 (|#1| |#1| |#2|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 90 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3076 (((-517) $) 91 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 86)) (-1217 (($ $) 60)) (-1568 (((-3 $ "failed") $) 34)) (-3039 (($ $) 75 (|has| |#1| (-421)))) (-2253 (($ $ |#1| |#2| $) 79)) (-2955 (((-107) $) 31)) (-2091 (((-703) $) 82)) (-1331 (((-107) $) 62)) (-1343 (($ |#1| |#2|) 61)) (-2672 ((|#2| $) 81)) (-3751 (($ (-1 |#2| |#2|) $) 80)) (-1857 (($ (-1 |#1| |#1|) $) 63)) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4134 (((-107) $) 85)) (-4144 ((|#1| $) 84)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-4007 ((|#2| $) 64)) (-1423 ((|#1| $) 76 (|has| |#1| (-421)))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3763 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-2834 (((-583 |#1|) $) 83)) (-3086 ((|#1| $ |#2|) 59)) (-1589 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-2962 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-296 |#1| |#2|) (-1185) (-961) (-724)) (T -296))
+((-4134 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-2253 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-2962 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2349 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3039 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))))
+(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -4134 ((-107) $)) (-15 -4144 (|t#1| $)) (-15 -2834 ((-583 |t#1|) $)) (-15 -2091 ((-703) $)) (-15 -2672 (|t#2| $)) (-15 -3751 ($ (-1 |t#2| |t#2|) $)) (-15 -2253 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -2962 ($ $ $ (-703))) |noBranch|) (IF (|has| |t#1| (-509)) (-15 -2349 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -1423 (|t#1| $)) (-15 -3039 ($ $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-1718 (((-107) (-107)) NIL)) (-2307 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-2573 (($ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2111 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2446 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-2548 (($ $ (-517)) NIL)) (-1214 (((-703) $) NIL)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3366 (($ (-703) |#1|) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2581 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3816 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2454 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3388 (($ (-583 |#1|)) NIL)) (-1631 ((|#1| $) NIL (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-1628 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-1286 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2337 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -3388 ($ (-583 |#1|))) (-15 -1214 ((-703) $)) (-15 -2548 ($ $ (-517))) (-15 -1718 ((-107) (-107))))) (-1109)) (T -297))
+((-3388 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-297 *3)))) (-1214 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) (-2548 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))))
+(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -3388 ($ (-583 |#1|))) (-15 -1214 ((-703) $)) (-15 -2548 ($ $ (-517))) (-15 -1718 ((-107) (-107)))))
+((-1416 (((-107) $) 42)) (-2360 (((-703)) 22)) (-1470 ((|#2| $) 46) (($ $ (-843)) 102)) (-1598 (((-703)) 96)) (-3291 (($ (-1154 |#2|)) 20)) (-2327 (((-107) $) 114)) (-2289 ((|#2| $) 48) (($ $ (-843)) 100)) (-3523 (((-1070 |#2|) $) NIL) (((-1070 $) $ (-843)) 93)) (-3740 (((-1070 |#2|) $) 83)) (-3153 (((-1070 |#2|) $) 80) (((-3 (-1070 |#2|) "failed") $ $) 77)) (-2426 (($ $ (-1070 |#2|)) 53)) (-3738 (((-765 (-843))) 28) (((-843)) 43)) (-2586 (((-125)) 25)) (-4007 (((-765 (-843)) $) 30) (((-843) $) 115)) (-2379 (($) 108)) (-2575 (((-1154 |#2|) $) NIL) (((-623 |#2|) (-1154 $)) 39)) (-1589 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1223 (((-107) $) 41)))
+(((-298 |#1| |#2|) (-10 -8 (-15 -1589 ((-3 |#1| "failed") |#1|)) (-15 -1598 ((-703))) (-15 -1589 (|#1| |#1|)) (-15 -3153 ((-3 (-1070 |#2|) "failed") |#1| |#1|)) (-15 -3153 ((-1070 |#2|) |#1|)) (-15 -3740 ((-1070 |#2|) |#1|)) (-15 -2426 (|#1| |#1| (-1070 |#2|))) (-15 -2327 ((-107) |#1|)) (-15 -2379 (|#1|)) (-15 -1470 (|#1| |#1| (-843))) (-15 -2289 (|#1| |#1| (-843))) (-15 -3523 ((-1070 |#1|) |#1| (-843))) (-15 -1470 (|#2| |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -4007 ((-843) |#1|)) (-15 -3738 ((-843))) (-15 -3523 ((-1070 |#2|) |#1|)) (-15 -3291 (|#1| (-1154 |#2|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1|)) (-15 -2360 ((-703))) (-15 -3738 ((-765 (-843)))) (-15 -4007 ((-765 (-843)) |#1|)) (-15 -1416 ((-107) |#1|)) (-15 -1223 ((-107) |#1|)) (-15 -2586 ((-125)))) (-299 |#2|) (-333)) (T -298))
+((-2586 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3738 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2360 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3738 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-1598 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))))
+(-10 -8 (-15 -1589 ((-3 |#1| "failed") |#1|)) (-15 -1598 ((-703))) (-15 -1589 (|#1| |#1|)) (-15 -3153 ((-3 (-1070 |#2|) "failed") |#1| |#1|)) (-15 -3153 ((-1070 |#2|) |#1|)) (-15 -3740 ((-1070 |#2|) |#1|)) (-15 -2426 (|#1| |#1| (-1070 |#2|))) (-15 -2327 ((-107) |#1|)) (-15 -2379 (|#1|)) (-15 -1470 (|#1| |#1| (-843))) (-15 -2289 (|#1| |#1| (-843))) (-15 -3523 ((-1070 |#1|) |#1| (-843))) (-15 -1470 (|#2| |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -4007 ((-843) |#1|)) (-15 -3738 ((-843))) (-15 -3523 ((-1070 |#2|) |#1|)) (-15 -3291 (|#1| (-1154 |#2|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1|)) (-15 -2360 ((-703))) (-15 -3738 ((-765 (-843)))) (-15 -4007 ((-765 (-843)) |#1|)) (-15 -1416 ((-107) |#1|)) (-15 -1223 ((-107) |#1|)) (-15 -2586 ((-125))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1416 (((-107) $) 94)) (-2360 (((-703)) 90)) (-1470 ((|#1| $) 140) (($ $ (-843)) 137 (|has| |#1| (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3765 (((-107) $ $) 59)) (-1598 (((-703)) 112 (|has| |#1| (-338)))) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#1| "failed") $) 101)) (-3076 ((|#1| $) 100)) (-3291 (($ (-1154 |#1|)) 146)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-3098 (($) 109 (|has| |#1| (-338)))) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-3493 (($) 124 (|has| |#1| (-338)))) (-1337 (((-107) $) 125 (|has| |#1| (-338)))) (-2990 (($ $ (-703)) 87 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2965 (((-107) $) 71)) (-1921 (((-843) $) 127 (|has| |#1| (-338))) (((-765 (-843)) $) 84 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2955 (((-107) $) 31)) (-1441 (($) 135 (|has| |#1| (-338)))) (-2327 (((-107) $) 134 (|has| |#1| (-338)))) (-2289 ((|#1| $) 141) (($ $ (-843)) 138 (|has| |#1| (-338)))) (-3744 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3523 (((-1070 |#1|) $) 145) (((-1070 $) $ (-843)) 139 (|has| |#1| (-338)))) (-2903 (((-843) $) 110 (|has| |#1| (-338)))) (-3740 (((-1070 |#1|) $) 131 (|has| |#1| (-338)))) (-3153 (((-1070 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-2426 (($ $ (-1070 |#1|)) 132 (|has| |#1| (-338)))) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-2663 (($) 114 (|has| |#1| (-338)) CONST)) (-3353 (($ (-843)) 111 (|has| |#1| (-338)))) (-2039 (((-107) $) 93)) (-3094 (((-1021) $) 10)) (-3107 (($) 133 (|has| |#1| (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 121 (|has| |#1| (-338)))) (-3693 (((-388 $) $) 74)) (-3738 (((-765 (-843))) 91) (((-843)) 143)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-3654 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2586 (((-125)) 99)) (-1699 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-4007 (((-765 (-843)) $) 92) (((-843) $) 142)) (-1457 (((-1070 |#1|)) 144)) (-3788 (($) 123 (|has| |#1| (-338)))) (-2379 (($) 136 (|has| |#1| (-338)))) (-2575 (((-1154 |#1|) $) 148) (((-623 |#1|) (-1154 $)) 147)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-1589 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-703)) 29)) (-3809 (((-1154 $)) 150) (((-1154 $) (-843)) 149)) (-3767 (((-107) $ $) 39)) (-1223 (((-107) $) 95)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2496 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-2553 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 64) (($ $ |#1|) 98)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-299 |#1|) (-1185) (-333)) (T -299))
+((-3809 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1154 *1)) (-4 *1 (-299 *3)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1154 *1)) (-4 *1 (-299 *4)))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1154 *3)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-3291 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1070 *3)))) (-1457 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1070 *3)))) (-3738 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-3523 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1070 *1)) (-4 *1 (-299 *4)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1470 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-2379 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-1441 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-3107 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))) (-3153 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))))
+(-13 (-1171 |t#1|) (-952 |t#1|) (-10 -8 (-15 -3809 ((-1154 $))) (-15 -3809 ((-1154 $) (-843))) (-15 -2575 ((-1154 |t#1|) $)) (-15 -2575 ((-623 |t#1|) (-1154 $))) (-15 -3291 ($ (-1154 |t#1|))) (-15 -3523 ((-1070 |t#1|) $)) (-15 -1457 ((-1070 |t#1|))) (-15 -3738 ((-843))) (-15 -4007 ((-843) $)) (-15 -2289 (|t#1| $)) (-15 -1470 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -3523 ((-1070 $) $ (-843))) (-15 -2289 ($ $ (-843))) (-15 -1470 ($ $ (-843))) (-15 -2379 ($)) (-15 -1441 ($)) (-15 -2327 ((-107) $)) (-15 -3107 ($)) (-15 -2426 ($ $ (-1070 |t#1|))) (-15 -3740 ((-1070 |t#1|) $)) (-15 -3153 ((-1070 |t#1|) $)) (-15 -3153 ((-3 (-1070 |t#1|) "failed") $ $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3763 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1171 |#1|) . T) ((-333) . T) ((-372) -3763 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-338)) ((-1113) . T) ((-1161 |#1|) . T))
+((-2571 (((-107) $ $) NIL)) (-3797 (($ (-1073) $) 88)) (-3583 (($) 76)) (-1353 (((-1021) (-1021)) 11)) (-2240 (($) 77)) (-4047 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-4081 (($ (-1073) $) 89)) (-4021 (($ (-583 (-787))) 79)) (-2251 (((-1159) $) 73)) (-2483 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1264 (($ (-1021)) 45)) (-3877 (((-1007) $) 25)) (-3843 (($ (-996 (-874 (-517))) $) 85) (($ (-996 (-874 (-517))) (-874 (-517)) $) 86)) (-4157 (($ (-1021)) 87)) (-2453 (($ (-1073) $) 110) (($ (-1073) $ $) 111)) (-2407 (($ (-1074) (-583 (-1074))) 75)) (-2988 (($ (-1057)) 82) (($ (-583 (-1057))) 80)) (-2182 (((-787) $) 113)) (-2954 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1546 (-107)) (|:| -3088 (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -1495 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1211 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2244 (($ (-1057)) 182)) (-2529 (($ (-583 $)) 109)) (-3082 (($ (-1074) (-1057)) 115) (($ (-1074) (-286 (-634))) 155) (($ (-1074) (-286 (-632))) 156) (($ (-1074) (-286 (-627))) 157) (($ (-1074) (-623 (-634))) 118) (($ (-1074) (-623 (-632))) 121) (($ (-1074) (-623 (-627))) 124) (($ (-1074) (-1154 (-634))) 127) (($ (-1074) (-1154 (-632))) 130) (($ (-1074) (-1154 (-627))) 133) (($ (-1074) (-623 (-286 (-634)))) 136) (($ (-1074) (-623 (-286 (-632)))) 139) (($ (-1074) (-623 (-286 (-627)))) 142) (($ (-1074) (-1154 (-286 (-634)))) 145) (($ (-1074) (-1154 (-286 (-632)))) 148) (($ (-1074) (-1154 (-286 (-627)))) 151) (($ (-1074) (-583 (-874 (-517))) (-286 (-634))) 152) (($ (-1074) (-583 (-874 (-517))) (-286 (-632))) 153) (($ (-1074) (-583 (-874 (-517))) (-286 (-627))) 154) (($ (-1074) (-286 (-517))) 179) (($ (-1074) (-286 (-349))) 180) (($ (-1074) (-286 (-153 (-349)))) 181) (($ (-1074) (-623 (-286 (-517)))) 160) (($ (-1074) (-623 (-286 (-349)))) 163) (($ (-1074) (-623 (-286 (-153 (-349))))) 166) (($ (-1074) (-1154 (-286 (-517)))) 169) (($ (-1074) (-1154 (-286 (-349)))) 172) (($ (-1074) (-1154 (-286 (-153 (-349))))) 175) (($ (-1074) (-583 (-874 (-517))) (-286 (-517))) 176) (($ (-1074) (-583 (-874 (-517))) (-286 (-349))) 177) (($ (-1074) (-583 (-874 (-517))) (-286 (-153 (-349)))) 178)) (-1539 (((-107) $ $) NIL)))
+(((-300) (-13 (-1003) (-10 -8 (-15 -2182 ((-787) $)) (-15 -3843 ($ (-996 (-874 (-517))) $)) (-15 -3843 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -3797 ($ (-1073) $)) (-15 -4081 ($ (-1073) $)) (-15 -1264 ($ (-1021))) (-15 -4157 ($ (-1021))) (-15 -2988 ($ (-1057))) (-15 -2988 ($ (-583 (-1057)))) (-15 -2244 ($ (-1057))) (-15 -4047 ($)) (-15 -4047 ($ (-286 (-632)))) (-15 -4047 ($ (-286 (-634)))) (-15 -4047 ($ (-286 (-627)))) (-15 -4047 ($ (-286 (-349)))) (-15 -4047 ($ (-286 (-517)))) (-15 -4047 ($ (-286 (-153 (-349))))) (-15 -2453 ($ (-1073) $)) (-15 -2453 ($ (-1073) $ $)) (-15 -3082 ($ (-1074) (-1057))) (-15 -3082 ($ (-1074) (-286 (-634)))) (-15 -3082 ($ (-1074) (-286 (-632)))) (-15 -3082 ($ (-1074) (-286 (-627)))) (-15 -3082 ($ (-1074) (-623 (-634)))) (-15 -3082 ($ (-1074) (-623 (-632)))) (-15 -3082 ($ (-1074) (-623 (-627)))) (-15 -3082 ($ (-1074) (-1154 (-634)))) (-15 -3082 ($ (-1074) (-1154 (-632)))) (-15 -3082 ($ (-1074) (-1154 (-627)))) (-15 -3082 ($ (-1074) (-623 (-286 (-634))))) (-15 -3082 ($ (-1074) (-623 (-286 (-632))))) (-15 -3082 ($ (-1074) (-623 (-286 (-627))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-634))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-632))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-627))))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-634)))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-632)))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-627)))) (-15 -3082 ($ (-1074) (-286 (-517)))) (-15 -3082 ($ (-1074) (-286 (-349)))) (-15 -3082 ($ (-1074) (-286 (-153 (-349))))) (-15 -3082 ($ (-1074) (-623 (-286 (-517))))) (-15 -3082 ($ (-1074) (-623 (-286 (-349))))) (-15 -3082 ($ (-1074) (-623 (-286 (-153 (-349)))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-517))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-349))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-153 (-349)))))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-517)))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-349)))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2529 ($ (-583 $))) (-15 -3583 ($)) (-15 -2240 ($)) (-15 -4021 ($ (-583 (-787)))) (-15 -2407 ($ (-1074) (-583 (-1074)))) (-15 -2483 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2954 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1546 (-107)) (|:| -3088 (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -1495 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1211 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -2251 ((-1159) $)) (-15 -3877 ((-1007) $)) (-15 -1353 ((-1021) (-1021)))))) (T -300))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-3843 (*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))) (-3843 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) (-3797 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) (-1264 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-2988 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-300)))) (-2988 (*1 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-300)))) (-2244 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-300)))) (-4047 (*1 *1) (-5 *1 (-300))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2453 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) (-2453 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1057)) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-634))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-632))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-627))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-634)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-632)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-627)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-517)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-349)))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-3082 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-3583 (*1 *1) (-5 *1 (-300))) (-2240 (*1 *1) (-5 *1 (-300))) (-4021 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-2407 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1074)) (-5 *1 (-300)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -1546 (-107)) (|:| -3088 (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -1495 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1211 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-300)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ((-787) $)) (-15 -3843 ($ (-996 (-874 (-517))) $)) (-15 -3843 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -3797 ($ (-1073) $)) (-15 -4081 ($ (-1073) $)) (-15 -1264 ($ (-1021))) (-15 -4157 ($ (-1021))) (-15 -2988 ($ (-1057))) (-15 -2988 ($ (-583 (-1057)))) (-15 -2244 ($ (-1057))) (-15 -4047 ($)) (-15 -4047 ($ (-286 (-632)))) (-15 -4047 ($ (-286 (-634)))) (-15 -4047 ($ (-286 (-627)))) (-15 -4047 ($ (-286 (-349)))) (-15 -4047 ($ (-286 (-517)))) (-15 -4047 ($ (-286 (-153 (-349))))) (-15 -2453 ($ (-1073) $)) (-15 -2453 ($ (-1073) $ $)) (-15 -3082 ($ (-1074) (-1057))) (-15 -3082 ($ (-1074) (-286 (-634)))) (-15 -3082 ($ (-1074) (-286 (-632)))) (-15 -3082 ($ (-1074) (-286 (-627)))) (-15 -3082 ($ (-1074) (-623 (-634)))) (-15 -3082 ($ (-1074) (-623 (-632)))) (-15 -3082 ($ (-1074) (-623 (-627)))) (-15 -3082 ($ (-1074) (-1154 (-634)))) (-15 -3082 ($ (-1074) (-1154 (-632)))) (-15 -3082 ($ (-1074) (-1154 (-627)))) (-15 -3082 ($ (-1074) (-623 (-286 (-634))))) (-15 -3082 ($ (-1074) (-623 (-286 (-632))))) (-15 -3082 ($ (-1074) (-623 (-286 (-627))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-634))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-632))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-627))))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-634)))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-632)))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-627)))) (-15 -3082 ($ (-1074) (-286 (-517)))) (-15 -3082 ($ (-1074) (-286 (-349)))) (-15 -3082 ($ (-1074) (-286 (-153 (-349))))) (-15 -3082 ($ (-1074) (-623 (-286 (-517))))) (-15 -3082 ($ (-1074) (-623 (-286 (-349))))) (-15 -3082 ($ (-1074) (-623 (-286 (-153 (-349)))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-517))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-349))))) (-15 -3082 ($ (-1074) (-1154 (-286 (-153 (-349)))))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-517)))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-349)))) (-15 -3082 ($ (-1074) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2529 ($ (-583 $))) (-15 -3583 ($)) (-15 -2240 ($)) (-15 -4021 ($ (-583 (-787)))) (-15 -2407 ($ (-1074) (-583 (-1074)))) (-15 -2483 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2954 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1546 (-107)) (|:| -3088 (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -1495 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1211 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -2251 ((-1159) $)) (-15 -3877 ((-1007) $)) (-15 -1353 ((-1021) (-1021)))))
+((-2571 (((-107) $ $) NIL)) (-3892 (((-107) $) 11)) (-1685 (($ |#1|) 8)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1698 (($ |#1|) 9)) (-2182 (((-787) $) 17)) (-1516 ((|#1| $) 12)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 19)))
+(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -1685 ($ |#1|)) (-15 -1698 ($ |#1|)) (-15 -3892 ((-107) $)) (-15 -1516 (|#1| $)))) (-779)) (T -301))
+((-1685 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1698 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-1516 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))))
+(-13 (-779) (-10 -8 (-15 -1685 ($ |#1|)) (-15 -1698 ($ |#1|)) (-15 -3892 ((-107) $)) (-15 -1516 (|#1| $))))
+((-3845 (((-300) (-1074) (-874 (-517))) 22)) (-1877 (((-300) (-1074) (-874 (-517))) 26)) (-2599 (((-300) (-1074) (-996 (-874 (-517))) (-996 (-874 (-517)))) 25) (((-300) (-1074) (-874 (-517)) (-874 (-517))) 23)) (-3968 (((-300) (-1074) (-874 (-517))) 30)))
+(((-302) (-10 -7 (-15 -3845 ((-300) (-1074) (-874 (-517)))) (-15 -2599 ((-300) (-1074) (-874 (-517)) (-874 (-517)))) (-15 -2599 ((-300) (-1074) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -1877 ((-300) (-1074) (-874 (-517)))) (-15 -3968 ((-300) (-1074) (-874 (-517)))))) (T -302))
+((-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(-10 -7 (-15 -3845 ((-300) (-1074) (-874 (-517)))) (-15 -2599 ((-300) (-1074) (-874 (-517)) (-874 (-517)))) (-15 -2599 ((-300) (-1074) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -1877 ((-300) (-1074) (-874 (-517)))) (-15 -3968 ((-300) (-1074) (-874 (-517)))))
+((-1857 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31)))
+(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1857 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1131 |#5|) (-1131 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1131 *9)) (-4 *11 (-1131 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))))
+(-10 -7 (-15 -1857 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|))))
+((-3866 (((-107) $) 14)))
+(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3866 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1131 |#2|) (-1131 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304))
+NIL
+(-10 -8 (-15 -3866 ((-107) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-2521 (($ $) 26)) (-3866 (((-107) $) 25)) (-3865 (((-1057) $) 9)) (-4132 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-3094 (((-1021) $) 10)) (-3107 (((-3 |#4| "failed") $) 24)) (-3280 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1435 (((-2 (|:| -3306 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
+(((-305 |#1| |#2| |#3| |#4|) (-1185) (-333) (-1131 |t#1|) (-1131 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305))
+((-4132 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-3280 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-3280 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-3280 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1131 *2)) (-4 *5 (-1131 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3306 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-3107 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-3280 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -4132 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -3280 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -3280 ($ |t#4|)) (-15 -3280 ($ |t#1| |t#1|)) (-15 -3280 ($ |t#1| |t#1| (-517))) (-15 -1435 ((-2 (|:| -3306 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2521 ($ $)) (-15 -3866 ((-107) $)) (-15 -3107 ((-3 |t#4| "failed") $)) (-15 -3280 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ $) 32)) (-1470 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3651 (((-1153 |#4|) $) 124)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-3206 (((-1021) $) NIL)) (-3220 (((-3 |#4| "failed") $) 35)) (-2414 (((-1153 |#4|) $) 117)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2256 (((-787) $) 17)) (-2396 (($) 14 T CONST)) (-1547 (((-107) $ $) 20)) (-1654 (($ $) 27) (($ $ $) NIL)) (-1642 (($ $ $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23)))
-(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2414 ((-1153 |#4|) $)) (-15 -3651 ((-1153 |#4|) $)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306))
-((-2414 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-3651 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
-(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2414 ((-1153 |#4|) $)) (-15 -3651 ((-1153 |#4|) $))))
-((-2051 (($ $ (-1073) |#2|) NIL) (($ $ (-583 (-1073)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-1449 (($ $ |#2|) 11)))
-(((-307 |#1| |#2|) (-10 -8 (-15 -1449 (|#1| |#1| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-1073) |#2|))) (-308 |#2|) (-1003)) (T -307))
-NIL
-(-10 -8 (-15 -1449 (|#1| |#1| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-1073) |#2|)))
-((-1893 (($ (-1 |#1| |#1|) $) 6)) (-2051 (($ $ (-1073) |#1|) 17 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-1449 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|)))))
-(((-308 |#1|) (-1184) (-1003)) (T -308))
-((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))))
-(-13 (-10 -8 (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |noBranch|) (IF (|has| |t#1| (-478 (-1073) |t#1|)) (-6 (-478 (-1073) |t#1|)) |noBranch|)))
-(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) NIL)) (-1636 (((-107)) 89) (((-107) (-107)) 90)) (-3726 (((-583 (-556 $)) $) NIL)) (-1865 (($ $) NIL)) (-1721 (($ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3766 (($ $) NIL)) (-1839 (($ $) NIL)) (-1701 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 69) (((-3 $ "failed") (-1073)) 95) (((-3 $ "failed") (-286 (-517))) 56 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-377 (-874 (-517)))) 62 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-874 (-517))) 57 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-286 (-349))) 87 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-377 (-874 (-349)))) 80 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-874 (-349))) 75 (|has| |#3| (-952 (-349))))) (-3189 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 70) (($ (-1073)) 96) (($ (-286 (-517))) 58 (|has| |#3| (-952 (-517)))) (($ (-377 (-874 (-517)))) 63 (|has| |#3| (-952 (-517)))) (($ (-874 (-517))) 59 (|has| |#3| (-952 (-517)))) (($ (-286 (-349))) 88 (|has| |#3| (-952 (-349)))) (($ (-377 (-874 (-349)))) 81 (|has| |#3| (-952 (-349)))) (($ (-874 (-349))) 77 (|has| |#3| (-952 (-349))))) (-3621 (((-3 $ "failed") $) NIL)) (-2645 (($) 10)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1607 (((-1069 $) (-556 $)) NIL (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-3720 (($ $) 92)) (-1867 (($ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) 91) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-2624 (($ $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL)) (-2135 (($ $) NIL (|has| $ (-961)))) (-1853 (($ $) NIL)) (-1711 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 94)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) NIL)) (-1788 (($ $) NIL)) (-1765 (($ $) NIL)) (-1777 (($ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 93 T CONST)) (-2409 (($) 22 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
-(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1073)) (-10 -8 (-15 -3189 ($ (-286 |#3|))) (-15 -1772 ((-3 $ "failed") (-286 |#3|))) (-15 -3189 ($ (-1073))) (-15 -1772 ((-3 $ "failed") (-1073))) (-15 -2256 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517))))) |noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349))))) |noBranch|) (-15 -3710 ($ $)) (-15 -3766 ($ $)) (-15 -2624 ($ $)) (-15 -1867 ($ $)) (-15 -3720 ($ $)) (-15 -1701 ($ $)) (-15 -1711 ($ $)) (-15 -1721 ($ $)) (-15 -1765 ($ $)) (-15 -1777 ($ $)) (-15 -1788 ($ $)) (-15 -1839 ($ $)) (-15 -1853 ($ $)) (-15 -1865 ($ $)) (-15 -2645 ($)) (-15 -1364 ((-583 (-1073)) $)) (-15 -1636 ((-107))) (-15 -1636 ((-107) (-107))))) (-583 (-1073)) (-583 (-1073)) (-357)) (T -309))
-((-3189 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3710 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-2624 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1867 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-3720 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1711 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1721 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1765 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1777 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1788 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1839 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1865 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-2645 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-1636 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))))
-(-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1073)) (-10 -8 (-15 -3189 ($ (-286 |#3|))) (-15 -1772 ((-3 $ "failed") (-286 |#3|))) (-15 -3189 ($ (-1073))) (-15 -1772 ((-3 $ "failed") (-1073))) (-15 -2256 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517))))) |noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349))))) |noBranch|) (-15 -3710 ($ $)) (-15 -3766 ($ $)) (-15 -2624 ($ $)) (-15 -1867 ($ $)) (-15 -3720 ($ $)) (-15 -1701 ($ $)) (-15 -1711 ($ $)) (-15 -1721 ($ $)) (-15 -1765 ($ $)) (-15 -1777 ($ $)) (-15 -1788 ($ $)) (-15 -1839 ($ $)) (-15 -1853 ($ $)) (-15 -1865 ($ $)) (-15 -2645 ($)) (-15 -1364 ((-583 (-1073)) $)) (-15 -1636 ((-107))) (-15 -1636 ((-107) (-107)))))
-((-1893 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|))) (-1112) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1112) (-1130 |#5|) (-1130 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1112)) (-4 *8 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *9 (-1130 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1130 (-377 *9))))))
-(-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2039 (((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) $) 37)) (-1967 (($ (-1153 (-377 |#3|)) (-1153 $)) NIL) (($ (-1153 (-377 |#3|))) NIL) (($ (-1153 |#3|) |#3|) 158)) (-3843 (((-1153 $) (-1153 $)) 142)) (-3407 (((-583 (-583 |#2|))) 115)) (-3384 (((-107) |#2| |#2|) 71)) (-3534 (($ $) 136)) (-1790 (((-703)) 30)) (-1870 (((-1153 $) (-1153 $)) 195)) (-2043 (((-583 (-874 |#2|)) (-1073)) 108)) (-2491 (((-107) $) 155)) (-3291 (((-107) $) 24) (((-107) $ |#2|) 28) (((-107) $ |#3|) 199)) (-3854 (((-3 |#3| "failed")) 48)) (-1786 (((-703)) 167)) (-1449 ((|#2| $ |#2| |#2|) 129)) (-3259 (((-3 |#3| "failed")) 66)) (-3127 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3696 (((-1153 $) (-1153 $)) 148)) (-3148 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-4065 (((-107)) 32)))
-(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3407 ((-583 (-583 |#2|)))) (-15 -2043 ((-583 (-874 |#2|)) (-1073))) (-15 -3148 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3854 ((-3 |#3| "failed"))) (-15 -3259 ((-3 |#3| "failed"))) (-15 -1449 (|#2| |#1| |#2| |#2|)) (-15 -3534 (|#1| |#1|)) (-15 -1967 (|#1| (-1153 |#3|) |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3291 ((-107) |#1| |#3|)) (-15 -3291 ((-107) |#1| |#2|)) (-15 -2039 ((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3843 ((-1153 |#1|) (-1153 |#1|))) (-15 -1870 ((-1153 |#1|) (-1153 |#1|))) (-15 -3696 ((-1153 |#1|) (-1153 |#1|))) (-15 -3291 ((-107) |#1|)) (-15 -2491 ((-107) |#1|)) (-15 -3384 ((-107) |#2| |#2|)) (-15 -4065 ((-107))) (-15 -1786 ((-703))) (-15 -1790 ((-703))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -1967 (|#1| (-1153 (-377 |#3|)))) (-15 -1967 (|#1| (-1153 (-377 |#3|)) (-1153 |#1|)))) (-312 |#2| |#3| |#4|) (-1112) (-1130 |#2|) (-1130 (-377 |#3|))) (T -311))
-((-1790 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-1786 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-4065 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *3 (-1112)) (-4 *5 (-1130 *3)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-3259 (*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-3854 (*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-3407 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))))
-(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3407 ((-583 (-583 |#2|)))) (-15 -2043 ((-583 (-874 |#2|)) (-1073))) (-15 -3148 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3854 ((-3 |#3| "failed"))) (-15 -3259 ((-3 |#3| "failed"))) (-15 -1449 (|#2| |#1| |#2| |#2|)) (-15 -3534 (|#1| |#1|)) (-15 -1967 (|#1| (-1153 |#3|) |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3291 ((-107) |#1| |#3|)) (-15 -3291 ((-107) |#1| |#2|)) (-15 -2039 ((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3843 ((-1153 |#1|) (-1153 |#1|))) (-15 -1870 ((-1153 |#1|) (-1153 |#1|))) (-15 -3696 ((-1153 |#1|) (-1153 |#1|))) (-15 -3291 ((-107) |#1|)) (-15 -2491 ((-107) |#1|)) (-15 -3384 ((-107) |#2| |#2|)) (-15 -4065 ((-107))) (-15 -1786 ((-703))) (-15 -1790 ((-703))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -1967 (|#1| (-1153 (-377 |#3|)))) (-15 -1967 (|#1| (-1153 (-377 |#3|)) (-1153 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 196)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-1213 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) 46) (((-623 (-377 |#2|))) 61)) (-1472 (((-377 |#2|) $) 52)) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) 213)) (-1639 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3189 (((-517) $) 170 (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) 165)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) 48) (($ (-1153 (-377 |#2|))) 64) (($ (-1153 |#2|) |#2|) 189)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-3843 (((-1153 $) (-1153 $)) 201)) (-3225 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-3407 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) 217)) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) 210)) (-2666 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2497 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-3534 (($ $) 188)) (-3442 (($) 149 (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) 138 (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) 31)) (-1790 (((-703)) 220)) (-1870 (((-1153 $) (-1153 $)) 202)) (-1506 (((-377 |#2|) $) 51)) (-2043 (((-583 (-874 |#1|)) (-1073)) 183 (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) 89 (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) 156)) (-1365 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) 9)) (-1909 (((-623 (-377 |#2|))) 197)) (-2041 (((-623 (-377 |#2|))) 199)) (-4118 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 194)) (-3580 (((-623 (-377 |#2|))) 198)) (-1872 (((-623 (-377 |#2|))) 200)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 195)) (-1924 (((-1153 $)) 206)) (-2216 (((-1153 $)) 207)) (-2491 (((-107) $) 205)) (-3291 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-2836 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) 185)) (-3206 (((-1021) $) 10)) (-1786 (((-703)) 219)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) 187)) (-3259 (((-3 |#2| "failed")) 186)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) 47) (((-377 |#2|)) 60)) (-1620 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1073)) (-583 (-703))) 130 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073) (-703)) 131 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1073))) 132 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073)) 133 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 159)) (-1766 (($) 148 (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) 50) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) 49) (((-1153 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1153 $)) 65)) (-3645 (((-1153 (-377 |#2|)) $) 63) (($ (-1153 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) 203)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3807 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-952 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-1328 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) 45)) (-2961 (((-703)) 29)) (-2025 (((-107)) 216)) (-2992 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-1753 (((-1153 $)) 67)) (-3329 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-4065 (((-107)) 218)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) 126 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073) (-703)) 127 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1073))) 128 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073)) 129 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333)))))
-(((-312 |#1| |#2| |#3|) (-1184) (-1112) (-1130 |t#1|) (-1130 (-377 |t#2|))) (T -312))
-((-1790 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) (-1786 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) (-4065 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2025 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2992 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2992 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2752 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-1639 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-1639 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2866 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2666 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2666 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2216 (*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) (-1924 (*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1872 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2041 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3580 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-1909 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))) (-3454 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-3291 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3291 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) (-1449 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) (-3259 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))) (-3854 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-1112)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))) (-3407 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
-(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -1790 ((-703))) (-15 -1786 ((-703))) (-15 -4065 ((-107))) (-15 -3384 ((-107) |t#1| |t#1|)) (-15 -2025 ((-107))) (-15 -2992 ((-107) |t#1|)) (-15 -2992 ((-107) |t#2|)) (-15 -2752 ((-107))) (-15 -1639 ((-107) |t#1|)) (-15 -1639 ((-107) |t#2|)) (-15 -2866 ((-107))) (-15 -2666 ((-107) |t#1|)) (-15 -2666 ((-107) |t#2|)) (-15 -2216 ((-1153 $))) (-15 -1924 ((-1153 $))) (-15 -2491 ((-107) $)) (-15 -3291 ((-107) $)) (-15 -3696 ((-1153 $) (-1153 $))) (-15 -1870 ((-1153 $) (-1153 $))) (-15 -3843 ((-1153 $) (-1153 $))) (-15 -1872 ((-623 (-377 |t#2|)))) (-15 -2041 ((-623 (-377 |t#2|)))) (-15 -3580 ((-623 (-377 |t#2|)))) (-15 -1909 ((-623 (-377 |t#2|)))) (-15 -2039 ((-2 (|:| |num| (-1153 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1967 ($ (-1153 |t#2|) |t#2|)) (-15 -1784 ((-2 (|:| |num| (-1153 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3454 ($ (-1153 |t#2|) |t#2|)) (-15 -1920 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3291 ((-107) $ |t#1|)) (-15 -3291 ((-107) $ |t#2|)) (-15 -3127 ($ $ (-1 |t#2| |t#2|))) (-15 -1967 ($ (-1153 |t#2|) |t#2|)) (-15 -3534 ($ $)) (-15 -1449 (|t#1| $ |t#1| |t#1|)) (-15 -3259 ((-3 |t#2| "failed"))) (-15 -3854 ((-3 |t#2| "failed"))) (-15 -3148 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -2043 ((-583 (-874 |t#1|)) (-1073))) |noBranch|) (IF (|has| |t#1| (-338)) (-15 -3407 ((-583 (-583 |t#1|)))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 (-377 |#2|)) . T) ((-37 $) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 (-377 |#2|) (-377 |#2|)) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 (-377 |#2|)) |has| (-377 |#2|) (-333)) ((-207) -3807 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3807 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 (-377 |#2|) |#3|) . T) ((-379 (-377 |#2|) |#3|) . T) ((-347 (-377 |#2|)) . T) ((-381 (-377 |#2|)) . T) ((-421) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 |#2|)) . T) ((-585 $) . T) ((-579 (-377 |#2|)) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 (-377 |#2|)) . T) ((-650 $) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 (-377 |#2|) |#3|) . T) ((-659) . T) ((-822 (-1073)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) ((-842) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-952 (-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) ((-952 (-377 |#2|)) . T) ((-952 (-517)) |has| (-377 |#2|) (-952 (-517))) ((-967 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-967 (-377 |#2|)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| (-377 |#2|) (-319)) ((-1112) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
-(((-313 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-843) (-843)) (T -313))
-((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -3978 ((-879 (-1021))))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 46)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 113)) (-3189 ((|#1| $) 84)) (-1967 (($ (-1153 |#1|)) 102)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 96 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 128 (|has| |#1| (-338)))) (-3391 (((-107) $) 49 (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) 47 (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 130 (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 88) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 138 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 145)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 70 (|has| |#1| (-338)))) (-3202 (((-107) $) 116)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) 44)) (-3220 (($) 126 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 91 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) 67) (((-843)) 68)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) 129 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 123 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) 94)) (-1766 (($) 127 (|has| |#1| (-338)))) (-1224 (($) 135 (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 59) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 141) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 137)) (-1753 (((-1153 $)) 115) (((-1153 $) (-843)) 72)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 32 T CONST)) (-2409 (($) 19 T CONST)) (-4103 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 48)) (-1667 (($ $ $) 143) (($ $ |#1|) 144)) (-1654 (($ $) 125) (($ $ $) NIL)) (-1642 (($ $ $) 61)) (** (($ $ (-843)) 147) (($ $ (-703)) 148) (($ $ (-517)) 146)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
-(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-319) (-1069 |#1|)) (T -314))
-((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1069 *3)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021))))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-319) (-843)) (T -315))
-((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021))))))
-((-2987 (((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 40)) (-4004 (((-879 (-1021)) (-1069 |#1|)) 84)) (-2706 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|)) 77)) (-3909 (((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 85)) (-3584 (((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843)) 10)) (-3987 (((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843)) 15)))
-(((-316 |#1|) (-10 -7 (-15 -4004 ((-879 (-1021)) (-1069 |#1|))) (-15 -2706 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|))) (-15 -3909 ((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -2987 ((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3584 ((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843))) (-15 -3987 ((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843)))) (-319)) (T -316))
-((-3987 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1069 *4) (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-3584 (*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4)))))
-(-10 -7 (-15 -4004 ((-879 (-1021)) (-1069 |#1|))) (-15 -2706 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|))) (-15 -3909 ((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -2987 ((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3584 ((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843))) (-15 -3987 ((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843))))
-((-2256 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
-(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2256 (|#3| |#1|)) (-15 -2256 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317))
-((-2256 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2256 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))))
-(-10 -7 (-15 -2256 (|#3| |#1|)) (-15 -2256 (|#1| |#3|)))
-((-3391 (((-107) $) 50)) (-3972 (((-765 (-843)) $) 21) (((-843) $) 51)) (-1319 (((-3 $ "failed") $) 16)) (-2836 (($) 9)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 91)) (-1620 (((-3 (-703) "failed") $ $) 70) (((-703) $) 59)) (-3127 (($ $ (-703)) NIL) (($ $) 8)) (-1766 (($) 44)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 33)) (-1328 (((-3 $ "failed") $) 39) (($ $) 38)))
-(((-318 |#1|) (-10 -8 (-15 -3972 ((-843) |#1|)) (-15 -1620 ((-703) |#1|)) (-15 -3391 ((-107) |#1|)) (-15 -1766 (|#1|)) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -1328 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1620 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3972 ((-765 (-843)) |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)))) (-319)) (T -318))
-NIL
-(-10 -8 (-15 -3972 ((-843) |#1|)) (-15 -1620 ((-703) |#1|)) (-15 -3391 ((-107) |#1|)) (-15 -1766 (|#1|)) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -1328 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1620 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3972 ((-765 (-843)) |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1926 (((-1082 (-843) (-703)) (-517)) 93)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-1611 (((-703)) 103)) (-3092 (($) 17 T CONST)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 106)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3442 (($) 91)) (-3391 (((-107) $) 90)) (-2378 (($ $) 79) (($ $ (-703)) 78)) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 81) (((-843) $) 88)) (-3848 (((-107) $) 31)) (-1319 (((-3 $ "failed") $) 102)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1549 (((-843) $) 105)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 101 T CONST)) (-3448 (($ (-843)) 104)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 94)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-3127 (($ $ (-703)) 99) (($ $) 97)) (-1766 (($) 92)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 95)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1328 (((-3 $ "failed") $) 82) (($ $) 96)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-703)) 100) (($ $) 98)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-319) (-1184)) (T -319))
-((-1328 (*1 *1 *1) (-4 *1 (-319))) (-3870 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1153 *1)))) (-1226 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))))) (-1926 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1082 (-843) (-703))))) (-1766 (*1 *1) (-4 *1 (-319))) (-3442 (*1 *1) (-4 *1 (-319))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) (-2174 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-372) (-338) (-1049) (-207) (-10 -8 (-15 -1328 ($ $)) (-15 -3870 ((-3 (-1153 $) "failed") (-623 $))) (-15 -1226 ((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517)))))) (-15 -1926 ((-1082 (-843) (-703)) (-517))) (-15 -1766 ($)) (-15 -3442 ($)) (-15 -3391 ((-107) $)) (-15 -1620 ((-703) $)) (-15 -3972 ((-843) $)) (-15 -2174 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) . T) ((-1112) . T))
-((-4140 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-2216 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49)))
-(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $)))) (-1130 |#1|) (-379 |#1| |#2|)) (T -320))
-((-4140 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2216 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021)))))) NIL)) (-3786 (((-623 (-832 |#1|))) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
-(((-321 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 (-832 |#1|)))) (-15 -2987 ((-703))))) (-843) (-843)) (T -321))
-((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 (-832 *3)) (|:| -3448 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 (-832 |#1|)))) (-15 -2987 ((-703)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) 92) (($ $ (-843)) 90 (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 148 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) 89)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) 162 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 111)) (-3189 ((|#1| $) 91)) (-1967 (($ (-1153 |#1|)) 57)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 158 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 149 (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 97 (|has| |#1| (-338)))) (-2434 (((-107) $) 175 (|has| |#1| (-338)))) (-1506 ((|#1| $) 94) (($ $ (-843)) 93 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 188) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 133 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) 73 (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) 70 (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) 82 (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) 69 (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 191)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 136 (|has| |#1| (-338)))) (-3202 (((-107) $) 107)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 83)) (-3786 (((-623 |#1|)) 87)) (-3220 (($) 96 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 150 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) 151)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) 62)) (-2135 (((-1069 |#1|)) 152)) (-1766 (($) 132 (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 105) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 123) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 56)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 156)) (-1753 (((-1153 $)) 172) (((-1153 $) (-843)) 100)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 30 T CONST)) (-2409 (($) 22 T CONST)) (-4103 (($ $) 106 (|has| |#1| (-338))) (($ $ (-703)) 98 (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 60)) (-1667 (($ $ $) 103) (($ $ |#1|) 104)) (-1654 (($ $) 177) (($ $ $) 181)) (-1642 (($ $ $) 179)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 137)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 142) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102)))
-(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703))))) (-319) (-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (T -322))
-((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) *2)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))))
-(-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) NIL)) (-3786 (((-623 |#1|)) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703))))) (-319) (-843)) (T -323))
-((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-2521 (($ $) 32)) (-3866 (((-107) $) NIL)) (-3865 (((-1057) $) NIL)) (-1847 (((-1154 |#4|) $) 124)) (-4132 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-3094 (((-1021) $) NIL)) (-3107 (((-3 |#4| "failed") $) 35)) (-2171 (((-1154 |#4|) $) 117)) (-3280 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-1435 (((-2 (|:| -3306 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2182 (((-787) $) 17)) (-2297 (($) 14 T CONST)) (-1539 (((-107) $ $) 20)) (-1637 (($ $) 27) (($ $ $) NIL)) (-1626 (($ $ $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23)))
+(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2171 ((-1154 |#4|) $)) (-15 -1847 ((-1154 |#4|) $)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306))
+((-2171 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-1847 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
+(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2171 ((-1154 |#4|) $)) (-15 -1847 ((-1154 |#4|) $))))
+((-1979 (($ $ (-1074) |#2|) NIL) (($ $ (-583 (-1074)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-1986 (($ $ |#2|) 11)))
+(((-307 |#1| |#2|) (-10 -8 (-15 -1986 (|#1| |#1| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#2| |#2|)) (-15 -1979 (|#1| |#1| (-265 |#2|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 |#2|))) (-15 -1979 (|#1| |#1| (-1074) |#2|))) (-308 |#2|) (-1003)) (T -307))
+NIL
+(-10 -8 (-15 -1986 (|#1| |#1| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#2| |#2|)) (-15 -1979 (|#1| |#1| (-265 |#2|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 |#2|))) (-15 -1979 (|#1| |#1| (-1074) |#2|)))
+((-1857 (($ (-1 |#1| |#1|) $) 6)) (-1979 (($ $ (-1074) |#1|) 17 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-1986 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|)))))
+(((-308 |#1|) (-1185) (-1003)) (T -308))
+((-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))))
+(-13 (-10 -8 (-15 -1857 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |noBranch|) (IF (|has| |t#1| (-478 (-1074) |t#1|)) (-6 (-478 (-1074) |t#1|)) |noBranch|)))
+(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-1074)) $) NIL)) (-1726 (((-107)) 89) (((-107) (-107)) 90)) (-3656 (((-583 (-556 $)) $) NIL)) (-1834 (($ $) NIL)) (-1710 (($ $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2173 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3706 (($ $) NIL)) (-1812 (($ $) NIL)) (-1685 (($ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 69) (((-3 $ "failed") (-1074)) 95) (((-3 $ "failed") (-286 (-517))) 56 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-377 (-874 (-517)))) 62 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-874 (-517))) 57 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-286 (-349))) 87 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-377 (-874 (-349)))) 80 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-874 (-349))) 75 (|has| |#3| (-952 (-349))))) (-3076 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 70) (($ (-1074)) 96) (($ (-286 (-517))) 58 (|has| |#3| (-952 (-517)))) (($ (-377 (-874 (-517)))) 63 (|has| |#3| (-952 (-517)))) (($ (-874 (-517))) 59 (|has| |#3| (-952 (-517)))) (($ (-286 (-349))) 88 (|has| |#3| (-952 (-349)))) (($ (-377 (-874 (-349)))) 81 (|has| |#3| (-952 (-349)))) (($ (-874 (-349))) 77 (|has| |#3| (-952 (-349))))) (-1568 (((-3 $ "failed") $) NIL)) (-2475 (($) 10)) (-1187 (($ $) NIL) (($ (-583 $)) NIL)) (-4025 (((-583 (-109)) $) NIL)) (-3270 (((-109) (-109)) NIL)) (-2955 (((-107) $) NIL)) (-2393 (((-107) $) NIL (|has| $ (-952 (-517))))) (-4133 (((-1070 $) (-556 $)) NIL (|has| $ (-961)))) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 $ $) (-556 $)) NIL)) (-2726 (((-3 (-556 $) "failed") $) NIL)) (-1302 (($ $) 92)) (-1826 (($ $) NIL)) (-3865 (((-1057) $) NIL)) (-2247 (((-583 (-556 $)) $) NIL)) (-1822 (($ (-109) $) 91) (($ (-109) (-583 $)) NIL)) (-4158 (((-107) $ (-109)) NIL) (((-107) $ (-1074)) NIL)) (-1846 (((-703) $) NIL)) (-3094 (((-1021) $) NIL)) (-2754 (((-107) $ $) NIL) (((-107) $ (-1074)) NIL)) (-2459 (($ $) NIL)) (-3994 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1979 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-1986 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1662 (($ $) NIL) (($ $ $) NIL)) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL)) (-1457 (($ $) NIL (|has| $ (-961)))) (-1824 (($ $) NIL)) (-1698 (($ $) NIL)) (-2182 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 94)) (-1865 (((-703)) NIL)) (-3549 (($ $) NIL) (($ (-583 $)) NIL)) (-3494 (((-107) (-109)) NIL)) (-1773 (($ $) NIL)) (-1751 (($ $) NIL)) (-1762 (($ $) NIL)) (-1221 (($ $) NIL)) (-2146 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2297 (($) 93 T CONST)) (-2306 (($) 22 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1637 (($ $ $) NIL) (($ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1074)) (-10 -8 (-15 -3076 ($ (-286 |#3|))) (-15 -1759 ((-3 $ "failed") (-286 |#3|))) (-15 -3076 ($ (-1074))) (-15 -1759 ((-3 $ "failed") (-1074))) (-15 -2182 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3076 ($ (-286 (-517)))) (-15 -1759 ((-3 $ "failed") (-286 (-517)))) (-15 -3076 ($ (-377 (-874 (-517))))) (-15 -1759 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3076 ($ (-874 (-517)))) (-15 -1759 ((-3 $ "failed") (-874 (-517))))) |noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3076 ($ (-286 (-349)))) (-15 -1759 ((-3 $ "failed") (-286 (-349)))) (-15 -3076 ($ (-377 (-874 (-349))))) (-15 -1759 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3076 ($ (-874 (-349)))) (-15 -1759 ((-3 $ "failed") (-874 (-349))))) |noBranch|) (-15 -1221 ($ $)) (-15 -3706 ($ $)) (-15 -2459 ($ $)) (-15 -1826 ($ $)) (-15 -1302 ($ $)) (-15 -1685 ($ $)) (-15 -1698 ($ $)) (-15 -1710 ($ $)) (-15 -1751 ($ $)) (-15 -1762 ($ $)) (-15 -1773 ($ $)) (-15 -1812 ($ $)) (-15 -1824 ($ $)) (-15 -1834 ($ $)) (-15 -2475 ($)) (-15 -1363 ((-583 (-1074)) $)) (-15 -1726 ((-107))) (-15 -1726 ((-107) (-107))))) (-583 (-1074)) (-583 (-1074)) (-357)) (T -309))
+((-3076 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1221 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-3706 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2459 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1826 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1302 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1685 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1698 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1710 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1762 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1773 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1812 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1824 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1834 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2475 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-1726 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))))
+(-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1074)) (-10 -8 (-15 -3076 ($ (-286 |#3|))) (-15 -1759 ((-3 $ "failed") (-286 |#3|))) (-15 -3076 ($ (-1074))) (-15 -1759 ((-3 $ "failed") (-1074))) (-15 -2182 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3076 ($ (-286 (-517)))) (-15 -1759 ((-3 $ "failed") (-286 (-517)))) (-15 -3076 ($ (-377 (-874 (-517))))) (-15 -1759 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3076 ($ (-874 (-517)))) (-15 -1759 ((-3 $ "failed") (-874 (-517))))) |noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3076 ($ (-286 (-349)))) (-15 -1759 ((-3 $ "failed") (-286 (-349)))) (-15 -3076 ($ (-377 (-874 (-349))))) (-15 -1759 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3076 ($ (-874 (-349)))) (-15 -1759 ((-3 $ "failed") (-874 (-349))))) |noBranch|) (-15 -1221 ($ $)) (-15 -3706 ($ $)) (-15 -2459 ($ $)) (-15 -1826 ($ $)) (-15 -1302 ($ $)) (-15 -1685 ($ $)) (-15 -1698 ($ $)) (-15 -1710 ($ $)) (-15 -1751 ($ $)) (-15 -1762 ($ $)) (-15 -1773 ($ $)) (-15 -1812 ($ $)) (-15 -1824 ($ $)) (-15 -1834 ($ $)) (-15 -2475 ($)) (-15 -1363 ((-583 (-1074)) $)) (-15 -1726 ((-107))) (-15 -1726 ((-107) (-107)))))
+((-1857 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1857 (|#8| (-1 |#5| |#1|) |#4|))) (-1113) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1113) (-1131 |#5|) (-1131 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1113)) (-4 *8 (-1113)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *9 (-1131 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1131 (-377 *9))))))
+(-10 -7 (-15 -1857 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2800 (((-2 (|:| |num| (-1154 |#3|)) (|:| |den| |#3|)) $) 37)) (-3291 (($ (-1154 (-377 |#3|)) (-1154 $)) NIL) (($ (-1154 (-377 |#3|))) NIL) (($ (-1154 |#3|) |#3|) 158)) (-2882 (((-1154 $) (-1154 $)) 142)) (-3154 (((-583 (-583 |#2|))) 115)) (-1277 (((-107) |#2| |#2|) 71)) (-3039 (($ $) 136)) (-2812 (((-703)) 30)) (-1209 (((-1154 $) (-1154 $)) 195)) (-2851 (((-583 (-874 |#2|)) (-1074)) 108)) (-1780 (((-107) $) 155)) (-1663 (((-107) $) 24) (((-107) $ |#2|) 28) (((-107) $ |#3|) 199)) (-3014 (((-3 |#3| "failed")) 48)) (-2789 (((-703)) 167)) (-1986 ((|#2| $ |#2| |#2|) 129)) (-1357 (((-3 |#3| "failed")) 66)) (-1699 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-4063 (((-1154 $) (-1154 $)) 148)) (-2642 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-3385 (((-107)) 32)))
+(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -3154 ((-583 (-583 |#2|)))) (-15 -2851 ((-583 (-874 |#2|)) (-1074))) (-15 -2642 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3014 ((-3 |#3| "failed"))) (-15 -1357 ((-3 |#3| "failed"))) (-15 -1986 (|#2| |#1| |#2| |#2|)) (-15 -3039 (|#1| |#1|)) (-15 -3291 (|#1| (-1154 |#3|) |#3|)) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1663 ((-107) |#1| |#3|)) (-15 -1663 ((-107) |#1| |#2|)) (-15 -2800 ((-2 (|:| |num| (-1154 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2882 ((-1154 |#1|) (-1154 |#1|))) (-15 -1209 ((-1154 |#1|) (-1154 |#1|))) (-15 -4063 ((-1154 |#1|) (-1154 |#1|))) (-15 -1663 ((-107) |#1|)) (-15 -1780 ((-107) |#1|)) (-15 -1277 ((-107) |#2| |#2|)) (-15 -3385 ((-107))) (-15 -2789 ((-703))) (-15 -2812 ((-703))) (-15 -1699 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -1699 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -3291 (|#1| (-1154 (-377 |#3|)))) (-15 -3291 (|#1| (-1154 (-377 |#3|)) (-1154 |#1|)))) (-312 |#2| |#3| |#4|) (-1113) (-1131 |#2|) (-1131 (-377 |#3|))) (T -311))
+((-2812 (*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-2789 (*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3385 (*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-1277 (*1 *2 *3 *3) (-12 (-4 *3 (-1113)) (-4 *5 (-1131 *3)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-1357 (*1 *2) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-3014 (*1 *2) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *5 (-1113)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-3154 (*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))))
+(-10 -8 (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -3154 ((-583 (-583 |#2|)))) (-15 -2851 ((-583 (-874 |#2|)) (-1074))) (-15 -2642 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3014 ((-3 |#3| "failed"))) (-15 -1357 ((-3 |#3| "failed"))) (-15 -1986 (|#2| |#1| |#2| |#2|)) (-15 -3039 (|#1| |#1|)) (-15 -3291 (|#1| (-1154 |#3|) |#3|)) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1663 ((-107) |#1| |#3|)) (-15 -1663 ((-107) |#1| |#2|)) (-15 -2800 ((-2 (|:| |num| (-1154 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2882 ((-1154 |#1|) (-1154 |#1|))) (-15 -1209 ((-1154 |#1|) (-1154 |#1|))) (-15 -4063 ((-1154 |#1|) (-1154 |#1|))) (-15 -1663 ((-107) |#1|)) (-15 -1780 ((-107) |#1|)) (-15 -1277 ((-107) |#2| |#2|)) (-15 -3385 ((-107))) (-15 -2789 ((-703))) (-15 -2812 ((-703))) (-15 -1699 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -1699 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -3291 (|#1| (-1154 (-377 |#3|)))) (-15 -3291 (|#1| (-1154 (-377 |#3|)) (-1154 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-2800 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) 196)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-3209 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-1452 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-3129 (((-623 (-377 |#2|)) (-1154 $)) 46) (((-623 (-377 |#2|))) 61)) (-1470 (((-377 |#2|) $) 52)) (-4160 (((-1083 (-843) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-3490 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-3765 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-1598 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-3392 (((-107)) 213)) (-1744 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3076 (((-517) $) 170 (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) 165)) (-3291 (($ (-1154 (-377 |#2|)) (-1154 $)) 48) (($ (-1154 (-377 |#2|))) 64) (($ (-1154 |#2|) |#2|) 189)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-2148 (((-623 (-377 |#2|)) $ (-1154 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-4012 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-377 |#2|))) (|:| |vec| (-1154 (-377 |#2|)))) (-623 $) (-1154 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-2882 (((-1154 $) (-1154 $)) 201)) (-2521 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-1568 (((-3 $ "failed") $) 34)) (-3154 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-1277 (((-107) |#1| |#1|) 217)) (-3795 (((-843)) 54)) (-3098 (($) 90 (|has| (-377 |#2|) (-338)))) (-2147 (((-107)) 210)) (-2644 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2366 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-3039 (($ $) 188)) (-3493 (($) 149 (|has| (-377 |#2|) (-319)))) (-1337 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2990 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-2965 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-1921 (((-843) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) 138 (|has| (-377 |#2|) (-319)))) (-2955 (((-107) $) 31)) (-2812 (((-703)) 220)) (-1209 (((-1154 $) (-1154 $)) 202)) (-2289 (((-377 |#2|) $) 51)) (-2851 (((-583 (-874 |#1|)) (-1074)) 183 (|has| |#1| (-333)))) (-3744 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-3523 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-2903 (((-843) $) 89 (|has| (-377 |#2|) (-338)))) (-2511 ((|#3| $) 156)) (-1368 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-3865 (((-1057) $) 9)) (-3987 (((-623 (-377 |#2|))) 197)) (-2823 (((-623 (-377 |#2|))) 199)) (-4123 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-3612 (($ (-1154 |#2|) |#2|) 194)) (-2267 (((-623 (-377 |#2|))) 198)) (-1235 (((-623 (-377 |#2|))) 200)) (-4092 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-2752 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) 195)) (-4135 (((-1154 $)) 206)) (-3993 (((-1154 $)) 207)) (-1780 (((-107) $) 205)) (-1663 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-2663 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-3353 (($ (-843)) 88 (|has| (-377 |#2|) (-338)))) (-3014 (((-3 |#2| "failed")) 185)) (-3094 (((-1021) $) 10)) (-2789 (((-703)) 219)) (-3107 (($) 160)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 101 (|has| (-377 |#2|) (-333)))) (-1396 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-3693 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2349 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-2623 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-1986 ((|#1| $ |#1| |#1|) 187)) (-1357 (((-3 |#2| "failed")) 186)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-4042 (((-377 |#2|) (-1154 $)) 47) (((-377 |#2|)) 60)) (-3654 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-1699 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1074)) (-583 (-703))) 130 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-1651 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-1074) (-703)) 131 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-1651 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1074))) 132 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-1651 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-1074)) 133 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-1651 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-1651 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-1651 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3680 (((-623 (-377 |#2|)) (-1154 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-1457 ((|#3|) 159)) (-3788 (($) 148 (|has| (-377 |#2|) (-319)))) (-2575 (((-1154 (-377 |#2|)) $ (-1154 $)) 50) (((-623 (-377 |#2|)) (-1154 $) (-1154 $)) 49) (((-1154 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1154 $)) 65)) (-3582 (((-1154 (-377 |#2|)) $) 63) (($ (-1154 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-4063 (((-1154 $) (-1154 $)) 203)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3763 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-952 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-1589 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-3804 ((|#3| $) 45)) (-1865 (((-703)) 29)) (-2631 (((-107)) 216)) (-3916 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-3809 (((-1154 $)) 67)) (-3767 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-2642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3385 (((-107)) 218)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1074)) (-583 (-703))) 126 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-1651 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-1074) (-703)) 127 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-1651 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1074))) 128 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-1651 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-1074)) 129 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-1651 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-1651 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3763 (-1651 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-1651 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333)))))
+(((-312 |#1| |#2| |#3|) (-1185) (-1113) (-1131 |t#1|) (-1131 (-377 |t#2|))) (T -312))
+((-2812 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-703)))) (-2789 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-703)))) (-3385 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-1277 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2631 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-3916 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-3916 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) (-3392 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-1744 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-1744 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) (-2147 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2644 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2644 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) (-3993 (*1 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)))) (-4135 (*1 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) (-1209 (*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) (-2882 (*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) (-1235 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2823 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2267 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3987 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1154 *4)) (|:| |den| *4))))) (-2752 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1154 *4)) (|:| |den| *4))))) (-3612 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1131 *4)) (-4 *4 (-1113)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1131 (-377 *3))))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-1663 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-1663 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) (-3291 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1131 *4)) (-4 *4 (-1113)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1131 (-377 *3))))) (-3039 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))))) (-1986 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))))) (-1357 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1113)) (-4 *4 (-1131 (-377 *2))) (-4 *2 (-1131 *3)))) (-3014 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1113)) (-4 *4 (-1131 (-377 *2))) (-4 *2 (-1131 *3)))) (-2642 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-1113)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))) (-3154 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
+(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -2812 ((-703))) (-15 -2789 ((-703))) (-15 -3385 ((-107))) (-15 -1277 ((-107) |t#1| |t#1|)) (-15 -2631 ((-107))) (-15 -3916 ((-107) |t#1|)) (-15 -3916 ((-107) |t#2|)) (-15 -3392 ((-107))) (-15 -1744 ((-107) |t#1|)) (-15 -1744 ((-107) |t#2|)) (-15 -2147 ((-107))) (-15 -2644 ((-107) |t#1|)) (-15 -2644 ((-107) |t#2|)) (-15 -3993 ((-1154 $))) (-15 -4135 ((-1154 $))) (-15 -1780 ((-107) $)) (-15 -1663 ((-107) $)) (-15 -4063 ((-1154 $) (-1154 $))) (-15 -1209 ((-1154 $) (-1154 $))) (-15 -2882 ((-1154 $) (-1154 $))) (-15 -1235 ((-623 (-377 |t#2|)))) (-15 -2823 ((-623 (-377 |t#2|)))) (-15 -2267 ((-623 (-377 |t#2|)))) (-15 -3987 ((-623 (-377 |t#2|)))) (-15 -2800 ((-2 (|:| |num| (-1154 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3291 ($ (-1154 |t#2|) |t#2|)) (-15 -2752 ((-2 (|:| |num| (-1154 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3612 ($ (-1154 |t#2|) |t#2|)) (-15 -4092 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1663 ((-107) $ |t#1|)) (-15 -1663 ((-107) $ |t#2|)) (-15 -1699 ($ $ (-1 |t#2| |t#2|))) (-15 -3291 ($ (-1154 |t#2|) |t#2|)) (-15 -3039 ($ $)) (-15 -1986 (|t#1| $ |t#1| |t#1|)) (-15 -1357 ((-3 |t#2| "failed"))) (-15 -3014 ((-3 |t#2| "failed"))) (-15 -2642 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -2851 ((-583 (-874 |t#1|)) (-1074))) |noBranch|) (IF (|has| |t#1| (-338)) (-15 -3154 ((-583 (-583 |t#1|)))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 (-377 |#2|)) . T) ((-37 $) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 (-377 |#2|) (-377 |#2|)) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 (-377 |#2|)) |has| (-377 |#2|) (-333)) ((-207) -3763 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3763 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 (-377 |#2|) |#3|) . T) ((-379 (-377 |#2|) |#3|) . T) ((-347 (-377 |#2|)) . T) ((-381 (-377 |#2|)) . T) ((-421) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 (-517))) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 |#2|)) . T) ((-585 $) . T) ((-579 (-377 |#2|)) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 (-377 (-517))) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 (-377 |#2|)) . T) ((-650 $) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 (-377 |#2|) |#3|) . T) ((-659) . T) ((-822 (-1074)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) ((-842) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-952 (-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) ((-952 (-377 |#2|)) . T) ((-952 (-517)) |has| (-377 |#2|) (-952 (-517))) ((-967 (-377 (-517))) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-967 (-377 |#2|)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| (-377 |#2|) (-319)) ((-1113) -3763 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-832 |#1|) "failed") $) NIL)) (-3076 (((-832 |#1|) $) NIL)) (-3291 (($ (-1154 (-832 |#1|))) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-832 |#1|) (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) NIL (|has| (-832 |#1|) (-338)))) (-1337 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) NIL (|has| (-832 |#1|) (-338)))) (-2327 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2289 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 (-832 |#1|)) $) NIL) (((-1070 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2903 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-3740 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-3153 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1070 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-2426 (($ $ (-1070 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3353 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2039 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-1965 (((-879 (-1021))) NIL)) (-3107 (($) NIL (|has| (-832 |#1|) (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-1457 (((-1070 (-832 |#1|))) NIL)) (-3788 (($) NIL (|has| (-832 |#1|) (-338)))) (-2379 (($) NIL (|has| (-832 |#1|) (-338)))) (-2575 (((-1154 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1589 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2496 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2553 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
+(((-313 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1965 ((-879 (-1021)))))) (-843) (-843)) (T -313))
+((-1965 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1965 ((-879 (-1021))))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 46)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL (|has| |#1| (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) 113)) (-3076 ((|#1| $) 84)) (-3291 (($ (-1154 |#1|)) 102)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) 96 (|has| |#1| (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) 128 (|has| |#1| (-338)))) (-1337 (((-107) $) 49 (|has| |#1| (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) 47 (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) 130 (|has| |#1| (-338)))) (-2327 (((-107) $) NIL (|has| |#1| (-338)))) (-2289 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 |#1|) $) 88) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-2903 (((-843) $) 138 (|has| |#1| (-338)))) (-3740 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-3153 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2426 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 145)) (-2663 (($) NIL (|has| |#1| (-338)) CONST)) (-3353 (($ (-843)) 70 (|has| |#1| (-338)))) (-2039 (((-107) $) 116)) (-3094 (((-1021) $) NIL)) (-1965 (((-879 (-1021))) 44)) (-3107 (($) 126 (|has| |#1| (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 91 (|has| |#1| (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) 67) (((-843)) 68)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) 129 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 123 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-1457 (((-1070 |#1|)) 94)) (-3788 (($) 127 (|has| |#1| (-338)))) (-2379 (($) 135 (|has| |#1| (-338)))) (-2575 (((-1154 |#1|) $) 59) (((-623 |#1|) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2182 (((-787) $) 141) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-1589 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-703)) 137)) (-3809 (((-1154 $)) 115) (((-1154 $) (-843)) 72)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 32 T CONST)) (-2306 (($) 19 T CONST)) (-2496 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2553 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1539 (((-107) $ $) 48)) (-1649 (($ $ $) 143) (($ $ |#1|) 144)) (-1637 (($ $) 125) (($ $ $) NIL)) (-1626 (($ $ $) 61)) (** (($ $ (-843)) 147) (($ $ (-703)) 148) (($ $ (-517)) 146)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
+(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1965 ((-879 (-1021)))))) (-319) (-1070 |#1|)) (T -314))
+((-1965 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1070 *3)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -1965 ((-879 (-1021))))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL (|has| |#1| (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-3291 (($ (-1154 |#1|)) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| |#1| (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) NIL (|has| |#1| (-338)))) (-1337 (((-107) $) NIL (|has| |#1| (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) NIL (|has| |#1| (-338)))) (-2327 (((-107) $) NIL (|has| |#1| (-338)))) (-2289 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 |#1|) $) NIL) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-2903 (((-843) $) NIL (|has| |#1| (-338)))) (-3740 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-3153 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2426 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| |#1| (-338)) CONST)) (-3353 (($ (-843)) NIL (|has| |#1| (-338)))) (-2039 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-1965 (((-879 (-1021))) NIL)) (-3107 (($) NIL (|has| |#1| (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| |#1| (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-1457 (((-1070 |#1|)) NIL)) (-3788 (($) NIL (|has| |#1| (-338)))) (-2379 (($) NIL (|has| |#1| (-338)))) (-2575 (((-1154 |#1|) $) NIL) (((-623 |#1|) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1589 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2496 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2553 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1965 ((-879 (-1021)))))) (-319) (-843)) (T -315))
+((-1965 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -1965 ((-879 (-1021))))))
+((-3881 (((-703) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021)))))) 40)) (-4041 (((-879 (-1021)) (-1070 |#1|)) 84)) (-3060 (((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) (-1070 |#1|)) 77)) (-2352 (((-623 |#1|) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021)))))) 85)) (-2304 (((-3 (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) "failed") (-843)) 10)) (-3891 (((-3 (-1070 |#1|) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021)))))) (-843)) 15)))
+(((-316 |#1|) (-10 -7 (-15 -4041 ((-879 (-1021)) (-1070 |#1|))) (-15 -3060 ((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) (-1070 |#1|))) (-15 -2352 ((-623 |#1|) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (-15 -3881 ((-703) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (-15 -2304 ((-3 (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) "failed") (-843))) (-15 -3891 ((-3 (-1070 |#1|) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021)))))) (-843)))) (-319)) (T -316))
+((-3891 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1070 *4) (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-2304 (*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-5 *1 (-316 *4)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4)))))
+(-10 -7 (-15 -4041 ((-879 (-1021)) (-1070 |#1|))) (-15 -3060 ((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) (-1070 |#1|))) (-15 -2352 ((-623 |#1|) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (-15 -3881 ((-703) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (-15 -2304 ((-3 (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) "failed") (-843))) (-15 -3891 ((-3 (-1070 |#1|) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021)))))) (-843))))
+((-2182 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
+(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2182 (|#3| |#1|)) (-15 -2182 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317))
+((-2182 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))))
+(-10 -7 (-15 -2182 (|#3| |#1|)) (-15 -2182 (|#1| |#3|)))
+((-1337 (((-107) $) 50)) (-1921 (((-765 (-843)) $) 21) (((-843) $) 51)) (-3744 (((-3 $ "failed") $) 16)) (-2663 (($) 9)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 91)) (-3654 (((-3 (-703) "failed") $ $) 70) (((-703) $) 59)) (-1699 (($ $ (-703)) NIL) (($ $) 8)) (-3788 (($) 44)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 33)) (-1589 (((-3 $ "failed") $) 39) (($ $) 38)))
+(((-318 |#1|) (-10 -8 (-15 -1921 ((-843) |#1|)) (-15 -3654 ((-703) |#1|)) (-15 -1337 ((-107) |#1|)) (-15 -3788 (|#1|)) (-15 -2071 ((-3 (-1154 |#1|) "failed") (-623 |#1|))) (-15 -1589 (|#1| |#1|)) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -2663 (|#1|)) (-15 -3744 ((-3 |#1| "failed") |#1|)) (-15 -3654 ((-3 (-703) "failed") |#1| |#1|)) (-15 -1921 ((-765 (-843)) |#1|)) (-15 -1589 ((-3 |#1| "failed") |#1|)) (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)))) (-319)) (T -318))
+NIL
+(-10 -8 (-15 -1921 ((-843) |#1|)) (-15 -3654 ((-703) |#1|)) (-15 -1337 ((-107) |#1|)) (-15 -3788 (|#1|)) (-15 -2071 ((-3 (-1154 |#1|) "failed") (-623 |#1|))) (-15 -1589 (|#1| |#1|)) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -2663 (|#1|)) (-15 -3744 ((-3 |#1| "failed") |#1|)) (-15 -3654 ((-3 (-703) "failed") |#1| |#1|)) (-15 -1921 ((-765 (-843)) |#1|)) (-15 -1589 ((-3 |#1| "failed") |#1|)) (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-4160 (((-1083 (-843) (-703)) (-517)) 93)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3765 (((-107) $ $) 59)) (-1598 (((-703)) 103)) (-3473 (($) 17 T CONST)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-3098 (($) 106)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-3493 (($) 91)) (-1337 (((-107) $) 90)) (-2990 (($ $) 79) (($ $ (-703)) 78)) (-2965 (((-107) $) 71)) (-1921 (((-765 (-843)) $) 81) (((-843) $) 88)) (-2955 (((-107) $) 31)) (-3744 (((-3 $ "failed") $) 102)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2903 (((-843) $) 105)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-2663 (($) 101 T CONST)) (-3353 (($ (-843)) 104)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 94)) (-3693 (((-388 $) $) 74)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-3654 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-1699 (($ $ (-703)) 99) (($ $) 97)) (-3788 (($) 92)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 95)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1589 (((-3 $ "failed") $) 82) (($ $) 96)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-703)) 100) (($ $) 98)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 64)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-319) (-1185)) (T -319))
+((-1589 (*1 *1 *1) (-4 *1 (-319))) (-2071 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1154 *1)))) (-3430 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))))) (-4160 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1083 (-843) (-703))))) (-3788 (*1 *1) (-4 *1 (-319))) (-3493 (*1 *1) (-4 *1 (-319))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) (-1823 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-372) (-338) (-1050) (-207) (-10 -8 (-15 -1589 ($ $)) (-15 -2071 ((-3 (-1154 $) "failed") (-623 $))) (-15 -3430 ((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517)))))) (-15 -4160 ((-1083 (-843) (-703)) (-517))) (-15 -3788 ($)) (-15 -3493 ($)) (-15 -1337 ((-107) $)) (-15 -3654 ((-703) $)) (-15 -1921 ((-843) $)) (-15 -1823 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) . T) ((-1113) . T))
+((-2786 (((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-3993 (((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49)))
+(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -3993 ((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -2786 ((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $)))) (-1131 |#1|) (-379 |#1| |#2|)) (T -320))
+((-2786 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3993 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(-10 -7 (-15 -3993 ((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -2786 ((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3881 (((-703)) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-832 |#1|) "failed") $) NIL)) (-3076 (((-832 |#1|) $) NIL)) (-3291 (($ (-1154 (-832 |#1|))) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-832 |#1|) (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) NIL (|has| (-832 |#1|) (-338)))) (-1337 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) NIL (|has| (-832 |#1|) (-338)))) (-2327 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2289 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 (-832 |#1|)) $) NIL) (((-1070 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2903 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-3740 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-3153 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1070 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-2426 (($ $ (-1070 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3353 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2039 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-1349 (((-1154 (-583 (-2 (|:| -3088 (-832 |#1|)) (|:| -3353 (-1021)))))) NIL)) (-3620 (((-623 (-832 |#1|))) NIL)) (-3107 (($) NIL (|has| (-832 |#1|) (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-1457 (((-1070 (-832 |#1|))) NIL)) (-3788 (($) NIL (|has| (-832 |#1|) (-338)))) (-2379 (($) NIL (|has| (-832 |#1|) (-338)))) (-2575 (((-1154 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1589 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2496 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2553 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
+(((-321 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1349 ((-1154 (-583 (-2 (|:| -3088 (-832 |#1|)) (|:| -3353 (-1021))))))) (-15 -3620 ((-623 (-832 |#1|)))) (-15 -3881 ((-703))))) (-843) (-843)) (T -321))
+((-1349 (*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3088 (-832 *3)) (|:| -3353 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-3620 (*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-3881 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1349 ((-1154 (-583 (-2 (|:| -3088 (-832 |#1|)) (|:| -3353 (-1021))))))) (-15 -3620 ((-623 (-832 |#1|)))) (-15 -3881 ((-703)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 74)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 ((|#1| $) 92) (($ $ (-843)) 90 (|has| |#1| (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) 148 (|has| |#1| (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3881 (((-703)) 89)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) 162 (|has| |#1| (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) 111)) (-3076 ((|#1| $) 91)) (-3291 (($ (-1154 |#1|)) 57)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) 158 (|has| |#1| (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) 149 (|has| |#1| (-338)))) (-1337 (((-107) $) NIL (|has| |#1| (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) 97 (|has| |#1| (-338)))) (-2327 (((-107) $) 175 (|has| |#1| (-338)))) (-2289 ((|#1| $) 94) (($ $ (-843)) 93 (|has| |#1| (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 |#1|) $) 188) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-2903 (((-843) $) 133 (|has| |#1| (-338)))) (-3740 (((-1070 |#1|) $) 73 (|has| |#1| (-338)))) (-3153 (((-1070 |#1|) $) 70 (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) 82 (|has| |#1| (-338)))) (-2426 (($ $ (-1070 |#1|)) 69 (|has| |#1| (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 191)) (-2663 (($) NIL (|has| |#1| (-338)) CONST)) (-3353 (($ (-843)) 136 (|has| |#1| (-338)))) (-2039 (((-107) $) 107)) (-3094 (((-1021) $) NIL)) (-1349 (((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021)))))) 83)) (-3620 (((-623 |#1|)) 87)) (-3107 (($) 96 (|has| |#1| (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 150 (|has| |#1| (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) 151)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) 62)) (-1457 (((-1070 |#1|)) 152)) (-3788 (($) 132 (|has| |#1| (-338)))) (-2379 (($) NIL (|has| |#1| (-338)))) (-2575 (((-1154 |#1|) $) 105) (((-623 |#1|) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2182 (((-787) $) 123) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 56)) (-1589 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-703)) 156)) (-3809 (((-1154 $)) 172) (((-1154 $) (-843)) 100)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 30 T CONST)) (-2306 (($) 22 T CONST)) (-2496 (($ $) 106 (|has| |#1| (-338))) (($ $ (-703)) 98 (|has| |#1| (-338)))) (-2553 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1539 (((-107) $ $) 60)) (-1649 (($ $ $) 103) (($ $ |#1|) 104)) (-1637 (($ $) 177) (($ $ $) 181)) (-1626 (($ $ $) 179)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 137)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 142) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102)))
+(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1349 ((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (-15 -3620 ((-623 |#1|))) (-15 -3881 ((-703))))) (-319) (-3 (-1070 |#1|) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (T -322))
+((-1349 (*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3088 *3) (|:| -3353 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) *2)))) (-3620 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) (-1154 (-583 (-2 (|:| -3088 *3) (|:| -3353 (-1021))))))))) (-3881 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) (-1154 (-583 (-2 (|:| -3088 *3) (|:| -3353 (-1021))))))))))
+(-13 (-299 |#1|) (-10 -7 (-15 -1349 ((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (-15 -3620 ((-623 |#1|))) (-15 -3881 ((-703)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3881 (((-703)) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL (|has| |#1| (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-3291 (($ (-1154 |#1|)) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| |#1| (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) NIL (|has| |#1| (-338)))) (-1337 (((-107) $) NIL (|has| |#1| (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) NIL (|has| |#1| (-338)))) (-2327 (((-107) $) NIL (|has| |#1| (-338)))) (-2289 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 |#1|) $) NIL) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-2903 (((-843) $) NIL (|has| |#1| (-338)))) (-3740 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-3153 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2426 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| |#1| (-338)) CONST)) (-3353 (($ (-843)) NIL (|has| |#1| (-338)))) (-2039 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-1349 (((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021)))))) NIL)) (-3620 (((-623 |#1|)) NIL)) (-3107 (($) NIL (|has| |#1| (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| |#1| (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-1457 (((-1070 |#1|)) NIL)) (-3788 (($) NIL (|has| |#1| (-338)))) (-2379 (($) NIL (|has| |#1| (-338)))) (-2575 (((-1154 |#1|) $) NIL) (((-623 |#1|) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1589 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2496 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2553 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1349 ((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (-15 -3620 ((-623 |#1|))) (-15 -3881 ((-703))))) (-319) (-843)) (T -323))
+((-1349 (*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3088 *3) (|:| -3353 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-3620 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-3881 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -1349 ((-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))))) (-15 -3620 ((-623 |#1|))) (-15 -3881 ((-703)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-832 |#1|) "failed") $) NIL)) (-3076 (((-832 |#1|) $) NIL)) (-3291 (($ (-1154 (-832 |#1|))) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-832 |#1|) (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) NIL (|has| (-832 |#1|) (-338)))) (-1337 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) NIL (|has| (-832 |#1|) (-338)))) (-2327 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2289 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 (-832 |#1|)) $) NIL) (((-1070 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2903 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-3740 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-3153 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1070 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-2426 (($ $ (-1070 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3353 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2039 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-3107 (($) NIL (|has| (-832 |#1|) (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-1457 (((-1070 (-832 |#1|))) NIL)) (-3788 (($) NIL (|has| (-832 |#1|) (-338)))) (-2379 (($) NIL (|has| (-832 |#1|) (-338)))) (-2575 (((-1154 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1589 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2496 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2553 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
(((-324 |#1| |#2|) (-299 (-832 |#1|)) (-843) (-843)) (T -324))
NIL
(-299 (-832 |#1|))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) 138 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 91)) (-3189 ((|#1| $) 88)) (-1967 (($ (-1153 |#1|)) 83)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 80 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 39 (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 120 (|has| |#1| (-338)))) (-2434 (((-107) $) 72 (|has| |#1| (-338)))) (-1506 ((|#1| $) 38) (($ $ (-843)) 40 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 62) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 95 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 93 (|has| |#1| (-338)))) (-3202 (((-107) $) 140)) (-3206 (((-1021) $) NIL)) (-3220 (($) 35 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 113 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) 137)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) 56)) (-2135 (((-1069 |#1|)) 86)) (-1766 (($) 125 (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 50) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 136) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 142)) (-1753 (((-1153 $)) 107) (((-1153 $) (-843)) 46)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 109 T CONST)) (-2409 (($) 31 T CONST)) (-4103 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 105)) (-1667 (($ $ $) 97) (($ $ |#1|) 98)) (-1654 (($ $) 78) (($ $ $) 103)) (-1642 (($ $ $) 101)) (** (($ $ (-843)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 128)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
-(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1069 |#1|)) (T -325))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) 138 (|has| |#1| (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) 91)) (-3076 ((|#1| $) 88)) (-3291 (($ (-1154 |#1|)) 83)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) 80 (|has| |#1| (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) 39 (|has| |#1| (-338)))) (-1337 (((-107) $) NIL (|has| |#1| (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) 120 (|has| |#1| (-338)))) (-2327 (((-107) $) 72 (|has| |#1| (-338)))) (-2289 ((|#1| $) 38) (($ $ (-843)) 40 (|has| |#1| (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 |#1|) $) 62) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-2903 (((-843) $) 95 (|has| |#1| (-338)))) (-3740 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-3153 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2426 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| |#1| (-338)) CONST)) (-3353 (($ (-843)) 93 (|has| |#1| (-338)))) (-2039 (((-107) $) 140)) (-3094 (((-1021) $) NIL)) (-3107 (($) 35 (|has| |#1| (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 113 (|has| |#1| (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) 137)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) 56)) (-1457 (((-1070 |#1|)) 86)) (-3788 (($) 125 (|has| |#1| (-338)))) (-2379 (($) NIL (|has| |#1| (-338)))) (-2575 (((-1154 |#1|) $) 50) (((-623 |#1|) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2182 (((-787) $) 136) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-1589 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-703)) 142)) (-3809 (((-1154 $)) 107) (((-1154 $) (-843)) 46)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 109 T CONST)) (-2306 (($) 31 T CONST)) (-2496 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2553 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1539 (((-107) $ $) 105)) (-1649 (($ $ $) 97) (($ $ |#1|) 98)) (-1637 (($ $) 78) (($ $ $) 103)) (-1626 (($ $ $) 101)) (** (($ $ (-843)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 128)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
+(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1070 |#1|)) (T -325))
NIL
(-299 |#1|)
-((-3708 ((|#1| (-1069 |#2|)) 51)))
-(((-326 |#1| |#2|) (-10 -7 (-15 -3708 (|#1| (-1069 |#2|)))) (-13 (-372) (-10 -7 (-15 -2256 (|#1| |#2|)) (-15 -1549 ((-843) |#1|)) (-15 -1753 ((-1153 |#1|) (-843))) (-15 -4103 (|#1| |#1|)))) (-319)) (T -326))
-((-3708 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2256 (*2 *4)) (-15 -1549 ((-843) *2)) (-15 -1753 ((-1153 *2) (-843))) (-15 -4103 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
-(-10 -7 (-15 -3708 (|#1| (-1069 |#2|))))
-((-1825 (((-879 (-1069 |#1|)) (-1069 |#1|)) 36)) (-3209 (((-1069 |#1|) (-843) (-843)) 109) (((-1069 |#1|) (-843)) 108)) (-3391 (((-107) (-1069 |#1|)) 81)) (-2540 (((-843) (-843)) 71)) (-1186 (((-843) (-843)) 73)) (-3397 (((-843) (-843)) 69)) (-2434 (((-107) (-1069 |#1|)) 85)) (-1418 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 97)) (-4068 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 100)) (-2538 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 99)) (-3318 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 98)) (-2176 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 94)) (-3428 (((-1069 |#1|) (-1069 |#1|)) 62)) (-2804 (((-1069 |#1|) (-843)) 103)) (-2543 (((-1069 |#1|) (-843)) 106)) (-2020 (((-1069 |#1|) (-843)) 105)) (-3386 (((-1069 |#1|) (-843)) 104)) (-3868 (((-1069 |#1|) (-843)) 101)))
-(((-327 |#1|) (-10 -7 (-15 -3391 ((-107) (-1069 |#1|))) (-15 -2434 ((-107) (-1069 |#1|))) (-15 -3397 ((-843) (-843))) (-15 -2540 ((-843) (-843))) (-15 -1186 ((-843) (-843))) (-15 -3868 ((-1069 |#1|) (-843))) (-15 -2804 ((-1069 |#1|) (-843))) (-15 -3386 ((-1069 |#1|) (-843))) (-15 -2020 ((-1069 |#1|) (-843))) (-15 -2543 ((-1069 |#1|) (-843))) (-15 -2176 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -1418 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3318 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -2538 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -4068 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3209 ((-1069 |#1|) (-843))) (-15 -3209 ((-1069 |#1|) (-843) (-843))) (-15 -3428 ((-1069 |#1|) (-1069 |#1|))) (-15 -1825 ((-879 (-1069 |#1|)) (-1069 |#1|)))) (-319)) (T -327))
-((-1825 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1069 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1069 *4)))) (-3428 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3209 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-4068 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2538 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3318 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1418 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2176 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1186 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-2540 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
-(-10 -7 (-15 -3391 ((-107) (-1069 |#1|))) (-15 -2434 ((-107) (-1069 |#1|))) (-15 -3397 ((-843) (-843))) (-15 -2540 ((-843) (-843))) (-15 -1186 ((-843) (-843))) (-15 -3868 ((-1069 |#1|) (-843))) (-15 -2804 ((-1069 |#1|) (-843))) (-15 -3386 ((-1069 |#1|) (-843))) (-15 -2020 ((-1069 |#1|) (-843))) (-15 -2543 ((-1069 |#1|) (-843))) (-15 -2176 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -1418 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3318 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -2538 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -4068 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3209 ((-1069 |#1|) (-843))) (-15 -3209 ((-1069 |#1|) (-843) (-843))) (-15 -3428 ((-1069 |#1|) (-1069 |#1|))) (-15 -1825 ((-879 (-1069 |#1|)) (-1069 |#1|))))
-((-3179 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 33)))
-(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -3179 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1130 |#1|) (-1130 |#2|)) (T -328))
-((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))))
-(-10 -7 (-15 -3179 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-1195 ((|#1| (-1070 |#2|)) 51)))
+(((-326 |#1| |#2|) (-10 -7 (-15 -1195 (|#1| (-1070 |#2|)))) (-13 (-372) (-10 -7 (-15 -2182 (|#1| |#2|)) (-15 -2903 ((-843) |#1|)) (-15 -3809 ((-1154 |#1|) (-843))) (-15 -2496 (|#1| |#1|)))) (-319)) (T -326))
+((-1195 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2182 (*2 *4)) (-15 -2903 ((-843) *2)) (-15 -3809 ((-1154 *2) (-843))) (-15 -2496 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
+(-10 -7 (-15 -1195 (|#1| (-1070 |#2|))))
+((-3825 (((-879 (-1070 |#1|)) (-1070 |#1|)) 36)) (-3098 (((-1070 |#1|) (-843) (-843)) 109) (((-1070 |#1|) (-843)) 108)) (-1337 (((-107) (-1070 |#1|)) 81)) (-3978 (((-843) (-843)) 71)) (-3789 (((-843) (-843)) 73)) (-3078 (((-843) (-843)) 69)) (-2327 (((-107) (-1070 |#1|)) 85)) (-1480 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 97)) (-3425 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 100)) (-3958 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 99)) (-1892 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 98)) (-1843 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 94)) (-3345 (((-1070 |#1|) (-1070 |#1|)) 62)) (-2647 (((-1070 |#1|) (-843)) 103)) (-3997 (((-1070 |#1|) (-843)) 106)) (-2593 (((-1070 |#1|) (-843)) 105)) (-1298 (((-1070 |#1|) (-843)) 104)) (-2051 (((-1070 |#1|) (-843)) 101)))
+(((-327 |#1|) (-10 -7 (-15 -1337 ((-107) (-1070 |#1|))) (-15 -2327 ((-107) (-1070 |#1|))) (-15 -3078 ((-843) (-843))) (-15 -3978 ((-843) (-843))) (-15 -3789 ((-843) (-843))) (-15 -2051 ((-1070 |#1|) (-843))) (-15 -2647 ((-1070 |#1|) (-843))) (-15 -1298 ((-1070 |#1|) (-843))) (-15 -2593 ((-1070 |#1|) (-843))) (-15 -3997 ((-1070 |#1|) (-843))) (-15 -1843 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -1480 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -1892 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3958 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3425 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3098 ((-1070 |#1|) (-843))) (-15 -3098 ((-1070 |#1|) (-843) (-843))) (-15 -3345 ((-1070 |#1|) (-1070 |#1|))) (-15 -3825 ((-879 (-1070 |#1|)) (-1070 |#1|)))) (-319)) (T -327))
+((-3825 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1070 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1070 *4)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3425 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3958 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1892 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1480 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1843 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2647 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-1337 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
+(-10 -7 (-15 -1337 ((-107) (-1070 |#1|))) (-15 -2327 ((-107) (-1070 |#1|))) (-15 -3078 ((-843) (-843))) (-15 -3978 ((-843) (-843))) (-15 -3789 ((-843) (-843))) (-15 -2051 ((-1070 |#1|) (-843))) (-15 -2647 ((-1070 |#1|) (-843))) (-15 -1298 ((-1070 |#1|) (-843))) (-15 -2593 ((-1070 |#1|) (-843))) (-15 -3997 ((-1070 |#1|) (-843))) (-15 -1843 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -1480 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -1892 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3958 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3425 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3098 ((-1070 |#1|) (-843))) (-15 -3098 ((-1070 |#1|) (-843) (-843))) (-15 -3345 ((-1070 |#1|) (-1070 |#1|))) (-15 -3825 ((-879 (-1070 |#1|)) (-1070 |#1|))))
+((-2963 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 33)))
+(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2963 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1131 |#1|) (-1131 |#2|)) (T -328))
+((-2963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))))
+(-10 -7 (-15 -2963 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL (|has| |#1| (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-3291 (($ (-1154 |#1|)) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| |#1| (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) NIL (|has| |#1| (-338)))) (-1337 (((-107) $) NIL (|has| |#1| (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) NIL (|has| |#1| (-338)))) (-2327 (((-107) $) NIL (|has| |#1| (-338)))) (-2289 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 |#1|) $) NIL) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-2903 (((-843) $) NIL (|has| |#1| (-338)))) (-3740 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-3153 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2426 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| |#1| (-338)) CONST)) (-3353 (($ (-843)) NIL (|has| |#1| (-338)))) (-2039 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-3107 (($) NIL (|has| |#1| (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| |#1| (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-1457 (((-1070 |#1|)) NIL)) (-3788 (($) NIL (|has| |#1| (-338)))) (-2379 (($) NIL (|has| |#1| (-338)))) (-2575 (((-1154 |#1|) $) NIL) (((-623 |#1|) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1589 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2496 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2553 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-329 |#1| |#2|) (-299 |#1|) (-319) (-843)) (T -329))
NIL
(-299 |#1|)
-((-3958 (((-107) (-583 (-874 |#1|))) 31)) (-1759 (((-583 (-874 |#1|)) (-583 (-874 |#1|))) 42)) (-2066 (((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|))) 38)))
-(((-330 |#1| |#2|) (-10 -7 (-15 -3958 ((-107) (-583 (-874 |#1|)))) (-15 -2066 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -1759 ((-583 (-874 |#1|)) (-583 (-874 |#1|))))) (-421) (-583 (-1073))) (T -330))
-((-1759 (*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) (-2066 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1073))))))
-(-10 -7 (-15 -3958 ((-107) (-583 (-874 |#1|)))) (-15 -2066 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -1759 ((-583 (-874 |#1|)) (-583 (-874 |#1|)))))
-((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) 14)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-517) $ (-517)) NIL)) (-3420 (($ (-1 |#1| |#1|) $) 32)) (-2125 (($ (-1 (-517) (-517)) $) 24)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 26)) (-3206 (((-1021) $) NIL)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $) 28)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 38) (($ |#1|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-331 |#1|) (-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1611 ((-703) $)) (-15 -3882 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-517) (-517)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $)))) (-1003)) (T -331))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3882 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))))
-(-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1611 ((-703) $)) (-15 -3882 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-517) (-517)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $))))
-((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 13)) (-1213 (($ $) 14)) (-2759 (((-388 $) $) 29)) (-3849 (((-107) $) 25)) (-4118 (($ $) 18)) (-1401 (($ $ $) 22) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) 30)) (-2476 (((-3 $ "failed") $ $) 21)) (-3146 (((-703) $) 24)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 34)) (-3329 (((-107) $ $) 15)) (-1667 (($ $ $) 32)))
-(((-332 |#1|) (-10 -8 (-15 -1667 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332))
-NIL
-(-10 -8 (-15 -1667 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-333) (-1184)) (T -333))
-((-1667 (*1 *1 *1 *1) (-4 *1 (-333))))
-(-13 (-278) (-1112) (-217) (-10 -8 (-15 -1667 ($ $ $)) (-6 -4178) (-6 -4172)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
-((-2750 (((-107) $ $) 7)) (-3733 ((|#2| $ |#2|) 13)) (-1723 (($ $ (-1056)) 18)) (-1457 ((|#2| $) 14)) (-1513 (($ |#1|) 20) (($ |#1| (-1056)) 19)) (-1207 ((|#1| $) 16)) (-3985 (((-1056) $) 9)) (-2845 (((-1056) $) 15)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2463 (($ $) 17)) (-1547 (((-107) $ $) 6)))
-(((-334 |#1| |#2|) (-1184) (-1003) (-1003)) (T -334))
-((-1513 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2463 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1056)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3733 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -1513 ($ |t#1|)) (-15 -1513 ($ |t#1| (-1056))) (-15 -1723 ($ $ (-1056))) (-15 -2463 ($ $)) (-15 -1207 (|t#1| $)) (-15 -2845 ((-1056) $)) (-15 -1457 (|t#2| $)) (-15 -3733 (|t#2| $ |t#2|))))
+((-1797 (((-107) (-583 (-874 |#1|))) 31)) (-2089 (((-583 (-874 |#1|)) (-583 (-874 |#1|))) 42)) (-1985 (((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|))) 38)))
+(((-330 |#1| |#2|) (-10 -7 (-15 -1797 ((-107) (-583 (-874 |#1|)))) (-15 -1985 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -2089 ((-583 (-874 |#1|)) (-583 (-874 |#1|))))) (-421) (-583 (-1074))) (T -330))
+((-2089 (*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1074))))) (-1985 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1074))))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1074))))))
+(-10 -7 (-15 -1797 ((-107) (-583 (-874 |#1|)))) (-15 -1985 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -2089 ((-583 (-874 |#1|)) (-583 (-874 |#1|)))))
+((-2571 (((-107) $ $) NIL)) (-1598 (((-703) $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) 14)) (-2445 ((|#1| $ (-517)) NIL)) (-2169 (((-517) $ (-517)) NIL)) (-3276 (($ (-1 |#1| |#1|) $) 32)) (-1378 (($ (-1 (-517) (-517)) $) 24)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 26)) (-3094 (((-1021) $) NIL)) (-2232 (((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-517)))) $) 28)) (-2013 (($ $ $) NIL)) (-3064 (($ $ $) NIL)) (-2182 (((-787) $) 38) (($ |#1|) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2306 (($) 9 T CONST)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-331 |#1|) (-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1598 ((-703) $)) (-15 -2169 ((-517) $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -1378 ($ (-1 (-517) (-517)) $)) (-15 -3276 ($ (-1 |#1| |#1|) $)) (-15 -2232 ((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-517)))) $)))) (-1003)) (T -331))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-2169 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-1378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))))
+(-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1598 ((-703) $)) (-15 -2169 ((-517) $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -1378 ($ (-1 (-517) (-517)) $)) (-15 -3276 ($ (-1 |#1| |#1|) $)) (-15 -2232 ((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-517)))) $))))
+((-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 13)) (-3209 (($ $) 14)) (-3490 (((-388 $) $) 29)) (-2965 (((-107) $) 25)) (-4123 (($ $) 18)) (-1396 (($ $ $) 22) (($ (-583 $)) NIL)) (-3693 (((-388 $) $) 30)) (-2349 (((-3 $ "failed") $ $) 21)) (-2623 (((-703) $) 24)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 34)) (-3767 (((-107) $ $) 15)) (-1649 (($ $ $) 32)))
+(((-332 |#1|) (-10 -8 (-15 -1649 (|#1| |#1| |#1|)) (-15 -4123 (|#1| |#1|)) (-15 -2965 ((-107) |#1|)) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -1412 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -2623 ((-703) |#1|)) (-15 -1396 (|#1| (-583 |#1|))) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3767 ((-107) |#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -1692 ((-2 (|:| -1697 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332))
+NIL
+(-10 -8 (-15 -1649 (|#1| |#1| |#1|)) (-15 -4123 (|#1| |#1|)) (-15 -2965 ((-107) |#1|)) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -1412 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -2623 ((-703) |#1|)) (-15 -1396 (|#1| (-583 |#1|))) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3767 ((-107) |#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -1692 ((-2 (|:| -1697 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3765 (((-107) $ $) 59)) (-3473 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2965 (((-107) $) 71)) (-2955 (((-107) $) 31)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-3693 (((-388 $) $) 74)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 64)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-333) (-1185)) (T -333))
+((-1649 (*1 *1 *1 *1) (-4 *1 (-333))))
+(-13 (-278) (-1113) (-217) (-10 -8 (-15 -1649 ($ $ $)) (-6 -4181) (-6 -4175)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
+((-2571 (((-107) $ $) 7)) (-3113 ((|#2| $ |#2|) 13)) (-1665 (($ $ (-1057)) 18)) (-3741 ((|#2| $) 14)) (-1511 (($ |#1|) 20) (($ |#1| (-1057)) 19)) (-1211 ((|#1| $) 16)) (-3865 (((-1057) $) 9)) (-1974 (((-1057) $) 15)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1505 (($ $) 17)) (-1539 (((-107) $ $) 6)))
+(((-334 |#1| |#2|) (-1185) (-1003) (-1003)) (T -334))
+((-1511 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1511 (*1 *1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) (-1665 (*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-1505 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1211 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1057)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3113 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -1511 ($ |t#1|)) (-15 -1511 ($ |t#1| (-1057))) (-15 -1665 ($ $ (-1057))) (-15 -1505 ($ $)) (-15 -1211 (|t#1| $)) (-15 -1974 ((-1057) $)) (-15 -3741 (|t#2| $)) (-15 -3113 (|t#2| $ |t#2|))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-3733 ((|#1| $ |#1|) 29)) (-1723 (($ $ (-1056)) 22)) (-2595 (((-3 |#1| "failed") $) 28)) (-1457 ((|#1| $) 26)) (-1513 (($ (-358)) 21) (($ (-358) (-1056)) 20)) (-1207 (((-358) $) 24)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) 25)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 19)) (-2463 (($ $) 23)) (-1547 (((-107) $ $) 18)))
-(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -2595 ((-3 |#1| "failed") $)))) (-1003)) (T -335))
-((-2595 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))))
-(-13 (-334 (-358) |#1|) (-10 -8 (-15 -2595 ((-3 |#1| "failed") $))))
-((-3533 (((-1153 (-623 |#2|)) (-1153 $)) 61)) (-2619 (((-623 |#2|) (-1153 $)) 119)) (-2299 ((|#2| $) 32)) (-3343 (((-623 |#2|) $ (-1153 $)) 123)) (-2158 (((-3 $ "failed") $) 75)) (-3866 ((|#2| $) 35)) (-2417 (((-1069 |#2|) $) 83)) (-4069 ((|#2| (-1153 $)) 106)) (-2085 (((-1069 |#2|) $) 28)) (-2362 (((-107)) 100)) (-1967 (($ (-1153 |#2|) (-1153 $)) 113)) (-3621 (((-3 $ "failed") $) 79)) (-2754 (((-107)) 95)) (-3983 (((-107)) 90)) (-3414 (((-107)) 53)) (-2010 (((-623 |#2|) (-1153 $)) 117)) (-1188 ((|#2| $) 31)) (-3914 (((-623 |#2|) $ (-1153 $)) 122)) (-1680 (((-3 $ "failed") $) 73)) (-3913 ((|#2| $) 34)) (-4121 (((-1069 |#2|) $) 82)) (-1988 ((|#2| (-1153 $)) 104)) (-2190 (((-1069 |#2|) $) 26)) (-3606 (((-107)) 99)) (-4045 (((-107)) 92)) (-1286 (((-107)) 51)) (-1848 (((-107)) 87)) (-1697 (((-107)) 101)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) 111)) (-1561 (((-107)) 97)) (-1582 (((-583 (-1153 |#2|))) 86)) (-1316 (((-107)) 98)) (-2687 (((-107)) 96)) (-2524 (((-107)) 46)) (-3642 (((-107)) 102)))
-(((-336 |#1| |#2|) (-10 -8 (-15 -2417 ((-1069 |#2|) |#1|)) (-15 -4121 ((-1069 |#2|) |#1|)) (-15 -1582 ((-583 (-1153 |#2|)))) (-15 -2158 ((-3 |#1| "failed") |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-107))) (-15 -4045 ((-107))) (-15 -2754 ((-107))) (-15 -1286 ((-107))) (-15 -3414 ((-107))) (-15 -1848 ((-107))) (-15 -3642 ((-107))) (-15 -1697 ((-107))) (-15 -2362 ((-107))) (-15 -3606 ((-107))) (-15 -2524 ((-107))) (-15 -1316 ((-107))) (-15 -2687 ((-107))) (-15 -1561 ((-107))) (-15 -2085 ((-1069 |#2|) |#1|)) (-15 -2190 ((-1069 |#2|) |#1|)) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3866 (|#2| |#1|)) (-15 -3913 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -1188 (|#2| |#1|)) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|)))) (-337 |#2|) (-156)) (T -336))
-((-1561 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2687 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1316 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2524 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3606 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2362 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1697 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3642 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1848 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3414 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1286 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2754 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4045 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3983 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1582 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1153 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
-(-10 -8 (-15 -2417 ((-1069 |#2|) |#1|)) (-15 -4121 ((-1069 |#2|) |#1|)) (-15 -1582 ((-583 (-1153 |#2|)))) (-15 -2158 ((-3 |#1| "failed") |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-107))) (-15 -4045 ((-107))) (-15 -2754 ((-107))) (-15 -1286 ((-107))) (-15 -3414 ((-107))) (-15 -1848 ((-107))) (-15 -3642 ((-107))) (-15 -1697 ((-107))) (-15 -2362 ((-107))) (-15 -3606 ((-107))) (-15 -2524 ((-107))) (-15 -1316 ((-107))) (-15 -2687 ((-107))) (-15 -1561 ((-107))) (-15 -2085 ((-1069 |#2|) |#1|)) (-15 -2190 ((-1069 |#2|) |#1|)) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3866 (|#2| |#1|)) (-15 -3913 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -1188 (|#2| |#1|)) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3295 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) 78)) (-3456 (((-1153 $)) 81)) (-3092 (($) 17 T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) 65)) (-2299 ((|#1| $) 74)) (-3343 (((-623 |#1|) $ (-1153 $)) 76)) (-2158 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-3380 (($ $ (-843)) 28)) (-3866 ((|#1| $) 72)) (-2417 (((-1069 |#1|) $) 42 (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) 67)) (-2085 (((-1069 |#1|) $) 63)) (-2362 (((-107)) 57)) (-1967 (($ (-1153 |#1|) (-1153 $)) 69)) (-3621 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-2261 (((-843)) 80)) (-3962 (((-107)) 54)) (-3730 (($ $ (-843)) 33)) (-2754 (((-107)) 50)) (-3983 (((-107)) 48)) (-3414 (((-107)) 52)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) 66)) (-1188 ((|#1| $) 75)) (-3914 (((-623 |#1|) $ (-1153 $)) 77)) (-1680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-2572 (($ $ (-843)) 29)) (-3913 ((|#1| $) 73)) (-4121 (((-1069 |#1|) $) 43 (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) 68)) (-2190 (((-1069 |#1|) $) 64)) (-3606 (((-107)) 58)) (-3985 (((-1056) $) 9)) (-4045 (((-107)) 49)) (-1286 (((-107)) 51)) (-1848 (((-107)) 53)) (-3206 (((-1021) $) 10)) (-1697 (((-107)) 56)) (-4114 (((-1153 |#1|) $ (-1153 $)) 71) (((-623 |#1|) (-1153 $) (-1153 $)) 70)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) 79)) (-3394 (($ $ $) 25)) (-1561 (((-107)) 62)) (-2256 (((-787) $) 11)) (-1582 (((-583 (-1153 |#1|))) 44 (|has| |#1| (-509)))) (-3917 (($ $ $ $) 26)) (-1316 (((-107)) 60)) (-1956 (($ $ $) 24)) (-2687 (((-107)) 61)) (-2524 (((-107)) 59)) (-3642 (((-107)) 55)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-337 |#1|) (-1184) (-156)) (T -337))
-((-3456 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-337 *3)))) (-2261 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))))) (-3914 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3343 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1188 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4114 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 *4)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))) (-1561 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2687 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1316 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2524 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3606 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2362 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1697 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3642 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3962 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1848 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3414 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1286 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2754 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4045 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3983 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3621 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1680 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2158 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1582 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1153 *3))))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))) (-3550 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) (-2257 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) (-1793 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1450 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-3295 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(-13 (-677 |t#1|) (-10 -8 (-15 -3456 ((-1153 $))) (-15 -2261 ((-843))) (-15 -2278 ((-583 (-874 |t#1|)) (-1153 $))) (-15 -3533 ((-1153 (-623 |t#1|)) (-1153 $))) (-15 -3914 ((-623 |t#1|) $ (-1153 $))) (-15 -3343 ((-623 |t#1|) $ (-1153 $))) (-15 -1188 (|t#1| $)) (-15 -2299 (|t#1| $)) (-15 -3913 (|t#1| $)) (-15 -3866 (|t#1| $)) (-15 -4114 ((-1153 |t#1|) $ (-1153 $))) (-15 -4114 ((-623 |t#1|) (-1153 $) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|) (-1153 $))) (-15 -1988 (|t#1| (-1153 $))) (-15 -4069 (|t#1| (-1153 $))) (-15 -2010 ((-623 |t#1|) (-1153 $))) (-15 -2619 ((-623 |t#1|) (-1153 $))) (-15 -2190 ((-1069 |t#1|) $)) (-15 -2085 ((-1069 |t#1|) $)) (-15 -1561 ((-107))) (-15 -2687 ((-107))) (-15 -1316 ((-107))) (-15 -2524 ((-107))) (-15 -3606 ((-107))) (-15 -2362 ((-107))) (-15 -1697 ((-107))) (-15 -3642 ((-107))) (-15 -3962 ((-107))) (-15 -1848 ((-107))) (-15 -3414 ((-107))) (-15 -1286 ((-107))) (-15 -2754 ((-107))) (-15 -4045 ((-107))) (-15 -3983 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -3621 ((-3 $ "failed") $)) (-15 -1680 ((-3 $ "failed") $)) (-15 -2158 ((-3 $ "failed") $)) (-15 -1582 ((-583 (-1153 |t#1|)))) (-15 -4121 ((-1069 |t#1|) $)) (-15 -2417 ((-1069 |t#1|) $)) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -1793 ((-3 $ "failed"))) (-15 -1450 ((-3 $ "failed"))) (-15 -3295 ((-3 $ "failed"))) (-6 -4177)) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-3113 ((|#1| $ |#1|) 29)) (-1665 (($ $ (-1057)) 22)) (-3238 (((-3 |#1| "failed") $) 28)) (-3741 ((|#1| $) 26)) (-1511 (($ (-358)) 21) (($ (-358) (-1057)) 20)) (-1211 (((-358) $) 24)) (-3865 (((-1057) $) NIL)) (-1974 (((-1057) $) 25)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 19)) (-1505 (($ $) 23)) (-1539 (((-107) $ $) 18)))
+(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -3238 ((-3 |#1| "failed") $)))) (-1003)) (T -335))
+((-3238 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))))
+(-13 (-334 (-358) |#1|) (-10 -8 (-15 -3238 ((-3 |#1| "failed") $))))
+((-3029 (((-1154 (-623 |#2|)) (-1154 $)) 61)) (-3495 (((-623 |#2|) (-1154 $)) 119)) (-3488 ((|#2| $) 32)) (-3922 (((-623 |#2|) $ (-1154 $)) 123)) (-1675 (((-3 $ "failed") $) 75)) (-2030 ((|#2| $) 35)) (-2193 (((-1070 |#2|) $) 83)) (-3440 ((|#2| (-1154 $)) 106)) (-2134 (((-1070 |#2|) $) 28)) (-2815 (((-107)) 100)) (-3291 (($ (-1154 |#2|) (-1154 $)) 113)) (-1568 (((-3 $ "failed") $) 79)) (-3419 (((-107)) 95)) (-3841 (((-107)) 90)) (-3229 (((-107)) 53)) (-2507 (((-623 |#2|) (-1154 $)) 117)) (-3823 ((|#2| $) 31)) (-2386 (((-623 |#2|) $ (-1154 $)) 122)) (-3526 (((-3 $ "failed") $) 73)) (-2377 ((|#2| $) 34)) (-2621 (((-1070 |#2|) $) 82)) (-3532 ((|#2| (-1154 $)) 104)) (-3737 (((-1070 |#2|) $) 26)) (-1440 (((-107)) 99)) (-3156 (((-107)) 92)) (-2688 (((-107)) 51)) (-4022 (((-107)) 87)) (-3662 (((-107)) 101)) (-2575 (((-1154 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) 111)) (-3010 (((-107)) 97)) (-2971 (((-583 (-1154 |#2|))) 86)) (-2902 (((-107)) 98)) (-2883 (((-107)) 96)) (-3832 (((-107)) 46)) (-1781 (((-107)) 102)))
+(((-336 |#1| |#2|) (-10 -8 (-15 -2193 ((-1070 |#2|) |#1|)) (-15 -2621 ((-1070 |#2|) |#1|)) (-15 -2971 ((-583 (-1154 |#2|)))) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -3526 ((-3 |#1| "failed") |#1|)) (-15 -1568 ((-3 |#1| "failed") |#1|)) (-15 -3841 ((-107))) (-15 -3156 ((-107))) (-15 -3419 ((-107))) (-15 -2688 ((-107))) (-15 -3229 ((-107))) (-15 -4022 ((-107))) (-15 -1781 ((-107))) (-15 -3662 ((-107))) (-15 -2815 ((-107))) (-15 -1440 ((-107))) (-15 -3832 ((-107))) (-15 -2902 ((-107))) (-15 -2883 ((-107))) (-15 -3010 ((-107))) (-15 -2134 ((-1070 |#2|) |#1|)) (-15 -3737 ((-1070 |#2|) |#1|)) (-15 -3495 ((-623 |#2|) (-1154 |#1|))) (-15 -2507 ((-623 |#2|) (-1154 |#1|))) (-15 -3440 (|#2| (-1154 |#1|))) (-15 -3532 (|#2| (-1154 |#1|))) (-15 -3291 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2030 (|#2| |#1|)) (-15 -2377 (|#2| |#1|)) (-15 -3488 (|#2| |#1|)) (-15 -3823 (|#2| |#1|)) (-15 -3922 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2386 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -3029 ((-1154 (-623 |#2|)) (-1154 |#1|)))) (-337 |#2|) (-156)) (T -336))
+((-3010 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2883 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2902 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3832 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1440 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2815 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3662 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1781 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4022 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3229 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2688 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3419 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3156 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3841 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2971 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1154 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
+(-10 -8 (-15 -2193 ((-1070 |#2|) |#1|)) (-15 -2621 ((-1070 |#2|) |#1|)) (-15 -2971 ((-583 (-1154 |#2|)))) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -3526 ((-3 |#1| "failed") |#1|)) (-15 -1568 ((-3 |#1| "failed") |#1|)) (-15 -3841 ((-107))) (-15 -3156 ((-107))) (-15 -3419 ((-107))) (-15 -2688 ((-107))) (-15 -3229 ((-107))) (-15 -4022 ((-107))) (-15 -1781 ((-107))) (-15 -3662 ((-107))) (-15 -2815 ((-107))) (-15 -1440 ((-107))) (-15 -3832 ((-107))) (-15 -2902 ((-107))) (-15 -2883 ((-107))) (-15 -3010 ((-107))) (-15 -2134 ((-1070 |#2|) |#1|)) (-15 -3737 ((-1070 |#2|) |#1|)) (-15 -3495 ((-623 |#2|) (-1154 |#1|))) (-15 -2507 ((-623 |#2|) (-1154 |#1|))) (-15 -3440 (|#2| (-1154 |#1|))) (-15 -3532 (|#2| (-1154 |#1|))) (-15 -3291 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2030 (|#2| |#1|)) (-15 -2377 (|#2| |#1|)) (-15 -3488 (|#2| |#1|)) (-15 -3823 (|#2| |#1|)) (-15 -3922 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2386 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -3029 ((-1154 (-623 |#2|)) (-1154 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1697 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3029 (((-1154 (-623 |#1|)) (-1154 $)) 78)) (-3624 (((-1154 $)) 81)) (-3473 (($) 17 T CONST)) (-3072 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-3672 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-3495 (((-623 |#1|) (-1154 $)) 65)) (-3488 ((|#1| $) 74)) (-3922 (((-623 |#1|) $ (-1154 $)) 76)) (-1675 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-1246 (($ $ (-843)) 28)) (-2030 ((|#1| $) 72)) (-2193 (((-1070 |#1|) $) 42 (|has| |#1| (-509)))) (-3440 ((|#1| (-1154 $)) 67)) (-2134 (((-1070 |#1|) $) 63)) (-2815 (((-107)) 57)) (-3291 (($ (-1154 |#1|) (-1154 $)) 69)) (-1568 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3795 (((-843)) 80)) (-1837 (((-107)) 54)) (-3092 (($ $ (-843)) 33)) (-3419 (((-107)) 50)) (-3841 (((-107)) 48)) (-3229 (((-107)) 52)) (-2054 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-3004 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2507 (((-623 |#1|) (-1154 $)) 66)) (-3823 ((|#1| $) 75)) (-2386 (((-623 |#1|) $ (-1154 $)) 77)) (-3526 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-1313 (($ $ (-843)) 29)) (-2377 ((|#1| $) 73)) (-2621 (((-1070 |#1|) $) 43 (|has| |#1| (-509)))) (-3532 ((|#1| (-1154 $)) 68)) (-3737 (((-1070 |#1|) $) 64)) (-1440 (((-107)) 58)) (-3865 (((-1057) $) 9)) (-3156 (((-107)) 49)) (-2688 (((-107)) 51)) (-4022 (((-107)) 53)) (-3094 (((-1021) $) 10)) (-3662 (((-107)) 56)) (-2575 (((-1154 |#1|) $ (-1154 $)) 71) (((-623 |#1|) (-1154 $) (-1154 $)) 70)) (-3254 (((-583 (-874 |#1|)) (-1154 $)) 79)) (-3064 (($ $ $) 25)) (-3010 (((-107)) 62)) (-2182 (((-787) $) 11)) (-2971 (((-583 (-1154 |#1|))) 44 (|has| |#1| (-509)))) (-2411 (($ $ $ $) 26)) (-2902 (((-107)) 60)) (-3168 (($ $ $) 24)) (-2883 (((-107)) 61)) (-3832 (((-107)) 59)) (-1781 (((-107)) 55)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-337 |#1|) (-1185) (-156)) (T -337))
+((-3624 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1154 *1)) (-4 *1 (-337 *3)))) (-3795 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1154 (-623 *4))))) (-2386 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3922 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2030 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2575 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1154 *4)))) (-2575 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3291 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3440 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1070 *3)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1070 *3)))) (-3010 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2883 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2902 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3832 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1440 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2815 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3662 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1781 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1837 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4022 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3229 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2688 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3419 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3156 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3841 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1568 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3526 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1675 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2971 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1154 *3))))) (-2621 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1070 *3)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1070 *3)))) (-2054 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3809 (-583 *1)))) (-4 *1 (-337 *3)))) (-3072 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3809 (-583 *1)))) (-4 *1 (-337 *3)))) (-3004 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-3672 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1697 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(-13 (-677 |t#1|) (-10 -8 (-15 -3624 ((-1154 $))) (-15 -3795 ((-843))) (-15 -3254 ((-583 (-874 |t#1|)) (-1154 $))) (-15 -3029 ((-1154 (-623 |t#1|)) (-1154 $))) (-15 -2386 ((-623 |t#1|) $ (-1154 $))) (-15 -3922 ((-623 |t#1|) $ (-1154 $))) (-15 -3823 (|t#1| $)) (-15 -3488 (|t#1| $)) (-15 -2377 (|t#1| $)) (-15 -2030 (|t#1| $)) (-15 -2575 ((-1154 |t#1|) $ (-1154 $))) (-15 -2575 ((-623 |t#1|) (-1154 $) (-1154 $))) (-15 -3291 ($ (-1154 |t#1|) (-1154 $))) (-15 -3532 (|t#1| (-1154 $))) (-15 -3440 (|t#1| (-1154 $))) (-15 -2507 ((-623 |t#1|) (-1154 $))) (-15 -3495 ((-623 |t#1|) (-1154 $))) (-15 -3737 ((-1070 |t#1|) $)) (-15 -2134 ((-1070 |t#1|) $)) (-15 -3010 ((-107))) (-15 -2883 ((-107))) (-15 -2902 ((-107))) (-15 -3832 ((-107))) (-15 -1440 ((-107))) (-15 -2815 ((-107))) (-15 -3662 ((-107))) (-15 -1781 ((-107))) (-15 -1837 ((-107))) (-15 -4022 ((-107))) (-15 -3229 ((-107))) (-15 -2688 ((-107))) (-15 -3419 ((-107))) (-15 -3156 ((-107))) (-15 -3841 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -1568 ((-3 $ "failed") $)) (-15 -3526 ((-3 $ "failed") $)) (-15 -1675 ((-3 $ "failed") $)) (-15 -2971 ((-583 (-1154 |t#1|)))) (-15 -2621 ((-1070 |t#1|) $)) (-15 -2193 ((-1070 |t#1|) $)) (-15 -2054 ((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed"))) (-15 -3072 ((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed"))) (-15 -3004 ((-3 $ "failed"))) (-15 -3672 ((-3 $ "failed"))) (-15 -1697 ((-3 $ "failed"))) (-6 -4180)) |noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-2750 (((-107) $ $) 7)) (-1611 (((-703)) 16)) (-3209 (($) 13)) (-1549 (((-843) $) 14)) (-3985 (((-1056) $) 9)) (-3448 (($ (-843)) 15)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
-(((-338) (-1184)) (T -338))
-((-1611 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) (-3209 (*1 *1) (-4 *1 (-338))))
-(-13 (-1003) (-10 -8 (-15 -1611 ((-703))) (-15 -3448 ($ (-843))) (-15 -1549 ((-843) $)) (-15 -3209 ($))))
+((-2571 (((-107) $ $) 7)) (-1598 (((-703)) 16)) (-3098 (($) 13)) (-2903 (((-843) $) 14)) (-3865 (((-1057) $) 9)) (-3353 (($ (-843)) 15)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)))
+(((-338) (-1185)) (T -338))
+((-1598 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) (-3098 (*1 *1) (-4 *1 (-338))))
+(-13 (-1003) (-10 -8 (-15 -1598 ((-703))) (-15 -3353 ($ (-843))) (-15 -2903 ((-843) $)) (-15 -3098 ($))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3055 (((-623 |#2|) (-1153 $)) 40)) (-1967 (($ (-1153 |#2|) (-1153 $)) 35)) (-2410 (((-623 |#2|) $ (-1153 $)) 43)) (-3010 ((|#2| (-1153 $)) 13)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) 25)))
-(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|)))) (-340 |#2| |#3|) (-156) (-1130 |#2|)) (T -339))
-NIL
-(-10 -8 (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3055 (((-623 |#1|) (-1153 $)) 46)) (-1472 ((|#1| $) 52)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48)) (-2410 (((-623 |#1|) $ (-1153 $)) 53)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3010 ((|#1| (-1153 $)) 47)) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1328 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-340 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -340))
-((-2261 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-843)))) (-2410 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-4114 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *4)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1130 *4)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1130 *2)) (-4 *2 (-156)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1130 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -2261 ((-843))) (-15 -2410 ((-623 |t#1|) $ (-1153 $))) (-15 -1472 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -4114 ((-1153 |t#1|) $ (-1153 $))) (-15 -4114 ((-623 |t#1|) (-1153 $) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|) (-1153 $))) (-15 -3010 (|t#1| (-1153 $))) (-15 -3055 ((-623 |t#1|) (-1153 $))) (-15 -3669 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -3777 (|t#2| $)) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|)))
+((-3129 (((-623 |#2|) (-1154 $)) 40)) (-3291 (($ (-1154 |#2|) (-1154 $)) 35)) (-2148 (((-623 |#2|) $ (-1154 $)) 43)) (-4042 ((|#2| (-1154 $)) 13)) (-2575 (((-1154 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) 25)))
+(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -3129 ((-623 |#2|) (-1154 |#1|))) (-15 -4042 (|#2| (-1154 |#1|))) (-15 -3291 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2148 ((-623 |#2|) |#1| (-1154 |#1|)))) (-340 |#2| |#3|) (-156) (-1131 |#2|)) (T -339))
+NIL
+(-10 -8 (-15 -3129 ((-623 |#2|) (-1154 |#1|))) (-15 -4042 (|#2| (-1154 |#1|))) (-15 -3291 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2148 ((-623 |#2|) |#1| (-1154 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-3129 (((-623 |#1|) (-1154 $)) 46)) (-1470 ((|#1| $) 52)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3291 (($ (-1154 |#1|) (-1154 $)) 48)) (-2148 (((-623 |#1|) $ (-1154 $)) 53)) (-1568 (((-3 $ "failed") $) 34)) (-3795 (((-843)) 54)) (-2955 (((-107) $) 31)) (-2289 ((|#1| $) 51)) (-3523 ((|#2| $) 44 (|has| |#1| (-333)))) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4042 ((|#1| (-1154 $)) 47)) (-2575 (((-1154 |#1|) $ (-1154 $)) 50) (((-623 |#1|) (-1154 $) (-1154 $)) 49)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1589 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3804 ((|#2| $) 45)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-340 |#1| |#2|) (-1185) (-156) (-1131 |t#1|)) (T -340))
+((-3795 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-843)))) (-2148 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) (-2575 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *4)))) (-2575 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) (-3291 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1131 *4)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1131 *2)) (-4 *2 (-156)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1131 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -3795 ((-843))) (-15 -2148 ((-623 |t#1|) $ (-1154 $))) (-15 -1470 (|t#1| $)) (-15 -2289 (|t#1| $)) (-15 -2575 ((-1154 |t#1|) $ (-1154 $))) (-15 -2575 ((-623 |t#1|) (-1154 $) (-1154 $))) (-15 -3291 ($ (-1154 |t#1|) (-1154 $))) (-15 -4042 (|t#1| (-1154 $))) (-15 -3129 ((-623 |t#1|) (-1154 $))) (-15 -3804 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -3523 (|t#2| $)) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3905 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3225 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1893 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1108) (-343 |#1|) (-1108) (-343 |#3|)) (T -341))
-((-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))))
-(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2044 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-2034 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-3166 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-3093 (($ $) 25)) (-2607 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-3237 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-342 |#1| |#2|) (-10 -8 (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3166 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1108)) (T -342))
-NIL
-(-10 -8 (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3166 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-343 |#1|) (-1184) (-1108)) (T -343))
-((-3237 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)))) (-3166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-2044 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-2607 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-779)) (-5 *2 (-107)))) (-1906 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-4020 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)))) (-2034 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-2034 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))))
-(-13 (-588 |t#1|) (-10 -8 (-6 -4180) (-15 -3237 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -3093 ($ $)) (-15 -3166 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2044 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -2607 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2607 ((-517) |t#1| $)) (-15 -2607 ((-517) |t#1| $ (-517)))) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -3237 ($ $ $)) (-15 -3166 ($ $)) (-15 -2044 ((-107) $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -1906 ($ $ $ (-517))) (-15 -4020 ($ $)) (-15 -2034 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -2034 ($ $)) |noBranch|)) |noBranch|)))
-(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 32)) (-3883 (($ $ (-703)) 33)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3791 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 36)) (-2402 (($ $) 34)) (-2208 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 37)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2051 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-3688 (((-703) $) 38)) (-2276 (($ $ $) 29)) (-2256 (((-787) $) 11) (($ |#1|) 41) (((-1166 |#1| |#2|) $) 40) (((-1175 |#1| |#2|) $) 39)) (-1931 ((|#2| (-1175 |#1| |#2|) $) 42)) (-2396 (($) 18 T CONST)) (-1691 (($ (-608 |#1|)) 35)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-344 |#1| |#2|) (-1184) (-779) (-156)) (T -344))
-((-1931 (*1 *2 *3 *1) (-12 (-5 *3 (-1175 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1166 *3 *4)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1175 *3 *4)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-2208 (*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3791 (*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-2051 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))))
-(-13 (-574 |t#2|) (-10 -8 (-15 -1931 (|t#2| (-1175 |t#1| |t#2|) $)) (-15 -2256 ($ |t#1|)) (-15 -2256 ((-1166 |t#1| |t#2|) $)) (-15 -2256 ((-1175 |t#1| |t#2|) $)) (-15 -3688 ((-703) $)) (-15 -2208 ((-1175 |t#1| |t#2|) (-1175 |t#1| |t#2|) $)) (-15 -3791 ((-1175 |t#1| |t#2|) (-1175 |t#1| |t#2|) $)) (-15 -1691 ($ (-608 |t#1|))) (-15 -2402 ($ $)) (-15 -3883 ($ $ (-703))) (-15 -3463 ((-583 |t#1|) $)) (-15 -2051 ($ $ |t#1| $)) (-15 -2051 ($ $ (-583 |t#1|) (-583 $)))))
+((-2325 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2521 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1857 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2325 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1109) (-343 |#1|) (-1109) (-343 |#3|)) (T -341))
+((-2325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))))
+(-10 -7 (-15 -1857 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2325 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2866 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-2740 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-3056 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-2979 (($ $) 25)) (-2446 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-2262 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-342 |#1| |#2|) (-10 -8 (-15 -2740 (|#1| |#1|)) (-15 -2740 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2866 ((-107) |#1|)) (-15 -3056 (|#1| |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2446 ((-517) |#2| |#1| (-517))) (-15 -2446 ((-517) |#2| |#1|)) (-15 -2446 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2866 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3056 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2979 (|#1| |#1|)) (-15 -2262 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1109)) (T -342))
+NIL
+(-10 -8 (-15 -2740 (|#1| |#1|)) (-15 -2740 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2866 ((-107) |#1|)) (-15 -3056 (|#1| |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2446 ((-517) |#2| |#1| (-517))) (-15 -2446 ((-517) |#2| |#1|)) (-15 -2446 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2866 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3056 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2979 (|#1| |#1|)) (-15 -2262 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1227 (($ $) 90 (|has| $ (-6 -4184)))) (-2979 (($ $) 100)) (-1667 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 51)) (-2446 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3366 (($ (-703) |#1|) 69)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-1575 (($ $ $) 87 (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-2986 (($ $ $) 86 (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 42 (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-1254 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-3685 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3966 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 70)) (-2337 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1582 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-343 |#1|) (-1185) (-1109)) (T -343))
+((-2262 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) (-2979 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)))) (-3056 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) (-2866 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))) (-2446 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1109)) (-5 *2 (-517)))) (-2446 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-517)))) (-2446 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)))) (-2262 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) (-3056 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-779)) (-5 *2 (-107)))) (-3966 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4184)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) (-1227 (*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-343 *2)) (-4 *2 (-1109)))) (-2740 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4184)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) (-2740 (*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))))
+(-13 (-588 |t#1|) (-10 -8 (-6 -4183) (-15 -2262 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -2979 ($ $)) (-15 -3056 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2866 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -2446 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2446 ((-517) |t#1| $)) (-15 -2446 ((-517) |t#1| $ (-517)))) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -2262 ($ $ $)) (-15 -3056 ($ $)) (-15 -2866 ((-107) $))) |noBranch|) (IF (|has| $ (-6 -4184)) (PROGN (-15 -3966 ($ $ $ (-517))) (-15 -1227 ($ $)) (-15 -2740 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -2740 ($ $)) |noBranch|)) |noBranch|)))
+(((-33) . T) ((-97) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1109) . T))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-3367 (((-583 |#1|) $) 32)) (-2176 (($ $ (-703)) 33)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3660 (((-1176 |#1| |#2|) (-1176 |#1| |#2|) $) 36)) (-2088 (($ $) 34)) (-3913 (((-1176 |#1| |#2|) (-1176 |#1| |#2|) $) 37)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-1979 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-4007 (((-703) $) 38)) (-2197 (($ $ $) 29)) (-2182 (((-787) $) 11) (($ |#1|) 41) (((-1167 |#1| |#2|) $) 40) (((-1176 |#1| |#2|) $) 39)) (-1883 ((|#2| (-1176 |#1| |#2|) $) 42)) (-2297 (($) 18 T CONST)) (-3632 (($ (-608 |#1|)) 35)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-344 |#1| |#2|) (-1185) (-779) (-156)) (T -344))
+((-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-1176 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2182 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1167 *3 *4)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1176 *3 *4)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-3913 (*1 *2 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3660 (*1 *2 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-2088 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2176 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-1979 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))))
+(-13 (-574 |t#2|) (-10 -8 (-15 -1883 (|t#2| (-1176 |t#1| |t#2|) $)) (-15 -2182 ($ |t#1|)) (-15 -2182 ((-1167 |t#1| |t#2|) $)) (-15 -2182 ((-1176 |t#1| |t#2|) $)) (-15 -4007 ((-703) $)) (-15 -3913 ((-1176 |t#1| |t#2|) (-1176 |t#1| |t#2|) $)) (-15 -3660 ((-1176 |t#1| |t#2|) (-1176 |t#1| |t#2|) $)) (-15 -3632 ($ (-608 |t#1|))) (-15 -2088 ($ $)) (-15 -2176 ($ $ (-703))) (-15 -3367 ((-583 |t#1|) $)) (-15 -1979 ($ $ |t#1| $)) (-15 -1979 ($ $ (-583 |t#1|) (-583 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-574 |#2|) . T) ((-650 |#2|) . T) ((-967 |#2|) . T) ((-1003) . T))
-((-1489 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 22)) (-1380 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-2773 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21)))
-(((-345 |#1| |#2|) (-10 -7 (-15 -1380 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2773 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1489 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1108) (-13 (-343 |#1|) (-10 -7 (-6 -4181)))) (T -345))
-((-1489 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))) (-2773 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))) (-1380 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))))
-(-10 -7 (-15 -1380 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2773 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1489 (|#2| (-1 (-107) |#1| |#1|) |#2|)))
-((-3355 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 19) (((-623 (-517)) (-623 $)) 13)))
-(((-346 |#1| |#2|) (-10 -8 (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-961)) (T -346))
+((-2031 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 22)) (-2744 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-2418 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21)))
+(((-345 |#1| |#2|) (-10 -7 (-15 -2744 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2418 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2031 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1109) (-13 (-343 |#1|) (-10 -7 (-6 -4184)))) (T -345))
+((-2031 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))) (-2418 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))) (-2744 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))))
+(-10 -7 (-15 -2744 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2418 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2031 (|#2| (-1 (-107) |#1| |#1|) |#2|)))
+((-4012 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 19) (((-623 (-517)) (-623 $)) 13)))
+(((-346 |#1| |#2|) (-10 -8 (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-961)) (T -346))
NIL
-(-10 -8 (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 |#2|) (-623 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3355 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 35) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-347 |#1|) (-1184) (-961)) (T -347))
+(-10 -8 (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 |#2|) (-623 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-4012 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 35) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-347 |#1|) (-1185) (-961)) (T -347))
NIL
(-13 (-579 |t#1|) (-10 -7 (IF (|has| |t#1| (-579 (-517))) (-6 (-579 (-517))) |noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3681 (((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|) 52) (((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|) 51) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|) 47) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|) 40)) (-3674 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|) 28) (((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|) 15)))
-(((-348 |#1|) (-10 -7 (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3674 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3674 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|))) (-13 (-333) (-777))) (T -348))
-((-3674 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3674 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3674 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-2668 (((-517) $) 55)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) 109)) (-1865 (($ $) 81)) (-1721 (($ $) 70)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) 44)) (-1707 (((-107) $ $) NIL)) (-1839 (($ $) 79)) (-1701 (($ $) 68)) (-3709 (((-517) $) 63)) (-1363 (($ $ (-517)) 62)) (-1887 (($ $) NIL)) (-1743 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-2531 (($ $) 111)) (-1772 (((-3 (-517) "failed") $) 187) (((-3 (-377 (-517)) "failed") $) 183)) (-3189 (((-517) $) 185) (((-377 (-517)) $) 181)) (-2518 (($ $ $) NIL)) (-1320 (((-517) $ $) 101)) (-3621 (((-3 $ "failed") $) 113)) (-3934 (((-377 (-517)) $ (-703)) 188) (((-377 (-517)) $ (-703) (-703)) 180)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 72) (((-843) (-843)) 97 (|has| $ (-6 -4171)))) (-3556 (((-107) $) 105)) (-2645 (($) 40)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-1986 (((-1158) (-703)) 150)) (-3424 (((-1158)) 155) (((-1158) (-703)) 156)) (-3789 (((-1158)) 157) (((-1158) (-703)) 158)) (-2678 (((-1158)) 153) (((-1158) (-703)) 154)) (-3972 (((-517) $) 58)) (-3848 (((-107) $) 103)) (-3824 (($ $ (-517)) NIL)) (-2485 (($ $) 48)) (-1506 (($ $) NIL)) (-2475 (((-107) $) 35)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3099 (($ $ $) NIL) (($) 98 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 17)) (-2365 (($) 86) (($ $) 91)) (-3720 (($) 90) (($ $) 92)) (-1867 (($ $) 82)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 115)) (-2138 (((-843) (-517)) 43 (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) 53)) (-2597 (($ $) 108)) (-4005 (($ (-517) (-517)) 106) (($ (-517) (-517) (-843)) 107)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 19)) (-3963 (($) 93)) (-2624 (($ $) 78)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-843)) 99) (((-843) (-843)) 100 (|has| $ (-6 -4171)))) (-3127 (($ $ (-703)) NIL) (($ $) 114)) (-2646 (((-843) (-517)) 47 (|has| $ (-6 -4171)))) (-1898 (($ $) NIL)) (-1754 (($ $) NIL)) (-1876 (($ $) NIL)) (-1732 (($ $) NIL)) (-1853 (($ $) 80)) (-1711 (($ $) 69)) (-3645 (((-349) $) 173) (((-199) $) 175) (((-814 (-349)) $) NIL) (((-1056) $) 160) (((-493) $) 171) (($ (-199)) 179)) (-2256 (((-787) $) 162) (($ (-517)) 184) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 184) (($ (-377 (-517))) NIL) (((-199) $) 176)) (-2961 (((-703)) NIL)) (-1949 (($ $) 110)) (-1398 (((-843)) 54) (((-843) (-843)) 65 (|has| $ (-6 -4171)))) (-2372 (((-843)) 102)) (-3707 (($ $) 85)) (-1788 (($ $) 46) (($ $ $) 52)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 83)) (-1765 (($ $) 37)) (-3731 (($ $) NIL)) (-1814 (($ $) NIL)) (-1492 (($ $) NIL)) (-1827 (($ $) NIL)) (-3719 (($ $) NIL)) (-1802 (($ $) NIL)) (-3695 (($ $) 84)) (-1777 (($ $) 49)) (-3710 (($ $) 51)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 34 T CONST)) (-2409 (($) 38 T CONST)) (-2482 (((-1056) $) 27) (((-1056) $ (-107)) 29) (((-1158) (-754) $) 30) (((-1158) (-754) $ (-107)) 31)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 39)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 42)) (-1667 (($ $ $) 45) (($ $ (-517)) 41)) (-1654 (($ $) 36) (($ $ $) 50)) (-1642 (($ $ $) 61)) (** (($ $ (-843)) 66) (($ $ (-703)) NIL) (($ $ (-517)) 87) (($ $ (-377 (-517))) 124) (($ $ $) 116)) (* (($ (-843) $) 64) (($ (-703) $) NIL) (($ (-517) $) 67) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-349) (-13 (-374) (-207) (-558 (-1056)) (-760) (-557 (-199)) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2485 ($ $)) (-15 -1320 ((-517) $ $)) (-15 -1363 ($ $ (-517))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703))) (-15 -2365 ($)) (-15 -3720 ($)) (-15 -3963 ($)) (-15 -1788 ($ $ $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -3645 ($ (-199))) (-15 -3789 ((-1158))) (-15 -3789 ((-1158) (-703))) (-15 -2678 ((-1158))) (-15 -2678 ((-1158) (-703))) (-15 -3424 ((-1158))) (-15 -3424 ((-1158) (-703))) (-15 -1986 ((-1158) (-703))) (-6 -4171) (-6 -4163)))) (T -349))
-((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2485 (*1 *1 *1) (-5 *1 (-349))) (-1320 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-3934 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-3934 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-2365 (*1 *1) (-5 *1 (-349))) (-3720 (*1 *1) (-5 *1 (-349))) (-3963 (*1 *1) (-5 *1 (-349))) (-1788 (*1 *1 *1 *1) (-5 *1 (-349))) (-2365 (*1 *1 *1) (-5 *1 (-349))) (-3720 (*1 *1 *1) (-5 *1 (-349))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-3789 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-2678 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-3424 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))))
-(-13 (-374) (-207) (-558 (-1056)) (-760) (-557 (-199)) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2485 ($ $)) (-15 -1320 ((-517) $ $)) (-15 -1363 ($ $ (-517))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703))) (-15 -2365 ($)) (-15 -3720 ($)) (-15 -3963 ($)) (-15 -1788 ($ $ $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -3645 ($ (-199))) (-15 -3789 ((-1158))) (-15 -3789 ((-1158) (-703))) (-15 -2678 ((-1158))) (-15 -2678 ((-1158) (-703))) (-15 -3424 ((-1158))) (-15 -3424 ((-1158) (-703))) (-15 -1986 ((-1158) (-703))) (-6 -4171) (-6 -4163)))
-((-1674 (((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|) 47) (((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|) 46) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|) 42) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|) 36)) (-2262 (((-583 |#1|) (-377 (-874 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|) 31)))
-(((-350 |#1|) (-10 -7 (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -2262 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|)) (-15 -2262 ((-583 |#1|) (-377 (-874 (-517))) |#1|))) (-13 (-777) (-333))) (T -350))
-((-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2262 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
-(-10 -7 (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -2262 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|)) (-15 -2262 ((-583 |#1|) (-377 (-874 (-517))) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 25)) (-3189 ((|#2| $) 27)) (-1212 (($ $) NIL)) (-1577 (((-703) $) 10)) (-4094 (((-583 $) $) 20)) (-4031 (((-107) $) NIL)) (-3419 (($ |#2| |#1|) 18)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-4152 ((|#2| $) 15)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 43) (($ |#2|) 26)) (-1311 (((-583 |#1|) $) 17)) (-2720 ((|#1| $ |#2|) 45)) (-2396 (($) 28 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34)))
+((-3948 (((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|) 52) (((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|) 51) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|) 47) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|) 40)) (-3870 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1074)) |#1|) 28) (((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|) 15)))
+(((-348 |#1|) (-10 -7 (-15 -3948 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3948 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -3948 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3948 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3870 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3870 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1074)) |#1|))) (-13 (-333) (-777))) (T -348))
+((-3870 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-3870 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3948 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3948 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -3948 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3948 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3870 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3870 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1074)) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 33)) (-2667 (((-517) $) 55)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3349 (($ $) 109)) (-1834 (($ $) 81)) (-1710 (($ $) 70)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3706 (($ $) 44)) (-3765 (((-107) $ $) NIL)) (-1812 (($ $) 79)) (-1685 (($ $) 68)) (-1207 (((-517) $) 63)) (-1362 (($ $ (-517)) 62)) (-1851 (($ $) NIL)) (-1731 (($ $) NIL)) (-3473 (($) NIL T CONST)) (-3896 (($ $) 111)) (-1759 (((-3 (-517) "failed") $) 187) (((-3 (-377 (-517)) "failed") $) 183)) (-3076 (((-517) $) 185) (((-377 (-517)) $) 181)) (-2383 (($ $ $) NIL)) (-3753 (((-517) $ $) 101)) (-1568 (((-3 $ "failed") $) 113)) (-1532 (((-377 (-517)) $ (-703)) 188) (((-377 (-517)) $ (-703) (-703)) 180)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-3373 (((-843)) 72) (((-843) (-843)) 97 (|has| $ (-6 -4174)))) (-2099 (((-107) $) 105)) (-2475 (($) 40)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3508 (((-1159) (-703)) 150)) (-3309 (((-1159)) 155) (((-1159) (-703)) 156)) (-3640 (((-1159)) 157) (((-1159) (-703)) 158)) (-2766 (((-1159)) 153) (((-1159) (-703)) 154)) (-1921 (((-517) $) 58)) (-2955 (((-107) $) 103)) (-2666 (($ $ (-517)) NIL)) (-1730 (($ $) 48)) (-2289 (($ $) NIL)) (-1624 (((-107) $) 35)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL) (($) NIL (-12 (-2455 (|has| $ (-6 -4166))) (-2455 (|has| $ (-6 -4174)))))) (-2986 (($ $ $) NIL) (($) 98 (-12 (-2455 (|has| $ (-6 -4166))) (-2455 (|has| $ (-6 -4174)))))) (-3272 (((-517) $) 17)) (-2841 (($) 86) (($ $) 91)) (-1302 (($) 90) (($ $) 92)) (-1826 (($ $) 82)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 115)) (-1483 (((-843) (-517)) 43 (|has| $ (-6 -4174)))) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) 53)) (-3263 (($ $) 108)) (-4009 (($ (-517) (-517)) 106) (($ (-517) (-517) (-843)) 107)) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2059 (((-517) $) 19)) (-1845 (($) 93)) (-2459 (($ $) 78)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1567 (((-843)) 99) (((-843) (-843)) 100 (|has| $ (-6 -4174)))) (-1699 (($ $ (-703)) NIL) (($ $) 114)) (-2481 (((-843) (-517)) 47 (|has| $ (-6 -4174)))) (-1860 (($ $) NIL)) (-1741 (($ $) NIL)) (-1842 (($ $) NIL)) (-1722 (($ $) NIL)) (-1824 (($ $) 80)) (-1698 (($ $) 69)) (-3582 (((-349) $) 173) (((-199) $) 175) (((-814 (-349)) $) NIL) (((-1057) $) 160) (((-493) $) 171) (($ (-199)) 179)) (-2182 (((-787) $) 162) (($ (-517)) 184) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 184) (($ (-377 (-517))) NIL) (((-199) $) 176)) (-1865 (((-703)) NIL)) (-3112 (($ $) 110)) (-2931 (((-843)) 54) (((-843) (-843)) 65 (|has| $ (-6 -4174)))) (-4103 (((-843)) 102)) (-3642 (($ $) 85)) (-1773 (($ $) 46) (($ $ $) 52)) (-3767 (((-107) $ $) NIL)) (-3622 (($ $) 83)) (-1751 (($ $) 37)) (-3661 (($ $) NIL)) (-1794 (($ $) NIL)) (-1279 (($ $) NIL)) (-1803 (($ $) NIL)) (-3650 (($ $) NIL)) (-1784 (($ $) NIL)) (-3631 (($ $) 84)) (-1762 (($ $) 49)) (-1221 (($ $) 51)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 34 T CONST)) (-2306 (($) 38 T CONST)) (-1693 (((-1057) $) 27) (((-1057) $ (-107)) 29) (((-1159) (-754) $) 30) (((-1159) (-754) $ (-107)) 31)) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 39)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 42)) (-1649 (($ $ $) 45) (($ $ (-517)) 41)) (-1637 (($ $) 36) (($ $ $) 50)) (-1626 (($ $ $) 61)) (** (($ $ (-843)) 66) (($ $ (-703)) NIL) (($ $ (-517)) 87) (($ $ (-377 (-517))) 124) (($ $ $) 116)) (* (($ (-843) $) 64) (($ (-703) $) NIL) (($ (-517) $) 67) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-349) (-13 (-374) (-207) (-558 (-1057)) (-760) (-557 (-199)) (-1095) (-558 (-493)) (-10 -8 (-15 -1649 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -1730 ($ $)) (-15 -3753 ((-517) $ $)) (-15 -1362 ($ $ (-517))) (-15 -1532 ((-377 (-517)) $ (-703))) (-15 -1532 ((-377 (-517)) $ (-703) (-703))) (-15 -2841 ($)) (-15 -1302 ($)) (-15 -1845 ($)) (-15 -1773 ($ $ $)) (-15 -2841 ($ $)) (-15 -1302 ($ $)) (-15 -3582 ($ (-199))) (-15 -3640 ((-1159))) (-15 -3640 ((-1159) (-703))) (-15 -2766 ((-1159))) (-15 -2766 ((-1159) (-703))) (-15 -3309 ((-1159))) (-15 -3309 ((-1159) (-703))) (-15 -3508 ((-1159) (-703))) (-6 -4174) (-6 -4166)))) (T -349))
+((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1649 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1730 (*1 *1 *1) (-5 *1 (-349))) (-3753 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1362 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1532 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-1532 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-2841 (*1 *1) (-5 *1 (-349))) (-1302 (*1 *1) (-5 *1 (-349))) (-1845 (*1 *1) (-5 *1 (-349))) (-1773 (*1 *1 *1 *1) (-5 *1 (-349))) (-2841 (*1 *1 *1) (-5 *1 (-349))) (-1302 (*1 *1 *1) (-5 *1 (-349))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-3640 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) (-2766 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) (-3309 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))))
+(-13 (-374) (-207) (-558 (-1057)) (-760) (-557 (-199)) (-1095) (-558 (-493)) (-10 -8 (-15 -1649 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -1730 ($ $)) (-15 -3753 ((-517) $ $)) (-15 -1362 ($ $ (-517))) (-15 -1532 ((-377 (-517)) $ (-703))) (-15 -1532 ((-377 (-517)) $ (-703) (-703))) (-15 -2841 ($)) (-15 -1302 ($)) (-15 -1845 ($)) (-15 -1773 ($ $ $)) (-15 -2841 ($ $)) (-15 -1302 ($ $)) (-15 -3582 ($ (-199))) (-15 -3640 ((-1159))) (-15 -3640 ((-1159) (-703))) (-15 -2766 ((-1159))) (-15 -2766 ((-1159) (-703))) (-15 -3309 ((-1159))) (-15 -3309 ((-1159) (-703))) (-15 -3508 ((-1159) (-703))) (-6 -4174) (-6 -4166)))
+((-3480 (((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|) 47) (((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|) 46) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|) 42) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|) 36)) (-3108 (((-583 |#1|) (-377 (-874 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1074)) |#1|) 31)))
+(((-350 |#1|) (-10 -7 (-15 -3480 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -3480 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -3480 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -3480 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -3108 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1074)) |#1|)) (-15 -3108 ((-583 |#1|) (-377 (-874 (-517))) |#1|))) (-13 (-777) (-333))) (T -350))
+((-3108 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-3108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
+(-10 -7 (-15 -3480 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -3480 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -3480 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -3480 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -3108 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1074)) |#1|)) (-15 -3108 ((-583 |#1|) (-377 (-874 (-517))) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) 25)) (-3076 ((|#2| $) 27)) (-1217 (($ $) NIL)) (-2091 (((-703) $) 10)) (-3704 (((-583 $) $) 20)) (-1331 (((-107) $) NIL)) (-3327 (($ |#2| |#1|) 18)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2043 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-4159 ((|#2| $) 15)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 43) (($ |#2|) 26)) (-2834 (((-583 |#1|) $) 17)) (-3086 ((|#1| $ |#2|) 45)) (-2297 (($) 28 T CONST)) (-2557 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34)))
(((-351 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-779)) (T -351))
((* (*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)))))
(-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 44)) (-3189 ((|#2| $) 43)) (-1212 (($ $) 30)) (-1577 (((-703) $) 34)) (-4094 (((-583 $) $) 35)) (-4031 (((-107) $) 38)) (-3419 (($ |#2| |#1|) 39)) (-1893 (($ (-1 |#1| |#1|) $) 40)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-4152 ((|#2| $) 33)) (-1191 ((|#1| $) 32)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ |#2|) 45)) (-1311 (((-583 |#1|) $) 36)) (-2720 ((|#1| $ |#2|) 41)) (-2396 (($) 18 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-352 |#1| |#2|) (-1184) (-961) (-1003)) (T -352))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) (-3419 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-2332 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-4094 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))))
-(-13 (-106 |t#1| |t#1|) (-952 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2720 (|t#1| $ |t#2|)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -3419 ($ |t#2| |t#1|)) (-15 -4031 ((-107) $)) (-15 -2332 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1311 ((-583 |t#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (-15 -4152 (|t#2| $)) (-15 -1191 (|t#1| $)) (-15 -2854 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1212 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |noBranch|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#2| "failed") $) 44)) (-3076 ((|#2| $) 43)) (-1217 (($ $) 30)) (-2091 (((-703) $) 34)) (-3704 (((-583 $) $) 35)) (-1331 (((-107) $) 38)) (-3327 (($ |#2| |#1|) 39)) (-1857 (($ (-1 |#1| |#1|) $) 40)) (-2043 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-4159 ((|#2| $) 33)) (-1192 ((|#1| $) 32)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ |#2|) 45)) (-2834 (((-583 |#1|) $) 36)) (-3086 ((|#1| $ |#2|) 41)) (-2297 (($) 18 T CONST)) (-2557 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-352 |#1| |#2|) (-1185) (-961) (-1003)) (T -352))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) (-3086 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) (-3327 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-3704 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-1192 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))))
+(-13 (-106 |t#1| |t#1|) (-952 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3086 (|t#1| $ |t#2|)) (-15 -1857 ($ (-1 |t#1| |t#1|) $)) (-15 -3327 ($ |t#2| |t#1|)) (-15 -1331 ((-107) $)) (-15 -2557 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2834 ((-583 |t#1|) $)) (-15 -3704 ((-583 $) $)) (-15 -2091 ((-703) $)) (-15 -4159 (|t#2| $)) (-15 -1192 (|t#1| $)) (-15 -2043 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1217 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) |has| |#1| (-156)) ((-952 |#2|) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 11)))
-(((-353) (-1184)) (T -353))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-353)))))
-(-13 (-365) (-10 -8 (-15 -2256 ($ (-623 (-632)))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
-((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-874 (-349)))) 17) (((-3 $ "failed") (-623 (-874 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 11)) (-3189 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-874 (-349)))) 18) (($ (-623 (-874 (-517)))) 16) (($ (-623 (-377 (-874 (-349))))) 14) (($ (-623 (-377 (-874 (-517))))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23)))
-(((-354) (-1184)) (T -354))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))))
-(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-623 (-286 (-349))))) (-15 -1772 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3189 ($ (-623 (-286 (-517))))) (-15 -1772 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3189 ($ (-623 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-623 (-874 (-349))))) (-15 -3189 ($ (-623 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-623 (-874 (-517))))) (-15 -3189 ($ (-623 (-377 (-874 (-349)))))) (-15 -1772 ((-3 $ "failed") (-623 (-377 (-874 (-349)))))) (-15 -3189 ($ (-623 (-377 (-874 (-517)))))) (-15 -1772 ((-3 $ "failed") (-623 (-377 (-874 (-517))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 27)) (-2396 (($) 12 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18)))
+((-3215 (((-1159) $) 7)) (-2182 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 11)))
+(((-353) (-1185)) (T -353))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-353)))))
+(-13 (-365) (-10 -8 (-15 -2182 ($ (-623 (-632)))) (-15 -2182 ($ (-583 (-300)))) (-15 -2182 ($ (-300))) (-15 -2182 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
+((-1759 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-874 (-349)))) 17) (((-3 $ "failed") (-623 (-874 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 11)) (-3076 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-874 (-349)))) 18) (($ (-623 (-874 (-517)))) 16) (($ (-623 (-377 (-874 (-349))))) 14) (($ (-623 (-377 (-874 (-517))))) 12)) (-3215 (((-1159) $) 7)) (-2182 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 23)))
+(((-354) (-1185)) (T -354))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-354)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))))
+(-13 (-365) (-10 -8 (-15 -2182 ($ (-583 (-300)))) (-15 -2182 ($ (-300))) (-15 -2182 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300)))))) (-15 -3076 ($ (-623 (-286 (-349))))) (-15 -1759 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3076 ($ (-623 (-286 (-517))))) (-15 -1759 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3076 ($ (-623 (-874 (-349))))) (-15 -1759 ((-3 $ "failed") (-623 (-874 (-349))))) (-15 -3076 ($ (-623 (-874 (-517))))) (-15 -1759 ((-3 $ "failed") (-623 (-874 (-517))))) (-15 -3076 ($ (-623 (-377 (-874 (-349)))))) (-15 -1759 ((-3 $ "failed") (-623 (-377 (-874 (-349)))))) (-15 -3076 ($ (-623 (-377 (-874 (-517)))))) (-15 -1759 ((-3 $ "failed") (-623 (-377 (-874 (-517))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1343 (($ |#1| |#2|) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-3302 ((|#2| $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 27)) (-2297 (($) 12 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18)))
(((-355 |#1| |#2|) (-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|))) (-961) (-779)) (T -355))
NIL
(-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) 56)) (-3092 (($) NIL T CONST)) (-3791 (((-3 $ "failed") $ $) 58)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1337 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-3848 (((-107) $) 14)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-703) $ (-517)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3420 (($ (-1 |#1| |#1|) $) 37)) (-2125 (($ (-1 (-703) (-703)) $) 34)) (-2208 (((-3 $ "failed") $ $) 49)) (-3985 (((-1056) $) NIL)) (-2611 (($ $ $) 25)) (-2301 (($ $ $) 23)) (-3206 (((-1021) $) NIL)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) 31)) (-1306 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-2256 (((-787) $) 21) (($ |#1|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2409 (($) 9 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 41)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 60 (|has| |#1| (-779)))) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
-(((-356 |#1|) (-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -1306 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-703) (-703)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) (-1003)) (T -356))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2611 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2208 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3791 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-1306 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))))
-(-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -1306 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-703) (-703)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 47)) (-3189 (((-517) $) 46)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-2967 (($ $ $) 54)) (-3099 (($ $ $) 53)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 51)) (-1583 (((-107) $ $) 50)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 52)) (-1572 (((-107) $ $) 49)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-357) (-1184)) (T -357))
+((-2571 (((-107) $ $) NIL)) (-1598 (((-703) $) 56)) (-3473 (($) NIL T CONST)) (-3660 (((-3 $ "failed") $ $) 58)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2387 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-2955 (((-107) $) 14)) (-2445 ((|#1| $ (-517)) NIL)) (-2169 (((-703) $ (-517)) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3276 (($ (-1 |#1| |#1|) $) 37)) (-1378 (($ (-1 (-703) (-703)) $) 34)) (-3913 (((-3 $ "failed") $ $) 49)) (-3865 (((-1057) $) NIL)) (-3404 (($ $ $) 25)) (-3516 (($ $ $) 23)) (-3094 (((-1021) $) NIL)) (-2232 (((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-703)))) $) 31)) (-1412 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-2182 (((-787) $) 21) (($ |#1|) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2306 (($) 9 T CONST)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) 41)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) 60 (|has| |#1| (-779)))) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
+(((-356 |#1|) (-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -3516 ($ $ $)) (-15 -3404 ($ $ $)) (-15 -3913 ((-3 $ "failed") $ $)) (-15 -3660 ((-3 $ "failed") $ $)) (-15 -1412 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2387 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1598 ((-703) $)) (-15 -2232 ((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-703)))) $)) (-15 -2169 ((-703) $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -1378 ($ (-1 (-703) (-703)) $)) (-15 -3276 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) (-1003)) (T -356))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3516 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3404 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3913 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3660 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-1412 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-2387 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-2169 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-1378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-3276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))))
+(-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -3516 ($ $ $)) (-15 -3404 ($ $ $)) (-15 -3913 ((-3 $ "failed") $ $)) (-15 -3660 ((-3 $ "failed") $ $)) (-15 -1412 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2387 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1598 ((-703) $)) (-15 -2232 ((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-703)))) $)) (-15 -2169 ((-703) $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -1378 ($ (-1 (-703) (-703)) $)) (-15 -3276 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 47)) (-3076 (((-517) $) 46)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-1575 (($ $ $) 54)) (-2986 (($ $ $) 53)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ $) 42)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1593 (((-107) $ $) 51)) (-1570 (((-107) $ $) 50)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 52)) (-1560 (((-107) $ $) 49)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-357) (-1185)) (T -357))
NIL
(-13 (-509) (-779) (-952 (-517)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2680 (((-107) $) 20)) (-1742 (((-107) $) 19)) (-3462 (($ (-1056) (-1056) (-1056)) 21)) (-1207 (((-1056) $) 16)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1502 (($ (-1056) (-1056) (-1056)) 14)) (-1764 (((-1056) $) 17)) (-3935 (((-107) $) 18)) (-2173 (((-1056) $) 15)) (-2256 (((-787) $) 12) (($ (-1056)) 13) (((-1056) $) 9)) (-1547 (((-107) $ $) 7)))
+((-2571 (((-107) $ $) NIL)) (-2791 (((-107) $) 20)) (-1296 (((-107) $) 19)) (-3366 (($ (-1057) (-1057) (-1057)) 21)) (-1211 (((-1057) $) 16)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1502 (($ (-1057) (-1057) (-1057)) 14)) (-3769 (((-1057) $) 17)) (-1542 (((-107) $) 18)) (-1232 (((-1057) $) 15)) (-2182 (((-787) $) 12) (($ (-1057)) 13) (((-1057) $) 9)) (-1539 (((-107) $ $) 7)))
(((-358) (-359)) (T -358))
NIL
(-359)
-((-2750 (((-107) $ $) 7)) (-2680 (((-107) $) 14)) (-1742 (((-107) $) 15)) (-3462 (($ (-1056) (-1056) (-1056)) 13)) (-1207 (((-1056) $) 18)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1502 (($ (-1056) (-1056) (-1056)) 20)) (-1764 (((-1056) $) 17)) (-3935 (((-107) $) 16)) (-2173 (((-1056) $) 19)) (-2256 (((-787) $) 11) (($ (-1056)) 22) (((-1056) $) 21)) (-1547 (((-107) $ $) 6)))
-(((-359) (-1184)) (T -359))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1502 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3462 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ((-1056) $)) (-15 -1502 ($ (-1056) (-1056) (-1056))) (-15 -2173 ((-1056) $)) (-15 -1207 ((-1056) $)) (-15 -1764 ((-1056) $)) (-15 -3935 ((-107) $)) (-15 -1742 ((-107) $)) (-15 -2680 ((-107) $)) (-15 -3462 ($ (-1056) (-1056) (-1056)))))
+((-2571 (((-107) $ $) 7)) (-2791 (((-107) $) 14)) (-1296 (((-107) $) 15)) (-3366 (($ (-1057) (-1057) (-1057)) 13)) (-1211 (((-1057) $) 18)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-1502 (($ (-1057) (-1057) (-1057)) 20)) (-3769 (((-1057) $) 17)) (-1542 (((-107) $) 16)) (-1232 (((-1057) $) 19)) (-2182 (((-787) $) 11) (($ (-1057)) 22) (((-1057) $) 21)) (-1539 (((-107) $ $) 6)))
+(((-359) (-1185)) (T -359))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) (-1502 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))) (-1232 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) (-1211 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3366 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ($ (-1057))) (-15 -2182 ((-1057) $)) (-15 -1502 ($ (-1057) (-1057) (-1057))) (-15 -1232 ((-1057) $)) (-15 -1211 ((-1057) $)) (-15 -3769 ((-1057) $)) (-15 -1542 ((-107) $)) (-15 -1296 ((-107) $)) (-15 -2791 ((-107) $)) (-15 -3366 ($ (-1057) (-1057) (-1057)))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3395 (((-787) $) 50)) (-3092 (($) NIL T CONST)) (-3380 (($ $ (-843)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2572 (($ $ (-843)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) 26)) (-3141 (((-703)) 15)) (-2376 (((-787) $) 52)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) NIL)) (-3917 (($ $ $ $) NIL)) (-1956 (($ $ $) NIL)) (-2396 (($) 20 T CONST)) (-1547 (((-107) $ $) 28)) (-1654 (($ $) 34) (($ $ $) 36)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -3141 ((-703))) (-15 -2376 ((-787) $)) (-15 -3395 ((-787) $)) (-15 -3220 ($ (-703))))) (-703) (-703) (-156)) (T -360))
-((-3141 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))))
-(-13 (-677 |#3|) (-10 -8 (-15 -3141 ((-703))) (-15 -2376 ((-787) $)) (-15 -3395 ((-787) $)) (-15 -3220 ($ (-703)))))
-((-1866 (((-1056)) 10)) (-4012 (((-1045 (-1056))) 28)) (-4124 (((-1158) (-1056)) 25) (((-1158) (-358)) 24)) (-4137 (((-1158)) 26)) (-3657 (((-1045 (-1056))) 27)))
-(((-361) (-10 -7 (-15 -3657 ((-1045 (-1056)))) (-15 -4012 ((-1045 (-1056)))) (-15 -4137 ((-1158))) (-15 -4124 ((-1158) (-358))) (-15 -4124 ((-1158) (-1056))) (-15 -1866 ((-1056))))) (T -361))
-((-1866 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-361)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-361)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-361)))) (-4137 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-361)))) (-4012 (*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))) (-3657 (*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))))
-(-10 -7 (-15 -3657 ((-1045 (-1056)))) (-15 -4012 ((-1045 (-1056)))) (-15 -4137 ((-1158))) (-15 -4124 ((-1158) (-358))) (-15 -4124 ((-1158) (-1056))) (-15 -1866 ((-1056))))
-((-3972 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16)))
-(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362))
-((-3972 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|))))
-((-2256 (((-364) |#1|) 11)))
-(((-363 |#1|) (-10 -7 (-15 -2256 ((-364) |#1|))) (-1003)) (T -363))
-((-2256 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -2256 ((-364) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-1594 (((-583 (-1056)) $ (-583 (-1056))) 37)) (-2404 (((-583 (-1056)) $ (-583 (-1056))) 38)) (-3385 (((-583 (-1056)) $ (-583 (-1056))) 39)) (-3157 (((-583 (-1056)) $) 34)) (-3462 (($) 23)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1415 (((-583 (-1056)) $) 35)) (-2054 (((-583 (-1056)) $) 36)) (-1242 (((-1158) $ (-517)) 32) (((-1158) $) 33)) (-3645 (($ (-787) (-517)) 29)) (-2256 (((-787) $) 41) (($ (-787)) 25)) (-1547 (((-107) $ $) NIL)))
-(((-364) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -1415 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -2404 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))) (T -364))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1242 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-364)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-364)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-3462 (*1 *1) (-5 *1 (-364))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-3385 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-2404 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-1594 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -1415 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -2404 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))
-((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8)))
-(((-365) (-1184)) (T -365))
-((-4155 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1158)))))
-(-13 (-1108) (-557 (-787)) (-10 -8 (-15 -4155 ((-1158) $))))
-(((-557 (-787)) . T) ((-1108) . T))
-((-1772 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-874 (-349))) 17) (((-3 $ "failed") (-874 (-517))) 15) (((-3 $ "failed") (-377 (-874 (-349)))) 13) (((-3 $ "failed") (-377 (-874 (-517)))) 11)) (-3189 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-874 (-349))) 18) (($ (-874 (-517))) 16) (($ (-377 (-874 (-349)))) 14) (($ (-377 (-874 (-517)))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23)))
-(((-366) (-1184)) (T -366))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))))
-(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349)))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517)))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
-((-2736 (((-583 (-1056)) (-583 (-1056))) 8)) (-4155 (((-1158) (-358)) 27)) (-4048 (((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073))) 59) (((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073)) 35) (((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073))) 34)))
-(((-367) (-10 -7 (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)))) (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073))) (-15 -4048 ((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073)))) (-15 -4155 ((-1158) (-358))) (-15 -2736 ((-583 (-1056)) (-583 (-1056)))))) (T -367))
-((-2736 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-367)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *5 (-1076)) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))))
-(-10 -7 (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)))) (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073))) (-15 -4048 ((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073)))) (-15 -4155 ((-1158) (-358))) (-15 -2736 ((-583 (-1056)) (-583 (-1056)))))
-((-4155 (((-1158) $) 37)) (-2256 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128)))
-(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2256 ($ (-300))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -2256 ($ (-286 (-634)))) (-15 -2256 ($ (-286 (-632)))) (-15 -2256 ($ (-286 (-627)))) (-15 -2256 ($ (-265 (-286 (-634))))) (-15 -2256 ($ (-265 (-286 (-632))))) (-15 -2256 ($ (-265 (-286 (-627))))) (-15 -2256 ($ (-286 (-517)))) (-15 -2256 ($ (-286 (-349)))) (-15 -2256 ($ (-286 (-153 (-349))))) (-15 -2256 ($ (-265 (-286 (-517))))) (-15 -2256 ($ (-265 (-286 (-349))))) (-15 -2256 ($ (-265 (-286 (-153 (-349)))))))) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-1077)) (T -368))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))))
-(-13 (-365) (-10 -8 (-15 -2256 ($ (-300))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -2256 ($ (-286 (-634)))) (-15 -2256 ($ (-286 (-632)))) (-15 -2256 ($ (-286 (-627)))) (-15 -2256 ($ (-265 (-286 (-634))))) (-15 -2256 ($ (-265 (-286 (-632))))) (-15 -2256 ($ (-265 (-286 (-627))))) (-15 -2256 ($ (-286 (-517)))) (-15 -2256 ($ (-286 (-349)))) (-15 -2256 ($ (-286 (-153 (-349))))) (-15 -2256 ($ (-265 (-286 (-517))))) (-15 -2256 ($ (-265 (-286 (-349))))) (-15 -2256 ($ (-265 (-286 (-153 (-349))))))))
-((-2750 (((-107) $ $) NIL)) (-1388 ((|#2| $) 36)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2149 (($ (-377 |#2|)) 84)) (-2544 (((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $) 37)) (-3127 (($ $) 32) (($ $ (-703)) 34)) (-3645 (((-377 |#2|) $) 46)) (-2276 (($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|)))) 31)) (-2256 (((-787) $) 120)) (-2731 (($ $) 33) (($ $ (-703)) 35)) (-1547 (((-107) $ $) NIL)) (-1642 (($ |#2| $) 39)))
-(((-369 |#1| |#2|) (-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1642 ($ |#2| $)) (-15 -2149 ($ (-377 |#2|))) (-15 -1388 (|#2| $)) (-15 -2544 ((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))))) (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703))))) (-13 (-333) (-134)) (-1130 |#1|)) (T -369))
-((-1642 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1130 *3)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-1388 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-2544 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-3127 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) (-2731 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))))
-(-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1642 ($ |#2| $)) (-15 -2149 ($ (-377 |#2|))) (-15 -1388 (|#2| $)) (-15 -2544 ((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))))) (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703)))))
-((-2750 (((-107) $ $) 9 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 15 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 14 (|has| |#1| (-808 (-517))))) (-3985 (((-1056) $) 13 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-3206 (((-1021) $) 12 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-2256 (((-787) $) 11 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-1547 (((-107) $ $) 10 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))))
-(((-370 |#1|) (-1184) (-1108)) (T -370))
-NIL
-(-13 (-1108) (-10 -7 (IF (|has| |t#1| (-808 (-517))) (-6 (-808 (-517))) |noBranch|) (IF (|has| |t#1| (-808 (-349))) (-6 (-808 (-349))) |noBranch|)))
-(((-97) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-557 (-787)) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-1003) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-1108) . T))
-((-2378 (($ $) 10) (($ $ (-703)) 11)))
-(((-371 |#1|) (-10 -8 (-15 -2378 (|#1| |#1| (-703))) (-15 -2378 (|#1| |#1|))) (-372)) (T -371))
-NIL
-(-10 -8 (-15 -2378 (|#1| |#1| (-703))) (-15 -2378 (|#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-2378 (($ $) 79) (($ $ (-703)) 78)) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 81)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 80)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1328 (((-3 $ "failed") $) 82)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-372) (-1184)) (T -372))
-((-3972 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) (-1620 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2378 (*1 *1 *1) (-4 *1 (-372))) (-2378 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))))
-(-13 (-333) (-132) (-10 -8 (-15 -3972 ((-765 (-843)) $)) (-15 -1620 ((-3 (-703) "failed") $ $)) (-15 -2378 ($ $)) (-15 -2378 ($ $ (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
-((-4005 (($ (-517) (-517)) 11) (($ (-517) (-517) (-843)) NIL)) (-2930 (((-843)) 16) (((-843) (-843)) NIL)))
-(((-373 |#1|) (-10 -8 (-15 -2930 ((-843) (-843))) (-15 -2930 ((-843))) (-15 -4005 (|#1| (-517) (-517) (-843))) (-15 -4005 (|#1| (-517) (-517)))) (-374)) (T -373))
-((-2930 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))))
-(-10 -8 (-15 -2930 ((-843) (-843))) (-15 -2930 ((-843))) (-15 -4005 (|#1| (-517) (-517) (-843))) (-15 -4005 (|#1| (-517) (-517))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 (((-517) $) 89)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1974 (($ $) 87)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 97)) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 114)) (-3092 (($) 17 T CONST)) (-2531 (($ $) 86)) (-1772 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3189 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3554 (((-843)) 130) (((-843) (-843)) 127 (|has| $ (-6 -4171)))) (-3556 (((-107) $) 112)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-3972 (((-517) $) 136)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 96)) (-1506 (($ $) 92)) (-2475 (((-107) $) 113)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 111) (($) 124 (-12 (-2630 (|has| $ (-6 -4171))) (-2630 (|has| $ (-6 -4163)))))) (-3099 (($ $ $) 110) (($) 123 (-12 (-2630 (|has| $ (-6 -4171))) (-2630 (|has| $ (-6 -4163)))))) (-3371 (((-517) $) 133)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2138 (((-843) (-517)) 126 (|has| $ (-6 -4171)))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 88)) (-2597 (($ $) 90)) (-4005 (($ (-517) (-517)) 138) (($ (-517) (-517) (-843)) 137)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2077 (((-517) $) 134)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2930 (((-843)) 131) (((-843) (-843)) 128 (|has| $ (-6 -4171)))) (-2646 (((-843) (-517)) 125 (|has| $ (-6 -4171)))) (-3645 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-2961 (((-703)) 29)) (-1949 (($ $) 91)) (-1398 (((-843)) 132) (((-843) (-843)) 129 (|has| $ (-6 -4171)))) (-2372 (((-843)) 135)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 115)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 108)) (-1583 (((-107) $ $) 107)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 109)) (-1572 (((-107) $ $) 106)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-374) (-1184)) (T -374))
-((-4005 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-4005 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2372 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-1398 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2930 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-3554 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))) (-2967 (*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) (-3099 (*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))))
-(-13 (-970) (-10 -8 (-6 -3383) (-15 -4005 ($ (-517) (-517))) (-15 -4005 ($ (-517) (-517) (-843))) (-15 -3972 ((-517) $)) (-15 -2372 ((-843))) (-15 -2077 ((-517) $)) (-15 -3371 ((-517) $)) (-15 -1398 ((-843))) (-15 -2930 ((-843))) (-15 -3554 ((-843))) (IF (|has| $ (-6 -4171)) (PROGN (-15 -1398 ((-843) (-843))) (-15 -2930 ((-843) (-843))) (-15 -3554 ((-843) (-843))) (-15 -2138 ((-843) (-517))) (-15 -2646 ((-843) (-517)))) |noBranch|) (IF (|has| $ (-6 -4163)) |noBranch| (IF (|has| $ (-6 -4171)) |noBranch| (PROGN (-15 -2967 ($)) (-15 -3099 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-970) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
-((-1893 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20)))
-(((-375 |#1| |#2|) (-10 -7 (-15 -1893 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))))
-(-10 -7 (-15 -1893 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
-((-1893 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13)))
-(((-376 |#1| |#2|) (-10 -7 (-15 -1893 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))))
-(-10 -7 (-15 -1893 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 13)) (-2668 ((|#1| $) 21 (|has| |#1| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#1| (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 17) (((-3 (-1073) "failed") $) NIL (|has| |#1| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 15) (((-1073) $) NIL (|has| |#1| (-952 (-1073)))) (((-377 (-517)) $) 67 (|has| |#1| (-952 (-517)))) (((-517) $) NIL (|has| |#1| (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 50)) (-3209 (($) NIL (|has| |#1| (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| |#1| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-3848 (((-107) $) 64)) (-1405 (($ $) NIL)) (-1787 ((|#1| $) 71)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-2475 (((-107) $) NIL (|has| |#1| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 97)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| |#1| (-278)))) (-2597 ((|#1| $) 28 (|has| |#1| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 133 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 129 (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) NIL)) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2971 (($ $) NIL)) (-1800 ((|#1| $) 73)) (-3645 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-937))) (((-199) $) NIL (|has| |#1| (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1073)) NIL (|has| |#1| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) 99 (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 100)) (-1949 ((|#1| $) 26 (|has| |#1| (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 22 T CONST)) (-2409 (($) 8 T CONST)) (-2482 (((-1056) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1056) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1158) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1158) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 56)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1667 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1654 (($ $) 25) (($ $ $) 55)) (-1642 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-377 |#1|) (-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4167)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4178)) (-6 -4167) |noBranch|) |noBranch|) |noBranch|))) (-509)) (T -377))
-NIL
-(-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4167)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4178)) (-6 -4167) |noBranch|) |noBranch|) |noBranch|)))
-((-3055 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 18)) (-1967 (($ (-1153 |#2|) (-1153 $)) NIL) (($ (-1153 |#2|)) 26)) (-2410 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 22)) (-3777 ((|#3| $) 59)) (-3010 ((|#2| (-1153 $)) NIL) ((|#2|) 20)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 24)) (-3645 (((-1153 |#2|) $) 11) (($ (-1153 |#2|)) 13)) (-3669 ((|#3| $) 51)))
-(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -2410 ((-623 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3055 ((-623 |#2|))) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 (|#3| |#1|)) (-15 -3669 (|#3| |#1|)) (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|)))) (-379 |#2| |#3|) (-156) (-1130 |#2|)) (T -378))
-((-3055 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-3010 (*1 *2) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))))
-(-10 -8 (-15 -2410 ((-623 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3055 ((-623 |#2|))) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 (|#3| |#1|)) (-15 -3669 (|#3| |#1|)) (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1328 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-379 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -379))
-((-1753 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *1)) (-4 *1 (-379 *3 *4)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) (-3055 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))) (-3010 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))))
-(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3645 ((-1153 |t#1|) $)) (-15 -3645 ($ (-1153 |t#1|))) (-15 -3055 ((-623 |t#1|))) (-15 -3010 (|t#1|)) (-15 -2410 ((-623 |t#1|) $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3071 (((-787) $) 50)) (-3473 (($) NIL T CONST)) (-1246 (($ $ (-843)) NIL)) (-3092 (($ $ (-843)) NIL)) (-1313 (($ $ (-843)) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-3107 (($ (-703)) 26)) (-2586 (((-703)) 15)) (-2966 (((-787) $) 52)) (-3064 (($ $ $) NIL)) (-2182 (((-787) $) NIL)) (-2411 (($ $ $ $) NIL)) (-3168 (($ $ $) NIL)) (-2297 (($) 20 T CONST)) (-1539 (((-107) $ $) 28)) (-1637 (($ $) 34) (($ $ $) 36)) (-1626 (($ $ $) 37)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -2586 ((-703))) (-15 -2966 ((-787) $)) (-15 -3071 ((-787) $)) (-15 -3107 ($ (-703))))) (-703) (-703) (-156)) (T -360))
+((-2586 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))))
+(-13 (-677 |#3|) (-10 -8 (-15 -2586 ((-703))) (-15 -2966 ((-787) $)) (-15 -3071 ((-787) $)) (-15 -3107 ($ (-703)))))
+((-4151 (((-1057)) 10)) (-4110 (((-1046 (-1057))) 28)) (-3192 (((-1159) (-1057)) 25) (((-1159) (-358)) 24)) (-3199 (((-1159)) 26)) (-1890 (((-1046 (-1057))) 27)))
+(((-361) (-10 -7 (-15 -1890 ((-1046 (-1057)))) (-15 -4110 ((-1046 (-1057)))) (-15 -3199 ((-1159))) (-15 -3192 ((-1159) (-358))) (-15 -3192 ((-1159) (-1057))) (-15 -4151 ((-1057))))) (T -361))
+((-4151 (*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-361)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-361)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1159)) (-5 *1 (-361)))) (-3199 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-361)))) (-4110 (*1 *2) (-12 (-5 *2 (-1046 (-1057))) (-5 *1 (-361)))) (-1890 (*1 *2) (-12 (-5 *2 (-1046 (-1057))) (-5 *1 (-361)))))
+(-10 -7 (-15 -1890 ((-1046 (-1057)))) (-15 -4110 ((-1046 (-1057)))) (-15 -3199 ((-1159))) (-15 -3192 ((-1159) (-358))) (-15 -3192 ((-1159) (-1057))) (-15 -4151 ((-1057))))
+((-1921 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16)))
+(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1921 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362))
+((-1921 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1921 ((-703) (-306 |#1| |#2| |#3| |#4|))))
+((-2182 (((-364) |#1|) 11)))
+(((-363 |#1|) (-10 -7 (-15 -2182 ((-364) |#1|))) (-1003)) (T -363))
+((-2182 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -2182 ((-364) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-3457 (((-583 (-1057)) $ (-583 (-1057))) 37)) (-2107 (((-583 (-1057)) $ (-583 (-1057))) 38)) (-1288 (((-583 (-1057)) $ (-583 (-1057))) 39)) (-2741 (((-583 (-1057)) $) 34)) (-3366 (($) 23)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4058 (((-583 (-1057)) $) 35)) (-2973 (((-583 (-1057)) $) 36)) (-1250 (((-1159) $ (-517)) 32) (((-1159) $) 33)) (-3582 (($ (-787) (-517)) 29)) (-2182 (((-787) $) 41) (($ (-787)) 25)) (-1539 (((-107) $ $) NIL)))
+(((-364) (-13 (-1003) (-10 -8 (-15 -2182 ($ (-787))) (-15 -3582 ($ (-787) (-517))) (-15 -1250 ((-1159) $ (-517))) (-15 -1250 ((-1159) $)) (-15 -2973 ((-583 (-1057)) $)) (-15 -4058 ((-583 (-1057)) $)) (-15 -3366 ($)) (-15 -2741 ((-583 (-1057)) $)) (-15 -1288 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -2107 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3457 ((-583 (-1057)) $ (-583 (-1057))))))) (T -364))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3582 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1250 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-364)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-364)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-3366 (*1 *1) (-5 *1 (-364))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-1288 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-2107 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-3457 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ($ (-787))) (-15 -3582 ($ (-787) (-517))) (-15 -1250 ((-1159) $ (-517))) (-15 -1250 ((-1159) $)) (-15 -2973 ((-583 (-1057)) $)) (-15 -4058 ((-583 (-1057)) $)) (-15 -3366 ($)) (-15 -2741 ((-583 (-1057)) $)) (-15 -1288 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -2107 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3457 ((-583 (-1057)) $ (-583 (-1057))))))
+((-3215 (((-1159) $) 7)) (-2182 (((-787) $) 8)))
+(((-365) (-1185)) (T -365))
+((-3215 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1159)))))
+(-13 (-1109) (-557 (-787)) (-10 -8 (-15 -3215 ((-1159) $))))
+(((-557 (-787)) . T) ((-1109) . T))
+((-1759 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-874 (-349))) 17) (((-3 $ "failed") (-874 (-517))) 15) (((-3 $ "failed") (-377 (-874 (-349)))) 13) (((-3 $ "failed") (-377 (-874 (-517)))) 11)) (-3076 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-874 (-349))) 18) (($ (-874 (-517))) 16) (($ (-377 (-874 (-349)))) 14) (($ (-377 (-874 (-517)))) 12)) (-3215 (((-1159) $) 7)) (-2182 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 23)))
+(((-366) (-1185)) (T -366))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-366)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))))
+(-13 (-365) (-10 -8 (-15 -2182 ($ (-583 (-300)))) (-15 -2182 ($ (-300))) (-15 -2182 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300)))))) (-15 -3076 ($ (-286 (-349)))) (-15 -1759 ((-3 $ "failed") (-286 (-349)))) (-15 -3076 ($ (-286 (-517)))) (-15 -1759 ((-3 $ "failed") (-286 (-517)))) (-15 -3076 ($ (-874 (-349)))) (-15 -1759 ((-3 $ "failed") (-874 (-349)))) (-15 -3076 ($ (-874 (-517)))) (-15 -1759 ((-3 $ "failed") (-874 (-517)))) (-15 -3076 ($ (-377 (-874 (-349))))) (-15 -1759 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3076 ($ (-377 (-874 (-517))))) (-15 -1759 ((-3 $ "failed") (-377 (-874 (-517)))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
+((-3216 (((-583 (-1057)) (-583 (-1057))) 8)) (-3215 (((-1159) (-358)) 27)) (-3187 (((-1007) (-1074) (-583 (-1074)) (-1077) (-583 (-1074))) 59) (((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)) (-1074)) 35) (((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074))) 34)))
+(((-367) (-10 -7 (-15 -3187 ((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)))) (-15 -3187 ((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)) (-1074))) (-15 -3187 ((-1007) (-1074) (-583 (-1074)) (-1077) (-583 (-1074)))) (-15 -3215 ((-1159) (-358))) (-15 -3216 ((-583 (-1057)) (-583 (-1057)))))) (T -367))
+((-3216 (*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-367)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1159)) (-5 *1 (-367)))) (-3187 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *5 (-1077)) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-3187 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1074))))) (-5 *6 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-3187 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1074))))) (-5 *6 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))))
+(-10 -7 (-15 -3187 ((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)))) (-15 -3187 ((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)) (-1074))) (-15 -3187 ((-1007) (-1074) (-583 (-1074)) (-1077) (-583 (-1074)))) (-15 -3215 ((-1159) (-358))) (-15 -3216 ((-583 (-1057)) (-583 (-1057)))))
+((-3215 (((-1159) $) 37)) (-2182 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128)))
+(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2182 ($ (-300))) (-15 -2182 ($ (-583 (-300)))) (-15 -2182 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300)))))) (-15 -2182 ($ (-286 (-634)))) (-15 -2182 ($ (-286 (-632)))) (-15 -2182 ($ (-286 (-627)))) (-15 -2182 ($ (-265 (-286 (-634))))) (-15 -2182 ($ (-265 (-286 (-632))))) (-15 -2182 ($ (-265 (-286 (-627))))) (-15 -2182 ($ (-286 (-517)))) (-15 -2182 ($ (-286 (-349)))) (-15 -2182 ($ (-286 (-153 (-349))))) (-15 -2182 ($ (-265 (-286 (-517))))) (-15 -2182 ($ (-265 (-286 (-349))))) (-15 -2182 ($ (-265 (-286 (-153 (-349)))))))) (-1074) (-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-583 (-1074)) (-1078)) (T -368))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))))
+(-13 (-365) (-10 -8 (-15 -2182 ($ (-300))) (-15 -2182 ($ (-583 (-300)))) (-15 -2182 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300)))))) (-15 -2182 ($ (-286 (-634)))) (-15 -2182 ($ (-286 (-632)))) (-15 -2182 ($ (-286 (-627)))) (-15 -2182 ($ (-265 (-286 (-634))))) (-15 -2182 ($ (-265 (-286 (-632))))) (-15 -2182 ($ (-265 (-286 (-627))))) (-15 -2182 ($ (-286 (-517)))) (-15 -2182 ($ (-286 (-349)))) (-15 -2182 ($ (-286 (-153 (-349))))) (-15 -2182 ($ (-265 (-286 (-517))))) (-15 -2182 ($ (-265 (-286 (-349))))) (-15 -2182 ($ (-265 (-286 (-153 (-349))))))))
+((-2571 (((-107) $ $) NIL)) (-2830 ((|#2| $) 36)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1571 (($ (-377 |#2|)) 84)) (-4004 (((-583 (-2 (|:| -2059 (-703)) (|:| -2840 |#2|) (|:| |num| |#2|))) $) 37)) (-1699 (($ $) 32) (($ $ (-703)) 34)) (-3582 (((-377 |#2|) $) 46)) (-2197 (($ (-583 (-2 (|:| -2059 (-703)) (|:| -2840 |#2|) (|:| |num| |#2|)))) 31)) (-2182 (((-787) $) 120)) (-2553 (($ $) 33) (($ $ (-703)) 35)) (-1539 (((-107) $ $) NIL)) (-1626 (($ |#2| $) 39)))
+(((-369 |#1| |#2|) (-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1626 ($ |#2| $)) (-15 -1571 ($ (-377 |#2|))) (-15 -2830 (|#2| $)) (-15 -4004 ((-583 (-2 (|:| -2059 (-703)) (|:| -2840 |#2|) (|:| |num| |#2|))) $)) (-15 -2197 ($ (-583 (-2 (|:| -2059 (-703)) (|:| -2840 |#2|) (|:| |num| |#2|))))) (-15 -1699 ($ $)) (-15 -2553 ($ $)) (-15 -1699 ($ $ (-703))) (-15 -2553 ($ $ (-703))))) (-13 (-333) (-134)) (-1131 |#1|)) (T -369))
+((-1626 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1131 *3)))) (-1571 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-2830 (*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-4004 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2059 (-703)) (|:| -2840 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))) (-2197 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2059 (-703)) (|:| -2840 *4) (|:| |num| *4)))) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-1699 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1131 *2)))) (-2553 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1131 *2)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))) (-2553 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))))
+(-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1626 ($ |#2| $)) (-15 -1571 ($ (-377 |#2|))) (-15 -2830 (|#2| $)) (-15 -4004 ((-583 (-2 (|:| -2059 (-703)) (|:| -2840 |#2|) (|:| |num| |#2|))) $)) (-15 -2197 ($ (-583 (-2 (|:| -2059 (-703)) (|:| -2840 |#2|) (|:| |num| |#2|))))) (-15 -1699 ($ $)) (-15 -2553 ($ $)) (-15 -1699 ($ $ (-703))) (-15 -2553 ($ $ (-703)))))
+((-2571 (((-107) $ $) 9 (-3763 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 15 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 14 (|has| |#1| (-808 (-517))))) (-3865 (((-1057) $) 13 (-3763 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-3094 (((-1021) $) 12 (-3763 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-2182 (((-787) $) 11 (-3763 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-1539 (((-107) $ $) 10 (-3763 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))))
+(((-370 |#1|) (-1185) (-1109)) (T -370))
+NIL
+(-13 (-1109) (-10 -7 (IF (|has| |t#1| (-808 (-517))) (-6 (-808 (-517))) |noBranch|) (IF (|has| |t#1| (-808 (-349))) (-6 (-808 (-349))) |noBranch|)))
+(((-97) -3763 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-557 (-787)) -3763 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-1003) -3763 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-1109) . T))
+((-2990 (($ $) 10) (($ $ (-703)) 11)))
+(((-371 |#1|) (-10 -8 (-15 -2990 (|#1| |#1| (-703))) (-15 -2990 (|#1| |#1|))) (-372)) (T -371))
+NIL
+(-10 -8 (-15 -2990 (|#1| |#1| (-703))) (-15 -2990 (|#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3765 (((-107) $ $) 59)) (-3473 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2990 (($ $) 79) (($ $ (-703)) 78)) (-2965 (((-107) $) 71)) (-1921 (((-765 (-843)) $) 81)) (-2955 (((-107) $) 31)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-3693 (((-388 $) $) 74)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-3654 (((-3 (-703) "failed") $ $) 80)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1589 (((-3 $ "failed") $) 82)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 64)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-372) (-1185)) (T -372))
+((-1921 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) (-3654 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2990 (*1 *1 *1) (-4 *1 (-372))) (-2990 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))))
+(-13 (-333) (-132) (-10 -8 (-15 -1921 ((-765 (-843)) $)) (-15 -3654 ((-3 (-703) "failed") $ $)) (-15 -2990 ($ $)) (-15 -2990 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
+((-4009 (($ (-517) (-517)) 11) (($ (-517) (-517) (-843)) NIL)) (-1567 (((-843)) 16) (((-843) (-843)) NIL)))
+(((-373 |#1|) (-10 -8 (-15 -1567 ((-843) (-843))) (-15 -1567 ((-843))) (-15 -4009 (|#1| (-517) (-517) (-843))) (-15 -4009 (|#1| (-517) (-517)))) (-374)) (T -373))
+((-1567 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))))
+(-10 -8 (-15 -1567 ((-843) (-843))) (-15 -1567 ((-843))) (-15 -4009 (|#1| (-517) (-517) (-843))) (-15 -4009 (|#1| (-517) (-517))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-2667 (((-517) $) 89)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-3349 (($ $) 87)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3706 (($ $) 97)) (-3765 (((-107) $ $) 59)) (-1207 (((-517) $) 114)) (-3473 (($) 17 T CONST)) (-3896 (($ $) 86)) (-1759 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3076 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2965 (((-107) $) 71)) (-3373 (((-843)) 130) (((-843) (-843)) 127 (|has| $ (-6 -4174)))) (-2099 (((-107) $) 112)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-1921 (((-517) $) 136)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 96)) (-2289 (($ $) 92)) (-1624 (((-107) $) 113)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1575 (($ $ $) 111) (($) 124 (-12 (-2455 (|has| $ (-6 -4174))) (-2455 (|has| $ (-6 -4166)))))) (-2986 (($ $ $) 110) (($) 123 (-12 (-2455 (|has| $ (-6 -4174))) (-2455 (|has| $ (-6 -4166)))))) (-3272 (((-517) $) 133)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-1483 (((-843) (-517)) 126 (|has| $ (-6 -4174)))) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-1194 (($ $) 88)) (-3263 (($ $) 90)) (-4009 (($ (-517) (-517)) 138) (($ (-517) (-517) (-843)) 137)) (-3693 (((-388 $) $) 74)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2059 (((-517) $) 134)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-1567 (((-843)) 131) (((-843) (-843)) 128 (|has| $ (-6 -4174)))) (-2481 (((-843) (-517)) 125 (|has| $ (-6 -4174)))) (-3582 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-1865 (((-703)) 29)) (-3112 (($ $) 91)) (-2931 (((-843)) 132) (((-843) (-843)) 129 (|has| $ (-6 -4174)))) (-4103 (((-843)) 135)) (-3767 (((-107) $ $) 39)) (-1221 (($ $) 115)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1593 (((-107) $ $) 108)) (-1570 (((-107) $ $) 107)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 109)) (-1560 (((-107) $ $) 106)) (-1649 (($ $ $) 64)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-374) (-1185)) (T -374))
+((-4009 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-4009 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-4103 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2931 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-1567 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-3373 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) (-3373 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4174)) (-4 *1 (-374)) (-5 *2 (-843)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4174)) (-4 *1 (-374)) (-5 *2 (-843)))) (-1575 (*1 *1) (-12 (-4 *1 (-374)) (-2455 (|has| *1 (-6 -4174))) (-2455 (|has| *1 (-6 -4166))))) (-2986 (*1 *1) (-12 (-4 *1 (-374)) (-2455 (|has| *1 (-6 -4174))) (-2455 (|has| *1 (-6 -4166))))))
+(-13 (-970) (-10 -8 (-6 -3284) (-15 -4009 ($ (-517) (-517))) (-15 -4009 ($ (-517) (-517) (-843))) (-15 -1921 ((-517) $)) (-15 -4103 ((-843))) (-15 -2059 ((-517) $)) (-15 -3272 ((-517) $)) (-15 -2931 ((-843))) (-15 -1567 ((-843))) (-15 -3373 ((-843))) (IF (|has| $ (-6 -4174)) (PROGN (-15 -2931 ((-843) (-843))) (-15 -1567 ((-843) (-843))) (-15 -3373 ((-843) (-843))) (-15 -1483 ((-843) (-517))) (-15 -2481 ((-843) (-517)))) |noBranch|) (IF (|has| $ (-6 -4166)) |noBranch| (IF (|has| $ (-6 -4174)) |noBranch| (PROGN (-15 -1575 ($)) (-15 -2986 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-970) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
+((-1857 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -1857 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))))
+(-10 -7 (-15 -1857 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
+((-1857 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13)))
+(((-376 |#1| |#2|) (-10 -7 (-15 -1857 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))))
+(-10 -7 (-15 -1857 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 13)) (-2667 ((|#1| $) 21 (|has| |#1| (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| |#1| (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) 17) (((-3 (-1074) "failed") $) NIL (|has| |#1| (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517))))) (-3076 ((|#1| $) 15) (((-1074) $) NIL (|has| |#1| (-952 (-1074)))) (((-377 (-517)) $) 67 (|has| |#1| (-952 (-517)))) (((-517) $) NIL (|has| |#1| (-952 (-517))))) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) 50)) (-3098 (($) NIL (|has| |#1| (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) NIL (|has| |#1| (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-2955 (((-107) $) 64)) (-1936 (($ $) NIL)) (-1772 ((|#1| $) 71)) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-1050)))) (-1624 (((-107) $) NIL (|has| |#1| (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| |#1| (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 97)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| |#1| (-278)))) (-3263 ((|#1| $) 28 (|has| |#1| (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) 133 (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) 129 (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|)))) (-2623 (((-703) $) NIL)) (-1986 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3691 (($ $) NIL)) (-1783 ((|#1| $) 73)) (-3582 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-937))) (((-199) $) NIL (|has| |#1| (-937)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1074)) NIL (|has| |#1| (-952 (-1074))))) (-1589 (((-3 $ "failed") $) 99 (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) 100)) (-3112 ((|#1| $) 26 (|has| |#1| (-502)))) (-3767 (((-107) $ $) NIL)) (-1221 (($ $) NIL (|has| |#1| (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 22 T CONST)) (-2306 (($) 8 T CONST)) (-1693 (((-1057) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1057) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1159) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1159) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-2553 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) 56)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1649 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1637 (($ $) 25) (($ $ $) 55)) (-1626 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-377 |#1|) (-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4170)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4181)) (-6 -4170) |noBranch|) |noBranch|) |noBranch|))) (-509)) (T -377))
+NIL
+(-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4170)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4181)) (-6 -4170) |noBranch|) |noBranch|) |noBranch|)))
+((-3129 (((-623 |#2|) (-1154 $)) NIL) (((-623 |#2|)) 18)) (-3291 (($ (-1154 |#2|) (-1154 $)) NIL) (($ (-1154 |#2|)) 26)) (-2148 (((-623 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) $) 22)) (-3523 ((|#3| $) 59)) (-4042 ((|#2| (-1154 $)) NIL) ((|#2|) 20)) (-2575 (((-1154 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) NIL) (((-1154 |#2|) $) NIL) (((-623 |#2|) (-1154 $)) 24)) (-3582 (((-1154 |#2|) $) 11) (($ (-1154 |#2|)) 13)) (-3804 ((|#3| $) 51)))
+(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -2148 ((-623 |#2|) |#1|)) (-15 -4042 (|#2|)) (-15 -3129 ((-623 |#2|))) (-15 -3582 (|#1| (-1154 |#2|))) (-15 -3582 ((-1154 |#2|) |#1|)) (-15 -3291 (|#1| (-1154 |#2|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1|)) (-15 -3523 (|#3| |#1|)) (-15 -3804 (|#3| |#1|)) (-15 -3129 ((-623 |#2|) (-1154 |#1|))) (-15 -4042 (|#2| (-1154 |#1|))) (-15 -3291 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2148 ((-623 |#2|) |#1| (-1154 |#1|)))) (-379 |#2| |#3|) (-156) (-1131 |#2|)) (T -378))
+((-3129 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-4042 (*1 *2) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))))
+(-10 -8 (-15 -2148 ((-623 |#2|) |#1|)) (-15 -4042 (|#2|)) (-15 -3129 ((-623 |#2|))) (-15 -3582 (|#1| (-1154 |#2|))) (-15 -3582 ((-1154 |#2|) |#1|)) (-15 -3291 (|#1| (-1154 |#2|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1|)) (-15 -3523 (|#3| |#1|)) (-15 -3804 (|#3| |#1|)) (-15 -3129 ((-623 |#2|) (-1154 |#1|))) (-15 -4042 (|#2| (-1154 |#1|))) (-15 -3291 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2148 ((-623 |#2|) |#1| (-1154 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-3129 (((-623 |#1|) (-1154 $)) 46) (((-623 |#1|)) 61)) (-1470 ((|#1| $) 52)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3291 (($ (-1154 |#1|) (-1154 $)) 48) (($ (-1154 |#1|)) 64)) (-2148 (((-623 |#1|) $ (-1154 $)) 53) (((-623 |#1|) $) 59)) (-1568 (((-3 $ "failed") $) 34)) (-3795 (((-843)) 54)) (-2955 (((-107) $) 31)) (-2289 ((|#1| $) 51)) (-3523 ((|#2| $) 44 (|has| |#1| (-333)))) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4042 ((|#1| (-1154 $)) 47) ((|#1|) 60)) (-2575 (((-1154 |#1|) $ (-1154 $)) 50) (((-623 |#1|) (-1154 $) (-1154 $)) 49) (((-1154 |#1|) $) 66) (((-623 |#1|) (-1154 $)) 65)) (-3582 (((-1154 |#1|) $) 63) (($ (-1154 |#1|)) 62)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1589 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3804 ((|#2| $) 45)) (-1865 (((-703)) 29)) (-3809 (((-1154 $)) 67)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-379 |#1| |#2|) (-1185) (-156) (-1131 |t#1|)) (T -379))
+((-3809 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *1)) (-4 *1 (-379 *3 *4)))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *3)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) (-3291 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1131 *3)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *3)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1131 *3)))) (-3129 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-623 *3)))) (-4042 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-623 *3)))))
+(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -3809 ((-1154 $))) (-15 -2575 ((-1154 |t#1|) $)) (-15 -2575 ((-623 |t#1|) (-1154 $))) (-15 -3291 ($ (-1154 |t#1|))) (-15 -3582 ((-1154 |t#1|) $)) (-15 -3582 ($ (-1154 |t#1|))) (-15 -3129 ((-623 |t#1|))) (-15 -4042 (|t#1|)) (-15 -2148 ((-623 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-340 |#1| |#2|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2256 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11)))
-(((-380 |#1| |#2|) (-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|))) (-381 |#2|) (-1108)) (T -380))
+((-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3076 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2182 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11)))
+(((-380 |#1| |#2|) (-10 -8 (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -2182 (|#1| (-517))) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -3076 (|#2| |#1|))) (-381 |#2|) (-1109)) (T -380))
NIL
-(-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)))
-((-1772 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-952 (-517))))) (-2256 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-952 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-952 (-517))))))
-(((-381 |#1|) (-1184) (-1108)) (T -381))
+(-10 -8 (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -2182 (|#1| (-517))) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -3076 (|#2| |#1|)))
+((-1759 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-952 (-517))))) (-3076 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-952 (-517))))) (-2182 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-952 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-952 (-517))))))
+(((-381 |#1|) (-1185) (-1109)) (T -381))
NIL
(-13 (-952 |t#1|) (-10 -7 (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-517))) |noBranch|) (IF (|has| |t#1| (-952 (-377 (-517)))) (-6 (-952 (-377 (-517)))) |noBranch|)))
(((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T))
-((-1893 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33)))
-(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-909 |#1|) (-1130 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|)) (-278) (-909 |#5|) (-1130 |#6|) (-13 (-379 |#6| |#7|) (-952 |#6|))) (T -382))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1130 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1130 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))))
-(-10 -7 (-15 -1893 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|))))
-((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-1803 ((|#4| (-703) (-1153 |#4|)) 55)) (-3848 (((-107) $) NIL)) (-1787 (((-1153 |#4|) $) 17)) (-1506 ((|#2| $) 53)) (-3349 (($ $) 136)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 98)) (-4014 (($ (-1153 |#4|)) 97)) (-3206 (((-1021) $) NIL)) (-1800 ((|#1| $) 18)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 131)) (-1753 (((-1153 |#4|) $) 126)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) 39)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118)))
-(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -4014 ($ (-1153 |#4|))) (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -1787 ((-1153 |#4|) $)) (-15 -1800 (|#1| $)) (-15 -3349 ($ $)) (-15 -1803 (|#4| (-703) (-1153 |#4|))))) (-278) (-909 |#1|) (-1130 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|))) (T -383))
-((-4014 (*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1753 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-1506 (*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-1800 (*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-3349 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1153 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1130 *6)))))
-(-13 (-442) (-10 -8 (-15 -4014 ($ (-1153 |#4|))) (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -1787 ((-1153 |#4|) $)) (-15 -1800 (|#1| $)) (-15 -3349 ($ $)) (-15 -1803 (|#4| (-703) (-1153 |#4|)))))
-((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1506 ((|#2| $) 60)) (-3855 (($ (-1153 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-952 |#2|)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 34)) (-1753 (((-1153 |#4|) $) 26)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2409 (($) 23 T CONST)) (-1547 (((-107) $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72)))
-(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -3855 ($ (-1153 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -3855 ($ (-383 |#1| |#2| |#3| |#4|))) |noBranch|))) (-278) (-909 |#1|) (-1130 |#2|) (-379 |#2| |#3|) (-1153 |#4|)) (T -384))
-((-1753 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-1506 (*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1153 *5)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))))
-(-13 (-659) (-10 -8 (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -3855 ($ (-1153 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -3855 ($ (-383 |#1| |#2| |#3| |#4|))) |noBranch|)))
-((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))))
-(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3295 (((-3 $ "failed")) 85)) (-3533 (((-1153 (-623 |#2|)) (-1153 $)) NIL) (((-1153 (-623 |#2|))) 90)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 84)) (-1450 (((-3 $ "failed")) 83)) (-2619 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 101)) (-3343 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 109)) (-2436 (((-1069 (-874 |#2|))) 54)) (-4069 ((|#2| (-1153 $)) NIL) ((|#2|) 105)) (-1967 (($ (-1153 |#2|) (-1153 $)) NIL) (($ (-1153 |#2|)) 112)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 82)) (-1793 (((-3 $ "failed")) 74)) (-2010 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 99)) (-3914 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 107)) (-2300 (((-1069 (-874 |#2|))) 53)) (-1988 ((|#2| (-1153 $)) NIL) ((|#2|) 103)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 111)) (-3645 (((-1153 |#2|) $) 95) (($ (-1153 |#2|)) 97)) (-2278 (((-583 (-874 |#2|)) (-1153 $)) NIL) (((-583 (-874 |#2|))) 93)) (-1587 (($ (-623 |#2|) $) 89)))
-(((-386 |#1| |#2|) (-10 -8 (-15 -1587 (|#1| (-623 |#2|) |#1|)) (-15 -2436 ((-1069 (-874 |#2|)))) (-15 -2300 ((-1069 (-874 |#2|)))) (-15 -3343 ((-623 |#2|) |#1|)) (-15 -3914 ((-623 |#2|) |#1|)) (-15 -2619 ((-623 |#2|))) (-15 -2010 ((-623 |#2|))) (-15 -4069 (|#2|)) (-15 -1988 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -2278 ((-583 (-874 |#2|)))) (-15 -3533 ((-1153 (-623 |#2|)))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3295 ((-3 |#1| "failed"))) (-15 -1450 ((-3 |#1| "failed"))) (-15 -1793 ((-3 |#1| "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|))) (-15 -2278 ((-583 (-874 |#2|)) (-1153 |#1|)))) (-387 |#2|) (-156)) (T -386))
-((-3533 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2278 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1988 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-4069 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-2010 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2619 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2300 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2436 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))))
-(-10 -8 (-15 -1587 (|#1| (-623 |#2|) |#1|)) (-15 -2436 ((-1069 (-874 |#2|)))) (-15 -2300 ((-1069 (-874 |#2|)))) (-15 -3343 ((-623 |#2|) |#1|)) (-15 -3914 ((-623 |#2|) |#1|)) (-15 -2619 ((-623 |#2|))) (-15 -2010 ((-623 |#2|))) (-15 -4069 (|#2|)) (-15 -1988 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -2278 ((-583 (-874 |#2|)))) (-15 -3533 ((-1153 (-623 |#2|)))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3295 ((-3 |#1| "failed"))) (-15 -1450 ((-3 |#1| "failed"))) (-15 -1793 ((-3 |#1| "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|))) (-15 -2278 ((-583 (-874 |#2|)) (-1153 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3295 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) 78) (((-1153 (-623 |#1|))) 100)) (-3456 (((-1153 $)) 81)) (-3092 (($) 17 T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) 65) (((-623 |#1|)) 92)) (-2299 ((|#1| $) 74)) (-3343 (((-623 |#1|) $ (-1153 $)) 76) (((-623 |#1|) $) 90)) (-2158 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-2436 (((-1069 (-874 |#1|))) 88 (|has| |#1| (-333)))) (-3380 (($ $ (-843)) 28)) (-3866 ((|#1| $) 72)) (-2417 (((-1069 |#1|) $) 42 (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) 67) ((|#1|) 94)) (-2085 (((-1069 |#1|) $) 63)) (-2362 (((-107)) 57)) (-1967 (($ (-1153 |#1|) (-1153 $)) 69) (($ (-1153 |#1|)) 98)) (-3621 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-2261 (((-843)) 80)) (-3962 (((-107)) 54)) (-3730 (($ $ (-843)) 33)) (-2754 (((-107)) 50)) (-3983 (((-107)) 48)) (-3414 (((-107)) 52)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) 66) (((-623 |#1|)) 93)) (-1188 ((|#1| $) 75)) (-3914 (((-623 |#1|) $ (-1153 $)) 77) (((-623 |#1|) $) 91)) (-1680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-2300 (((-1069 (-874 |#1|))) 89 (|has| |#1| (-333)))) (-2572 (($ $ (-843)) 29)) (-3913 ((|#1| $) 73)) (-4121 (((-1069 |#1|) $) 43 (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) 68) ((|#1|) 95)) (-2190 (((-1069 |#1|) $) 64)) (-3606 (((-107)) 58)) (-3985 (((-1056) $) 9)) (-4045 (((-107)) 49)) (-1286 (((-107)) 51)) (-1848 (((-107)) 53)) (-3206 (((-1021) $) 10)) (-1697 (((-107)) 56)) (-1449 ((|#1| $ (-517)) 101)) (-4114 (((-1153 |#1|) $ (-1153 $)) 71) (((-623 |#1|) (-1153 $) (-1153 $)) 70) (((-1153 |#1|) $) 103) (((-623 |#1|) (-1153 $)) 102)) (-3645 (((-1153 |#1|) $) 97) (($ (-1153 |#1|)) 96)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) 79) (((-583 (-874 |#1|))) 99)) (-3394 (($ $ $) 25)) (-1561 (((-107)) 62)) (-2256 (((-787) $) 11)) (-1753 (((-1153 $)) 104)) (-1582 (((-583 (-1153 |#1|))) 44 (|has| |#1| (-509)))) (-3917 (($ $ $ $) 26)) (-1316 (((-107)) 60)) (-1587 (($ (-623 |#1|) $) 87)) (-1956 (($ $ $) 24)) (-2687 (((-107)) 61)) (-2524 (((-107)) 59)) (-3642 (((-107)) 55)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-387 |#1|) (-1184) (-156)) (T -387))
-((-1753 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-387 *3)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3533 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 (-623 *3))))) (-2278 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-1988 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-4069 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-2010 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2619 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2300 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) (-2436 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) (-1587 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))))
-(-13 (-337 |t#1|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1449 (|t#1| $ (-517))) (-15 -3533 ((-1153 (-623 |t#1|)))) (-15 -2278 ((-583 (-874 |t#1|)))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3645 ((-1153 |t#1|) $)) (-15 -3645 ($ (-1153 |t#1|))) (-15 -1988 (|t#1|)) (-15 -4069 (|t#1|)) (-15 -2010 ((-623 |t#1|))) (-15 -2619 ((-623 |t#1|))) (-15 -3914 ((-623 |t#1|) $)) (-15 -3343 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -2300 ((-1069 (-874 |t#1|)))) (-15 -2436 ((-1069 (-874 |t#1|))))) |noBranch|) (-15 -1587 ($ (-623 |t#1|) $))))
+((-1857 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33)))
+(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1857 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-909 |#1|) (-1131 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|)) (-278) (-909 |#5|) (-1131 |#6|) (-13 (-379 |#6| |#7|) (-952 |#6|))) (T -382))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1131 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1131 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))))
+(-10 -7 (-15 -1857 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|))))
+((-2571 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2885 ((|#4| (-703) (-1154 |#4|)) 55)) (-2955 (((-107) $) NIL)) (-1772 (((-1154 |#4|) $) 17)) (-2289 ((|#2| $) 53)) (-3961 (($ $) 136)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 98)) (-4132 (($ (-1154 |#4|)) 97)) (-3094 (((-1021) $) NIL)) (-1783 ((|#1| $) 18)) (-2013 (($ $ $) NIL)) (-3064 (($ $ $) NIL)) (-2182 (((-787) $) 131)) (-3809 (((-1154 |#4|) $) 126)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2306 (($) 11 T CONST)) (-1539 (((-107) $ $) 39)) (-1649 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118)))
+(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -4132 ($ (-1154 |#4|))) (-15 -3809 ((-1154 |#4|) $)) (-15 -2289 (|#2| $)) (-15 -1772 ((-1154 |#4|) $)) (-15 -1783 (|#1| $)) (-15 -3961 ($ $)) (-15 -2885 (|#4| (-703) (-1154 |#4|))))) (-278) (-909 |#1|) (-1131 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|))) (T -383))
+((-4132 (*1 *1 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-3809 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-2289 (*1 *2 *1) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) (-1772 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-1783 (*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1131 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-3961 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1131 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-2885 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1154 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1131 *6)))))
+(-13 (-442) (-10 -8 (-15 -4132 ($ (-1154 |#4|))) (-15 -3809 ((-1154 |#4|) $)) (-15 -2289 (|#2| $)) (-15 -1772 ((-1154 |#4|) $)) (-15 -1783 (|#1| $)) (-15 -3961 ($ $)) (-15 -2885 (|#4| (-703) (-1154 |#4|)))))
+((-2571 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-2289 ((|#2| $) 60)) (-3024 (($ (-1154 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-952 |#2|)))) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 34)) (-3809 (((-1154 |#4|) $) 26)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2306 (($) 23 T CONST)) (-1539 (((-107) $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72)))
+(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -3809 ((-1154 |#4|) $)) (-15 -2289 (|#2| $)) (-15 -3024 ($ (-1154 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -3024 ($ (-383 |#1| |#2| |#3| |#4|))) |noBranch|))) (-278) (-909 |#1|) (-1131 |#2|) (-379 |#2| |#3|) (-1154 |#4|)) (T -384))
+((-3809 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-2289 (*1 *2 *1) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1154 *5)))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1154 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))))
+(-13 (-659) (-10 -8 (-15 -3809 ((-1154 |#4|) $)) (-15 -2289 (|#2| $)) (-15 -3024 ($ (-1154 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -3024 ($ (-383 |#1| |#2| |#3| |#4|))) |noBranch|)))
+((-1857 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))))
+(-10 -7 (-15 -1857 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1697 (((-3 $ "failed")) 85)) (-3029 (((-1154 (-623 |#2|)) (-1154 $)) NIL) (((-1154 (-623 |#2|))) 90)) (-3072 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) 84)) (-3672 (((-3 $ "failed")) 83)) (-3495 (((-623 |#2|) (-1154 $)) NIL) (((-623 |#2|)) 101)) (-3922 (((-623 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) $) 109)) (-2344 (((-1070 (-874 |#2|))) 54)) (-3440 ((|#2| (-1154 $)) NIL) ((|#2|) 105)) (-3291 (($ (-1154 |#2|) (-1154 $)) NIL) (($ (-1154 |#2|)) 112)) (-2054 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) 82)) (-3004 (((-3 $ "failed")) 74)) (-2507 (((-623 |#2|) (-1154 $)) NIL) (((-623 |#2|)) 99)) (-2386 (((-623 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) $) 107)) (-3503 (((-1070 (-874 |#2|))) 53)) (-3532 ((|#2| (-1154 $)) NIL) ((|#2|) 103)) (-2575 (((-1154 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) NIL) (((-1154 |#2|) $) NIL) (((-623 |#2|) (-1154 $)) 111)) (-3582 (((-1154 |#2|) $) 95) (($ (-1154 |#2|)) 97)) (-3254 (((-583 (-874 |#2|)) (-1154 $)) NIL) (((-583 (-874 |#2|))) 93)) (-1574 (($ (-623 |#2|) $) 89)))
+(((-386 |#1| |#2|) (-10 -8 (-15 -1574 (|#1| (-623 |#2|) |#1|)) (-15 -2344 ((-1070 (-874 |#2|)))) (-15 -3503 ((-1070 (-874 |#2|)))) (-15 -3922 ((-623 |#2|) |#1|)) (-15 -2386 ((-623 |#2|) |#1|)) (-15 -3495 ((-623 |#2|))) (-15 -2507 ((-623 |#2|))) (-15 -3440 (|#2|)) (-15 -3532 (|#2|)) (-15 -3582 (|#1| (-1154 |#2|))) (-15 -3582 ((-1154 |#2|) |#1|)) (-15 -3291 (|#1| (-1154 |#2|))) (-15 -3254 ((-583 (-874 |#2|)))) (-15 -3029 ((-1154 (-623 |#2|)))) (-15 -2575 ((-623 |#2|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1|)) (-15 -1697 ((-3 |#1| "failed"))) (-15 -3672 ((-3 |#1| "failed"))) (-15 -3004 ((-3 |#1| "failed"))) (-15 -3072 ((-3 (-2 (|:| |particular| |#1|) (|:| -3809 (-583 |#1|))) "failed"))) (-15 -2054 ((-3 (-2 (|:| |particular| |#1|) (|:| -3809 (-583 |#1|))) "failed"))) (-15 -3495 ((-623 |#2|) (-1154 |#1|))) (-15 -2507 ((-623 |#2|) (-1154 |#1|))) (-15 -3440 (|#2| (-1154 |#1|))) (-15 -3532 (|#2| (-1154 |#1|))) (-15 -3291 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -3922 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2386 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -3029 ((-1154 (-623 |#2|)) (-1154 |#1|))) (-15 -3254 ((-583 (-874 |#2|)) (-1154 |#1|)))) (-387 |#2|) (-156)) (T -386))
+((-3029 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3254 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3532 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-3440 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-2507 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3495 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3503 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2344 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))))
+(-10 -8 (-15 -1574 (|#1| (-623 |#2|) |#1|)) (-15 -2344 ((-1070 (-874 |#2|)))) (-15 -3503 ((-1070 (-874 |#2|)))) (-15 -3922 ((-623 |#2|) |#1|)) (-15 -2386 ((-623 |#2|) |#1|)) (-15 -3495 ((-623 |#2|))) (-15 -2507 ((-623 |#2|))) (-15 -3440 (|#2|)) (-15 -3532 (|#2|)) (-15 -3582 (|#1| (-1154 |#2|))) (-15 -3582 ((-1154 |#2|) |#1|)) (-15 -3291 (|#1| (-1154 |#2|))) (-15 -3254 ((-583 (-874 |#2|)))) (-15 -3029 ((-1154 (-623 |#2|)))) (-15 -2575 ((-623 |#2|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1|)) (-15 -1697 ((-3 |#1| "failed"))) (-15 -3672 ((-3 |#1| "failed"))) (-15 -3004 ((-3 |#1| "failed"))) (-15 -3072 ((-3 (-2 (|:| |particular| |#1|) (|:| -3809 (-583 |#1|))) "failed"))) (-15 -2054 ((-3 (-2 (|:| |particular| |#1|) (|:| -3809 (-583 |#1|))) "failed"))) (-15 -3495 ((-623 |#2|) (-1154 |#1|))) (-15 -2507 ((-623 |#2|) (-1154 |#1|))) (-15 -3440 (|#2| (-1154 |#1|))) (-15 -3532 (|#2| (-1154 |#1|))) (-15 -3291 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -2575 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -2575 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -3922 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2386 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -3029 ((-1154 (-623 |#2|)) (-1154 |#1|))) (-15 -3254 ((-583 (-874 |#2|)) (-1154 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1697 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3029 (((-1154 (-623 |#1|)) (-1154 $)) 78) (((-1154 (-623 |#1|))) 100)) (-3624 (((-1154 $)) 81)) (-3473 (($) 17 T CONST)) (-3072 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-3672 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-3495 (((-623 |#1|) (-1154 $)) 65) (((-623 |#1|)) 92)) (-3488 ((|#1| $) 74)) (-3922 (((-623 |#1|) $ (-1154 $)) 76) (((-623 |#1|) $) 90)) (-1675 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-2344 (((-1070 (-874 |#1|))) 88 (|has| |#1| (-333)))) (-1246 (($ $ (-843)) 28)) (-2030 ((|#1| $) 72)) (-2193 (((-1070 |#1|) $) 42 (|has| |#1| (-509)))) (-3440 ((|#1| (-1154 $)) 67) ((|#1|) 94)) (-2134 (((-1070 |#1|) $) 63)) (-2815 (((-107)) 57)) (-3291 (($ (-1154 |#1|) (-1154 $)) 69) (($ (-1154 |#1|)) 98)) (-1568 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3795 (((-843)) 80)) (-1837 (((-107)) 54)) (-3092 (($ $ (-843)) 33)) (-3419 (((-107)) 50)) (-3841 (((-107)) 48)) (-3229 (((-107)) 52)) (-2054 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-3004 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2507 (((-623 |#1|) (-1154 $)) 66) (((-623 |#1|)) 93)) (-3823 ((|#1| $) 75)) (-2386 (((-623 |#1|) $ (-1154 $)) 77) (((-623 |#1|) $) 91)) (-3526 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-3503 (((-1070 (-874 |#1|))) 89 (|has| |#1| (-333)))) (-1313 (($ $ (-843)) 29)) (-2377 ((|#1| $) 73)) (-2621 (((-1070 |#1|) $) 43 (|has| |#1| (-509)))) (-3532 ((|#1| (-1154 $)) 68) ((|#1|) 95)) (-3737 (((-1070 |#1|) $) 64)) (-1440 (((-107)) 58)) (-3865 (((-1057) $) 9)) (-3156 (((-107)) 49)) (-2688 (((-107)) 51)) (-4022 (((-107)) 53)) (-3094 (((-1021) $) 10)) (-3662 (((-107)) 56)) (-1986 ((|#1| $ (-517)) 101)) (-2575 (((-1154 |#1|) $ (-1154 $)) 71) (((-623 |#1|) (-1154 $) (-1154 $)) 70) (((-1154 |#1|) $) 103) (((-623 |#1|) (-1154 $)) 102)) (-3582 (((-1154 |#1|) $) 97) (($ (-1154 |#1|)) 96)) (-3254 (((-583 (-874 |#1|)) (-1154 $)) 79) (((-583 (-874 |#1|))) 99)) (-3064 (($ $ $) 25)) (-3010 (((-107)) 62)) (-2182 (((-787) $) 11)) (-3809 (((-1154 $)) 104)) (-2971 (((-583 (-1154 |#1|))) 44 (|has| |#1| (-509)))) (-2411 (($ $ $ $) 26)) (-2902 (((-107)) 60)) (-1574 (($ (-623 |#1|) $) 87)) (-3168 (($ $ $) 24)) (-2883 (((-107)) 61)) (-3832 (((-107)) 59)) (-1781 (((-107)) 55)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-387 |#1|) (-1185) (-156)) (T -387))
+((-3809 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1154 *1)) (-4 *1 (-387 *3)))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 *3)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3029 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 (-623 *3))))) (-3254 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) (-3291 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 *3)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3532 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3440 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-2507 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3495 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2386 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3503 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1070 (-874 *3))))) (-2344 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1070 (-874 *3))))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))))
+(-13 (-337 |t#1|) (-10 -8 (-15 -3809 ((-1154 $))) (-15 -2575 ((-1154 |t#1|) $)) (-15 -2575 ((-623 |t#1|) (-1154 $))) (-15 -1986 (|t#1| $ (-517))) (-15 -3029 ((-1154 (-623 |t#1|)))) (-15 -3254 ((-583 (-874 |t#1|)))) (-15 -3291 ($ (-1154 |t#1|))) (-15 -3582 ((-1154 |t#1|) $)) (-15 -3582 ($ (-1154 |t#1|))) (-15 -3532 (|t#1|)) (-15 -3440 (|t#1|)) (-15 -2507 ((-623 |t#1|))) (-15 -3495 ((-623 |t#1|))) (-15 -2386 ((-623 |t#1|) $)) (-15 -3922 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -3503 ((-1070 (-874 |t#1|)))) (-15 -2344 ((-1070 (-874 |t#1|))))) |noBranch|) (-15 -1574 ($ (-623 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-337 |#1|) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 40)) (-2719 (($ $) 55)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 143)) (-1213 (($ $) NIL)) (-2454 (((-107) $) 34)) (-3295 ((|#1| $) 12)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-1112)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-1112)))) (-2693 (($ |#1| (-517)) 30)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 53)) (-3621 (((-3 $ "failed") $) 128)) (-1256 (((-3 (-377 (-517)) "failed") $) 61 (|has| |#1| (-502)))) (-1355 (((-107) $) 57 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 68 (|has| |#1| (-502)))) (-2897 (($ |#1| (-517)) 32)) (-3849 (((-107) $) 149 (|has| |#1| (-1112)))) (-3848 (((-107) $) 41)) (-2383 (((-703) $) 36)) (-2196 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-3466 ((|#1| $ (-517)) 133)) (-1238 (((-517) $ (-517)) 132)) (-1645 (($ |#1| (-517)) 29)) (-1893 (($ (-1 |#1| |#1|) $) 140)) (-3204 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 56)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2955 (($ |#1| (-517)) 31)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-1456 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-2879 (((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $) 52)) (-3176 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-3755 (((-388 $) $) NIL (|has| |#1| (-1112)))) (-2476 (((-3 $ "failed") $ $) 135)) (-2077 (((-517) $) 129)) (-3502 ((|#1| $) 54)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) $) NIL (|has| |#1| (-478 (-1073) $))) (($ $ (-583 (-1073)) (-583 $)) 83 (|has| |#1| (-478 (-1073) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-1449 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3645 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-937))) (((-199) $) 92 (|has| |#1| (-937)))) (-2256 (((-787) $) 111) (($ (-517)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517)))))) (-2961 (((-703)) 46)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 38 T CONST)) (-2409 (($) 37 T CONST)) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1547 (((-107) $ $) 93)) (-1654 (($ $) 125) (($ $ $) NIL)) (-1642 (($ $ $) 137)) (** (($ $ (-843)) NIL) (($ $ (-703)) 99)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL)))
-(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3502 (|#1| $)) (-15 -2077 ((-517) $)) (-15 -3204 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -3176 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1645 ($ |#1| (-517))) (-15 -2879 ((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $)) (-15 -2955 ($ |#1| (-517))) (-15 -1238 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2196 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2383 ((-703) $)) (-15 -2897 ($ |#1| (-517))) (-15 -2693 ($ |#1| (-517))) (-15 -1456 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3295 (|#1| $)) (-15 -2719 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |noBranch|) (IF (|has| |#1| (-478 (-1073) $)) (-6 (-478 (-1073) $)) |noBranch|))) (-509)) (T -388))
-((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-3502 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3204 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1645 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -2077 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2955 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1238 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2897 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2693 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1456 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3295 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2719 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))))
-(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3502 (|#1| $)) (-15 -2077 ((-517) $)) (-15 -3204 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -3176 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1645 ($ |#1| (-517))) (-15 -2879 ((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $)) (-15 -2955 ($ |#1| (-517))) (-15 -1238 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2196 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2383 ((-703) $)) (-15 -2897 ($ |#1| (-517))) (-15 -2693 ($ |#1| (-517))) (-15 -1456 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3295 (|#1| $)) (-15 -2719 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |noBranch|) (IF (|has| |#1| (-478 (-1073) $)) (-6 (-478 (-1073) $)) |noBranch|)))
-((-3437 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-2203 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15)))
-(((-389 |#1|) (-10 -7 (-15 -3437 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2203 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389))
-((-2203 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-3437 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))))
-(-10 -7 (-15 -3437 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2203 ((-388 |#1|) (-388 |#1|) (-388 |#1|))))
-((-3653 ((|#2| |#2|) 160)) (-1916 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107)) 55)))
-(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107))) (-15 -3653 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -390))
-((-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1094) (-400 *3))) (-14 *4 (-1073)) (-14 *5 *2))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-14 *6 (-1073)) (-14 *7 *3))))
-(-10 -7 (-15 -1916 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107))) (-15 -3653 (|#2| |#2|)))
-((-1893 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-961) (-779)) (-400 |#1|) (-13 (-961) (-779)) (-400 |#3|)) (T -391))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))))
-(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3653 ((|#2| |#2|) 87)) (-1217 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056)) 46)) (-1791 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056)) 152)))
-(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1217 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -1791 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -3653 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|) (-10 -8 (-15 -2256 ($ |#3|)))) (-777) (-13 (-1132 |#2| |#3|) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $)))) (-900 |#4|) (-1073)) (T -392))
-((-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1094) (-400 *3) (-10 -8 (-15 -2256 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1132 *2 *4) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1073)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))) (-1217 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))))
-(-10 -7 (-15 -1217 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -1791 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -3653 (|#2| |#2|)))
-((-3905 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3225 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1893 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1003) (-395 |#1|) (-1003) (-395 |#3|)) (T -393))
-((-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))))
-(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3416 (($) 44)) (-1413 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3245 (($ $ $) 39)) (-3009 (((-107) $ $) 28)) (-1611 (((-703)) 47)) (-1362 (($ (-583 |#2|)) 20) (($) NIL)) (-3209 (($) 53)) (-2967 ((|#2| $) 61)) (-3099 ((|#2| $) 59)) (-1549 (((-843) $) 55)) (-1812 (($ $ $) 35)) (-3448 (($ (-843)) 50)) (-3170 (($ $ |#2|) NIL) (($ $ $) 38)) (-3217 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2276 (($ (-583 |#2|)) 24)) (-1819 (($ $) 46)) (-2256 (((-787) $) 33)) (-2201 (((-703) $) 21)) (-3167 (($ (-583 |#2|)) 19) (($) NIL)) (-1547 (((-107) $ $) 16)) (-1572 (((-107) $ $) 13)))
-(((-394 |#1| |#2|) (-10 -8 (-15 -1611 ((-703))) (-15 -3448 (|#1| (-843))) (-15 -1549 ((-843) |#1|)) (-15 -3209 (|#1|)) (-15 -2967 (|#2| |#1|)) (-15 -3099 (|#2| |#1|)) (-15 -3416 (|#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2201 ((-703) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3167 (|#1|)) (-15 -3167 (|#1| (-583 |#2|))) (-15 -1362 (|#1|)) (-15 -1362 (|#1| (-583 |#2|))) (-15 -1812 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3009 ((-107) |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1003)) (T -394))
-((-1611 (*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
-(-10 -8 (-15 -1611 ((-703))) (-15 -3448 (|#1| (-843))) (-15 -1549 ((-843) |#1|)) (-15 -3209 (|#1|)) (-15 -2967 (|#2| |#1|)) (-15 -3099 (|#2| |#1|)) (-15 -3416 (|#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2201 ((-703) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3167 (|#1|)) (-15 -3167 (|#1| (-583 |#2|))) (-15 -1362 (|#1|)) (-15 -1362 (|#1| (-583 |#2|))) (-15 -1812 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3009 ((-107) |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)))
-((-2750 (((-107) $ $) 18)) (-3416 (($) 67 (|has| |#1| (-338)))) (-1413 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3245 (($ $ $) 78)) (-3009 (((-107) $ $) 79)) (-2953 (((-107) $ (-703)) 8)) (-1611 (((-703)) 61 (|has| |#1| (-338)))) (-1362 (($ (-583 |#1|)) 74) (($) 73)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-3209 (($) 64 (|has| |#1| (-338)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2967 ((|#1| $) 65 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 66 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-1549 (((-843) $) 63 (|has| |#1| (-338)))) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 75)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3448 (($ (-843)) 62 (|has| |#1| (-338)))) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3170 (($ $ |#1|) 77) (($ $ $) 76)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-1819 (($ $) 68 (|has| |#1| (-338)))) (-2256 (((-787) $) 20)) (-2201 (((-703) $) 69)) (-3167 (($ (-583 |#1|)) 72) (($) 71)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 70)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-395 |#1|) (-1184) (-1003)) (T -395))
-((-2201 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))) (-3416 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-2967 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))))
-(-13 (-203 |t#1|) (-1001 |t#1|) (-10 -8 (-6 -4180) (-15 -2201 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -1819 ($ $)) (-15 -3416 ($))) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3099 (|t#1| $)) (-15 -2967 (|t#1| $))) |noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T))
-((-3889 (((-534 |#2|) |#2| (-1073)) 35)) (-3050 (((-534 |#2|) |#2| (-1073)) 19)) (-2701 ((|#2| |#2| (-1073)) 24)))
-(((-396 |#1| |#2|) (-10 -7 (-15 -3050 ((-534 |#2|) |#2| (-1073))) (-15 -3889 ((-534 |#2|) |#2| (-1073))) (-15 -2701 (|#2| |#2| (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-29 |#1|))) (T -396))
-((-2701 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1094) (-29 *4))))) (-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))))
-(-10 -7 (-15 -3050 ((-534 |#2|) |#2| (-1073))) (-15 -3889 ((-534 |#2|) |#2| (-1073))) (-15 -2701 (|#2| |#2| (-1073))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3117 (($ |#2| |#1|) 35)) (-2725 (($ |#2| |#1|) 33)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 16 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 34)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4167)) (IF (|has| |#1| (-6 -4167)) (-6 -4167) |noBranch|) |noBranch|) (-15 -2256 ($ |#1|)) (-15 -2256 ($ (-301 |#2|))) (-15 -3117 ($ |#2| |#1|)) (-15 -2725 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397))
-((-2256 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-3117 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-2725 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4167)) (IF (|has| |#1| (-6 -4167)) (-6 -4167) |noBranch|) |noBranch|) (-15 -2256 ($ |#1|)) (-15 -2256 ($ (-301 |#2|))) (-15 -3117 ($ |#2| |#1|)) (-15 -2725 ($ |#2| |#1|))))
-((-4151 (((-3 |#2| (-583 |#2|)) |#2| (-1073)) 104)))
-(((-398 |#1| |#2|) (-10 -7 (-15 -4151 ((-3 |#2| (-583 |#2|)) |#2| (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -398))
-((-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1094) (-880) (-29 *5))))))
-(-10 -7 (-15 -4151 ((-3 |#2| (-583 |#2|)) |#2| (-1073))))
-((-1364 (((-583 (-1073)) $) 72)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 268)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1073) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-377 (-874 |#2|)) "failed") $) 319) (((-3 (-874 |#2|) "failed") $) 231) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-1073) $) 30) (((-517) $) NIL) ((|#2| $) 227) (((-377 (-874 |#2|)) $) 300) (((-874 |#2|) $) 228) (((-377 (-517)) $) NIL)) (-3072 (((-109) (-109)) 47)) (-1405 (($ $) 87)) (-1783 (((-3 (-556 $) "failed") $) 224)) (-2343 (((-583 (-556 $)) $) 225)) (-3703 (((-3 (-583 $) "failed") $) 243)) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 250)) (-3401 (((-3 (-583 $) "failed") $) 241)) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 259)) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 247) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 214) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 216)) (-4127 (((-107) $) 19)) (-4141 ((|#2| $) 21)) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 232) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1073)) 57) (($ $ (-583 (-1073))) 236) (($ $) 237) (($ $ (-109) $ (-1073)) 60) (($ $ (-583 (-109)) (-583 $) (-1073)) 67) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 238) (($ $ (-1073) (-703) (-1 $ (-583 $))) 94) (($ $ (-1073) (-703) (-1 $ $)) 93)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) 234)) (-2971 (($ $) 279)) (-3645 (((-814 (-517)) $) 253) (((-814 (-349)) $) 256) (($ (-388 $)) 315) (((-493) $) NIL)) (-2256 (((-787) $) 235) (($ (-556 $)) 84) (($ (-1073)) 26) (($ |#2|) NIL) (($ (-1026 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 284) (($ (-874 (-377 |#2|))) 324) (($ (-377 (-874 (-377 |#2|)))) 296) (($ (-377 (-874 |#2|))) 290) (($ $) NIL) (($ (-874 |#2|)) 183) (($ (-377 (-517))) 329) (($ (-517)) NIL)) (-2961 (((-703)) 79)) (-4074 (((-107) (-109)) 41)) (-3760 (($ (-1073) $) 33) (($ (-1073) $ $) 34) (($ (-1073) $ $ $) 35) (($ (-1073) $ $ $ $) 36) (($ (-1073) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
-(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2961 ((-703))) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-874 |#2|) |#1|)) (-15 -1772 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2256 (|#1| (-874 |#2|))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3189 ((-377 (-874 |#2|)) |#1|)) (-15 -1772 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-874 |#2|)))) (-15 -2352 ((-377 (-1069 |#1|)) |#1| (-556 |#1|))) (-15 -2256 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2256 (|#1| (-874 (-377 |#2|)))) (-15 -2256 (|#1| (-377 |#2|))) (-15 -2971 (|#1| |#1|)) (-15 -3645 (|#1| (-388 |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1735 ((-3 (-2 (|:| |val| |#1|) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-1073))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-109))) (-15 -1405 (|#1| |#1|)) (-15 -2256 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1073))) (-15 -2051 (|#1| |#1| (-109) |#1| (-1073))) (-15 -2051 (|#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 (-1073)))) (-15 -2051 (|#1| |#1| (-1073))) (-15 -3760 (|#1| (-1073) (-583 |#1|))) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1|)) (-15 -1364 ((-583 (-1073)) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -2343 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2256 (|#1| (-556 |#1|))) (-15 -2256 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399))
-((-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-2961 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))))
-(-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2961 ((-703))) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-874 |#2|) |#1|)) (-15 -1772 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2256 (|#1| (-874 |#2|))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3189 ((-377 (-874 |#2|)) |#1|)) (-15 -1772 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-874 |#2|)))) (-15 -2352 ((-377 (-1069 |#1|)) |#1| (-556 |#1|))) (-15 -2256 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2256 (|#1| (-874 (-377 |#2|)))) (-15 -2256 (|#1| (-377 |#2|))) (-15 -2971 (|#1| |#1|)) (-15 -3645 (|#1| (-388 |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1735 ((-3 (-2 (|:| |val| |#1|) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-1073))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-109))) (-15 -1405 (|#1| |#1|)) (-15 -2256 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1073))) (-15 -2051 (|#1| |#1| (-109) |#1| (-1073))) (-15 -2051 (|#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 (-1073)))) (-15 -2051 (|#1| |#1| (-1073))) (-15 -3760 (|#1| (-1073) (-583 |#1|))) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1|)) (-15 -1364 ((-583 (-1073)) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -2343 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2256 (|#1| (-556 |#1|))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 116 (|has| |#1| (-25)))) (-1364 (((-583 (-1073)) $) 203)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-1213 (($ $) 144 (|has| |#1| (-509)))) (-2454 (((-107) $) 146 (|has| |#1| (-509)))) (-3726 (((-583 (-556 $)) $) 44)) (-4038 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2302 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-2535 (($ $) 163 (|has| |#1| (-509)))) (-2759 (((-388 $) $) 164 (|has| |#1| (-509)))) (-1707 (((-107) $ $) 154 (|has| |#1| (-509)))) (-3092 (($) 102 (-3807 (|has| |#1| (-1015)) (|has| |#1| (-25))) CONST)) (-1772 (((-3 (-556 $) "failed") $) 69) (((-3 (-1073) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-952 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-874 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) 123 (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 95 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-556 $) $) 68) (((-1073) $) 215) (((-517) $) 210 (|has| |#1| (-952 (-517)))) ((|#1| $) 206) (((-377 (-874 |#1|)) $) 168 (|has| |#1| (-509))) (((-874 |#1|) $) 122 (|has| |#1| (-961))) (((-377 (-517)) $) 94 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) 158 (|has| |#1| (-509)))) (-3355 (((-623 (-517)) (-623 $)) 137 (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 136 (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 135 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-961)))) (-3621 (((-3 $ "failed") $) 105 (|has| |#1| (-1015)))) (-2497 (($ $ $) 157 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-3849 (((-107) $) 165 (|has| |#1| (-509)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 212 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 211 (|has| |#1| (-808 (-349))))) (-3374 (($ $) 51) (($ (-583 $)) 50)) (-4001 (((-583 (-109)) $) 43)) (-3072 (((-109) (-109)) 42)) (-3848 (((-107) $) 103 (|has| |#1| (-1015)))) (-1769 (((-107) $) 22 (|has| $ (-952 (-517))))) (-1405 (($ $) 186 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 187 (|has| |#1| (-961)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-1607 (((-1069 $) (-556 $)) 25 (|has| $ (-961)))) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1893 (($ (-1 $ $) (-556 $)) 36)) (-1783 (((-3 (-556 $) "failed") $) 46)) (-1365 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 45)) (-1851 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-3703 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 183 (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 191 (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 184 (|has| |#1| (-961)))) (-1609 (((-107) $ (-109)) 40) (((-107) $ (-1073)) 39)) (-4118 (($ $) 107 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1881 (((-703) $) 47)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 205)) (-4141 ((|#1| $) 204)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 151 (|has| |#1| (-509)))) (-1401 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-3832 (((-107) $ $) 35) (((-107) $ (-1073)) 34)) (-3755 (((-388 $) $) 162 (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 159 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-3998 (((-107) $) 23 (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1073) (-1 $ (-583 $))) 31) (($ $ (-1073) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1073)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1073)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ $)) 179 (|has| |#1| (-961)))) (-3146 (((-703) $) 155 (|has| |#1| (-509)))) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 156 (|has| |#1| (-509)))) (-1630 (($ $) 49) (($ $ $) 48)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 128 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 127 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 126 (|has| |#1| (-961))) (($ $ (-1073)) 125 (|has| |#1| (-961)))) (-2971 (($ $) 176 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-2135 (($ $) 24 (|has| $ (-961)))) (-3645 (((-814 (-517)) $) 214 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 213 (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-1487 (($ $ $) 111 (|has| |#1| (-442)))) (-3394 (($ $ $) 112 (|has| |#1| (-442)))) (-2256 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1073)) 217) (($ |#1|) 208) (($ (-1026 |#1| (-556 $))) 188 (|has| |#1| (-961))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-874 |#1|)) 124 (|has| |#1| (-961))) (($ (-377 (-517))) 96 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 93 (-3807 (|has| |#1| (-961)) (|has| |#1| (-952 (-517)))))) (-1328 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-2961 (((-703)) 133 (|has| |#1| (-961)))) (-4148 (($ $) 53) (($ (-583 $)) 52)) (-4074 (((-107) (-109)) 41)) (-3329 (((-107) $ $) 145 (|has| |#1| (-509)))) (-3760 (($ (-1073) $) 202) (($ (-1073) $ $) 201) (($ (-1073) $ $ $) 200) (($ (-1073) $ $ $ $) 199) (($ (-1073) (-583 $)) 198)) (-2207 (($ $ (-517)) 110 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1015))) (($ $ (-843)) 100 (|has| |#1| (-1015)))) (-2396 (($) 115 (|has| |#1| (-25)) CONST)) (-2409 (($) 101 (|has| |#1| (-1015)) CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 132 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 131 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 130 (|has| |#1| (-961))) (($ $ (-1073)) 129 (|has| |#1| (-961)))) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1667 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1654 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1015))) (($ $ (-843)) 99 (|has| |#1| (-1015)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-843) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1015)))))
-(((-400 |#1|) (-1184) (-779)) (T -400))
-((-4127 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1073))))) (-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-2051 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-2051 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1073)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1073)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-3703 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3174 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-4133 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) (-1735 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-1800 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-2971 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1667 (*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2352 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1069 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))))
-(-13 (-273) (-952 (-1073)) (-806 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -4127 ((-107) $)) (-15 -4141 (|t#1| $)) (-15 -1364 ((-583 (-1073)) $)) (-15 -3760 ($ (-1073) $)) (-15 -3760 ($ (-1073) $ $)) (-15 -3760 ($ (-1073) $ $ $)) (-15 -3760 ($ (-1073) $ $ $ $)) (-15 -3760 ($ (-1073) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -2051 ($ $ (-1073))) (-15 -2051 ($ $ (-583 (-1073)))) (-15 -2051 ($ $)) (-15 -2051 ($ $ (-109) $ (-1073))) (-15 -2051 ($ $ (-583 (-109)) (-583 $) (-1073)))) |noBranch|) (IF (|has| |t#1| (-1015)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-952 (-874 |t#1|))) (-6 (-822 (-1073))) (-6 (-347 |t#1|)) (-15 -2256 ($ (-1026 |t#1| (-556 $)))) (-15 -1787 ((-1026 |t#1| (-556 $)) $)) (-15 -1405 ($ $)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073))) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $)) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-1073) (-703) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-1073) (-703) (-1 $ $)))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-952 (-377 (-874 |t#1|)))) (-15 -3645 ($ (-388 $))) (-15 -1800 ((-1026 |t#1| (-556 $)) $)) (-15 -2971 ($ $)) (-15 -1667 ($ (-1026 |t#1| (-556 $)) (-1026 |t#1| (-556 $)))) (-15 -2256 ($ (-377 |t#1|))) (-15 -2256 ($ (-874 (-377 |t#1|)))) (-15 -2256 ($ (-377 (-874 (-377 |t#1|))))) (-15 -2352 ((-377 (-1069 $)) $ (-556 $))) (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-377 (-517)))) |noBranch|)) |noBranch|)))
-(((-21) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 (-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3807 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-822 (-1073)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) |has| |#1| (-509)) ((-952 (-377 (-517))) -3807 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1073)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-509)) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) |has| |#1| (-509)) ((-961) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-968) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1015) -3807 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1003) . T) ((-1108) . T) ((-1112) |has| |#1| (-509)))
-((-1264 ((|#2| |#2| |#2|) 33)) (-3072 (((-109) (-109)) 44)) (-2359 ((|#2| |#2|) 66)) (-3597 ((|#2| |#2|) 69)) (-2150 ((|#2| |#2|) 32)) (-2570 ((|#2| |#2| |#2|) 35)) (-2480 ((|#2| |#2| |#2|) 37)) (-3233 ((|#2| |#2| |#2|) 34)) (-1324 ((|#2| |#2| |#2|) 36)) (-4074 (((-107) (-109)) 42)) (-3312 ((|#2| |#2|) 39)) (-1730 ((|#2| |#2|) 38)) (-3710 ((|#2| |#2|) 27)) (-1564 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2350 ((|#2| |#2| |#2|) 31)))
-(((-401 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3710 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1564 (|#2| |#2| |#2|)) (-15 -2350 (|#2| |#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -1264 (|#2| |#2| |#2|)) (-15 -3233 (|#2| |#2| |#2|)) (-15 -2570 (|#2| |#2| |#2|)) (-15 -1324 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (-15 -2359 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401))
-((-2359 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3597 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1730 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2480 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1324 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2570 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3233 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1264 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2350 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1564 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))))
-(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3710 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1564 (|#2| |#2| |#2|)) (-15 -2350 (|#2| |#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -1264 (|#2| |#2| |#2|)) (-15 -3233 (|#2| |#2| |#2|)) (-15 -2570 (|#2| |#2| |#2|)) (-15 -1324 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)))
-((-3442 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|)) 58)))
-(((-402 |#1| |#2|) (-10 -7 (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|)) |noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402))
-((-3442 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1069 *3)) (|:| |pol2| (-1069 *3)) (|:| |prim| (-1069 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-402 *4 *5)))))
-(-10 -7 (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|)) |noBranch|))
-((-3376 (((-1158)) 18)) (-3613 (((-1069 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23)))
-(((-403 |#1| |#2|) (-10 -7 (-15 -3613 ((-377 (-517)) |#2|)) (-15 -3613 ((-1069 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3376 ((-1158)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|)) (T -403))
-((-3376 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1158)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))))
-(-10 -7 (-15 -3613 ((-377 (-517)) |#2|)) (-15 -3613 ((-1069 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3376 ((-1158))))
-((-1908 (((-107) $) 28)) (-3737 (((-107) $) 30)) (-1973 (((-107) $) 31)) (-2251 (((-107) $) 34)) (-2427 (((-107) $) 29)) (-1340 (((-107) $) 33)) (-2256 (((-787) $) 18) (($ (-1056)) 27) (($ (-1073)) 23) (((-1073) $) 22) (((-1007) $) 21)) (-3902 (((-107) $) 32)) (-1547 (((-107) $ $) 15)))
-(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ($ (-1073))) (-15 -2256 ((-1073) $)) (-15 -2256 ((-1007) $)) (-15 -1908 ((-107) $)) (-15 -2427 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -1340 ((-107) $)) (-15 -2251 ((-107) $)) (-15 -3902 ((-107) $)) (-15 -3737 ((-107) $)) (-15 -1547 ((-107) $ $))))) (T -404))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-404)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1547 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ($ (-1073))) (-15 -2256 ((-1073) $)) (-15 -2256 ((-1007) $)) (-15 -1908 ((-107) $)) (-15 -2427 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -1340 ((-107) $)) (-15 -2251 ((-107) $)) (-15 -3902 ((-107) $)) (-15 -3737 ((-107) $)) (-15 -1547 ((-107) $ $))))
-((-3494 (((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|) 69)) (-3950 (((-388 |#3|) |#3|) 33)) (-2229 (((-3 (-388 (-1069 (-47))) "failed") |#3|) 44 (|has| |#2| (-952 (-47))))) (-2728 (((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|) 35)))
-(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -3950 ((-388 |#3|) |#3|)) (-15 -3494 ((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|)) (-15 -2728 ((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -2229 ((-3 (-388 (-1069 (-47))) "failed") |#3|)) |noBranch|)) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|) (-1130 |#2|)) (T -405))
-((-2229 (*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-2728 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-3494 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-3950 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
-(-10 -7 (-15 -3950 ((-388 |#3|) |#3|)) (-15 -3494 ((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|)) (-15 -2728 ((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -2229 ((-3 (-388 (-1069 (-47))) "failed") |#3|)) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-3733 (((-1056) $ (-1056)) NIL)) (-1723 (($ $ (-1056)) NIL)) (-1457 (((-1056) $) NIL)) (-3112 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) NIL)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3262 (((-1158) (-1056)) 9)) (-2762 (((-1158) (-1056)) 10)) (-2593 (((-1158)) 11)) (-2256 (((-787) $) NIL)) (-2463 (($ $) 34)) (-1547 (((-107) $ $) NIL)))
-(((-406) (-13 (-334 (-358) (-1056)) (-10 -7 (-15 -3112 ((-358) (-358) (-358))) (-15 -3112 ((-358) (-358))) (-15 -3262 ((-1158) (-1056))) (-15 -2762 ((-1158) (-1056))) (-15 -2593 ((-1158)))))) (T -406))
-((-3112 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))) (-2593 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-406)))))
-(-13 (-334 (-358) (-1056)) (-10 -7 (-15 -3112 ((-358) (-358) (-358))) (-15 -3112 ((-358) (-358))) (-15 -3262 ((-1158) (-1056))) (-15 -2762 ((-1158) (-1056))) (-15 -2593 ((-1158)))))
-((-2750 (((-107) $ $) NIL)) (-3614 (((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3961 (($) 31)) (-3637 (($) 37)) (-2386 (($) 33)) (-2366 (($) 35)) (-1861 (($) 32)) (-3697 (($) 34)) (-1215 (($) 36)) (-2045 (((-107) $) 8)) (-2108 (((-583 (-874 (-517))) $) 16)) (-2276 (($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107)) 26)) (-2256 (((-787) $) 21) (($ (-404)) 28)) (-1547 (((-107) $ $) NIL)))
-(((-407) (-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -2256 ($ (-404))) (-15 -3614 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2108 ((-583 (-874 (-517))) $)) (-15 -2045 ((-107) $)) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107))) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107))) (-15 -3961 ($)) (-15 -1861 ($)) (-15 -2386 ($)) (-15 -3637 ($)) (-15 -3697 ($)) (-15 -2366 ($)) (-15 -1215 ($))))) (T -407))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-407)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-1073))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-3961 (*1 *1) (-5 *1 (-407))) (-1861 (*1 *1) (-5 *1 (-407))) (-2386 (*1 *1) (-5 *1 (-407))) (-3637 (*1 *1) (-5 *1 (-407))) (-3697 (*1 *1) (-5 *1 (-407))) (-2366 (*1 *1) (-5 *1 (-407))) (-1215 (*1 *1) (-5 *1 (-407))))
-(-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -2256 ($ (-404))) (-15 -3614 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2108 ((-583 (-874 (-517))) $)) (-15 -2045 ((-107) $)) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107))) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107))) (-15 -3961 ($)) (-15 -1861 ($)) (-15 -2386 ($)) (-15 -3637 ($)) (-15 -3697 ($)) (-15 -2366 ($)) (-15 -1215 ($))))
-((-2750 (((-107) $ $) NIL)) (-1207 (((-1073) $) 8)) (-3985 (((-1056) $) 16)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 13)))
-(((-408 |#1|) (-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $)))) (-1073)) (T -408))
-((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-408 *3)) (-14 *3 *2))))
-(-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $))))
-((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-1153 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 11)))
-(((-409) (-1184)) (T -409))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-632))) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-409)))))
-(-13 (-365) (-10 -8 (-15 -2256 ($ (-1153 (-632)))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
-((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 21) (((-3 $ "failed") (-1153 (-286 (-517)))) 19) (((-3 $ "failed") (-1153 (-874 (-349)))) 17) (((-3 $ "failed") (-1153 (-874 (-517)))) 15) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 11)) (-3189 (($ (-1153 (-286 (-349)))) 22) (($ (-1153 (-286 (-517)))) 20) (($ (-1153 (-874 (-349)))) 18) (($ (-1153 (-874 (-517)))) 16) (($ (-1153 (-377 (-874 (-349))))) 14) (($ (-1153 (-377 (-874 (-517))))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23)))
-(((-410) (-1184)) (T -410))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))))
-(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-1153 (-286 (-349))))) (-15 -1772 ((-3 $ "failed") (-1153 (-286 (-349))))) (-15 -3189 ($ (-1153 (-286 (-517))))) (-15 -1772 ((-3 $ "failed") (-1153 (-286 (-517))))) (-15 -3189 ($ (-1153 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-1153 (-874 (-349))))) (-15 -3189 ($ (-1153 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-1153 (-874 (-517))))) (-15 -3189 ($ (-1153 (-377 (-874 (-349)))))) (-15 -1772 ((-3 $ "failed") (-1153 (-377 (-874 (-349)))))) (-15 -3189 ($ (-1153 (-377 (-874 (-517)))))) (-15 -1772 ((-3 $ "failed") (-1153 (-377 (-874 (-517))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
-((-2823 (((-107)) 17)) (-3073 (((-107) (-107)) 18)) (-2713 (((-107)) 13)) (-3438 (((-107) (-107)) 14)) (-1344 (((-107)) 15)) (-1845 (((-107) (-107)) 16)) (-1317 (((-843) (-843)) 21) (((-843)) 20)) (-2383 (((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517))))) 41)) (-3723 (((-843) (-843)) 23) (((-843)) 22)) (-2526 (((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|) 61)) (-3204 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517))))))) 125)) (-1724 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)) 151)) (-3432 (((-388 |#1|) |#1| (-703) (-703)) 164) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 161) (((-388 |#1|) |#1| (-583 (-703))) 163) (((-388 |#1|) |#1| (-703)) 162) (((-388 |#1|) |#1|) 160)) (-3911 (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107)) 166) (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703)) 167) (((-3 |#1| "failed") (-843) |#1| (-583 (-703))) 169) (((-3 |#1| "failed") (-843) |#1| (-703)) 168) (((-3 |#1| "failed") (-843) |#1|) 170)) (-3755 (((-388 |#1|) |#1| (-703) (-703)) 159) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 155) (((-388 |#1|) |#1| (-583 (-703))) 157) (((-388 |#1|) |#1| (-703)) 156) (((-388 |#1|) |#1|) 154)) (-3808 (((-107) |#1|) 36)) (-2981 (((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517))))) 66)) (-2412 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)) 153)))
-(((-411 |#1|) (-10 -7 (-15 -3204 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))))) (-15 -2981 ((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -3723 ((-843))) (-15 -3723 ((-843) (-843))) (-15 -1317 ((-843))) (-15 -1317 ((-843) (-843))) (-15 -2383 ((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -2526 ((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|)) (-15 -2823 ((-107))) (-15 -3073 ((-107) (-107))) (-15 -2713 ((-107))) (-15 -3438 ((-107) (-107))) (-15 -3808 ((-107) |#1|)) (-15 -1344 ((-107))) (-15 -1845 ((-107) (-107))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1| (-703))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3755 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1| (-703))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3432 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1|)) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107))) (-15 -2412 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)))) (-1130 (-517))) (T -411))
-((-2412 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3432 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1344 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3808 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2713 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2823 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2526 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2508 (-517)) (|:| -2879 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-1317 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1317 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3723 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3723 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *4) (|:| -3631 (-517))))))) (-4 *4 (-1130 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
-(-10 -7 (-15 -3204 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))))) (-15 -2981 ((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -3723 ((-843))) (-15 -3723 ((-843) (-843))) (-15 -1317 ((-843))) (-15 -1317 ((-843) (-843))) (-15 -2383 ((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -2526 ((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|)) (-15 -2823 ((-107))) (-15 -3073 ((-107) (-107))) (-15 -2713 ((-107))) (-15 -3438 ((-107) (-107))) (-15 -3808 ((-107) |#1|)) (-15 -1344 ((-107))) (-15 -1845 ((-107) (-107))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1| (-703))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3755 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1| (-703))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3432 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1|)) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107))) (-15 -2412 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703))))
-((-3867 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-1843 (((-517) |#2|) 55)) (-3693 ((|#3| |#2|) 25)) (-1506 ((|#3| |#2| (-843)) 14)) (-2195 ((|#3| |#2|) 15)) (-1975 ((|#3| |#2|) 9)) (-1881 ((|#3| |#2|) 10)) (-2322 ((|#3| |#2| (-843)) 62) ((|#3| |#2|) 30)) (-3898 (((-517) |#2|) 57)))
-(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -3898 ((-517) |#2|)) (-15 -2322 (|#3| |#2|)) (-15 -2322 (|#3| |#2| (-843))) (-15 -1843 ((-517) |#2|)) (-15 -3867 ((-517) |#2| (-703))) (-15 -3867 ((-517) |#2|)) (-15 -1506 (|#3| |#2| (-843))) (-15 -3693 (|#3| |#2|)) (-15 -1975 (|#3| |#2|)) (-15 -1881 (|#3| |#2|)) (-15 -2195 (|#3| |#2|))) (-961) (-1130 |#1|) (-13 (-374) (-952 |#1|) (-333) (-1094) (-256))) (T -412))
-((-2195 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1975 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1130 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1094) (-256))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))) (-2322 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) (-2322 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))))
-(-10 -7 (-15 -3898 ((-517) |#2|)) (-15 -2322 (|#3| |#2|)) (-15 -2322 (|#3| |#2| (-843))) (-15 -1843 ((-517) |#2|)) (-15 -3867 ((-517) |#2| (-703))) (-15 -3867 ((-517) |#2|)) (-15 -1506 (|#3| |#2| (-843))) (-15 -3693 (|#3| |#2|)) (-15 -1975 (|#3| |#2|)) (-15 -1881 (|#3| |#2|)) (-15 -2195 (|#3| |#2|)))
-((-2464 ((|#2| (-1153 |#1|)) 36)) (-1335 ((|#2| |#2| |#1|) 49)) (-2443 ((|#2| |#2| |#1|) 41)) (-3093 ((|#2| |#2|) 38)) (-4156 (((-107) |#2|) 30)) (-3920 (((-583 |#2|) (-843) (-388 |#2|)) 16)) (-3911 ((|#2| (-843) (-388 |#2|)) 21)) (-2981 (((-670 (-703)) (-388 |#2|)) 25)))
-(((-413 |#1| |#2|) (-10 -7 (-15 -4156 ((-107) |#2|)) (-15 -2464 (|#2| (-1153 |#1|))) (-15 -3093 (|#2| |#2|)) (-15 -2443 (|#2| |#2| |#1|)) (-15 -1335 (|#2| |#2| |#1|)) (-15 -2981 ((-670 (-703)) (-388 |#2|))) (-15 -3911 (|#2| (-843) (-388 |#2|))) (-15 -3920 ((-583 |#2|) (-843) (-388 |#2|)))) (-961) (-1130 |#1|)) (T -413))
-((-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-1335 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-961)) (-4 *2 (-1130 *4)) (-5 *1 (-413 *4 *2)))) (-4156 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -4156 ((-107) |#2|)) (-15 -2464 (|#2| (-1153 |#1|))) (-15 -3093 (|#2| |#2|)) (-15 -2443 (|#2| |#2| |#1|)) (-15 -1335 (|#2| |#2| |#1|)) (-15 -2981 ((-670 (-703)) (-388 |#2|))) (-15 -3911 (|#2| (-843) (-388 |#2|))) (-15 -3920 ((-583 |#2|) (-843) (-388 |#2|))))
-((-3479 (((-703)) 41)) (-1248 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-3403 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-1708 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-2780 (((-703)) 40) (((-703) (-703)) 39)) (-3351 ((|#1| (-703) (-517)) 29)) (-2186 (((-1158)) 43)))
-(((-414 |#1|) (-10 -7 (-15 -3351 (|#1| (-703) (-517))) (-15 -2780 ((-703) (-703))) (-15 -2780 ((-703))) (-15 -3479 ((-703))) (-15 -2186 ((-1158))) (IF (|has| |#1| (-374)) (PROGN (-15 -1708 ((-517) |#1|)) (-15 -3403 ((-517) |#1|)) (-15 -1248 ((-703) (-703))) (-15 -1248 ((-703)))) |noBranch|)) (-961)) (T -414))
-((-1248 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-1248 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-3403 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-1708 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-2186 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-3479 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2780 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961)))))
-(-10 -7 (-15 -3351 (|#1| (-703) (-517))) (-15 -2780 ((-703) (-703))) (-15 -2780 ((-703))) (-15 -3479 ((-703))) (-15 -2186 ((-1158))) (IF (|has| |#1| (-374)) (PROGN (-15 -1708 ((-517) |#1|)) (-15 -3403 ((-517) |#1|)) (-15 -1248 ((-703) (-703))) (-15 -1248 ((-703)))) |noBranch|))
-((-2760 (((-583 (-517)) (-517)) 57)) (-3849 (((-107) (-153 (-517))) 61)) (-3755 (((-388 (-153 (-517))) (-153 (-517))) 56)))
-(((-415) (-10 -7 (-15 -3755 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -2760 ((-583 (-517)) (-517))) (-15 -3849 ((-107) (-153 (-517)))))) (T -415))
-((-3849 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-2760 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))))
-(-10 -7 (-15 -3755 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -2760 ((-583 (-517)) (-517))) (-15 -3849 ((-107) (-153 (-517)))))
-((-2446 ((|#4| |#4| (-583 |#4|)) 57)) (-2481 (((-583 |#4|) (-583 |#4|) (-1056) (-1056)) 17) (((-583 |#4|) (-583 |#4|) (-1056)) 16) (((-583 |#4|) (-583 |#4|)) 11)))
-(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2446 (|#4| |#4| (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056) (-1056)))) (-278) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -416))
-((-2481 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2446 (|#4| |#4| (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056) (-1056))))
-((-2086 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 70) (((-583 (-583 |#4|)) (-583 |#4|)) 69) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 63) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 64)) (-3923 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 40) (((-583 (-583 |#4|)) (-583 |#4|)) 60)))
-(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -417))
-((-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2086 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2086 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2086 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3923 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(-10 -7 (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-107))))
-((-2097 (((-703) |#4|) 12)) (-2385 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)))) 31)) (-1249 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3080 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-3595 ((|#4| |#4| (-583 |#4|)) 39)) (-1805 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 68)) (-2751 (((-1158) |#4|) 41)) (-3649 (((-1158) (-583 |#4|)) 50)) (-1510 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 47)) (-2309 (((-1158) (-517)) 75)) (-1505 (((-583 |#4|) (-583 |#4|)) 73)) (-1378 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703)) 25)) (-4159 (((-517) |#4|) 74)) (-3798 ((|#4| |#4|) 29)) (-1921 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 54)) (-1736 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 85)) (-2587 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3572 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-3065 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-2259 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-3607 (((-107) |#2| |#2|) 55)) (-3052 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2390 (((-107) |#2| |#2| |#2| |#2|) 58)) (-1820 ((|#4| |#4| (-583 |#4|)) 69)))
-(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 (|#4| |#4| (-583 |#4|))) (-15 -3595 (|#4| |#4| (-583 |#4|))) (-15 -1921 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -3572 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3607 ((-107) |#2| |#2|)) (-15 -2390 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3052 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2259 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3065 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1805 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3798 (|#4| |#4|)) (-15 -2385 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))))) (-15 -3080 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1249 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1505 ((-583 |#4|) (-583 |#4|))) (-15 -4159 ((-517) |#4|)) (-15 -2751 ((-1158) |#4|)) (-15 -1510 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -1736 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -3649 ((-1158) (-583 |#4|))) (-15 -2309 ((-1158) (-517))) (-15 -2587 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1378 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703))) (-15 -2097 ((-703) |#4|))) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -418))
-((-2097 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1913 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-2587 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1736 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-1510 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-1249 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-2385 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-3065 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3052 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-2390 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1921 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-1820 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1820 (|#4| |#4| (-583 |#4|))) (-15 -3595 (|#4| |#4| (-583 |#4|))) (-15 -1921 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -3572 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3607 ((-107) |#2| |#2|)) (-15 -2390 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3052 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2259 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3065 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1805 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3798 (|#4| |#4|)) (-15 -2385 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))))) (-15 -3080 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1249 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1505 ((-583 |#4|) (-583 |#4|))) (-15 -4159 ((-517) |#4|)) (-15 -2751 ((-1158) |#4|)) (-15 -1510 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -1736 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -3649 ((-1158) (-583 |#4|))) (-15 -2309 ((-1158) (-517))) (-15 -2587 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1378 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703))) (-15 -2097 ((-703) |#4|)))
-((-1441 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-1759 (((-583 |#4|) (-583 |#4|) (-1056) (-1056)) 41) (((-583 |#4|) (-583 |#4|) (-1056)) 40) (((-583 |#4|) (-583 |#4|)) 35)))
-(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1759 ((-583 |#4|) (-583 |#4|))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056) (-1056))) (IF (|has| |#1| (-333)) (-15 -1441 (|#4| |#4| (-583 |#4|))) |noBranch|)) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -419))
-((-1441 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-1759 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1759 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1759 ((-583 |#4|) (-583 |#4|))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056) (-1056))) (IF (|has| |#1| (-333)) (-15 -1441 (|#4| |#4| (-583 |#4|))) |noBranch|))
-((-1365 (($ $ $) 14) (($ (-583 $)) 21)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 41)) (-1401 (($ $ $) NIL) (($ (-583 $)) 22)))
-(((-420 |#1|) (-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -1365 (|#1| (-583 |#1|))) (-15 -1365 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|))) (-421)) (T -420))
-NIL
-(-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -1365 (|#1| (-583 |#1|))) (-15 -1365 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-421) (-1184)) (T -421))
-((-1401 (*1 *1 *1 *1) (-4 *1 (-421))) (-1401 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1365 (*1 *1 *1 *1) (-4 *1 (-421))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-421)))))
-(-13 (-509) (-10 -8 (-15 -1401 ($ $ $)) (-15 -1401 ($ (-583 $))) (-15 -1365 ($ $ $)) (-15 -1365 ($ (-583 $))) (-15 -1862 ((-1069 $) (-1069 $) (-1069 $)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 40)) (-3077 (($ $) 55)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 143)) (-3209 (($ $) NIL)) (-1452 (((-107) $) 34)) (-1697 ((|#1| $) 12)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| |#1| (-1113)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-1113)))) (-2964 (($ |#1| (-517)) 30)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 53)) (-1568 (((-3 $ "failed") $) 128)) (-1422 (((-3 (-377 (-517)) "failed") $) 61 (|has| |#1| (-502)))) (-2712 (((-107) $) 57 (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) 68 (|has| |#1| (-502)))) (-2363 (($ |#1| (-517)) 32)) (-2965 (((-107) $) 149 (|has| |#1| (-1113)))) (-2955 (((-107) $) 41)) (-3028 (((-703) $) 36)) (-3798 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-2445 ((|#1| $ (-517)) 133)) (-3557 (((-517) $ (-517)) 132)) (-1887 (($ |#1| (-517)) 29)) (-1857 (($ (-1 |#1| |#1|) $) 140)) (-2058 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 56)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3865 (((-1057) $) NIL)) (-1819 (($ |#1| (-517)) 31)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-3729 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-2232 (((-583 (-2 (|:| -3693 |#1|) (|:| -2059 (-517)))) $) 52)) (-2939 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-3693 (((-388 $) $) NIL (|has| |#1| (-1113)))) (-2349 (((-3 $ "failed") $ $) 135)) (-2059 (((-517) $) 129)) (-3408 ((|#1| $) 54)) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) $) NIL (|has| |#1| (-478 (-1074) $))) (($ $ (-583 (-1074)) (-583 $)) 83 (|has| |#1| (-478 (-1074) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-1986 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-1699 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3582 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-937))) (((-199) $) 92 (|has| |#1| (-937)))) (-2182 (((-787) $) 111) (($ (-517)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517)))))) (-1865 (((-703)) 46)) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 38 T CONST)) (-2306 (($) 37 T CONST)) (-2553 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-107) $ $) 93)) (-1637 (($ $) 125) (($ $ $) NIL)) (-1626 (($ $ $) 137)) (** (($ $ (-843)) NIL) (($ $ (-703)) 99)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL)))
+(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3408 (|#1| $)) (-15 -2059 ((-517) $)) (-15 -2058 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -2939 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1887 ($ |#1| (-517))) (-15 -2232 ((-583 (-2 (|:| -3693 |#1|) (|:| -2059 (-517)))) $)) (-15 -1819 ($ |#1| (-517))) (-15 -3557 ((-517) $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -3798 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -3028 ((-703) $)) (-15 -2363 ($ |#1| (-517))) (-15 -2964 ($ |#1| (-517))) (-15 -3729 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1697 (|#1| $)) (-15 -3077 ($ $)) (-15 -1857 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |#1| (-1113)) (-6 (-1113)) |noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |noBranch|) (IF (|has| |#1| (-478 (-1074) $)) (-6 (-478 (-1074) $)) |noBranch|))) (-509)) (T -388))
+((-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-3408 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2058 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1887 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3693 *3) (|:| -2059 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1819 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3557 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2363 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2964 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3729 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1697 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3077 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-1422 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))))
+(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3408 (|#1| $)) (-15 -2059 ((-517) $)) (-15 -2058 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -2939 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1887 ($ |#1| (-517))) (-15 -2232 ((-583 (-2 (|:| -3693 |#1|) (|:| -2059 (-517)))) $)) (-15 -1819 ($ |#1| (-517))) (-15 -3557 ((-517) $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -3798 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -3028 ((-703) $)) (-15 -2363 ($ |#1| (-517))) (-15 -2964 ($ |#1| (-517))) (-15 -3729 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1697 (|#1| $)) (-15 -3077 ($ $)) (-15 -1857 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |#1| (-1113)) (-6 (-1113)) |noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |noBranch|) (IF (|has| |#1| (-478 (-1074) $)) (-6 (-478 (-1074) $)) |noBranch|)))
+((-3438 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-3889 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15)))
+(((-389 |#1|) (-10 -7 (-15 -3438 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -3889 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389))
+((-3889 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-3438 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))))
+(-10 -7 (-15 -3438 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -3889 ((-388 |#1|) (-388 |#1|) (-388 |#1|))))
+((-1855 ((|#2| |#2|) 160)) (-4050 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107)) 55)))
+(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4050 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107))) (-15 -1855 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|)) (-1074) |#2|) (T -390))
+((-1855 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1095) (-400 *3))) (-14 *4 (-1074)) (-14 *5 *2))) (-4050 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-14 *6 (-1074)) (-14 *7 *3))))
+(-10 -7 (-15 -4050 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107))) (-15 -1855 (|#2| |#2|)))
+((-1857 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-961) (-779)) (-400 |#1|) (-13 (-961) (-779)) (-400 |#3|)) (T -391))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))))
+(-10 -7 (-15 -1857 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1855 ((|#2| |#2|) 87)) (-3244 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057)) 46)) (-2825 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057)) 152)))
+(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3244 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057))) (-15 -2825 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057))) (-15 -1855 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|) (-10 -8 (-15 -2182 ($ |#3|)))) (-777) (-13 (-1133 |#2| |#3|) (-333) (-1095) (-10 -8 (-15 -1699 ($ $)) (-15 -2863 ($ $)))) (-900 |#4|) (-1074)) (T -392))
+((-1855 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1095) (-400 *3) (-10 -8 (-15 -2182 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1133 *2 *4) (-333) (-1095) (-10 -8 (-15 -1699 ($ $)) (-15 -2863 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1074)))) (-2825 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1095) (-400 *6) (-10 -8 (-15 -2182 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1133 *3 *7) (-333) (-1095) (-10 -8 (-15 -1699 ($ $)) (-15 -2863 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1057)) (-4 *9 (-900 *8)) (-14 *10 (-1074)))) (-3244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1095) (-400 *6) (-10 -8 (-15 -2182 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1133 *3 *7) (-333) (-1095) (-10 -8 (-15 -1699 ($ $)) (-15 -2863 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1057)) (-4 *9 (-900 *8)) (-14 *10 (-1074)))))
+(-10 -7 (-15 -3244 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057))) (-15 -2825 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057))) (-15 -1855 (|#2| |#2|)))
+((-2325 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2521 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1857 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2325 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1003) (-395 |#1|) (-1003) (-395 |#3|)) (T -393))
+((-2325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))))
+(-10 -7 (-15 -1857 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2325 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3242 (($) 44)) (-1408 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2321 (($ $ $) 39)) (-4035 (((-107) $ $) 28)) (-1598 (((-703)) 47)) (-1361 (($ (-583 |#2|)) 20) (($) NIL)) (-3098 (($) 53)) (-1575 ((|#2| $) 61)) (-2986 ((|#2| $) 59)) (-2903 (((-843) $) 55)) (-2551 (($ $ $) 35)) (-3353 (($ (-843)) 50)) (-2852 (($ $ |#2|) NIL) (($ $ $) 38)) (-3105 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2197 (($ (-583 |#2|)) 24)) (-3750 (($ $) 46)) (-2182 (((-787) $) 33)) (-3863 (((-703) $) 21)) (-3055 (($ (-583 |#2|)) 19) (($) NIL)) (-1539 (((-107) $ $) 16)) (-1560 (((-107) $ $) 13)))
+(((-394 |#1| |#2|) (-10 -8 (-15 -1598 ((-703))) (-15 -3353 (|#1| (-843))) (-15 -2903 ((-843) |#1|)) (-15 -3098 (|#1|)) (-15 -1575 (|#2| |#1|)) (-15 -2986 (|#2| |#1|)) (-15 -3242 (|#1|)) (-15 -3750 (|#1| |#1|)) (-15 -3863 ((-703) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -3055 (|#1|)) (-15 -3055 (|#1| (-583 |#2|))) (-15 -1361 (|#1|)) (-15 -1361 (|#1| (-583 |#2|))) (-15 -2551 (|#1| |#1| |#1|)) (-15 -2852 (|#1| |#1| |#1|)) (-15 -2852 (|#1| |#1| |#2|)) (-15 -2321 (|#1| |#1| |#1|)) (-15 -4035 ((-107) |#1| |#1|)) (-15 -1408 (|#1| |#1| |#1|)) (-15 -1408 (|#1| |#1| |#2|)) (-15 -1408 (|#1| |#2| |#1|)) (-15 -2197 (|#1| (-583 |#2|))) (-15 -3105 ((-703) |#2| |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1003)) (T -394))
+((-1598 (*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
+(-10 -8 (-15 -1598 ((-703))) (-15 -3353 (|#1| (-843))) (-15 -2903 ((-843) |#1|)) (-15 -3098 (|#1|)) (-15 -1575 (|#2| |#1|)) (-15 -2986 (|#2| |#1|)) (-15 -3242 (|#1|)) (-15 -3750 (|#1| |#1|)) (-15 -3863 ((-703) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -3055 (|#1|)) (-15 -3055 (|#1| (-583 |#2|))) (-15 -1361 (|#1|)) (-15 -1361 (|#1| (-583 |#2|))) (-15 -2551 (|#1| |#1| |#1|)) (-15 -2852 (|#1| |#1| |#1|)) (-15 -2852 (|#1| |#1| |#2|)) (-15 -2321 (|#1| |#1| |#1|)) (-15 -4035 ((-107) |#1| |#1|)) (-15 -1408 (|#1| |#1| |#1|)) (-15 -1408 (|#1| |#1| |#2|)) (-15 -1408 (|#1| |#2| |#1|)) (-15 -2197 (|#1| (-583 |#2|))) (-15 -3105 ((-703) |#2| |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)))
+((-2571 (((-107) $ $) 18)) (-3242 (($) 67 (|has| |#1| (-338)))) (-1408 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2321 (($ $ $) 78)) (-4035 (((-107) $ $) 79)) (-1799 (((-107) $ (-703)) 8)) (-1598 (((-703)) 61 (|has| |#1| (-338)))) (-1361 (($ (-583 |#1|)) 74) (($) 73)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1667 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-1971 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3098 (($) 64 (|has| |#1| (-338)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1575 ((|#1| $) 65 (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2986 ((|#1| $) 66 (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2903 (((-843) $) 63 (|has| |#1| (-338)))) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22)) (-2551 (($ $ $) 75)) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40)) (-3353 (($ (-843)) 62 (|has| |#1| (-338)))) (-3094 (((-1021) $) 21)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-2852 (($ $ |#1|) 77) (($ $ $) 76)) (-3429 (($) 49) (($ (-583 |#1|)) 48)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 50)) (-3750 (($ $) 68 (|has| |#1| (-338)))) (-2182 (((-787) $) 20)) (-3863 (((-703) $) 69)) (-3055 (($ (-583 |#1|)) 72) (($) 71)) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19)) (-1560 (((-107) $ $) 70)) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-395 |#1|) (-1185) (-1003)) (T -395))
+((-3863 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-3750 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))) (-3242 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))))
+(-13 (-203 |t#1|) (-1001 |t#1|) (-10 -8 (-6 -4183) (-15 -3863 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -3750 ($ $)) (-15 -3242 ($))) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -2986 (|t#1| $)) (-15 -1575 (|t#1| $))) |noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1001 |#1|) . T) ((-1003) . T) ((-1109) . T))
+((-2213 (((-534 |#2|) |#2| (-1074)) 35)) (-3090 (((-534 |#2|) |#2| (-1074)) 19)) (-3025 ((|#2| |#2| (-1074)) 24)))
+(((-396 |#1| |#2|) (-10 -7 (-15 -3090 ((-534 |#2|) |#2| (-1074))) (-15 -2213 ((-534 |#2|) |#2| (-1074))) (-15 -3025 (|#2| |#2| (-1074)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-29 |#1|))) (T -396))
+((-3025 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1095) (-29 *4))))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1095) (-29 *5))))) (-3090 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1095) (-29 *5))))))
+(-10 -7 (-15 -3090 ((-534 |#2|) |#2| (-1074))) (-15 -2213 ((-534 |#2|) |#2| (-1074))) (-15 -3025 (|#2| |#2| (-1074))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-2428 (($ |#2| |#1|) 35)) (-3115 (($ |#2| |#1|) 33)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-1865 (((-703)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 10 T CONST)) (-2306 (($) 16 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 34)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4170)) (IF (|has| |#1| (-6 -4170)) (-6 -4170) |noBranch|) |noBranch|) (-15 -2182 ($ |#1|)) (-15 -2182 ($ (-301 |#2|))) (-15 -2428 ($ |#2| |#1|)) (-15 -3115 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397))
+((-2182 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-2428 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-3115 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4170)) (IF (|has| |#1| (-6 -4170)) (-6 -4170) |noBranch|) |noBranch|) (-15 -2182 ($ |#1|)) (-15 -2182 ($ (-301 |#2|))) (-15 -2428 ($ |#2| |#1|)) (-15 -3115 ($ |#2| |#1|))))
+((-2863 (((-3 |#2| (-583 |#2|)) |#2| (-1074)) 104)))
+(((-398 |#1| |#2|) (-10 -7 (-15 -2863 ((-3 |#2| (-583 |#2|)) |#2| (-1074)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-880) (-29 |#1|))) (T -398))
+((-2863 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1095) (-880) (-29 *5))))))
+(-10 -7 (-15 -2863 ((-3 |#2| (-583 |#2|)) |#2| (-1074))))
+((-1363 (((-583 (-1074)) $) 72)) (-2255 (((-377 (-1070 $)) $ (-556 $)) 268)) (-2173 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233)) (-1759 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1074) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-377 (-874 |#2|)) "failed") $) 319) (((-3 (-874 |#2|) "failed") $) 231) (((-3 (-377 (-517)) "failed") $) NIL)) (-3076 (((-556 $) $) NIL) (((-1074) $) 30) (((-517) $) NIL) ((|#2| $) 227) (((-377 (-874 |#2|)) $) 300) (((-874 |#2|) $) 228) (((-377 (-517)) $) NIL)) (-3270 (((-109) (-109)) 47)) (-1936 (($ $) 87)) (-2726 (((-3 (-556 $) "failed") $) 224)) (-2247 (((-583 (-556 $)) $) 225)) (-4128 (((-3 (-583 $) "failed") $) 243)) (-3973 (((-3 (-2 (|:| |val| $) (|:| -2059 (-517))) "failed") $) 250)) (-3116 (((-3 (-583 $) "failed") $) 241)) (-2724 (((-3 (-2 (|:| -1883 (-517)) (|:| |var| (-556 $))) "failed") $) 259)) (-2911 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $) 247) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-109)) 214) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-1074)) 216)) (-4134 (((-107) $) 19)) (-4144 ((|#2| $) 21)) (-1979 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 232) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1074)) 57) (($ $ (-583 (-1074))) 236) (($ $) 237) (($ $ (-109) $ (-1074)) 60) (($ $ (-583 (-109)) (-583 $) (-1074)) 67) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 238) (($ $ (-1074) (-703) (-1 $ (-583 $))) 94) (($ $ (-1074) (-703) (-1 $ $)) 93)) (-1986 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) 234)) (-3691 (($ $) 279)) (-3582 (((-814 (-517)) $) 253) (((-814 (-349)) $) 256) (($ (-388 $)) 315) (((-493) $) NIL)) (-2182 (((-787) $) 235) (($ (-556 $)) 84) (($ (-1074)) 26) (($ |#2|) NIL) (($ (-1026 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 284) (($ (-874 (-377 |#2|))) 324) (($ (-377 (-874 (-377 |#2|)))) 296) (($ (-377 (-874 |#2|))) 290) (($ $) NIL) (($ (-874 |#2|)) 183) (($ (-377 (-517))) 329) (($ (-517)) NIL)) (-1865 (((-703)) 79)) (-3494 (((-107) (-109)) 41)) (-3698 (($ (-1074) $) 33) (($ (-1074) $ $) 34) (($ (-1074) $ $ $) 35) (($ (-1074) $ $ $ $) 36) (($ (-1074) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1865 ((-703))) (-15 -2182 (|#1| (-517))) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -3582 ((-493) |#1|)) (-15 -3076 ((-874 |#2|) |#1|)) (-15 -1759 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2182 (|#1| (-874 |#2|))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2182 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3076 ((-377 (-874 |#2|)) |#1|)) (-15 -1759 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2182 (|#1| (-377 (-874 |#2|)))) (-15 -2255 ((-377 (-1070 |#1|)) |#1| (-556 |#1|))) (-15 -2182 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2182 (|#1| (-874 (-377 |#2|)))) (-15 -2182 (|#1| (-377 |#2|))) (-15 -3691 (|#1| |#1|)) (-15 -3582 (|#1| (-388 |#1|))) (-15 -1979 (|#1| |#1| (-1074) (-703) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-1074) (-703) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -3973 ((-3 (-2 (|:| |val| |#1|) (|:| -2059 (-517))) "failed") |#1|)) (-15 -2911 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2059 (-517))) "failed") |#1| (-1074))) (-15 -2911 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2059 (-517))) "failed") |#1| (-109))) (-15 -1936 (|#1| |#1|)) (-15 -2182 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -2724 ((-3 (-2 (|:| -1883 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -3116 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2911 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2059 (-517))) "failed") |#1|)) (-15 -4128 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1074))) (-15 -1979 (|#1| |#1| (-109) |#1| (-1074))) (-15 -1979 (|#1| |#1|)) (-15 -1979 (|#1| |#1| (-583 (-1074)))) (-15 -1979 (|#1| |#1| (-1074))) (-15 -3698 (|#1| (-1074) (-583 |#1|))) (-15 -3698 (|#1| (-1074) |#1| |#1| |#1| |#1|)) (-15 -3698 (|#1| (-1074) |#1| |#1| |#1|)) (-15 -3698 (|#1| (-1074) |#1| |#1|)) (-15 -3698 (|#1| (-1074) |#1|)) (-15 -1363 ((-583 (-1074)) |#1|)) (-15 -4144 (|#2| |#1|)) (-15 -4134 ((-107) |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3076 ((-1074) |#1|)) (-15 -1759 ((-3 (-1074) "failed") |#1|)) (-15 -2182 (|#1| (-1074))) (-15 -1979 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -1979 (|#1| |#1| (-1074) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-1074) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| |#1|)))) (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -2247 ((-583 (-556 |#1|)) |#1|)) (-15 -2726 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2173 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2173 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2173 (|#1| |#1| (-265 |#1|))) (-15 -1986 (|#1| (-109) (-583 |#1|))) (-15 -1986 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -1979 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3076 ((-556 |#1|) |#1|)) (-15 -1759 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2182 (|#1| (-556 |#1|))) (-15 -2182 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399))
+((-3270 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-1865 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))))
+(-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1865 ((-703))) (-15 -2182 (|#1| (-517))) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -3582 ((-493) |#1|)) (-15 -3076 ((-874 |#2|) |#1|)) (-15 -1759 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2182 (|#1| (-874 |#2|))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2182 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3076 ((-377 (-874 |#2|)) |#1|)) (-15 -1759 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2182 (|#1| (-377 (-874 |#2|)))) (-15 -2255 ((-377 (-1070 |#1|)) |#1| (-556 |#1|))) (-15 -2182 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2182 (|#1| (-874 (-377 |#2|)))) (-15 -2182 (|#1| (-377 |#2|))) (-15 -3691 (|#1| |#1|)) (-15 -3582 (|#1| (-388 |#1|))) (-15 -1979 (|#1| |#1| (-1074) (-703) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-1074) (-703) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -3973 ((-3 (-2 (|:| |val| |#1|) (|:| -2059 (-517))) "failed") |#1|)) (-15 -2911 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2059 (-517))) "failed") |#1| (-1074))) (-15 -2911 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2059 (-517))) "failed") |#1| (-109))) (-15 -1936 (|#1| |#1|)) (-15 -2182 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -2724 ((-3 (-2 (|:| -1883 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -3116 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2911 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2059 (-517))) "failed") |#1|)) (-15 -4128 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1074))) (-15 -1979 (|#1| |#1| (-109) |#1| (-1074))) (-15 -1979 (|#1| |#1|)) (-15 -1979 (|#1| |#1| (-583 (-1074)))) (-15 -1979 (|#1| |#1| (-1074))) (-15 -3698 (|#1| (-1074) (-583 |#1|))) (-15 -3698 (|#1| (-1074) |#1| |#1| |#1| |#1|)) (-15 -3698 (|#1| (-1074) |#1| |#1| |#1|)) (-15 -3698 (|#1| (-1074) |#1| |#1|)) (-15 -3698 (|#1| (-1074) |#1|)) (-15 -1363 ((-583 (-1074)) |#1|)) (-15 -4144 (|#2| |#1|)) (-15 -4134 ((-107) |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3076 ((-1074) |#1|)) (-15 -1759 ((-3 (-1074) "failed") |#1|)) (-15 -2182 (|#1| (-1074))) (-15 -1979 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -1979 (|#1| |#1| (-1074) (-1 |#1| |#1|))) (-15 -1979 (|#1| |#1| (-1074) (-1 |#1| (-583 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1979 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| |#1|)))) (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -2247 ((-583 (-556 |#1|)) |#1|)) (-15 -2726 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2173 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2173 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2173 (|#1| |#1| (-265 |#1|))) (-15 -1986 (|#1| (-109) (-583 |#1|))) (-15 -1986 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1| |#1|)) (-15 -1986 (|#1| (-109) |#1|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1979 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -1979 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3076 ((-556 |#1|) |#1|)) (-15 -1759 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2182 (|#1| (-556 |#1|))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 116 (|has| |#1| (-25)))) (-1363 (((-583 (-1074)) $) 203)) (-2255 (((-377 (-1070 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-3209 (($ $) 144 (|has| |#1| (-509)))) (-1452 (((-107) $) 146 (|has| |#1| (-509)))) (-3656 (((-583 (-556 $)) $) 44)) (-1387 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2173 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-3938 (($ $) 163 (|has| |#1| (-509)))) (-3490 (((-388 $) $) 164 (|has| |#1| (-509)))) (-3765 (((-107) $ $) 154 (|has| |#1| (-509)))) (-3473 (($) 102 (-3763 (|has| |#1| (-1015)) (|has| |#1| (-25))) CONST)) (-1759 (((-3 (-556 $) "failed") $) 69) (((-3 (-1074) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-952 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-874 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) 123 (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 95 (-3763 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3076 (((-556 $) $) 68) (((-1074) $) 215) (((-517) $) 210 (|has| |#1| (-952 (-517)))) ((|#1| $) 206) (((-377 (-874 |#1|)) $) 168 (|has| |#1| (-509))) (((-874 |#1|) $) 122 (|has| |#1| (-961))) (((-377 (-517)) $) 94 (-3763 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2383 (($ $ $) 158 (|has| |#1| (-509)))) (-4012 (((-623 (-517)) (-623 $)) 137 (-1651 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 136 (-1651 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 135 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-961)))) (-1568 (((-3 $ "failed") $) 105 (|has| |#1| (-1015)))) (-2366 (($ $ $) 157 (|has| |#1| (-509)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-2965 (((-107) $) 165 (|has| |#1| (-509)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 212 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 211 (|has| |#1| (-808 (-349))))) (-1187 (($ $) 51) (($ (-583 $)) 50)) (-4025 (((-583 (-109)) $) 43)) (-3270 (((-109) (-109)) 42)) (-2955 (((-107) $) 103 (|has| |#1| (-1015)))) (-2393 (((-107) $) 22 (|has| $ (-952 (-517))))) (-1936 (($ $) 186 (|has| |#1| (-961)))) (-1772 (((-1026 |#1| (-556 $)) $) 187 (|has| |#1| (-961)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-4133 (((-1070 $) (-556 $)) 25 (|has| $ (-961)))) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1857 (($ (-1 $ $) (-556 $)) 36)) (-2726 (((-3 (-556 $) "failed") $) 46)) (-1368 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-3865 (((-1057) $) 9)) (-2247 (((-583 (-556 $)) $) 45)) (-1822 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-4128 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1015)))) (-3973 (((-3 (-2 (|:| |val| $) (|:| -2059 (-517))) "failed") $) 183 (|has| |#1| (-961)))) (-3116 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-2724 (((-3 (-2 (|:| -1883 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2911 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $) 191 (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-1074)) 184 (|has| |#1| (-961)))) (-4158 (((-107) $ (-109)) 40) (((-107) $ (-1074)) 39)) (-4123 (($ $) 107 (-3763 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1846 (((-703) $) 47)) (-3094 (((-1021) $) 10)) (-4134 (((-107) $) 205)) (-4144 ((|#1| $) 204)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 151 (|has| |#1| (-509)))) (-1396 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-2754 (((-107) $ $) 35) (((-107) $ (-1074)) 34)) (-3693 (((-388 $) $) 162 (|has| |#1| (-509)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 159 (|has| |#1| (-509)))) (-2349 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-3994 (((-107) $) 23 (|has| $ (-952 (-517))))) (-1979 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1074)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1074) (-1 $ (-583 $))) 31) (($ $ (-1074) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1074)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1074)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1074)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ $)) 179 (|has| |#1| (-961)))) (-2623 (((-703) $) 155 (|has| |#1| (-509)))) (-1986 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 156 (|has| |#1| (-509)))) (-1662 (($ $) 49) (($ $ $) 48)) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) 128 (|has| |#1| (-961))) (($ $ (-1074) (-703)) 127 (|has| |#1| (-961))) (($ $ (-583 (-1074))) 126 (|has| |#1| (-961))) (($ $ (-1074)) 125 (|has| |#1| (-961)))) (-3691 (($ $) 176 (|has| |#1| (-509)))) (-1783 (((-1026 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-1457 (($ $) 24 (|has| $ (-961)))) (-3582 (((-814 (-517)) $) 214 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 213 (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-2013 (($ $ $) 111 (|has| |#1| (-442)))) (-3064 (($ $ $) 112 (|has| |#1| (-442)))) (-2182 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1074)) 217) (($ |#1|) 208) (($ (-1026 |#1| (-556 $))) 188 (|has| |#1| (-961))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-874 |#1|)) 124 (|has| |#1| (-961))) (($ (-377 (-517))) 96 (-3763 (|has| |#1| (-509)) (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 93 (-3763 (|has| |#1| (-961)) (|has| |#1| (-952 (-517)))))) (-1589 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-1865 (((-703)) 133 (|has| |#1| (-961)))) (-3549 (($ $) 53) (($ (-583 $)) 52)) (-3494 (((-107) (-109)) 41)) (-3767 (((-107) $ $) 145 (|has| |#1| (-509)))) (-3698 (($ (-1074) $) 202) (($ (-1074) $ $) 201) (($ (-1074) $ $ $) 200) (($ (-1074) $ $ $ $) 199) (($ (-1074) (-583 $)) 198)) (-2146 (($ $ (-517)) 110 (-3763 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1015))) (($ $ (-843)) 100 (|has| |#1| (-1015)))) (-2297 (($) 115 (|has| |#1| (-25)) CONST)) (-2306 (($) 101 (|has| |#1| (-1015)) CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) 132 (|has| |#1| (-961))) (($ $ (-1074) (-703)) 131 (|has| |#1| (-961))) (($ $ (-583 (-1074))) 130 (|has| |#1| (-961))) (($ $ (-1074)) 129 (|has| |#1| (-961)))) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (-1649 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3763 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1637 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1626 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3763 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1015))) (($ $ (-843)) 99 (|has| |#1| (-1015)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-843) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1015)))))
+(((-400 |#1|) (-1185) (-779)) (T -400))
+((-4134 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1074))))) (-3698 (*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3698 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3698 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3698 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3698 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1074))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-1979 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1074)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-1979 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1074)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-4128 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-2911 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2059 (-517)))) (-4 *1 (-400 *3)))) (-3116 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-2724 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1883 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1772 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1936 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) (-2911 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2059 (-517)))) (-4 *1 (-400 *4)))) (-2911 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2059 (-517)))) (-4 *1 (-400 *4)))) (-3973 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2059 (-517)))) (-4 *1 (-400 *3)))) (-1979 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-1979 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-1979 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-1979 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-1783 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-3691 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1649 (*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2255 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1070 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))))
+(-13 (-273) (-952 (-1074)) (-806 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -4134 ((-107) $)) (-15 -4144 (|t#1| $)) (-15 -1363 ((-583 (-1074)) $)) (-15 -3698 ($ (-1074) $)) (-15 -3698 ($ (-1074) $ $)) (-15 -3698 ($ (-1074) $ $ $)) (-15 -3698 ($ (-1074) $ $ $ $)) (-15 -3698 ($ (-1074) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -1979 ($ $ (-1074))) (-15 -1979 ($ $ (-583 (-1074)))) (-15 -1979 ($ $)) (-15 -1979 ($ $ (-109) $ (-1074))) (-15 -1979 ($ $ (-583 (-109)) (-583 $) (-1074)))) |noBranch|) (IF (|has| |t#1| (-1015)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -4128 ((-3 (-583 $) "failed") $)) (-15 -2911 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3116 ((-3 (-583 $) "failed") $)) (-15 -2724 ((-3 (-2 (|:| -1883 (-517)) (|:| |var| (-556 $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-952 (-874 |t#1|))) (-6 (-822 (-1074))) (-6 (-347 |t#1|)) (-15 -2182 ($ (-1026 |t#1| (-556 $)))) (-15 -1772 ((-1026 |t#1| (-556 $)) $)) (-15 -1936 ($ $)) (-15 -2911 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-109))) (-15 -2911 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2059 (-517))) "failed") $ (-1074))) (-15 -3973 ((-3 (-2 (|:| |val| $) (|:| -2059 (-517))) "failed") $)) (-15 -1979 ($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -1979 ($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -1979 ($ $ (-1074) (-703) (-1 $ (-583 $)))) (-15 -1979 ($ $ (-1074) (-703) (-1 $ $)))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-952 (-377 (-874 |t#1|)))) (-15 -3582 ($ (-388 $))) (-15 -1783 ((-1026 |t#1| (-556 $)) $)) (-15 -3691 ($ $)) (-15 -1649 ($ (-1026 |t#1| (-556 $)) (-1026 |t#1| (-556 $)))) (-15 -2182 ($ (-377 |t#1|))) (-15 -2182 ($ (-874 (-377 |t#1|)))) (-15 -2182 ($ (-377 (-874 (-377 |t#1|))))) (-15 -2255 ((-377 (-1070 $)) $ (-556 $))) (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-377 (-517)))) |noBranch|)) |noBranch|)))
+(((-21) -3763 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3763 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3763 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 (-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3763 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3763 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3763 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-822 (-1074)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) |has| |#1| (-509)) ((-952 (-377 (-517))) -3763 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1074)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-509)) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) |has| |#1| (-509)) ((-961) -3763 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-968) -3763 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1015) -3763 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1003) . T) ((-1109) . T) ((-1113) |has| |#1| (-509)))
+((-1425 ((|#2| |#2| |#2|) 33)) (-3270 (((-109) (-109)) 44)) (-2785 ((|#2| |#2|) 66)) (-2408 ((|#2| |#2|) 69)) (-1583 ((|#2| |#2|) 32)) (-1294 ((|#2| |#2| |#2|) 35)) (-1672 ((|#2| |#2| |#2|) 37)) (-2228 ((|#2| |#2| |#2|) 34)) (-1555 ((|#2| |#2| |#2|) 36)) (-3494 (((-107) (-109)) 42)) (-1853 ((|#2| |#2|) 39)) (-2940 ((|#2| |#2|) 38)) (-1221 ((|#2| |#2|) 27)) (-3030 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2685 ((|#2| |#2| |#2|) 31)))
+(((-401 |#1| |#2|) (-10 -7 (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -1221 (|#2| |#2|)) (-15 -3030 (|#2| |#2|)) (-15 -3030 (|#2| |#2| |#2|)) (-15 -2685 (|#2| |#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1425 (|#2| |#2| |#2|)) (-15 -2228 (|#2| |#2| |#2|)) (-15 -1294 (|#2| |#2| |#2|)) (-15 -1555 (|#2| |#2| |#2|)) (-15 -1672 (|#2| |#2| |#2|)) (-15 -2940 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -2785 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401))
+((-2785 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2408 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2940 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1672 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1555 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1294 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2228 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1425 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2685 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3030 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3030 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1221 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))))
+(-10 -7 (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -1221 (|#2| |#2|)) (-15 -3030 (|#2| |#2|)) (-15 -3030 (|#2| |#2| |#2|)) (-15 -2685 (|#2| |#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1425 (|#2| |#2| |#2|)) (-15 -2228 (|#2| |#2| |#2|)) (-15 -1294 (|#2| |#2| |#2|)) (-15 -1555 (|#2| |#2| |#2|)) (-15 -1672 (|#2| |#2| |#2|)) (-15 -2940 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)))
+((-3493 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1070 |#2|)) (|:| |pol2| (-1070 |#2|)) (|:| |prim| (-1070 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1070 |#2|))) (|:| |prim| (-1070 |#2|))) (-583 |#2|)) 58)))
+(((-402 |#1| |#2|) (-10 -7 (-15 -3493 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1070 |#2|))) (|:| |prim| (-1070 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -3493 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1070 |#2|)) (|:| |pol2| (-1070 |#2|)) (|:| |prim| (-1070 |#2|))) |#2| |#2|)) |noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402))
+((-3493 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1070 *3)) (|:| |pol2| (-1070 *3)) (|:| |prim| (-1070 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-402 *4 *5)))))
+(-10 -7 (-15 -3493 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1070 |#2|))) (|:| |prim| (-1070 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -3493 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1070 |#2|)) (|:| |pol2| (-1070 |#2|)) (|:| |prim| (-1070 |#2|))) |#2| |#2|)) |noBranch|))
+((-1210 (((-1159)) 18)) (-1496 (((-1070 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23)))
+(((-403 |#1| |#2|) (-10 -7 (-15 -1496 ((-377 (-517)) |#2|)) (-15 -1496 ((-1070 (-377 (-517))) |#2| (-556 |#2|))) (-15 -1210 ((-1159)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|)) (T -403))
+((-1210 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1159)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))))
+(-10 -7 (-15 -1496 ((-377 (-517)) |#2|)) (-15 -1496 ((-1070 (-377 (-517))) |#2| (-556 |#2|))) (-15 -1210 ((-1159))))
+((-3977 (((-107) $) 28)) (-3141 (((-107) $) 30)) (-3337 (((-107) $) 31)) (-1318 (((-107) $) 34)) (-2274 (((-107) $) 29)) (-2749 (((-107) $) 33)) (-2182 (((-787) $) 18) (($ (-1057)) 27) (($ (-1074)) 23) (((-1074) $) 22) (((-1007) $) 21)) (-2300 (((-107) $) 32)) (-1539 (((-107) $ $) 15)))
+(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2182 ($ (-1057))) (-15 -2182 ($ (-1074))) (-15 -2182 ((-1074) $)) (-15 -2182 ((-1007) $)) (-15 -3977 ((-107) $)) (-15 -2274 ((-107) $)) (-15 -3337 ((-107) $)) (-15 -2749 ((-107) $)) (-15 -1318 ((-107) $)) (-15 -2300 ((-107) $)) (-15 -3141 ((-107) $)) (-15 -1539 ((-107) $ $))))) (T -404))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-404)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-404)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-404)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1539 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2182 ($ (-1057))) (-15 -2182 ($ (-1074))) (-15 -2182 ((-1074) $)) (-15 -2182 ((-1007) $)) (-15 -3977 ((-107) $)) (-15 -2274 ((-107) $)) (-15 -3337 ((-107) $)) (-15 -2749 ((-107) $)) (-15 -1318 ((-107) $)) (-15 -2300 ((-107) $)) (-15 -3141 ((-107) $)) (-15 -1539 ((-107) $ $))))
+((-2659 (((-3 (-388 (-1070 (-377 (-517)))) "failed") |#3|) 69)) (-1713 (((-388 |#3|) |#3|) 33)) (-4087 (((-3 (-388 (-1070 (-47))) "failed") |#3|) 44 (|has| |#2| (-952 (-47))))) (-3142 (((-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3637 (-107))) |#3|) 35)))
+(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -1713 ((-388 |#3|) |#3|)) (-15 -2659 ((-3 (-388 (-1070 (-377 (-517)))) "failed") |#3|)) (-15 -3142 ((-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3637 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -4087 ((-3 (-388 (-1070 (-47))) "failed") |#3|)) |noBranch|)) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|) (-1131 |#2|)) (T -405))
+((-4087 (*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1070 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))) (-3142 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3637 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))) (-2659 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1070 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))) (-1713 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
+(-10 -7 (-15 -1713 ((-388 |#3|) |#3|)) (-15 -2659 ((-3 (-388 (-1070 (-377 (-517)))) "failed") |#3|)) (-15 -3142 ((-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3637 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -4087 ((-3 (-388 (-1070 (-47))) "failed") |#3|)) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-3113 (((-1057) $ (-1057)) NIL)) (-1665 (($ $ (-1057)) NIL)) (-3741 (((-1057) $) NIL)) (-3627 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-1511 (($ (-358)) NIL) (($ (-358) (-1057)) NIL)) (-1211 (((-358) $) NIL)) (-3865 (((-1057) $) NIL)) (-1974 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1385 (((-1159) (-1057)) 9)) (-3524 (((-1159) (-1057)) 10)) (-3211 (((-1159)) 11)) (-2182 (((-787) $) NIL)) (-1505 (($ $) 34)) (-1539 (((-107) $ $) NIL)))
+(((-406) (-13 (-334 (-358) (-1057)) (-10 -7 (-15 -3627 ((-358) (-358) (-358))) (-15 -3627 ((-358) (-358))) (-15 -1385 ((-1159) (-1057))) (-15 -3524 ((-1159) (-1057))) (-15 -3211 ((-1159)))))) (T -406))
+((-3627 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-406)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-406)))) (-3211 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-406)))))
+(-13 (-334 (-358) (-1057)) (-10 -7 (-15 -3627 ((-358) (-358) (-358))) (-15 -3627 ((-358) (-358))) (-15 -1385 ((-1159) (-1057))) (-15 -3524 ((-1159) (-1057))) (-15 -3211 ((-1159)))))
+((-2571 (((-107) $ $) NIL)) (-1507 (((-3 (|:| |fst| (-404)) (|:| -2503 "void")) $) 10)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1827 (($) 31)) (-1737 (($) 37)) (-1967 (($) 33)) (-2857 (($) 35)) (-4118 (($) 32)) (-4074 (($) 34)) (-3221 (($) 36)) (-2879 (((-107) $) 8)) (-2287 (((-583 (-874 (-517))) $) 16)) (-2197 (($ (-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-583 (-1074)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-583 (-874 (-517))) (-107)) 26)) (-2182 (((-787) $) 21) (($ (-404)) 28)) (-1539 (((-107) $ $) NIL)))
+(((-407) (-13 (-1003) (-10 -8 (-15 -2182 ((-787) $)) (-15 -2182 ($ (-404))) (-15 -1507 ((-3 (|:| |fst| (-404)) (|:| -2503 "void")) $)) (-15 -2287 ((-583 (-874 (-517))) $)) (-15 -2879 ((-107) $)) (-15 -2197 ($ (-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-583 (-1074)) (-107))) (-15 -2197 ($ (-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-583 (-874 (-517))) (-107))) (-15 -1827 ($)) (-15 -4118 ($)) (-15 -1967 ($)) (-15 -1737 ($)) (-15 -4074 ($)) (-15 -2857 ($)) (-15 -3221 ($))))) (T -407))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *1 (-407)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2197 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *3 (-583 (-1074))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2197 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-1827 (*1 *1) (-5 *1 (-407))) (-4118 (*1 *1) (-5 *1 (-407))) (-1967 (*1 *1) (-5 *1 (-407))) (-1737 (*1 *1) (-5 *1 (-407))) (-4074 (*1 *1) (-5 *1 (-407))) (-2857 (*1 *1) (-5 *1 (-407))) (-3221 (*1 *1) (-5 *1 (-407))))
+(-13 (-1003) (-10 -8 (-15 -2182 ((-787) $)) (-15 -2182 ($ (-404))) (-15 -1507 ((-3 (|:| |fst| (-404)) (|:| -2503 "void")) $)) (-15 -2287 ((-583 (-874 (-517))) $)) (-15 -2879 ((-107) $)) (-15 -2197 ($ (-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-583 (-1074)) (-107))) (-15 -2197 ($ (-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-583 (-874 (-517))) (-107))) (-15 -1827 ($)) (-15 -4118 ($)) (-15 -1967 ($)) (-15 -1737 ($)) (-15 -4074 ($)) (-15 -2857 ($)) (-15 -3221 ($))))
+((-2571 (((-107) $ $) NIL)) (-1211 (((-1074) $) 8)) (-3865 (((-1057) $) 16)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 13)))
+(((-408 |#1|) (-13 (-1003) (-10 -8 (-15 -1211 ((-1074) $)))) (-1074)) (T -408))
+((-1211 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-408 *3)) (-14 *3 *2))))
+(-13 (-1003) (-10 -8 (-15 -1211 ((-1074) $))))
+((-3215 (((-1159) $) 7)) (-2182 (((-787) $) 8) (($ (-1154 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 11)))
+(((-409) (-1185)) (T -409))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-632))) (-4 *1 (-409)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-409)))))
+(-13 (-365) (-10 -8 (-15 -2182 ($ (-1154 (-632)))) (-15 -2182 ($ (-583 (-300)))) (-15 -2182 ($ (-300))) (-15 -2182 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
+((-1759 (((-3 $ "failed") (-1154 (-286 (-349)))) 21) (((-3 $ "failed") (-1154 (-286 (-517)))) 19) (((-3 $ "failed") (-1154 (-874 (-349)))) 17) (((-3 $ "failed") (-1154 (-874 (-517)))) 15) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 11)) (-3076 (($ (-1154 (-286 (-349)))) 22) (($ (-1154 (-286 (-517)))) 20) (($ (-1154 (-874 (-349)))) 18) (($ (-1154 (-874 (-517)))) 16) (($ (-1154 (-377 (-874 (-349))))) 14) (($ (-1154 (-377 (-874 (-517))))) 12)) (-3215 (((-1159) $) 7)) (-2182 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) 23)))
+(((-410) (-1185)) (T -410))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-410)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1154 (-286 (-349)))) (-4 *1 (-410)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-286 (-349)))) (-4 *1 (-410)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1154 (-286 (-517)))) (-4 *1 (-410)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-286 (-517)))) (-4 *1 (-410)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1154 (-874 (-349)))) (-4 *1 (-410)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-874 (-349)))) (-4 *1 (-410)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1154 (-874 (-517)))) (-4 *1 (-410)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-874 (-517)))) (-4 *1 (-410)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 (-517))))) (-4 *1 (-410)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-377 (-874 (-517))))) (-4 *1 (-410)))))
+(-13 (-365) (-10 -8 (-15 -2182 ($ (-583 (-300)))) (-15 -2182 ($ (-300))) (-15 -2182 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300)))))) (-15 -3076 ($ (-1154 (-286 (-349))))) (-15 -1759 ((-3 $ "failed") (-1154 (-286 (-349))))) (-15 -3076 ($ (-1154 (-286 (-517))))) (-15 -1759 ((-3 $ "failed") (-1154 (-286 (-517))))) (-15 -3076 ($ (-1154 (-874 (-349))))) (-15 -1759 ((-3 $ "failed") (-1154 (-874 (-349))))) (-15 -3076 ($ (-1154 (-874 (-517))))) (-15 -1759 ((-3 $ "failed") (-1154 (-874 (-517))))) (-15 -3076 ($ (-1154 (-377 (-874 (-349)))))) (-15 -1759 ((-3 $ "failed") (-1154 (-377 (-874 (-349)))))) (-15 -3076 ($ (-1154 (-377 (-874 (-517)))))) (-15 -1759 ((-3 $ "failed") (-1154 (-377 (-874 (-517))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
+((-2842 (((-107)) 17)) (-3281 (((-107) (-107)) 18)) (-3027 (((-107)) 13)) (-3452 (((-107) (-107)) 14)) (-2798 (((-107)) 15)) (-3999 (((-107) (-107)) 16)) (-2916 (((-843) (-843)) 21) (((-843)) 20)) (-3028 (((-703) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517))))) 41)) (-1335 (((-843) (-843)) 23) (((-843)) 22)) (-3857 (((-2 (|:| -1898 (-517)) (|:| -2232 (-583 |#1|))) |#1|) 61)) (-2058 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517))))))) 125)) (-1677 (((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107)) 151)) (-3397 (((-388 |#1|) |#1| (-703) (-703)) 164) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 161) (((-388 |#1|) |#1| (-583 (-703))) 163) (((-388 |#1|) |#1| (-703)) 162) (((-388 |#1|) |#1|) 160)) (-2369 (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107)) 166) (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703)) 167) (((-3 |#1| "failed") (-843) |#1| (-583 (-703))) 169) (((-3 |#1| "failed") (-843) |#1| (-703)) 168) (((-3 |#1| "failed") (-843) |#1|) 170)) (-3693 (((-388 |#1|) |#1| (-703) (-703)) 159) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 155) (((-388 |#1|) |#1| (-583 (-703))) 157) (((-388 |#1|) |#1| (-703)) 156) (((-388 |#1|) |#1|) 154)) (-2539 (((-107) |#1|) 36)) (-3819 (((-670 (-703)) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517))))) 66)) (-2156 (((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)) 153)))
+(((-411 |#1|) (-10 -7 (-15 -2058 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))))) (-15 -3819 ((-670 (-703)) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))))) (-15 -1335 ((-843))) (-15 -1335 ((-843) (-843))) (-15 -2916 ((-843))) (-15 -2916 ((-843) (-843))) (-15 -3028 ((-703) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))))) (-15 -3857 ((-2 (|:| -1898 (-517)) (|:| -2232 (-583 |#1|))) |#1|)) (-15 -2842 ((-107))) (-15 -3281 ((-107) (-107))) (-15 -3027 ((-107))) (-15 -3452 ((-107) (-107))) (-15 -2539 ((-107) |#1|)) (-15 -2798 ((-107))) (-15 -3999 ((-107) (-107))) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3693 ((-388 |#1|) |#1| (-703))) (-15 -3693 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3693 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3693 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3397 ((-388 |#1|) |#1|)) (-15 -3397 ((-388 |#1|) |#1| (-703))) (-15 -3397 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3397 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3397 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2369 ((-3 |#1| "failed") (-843) |#1|)) (-15 -2369 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -2369 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -2369 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -2369 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -1677 ((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107))) (-15 -2156 ((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)))) (-1131 (-517))) (T -411))
+((-2156 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| *3) (|:| -1671 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1677 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| *3) (|:| -1671 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2369 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-2369 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-2369 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-2369 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-2369 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-3397 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3397 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3397 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3397 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3397 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3693 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2798 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2539 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3027 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2842 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3857 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1898 (-517)) (|:| -2232 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3693 *4) (|:| -4007 (-517))))) (-4 *4 (-1131 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2916 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1335 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1335 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3693 *4) (|:| -4007 (-517))))) (-4 *4 (-1131 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| *4) (|:| -1671 (-517))))))) (-4 *4 (-1131 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+(-10 -7 (-15 -2058 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))))) (-15 -3819 ((-670 (-703)) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))))) (-15 -1335 ((-843))) (-15 -1335 ((-843) (-843))) (-15 -2916 ((-843))) (-15 -2916 ((-843) (-843))) (-15 -3028 ((-703) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))))) (-15 -3857 ((-2 (|:| -1898 (-517)) (|:| -2232 (-583 |#1|))) |#1|)) (-15 -2842 ((-107))) (-15 -3281 ((-107) (-107))) (-15 -3027 ((-107))) (-15 -3452 ((-107) (-107))) (-15 -2539 ((-107) |#1|)) (-15 -2798 ((-107))) (-15 -3999 ((-107) (-107))) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3693 ((-388 |#1|) |#1| (-703))) (-15 -3693 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3693 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3693 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3397 ((-388 |#1|) |#1|)) (-15 -3397 ((-388 |#1|) |#1| (-703))) (-15 -3397 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3397 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3397 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2369 ((-3 |#1| "failed") (-843) |#1|)) (-15 -2369 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -2369 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -2369 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -2369 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -1677 ((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107))) (-15 -2156 ((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107) (-1005 (-703)) (-703))))
+((-2040 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-3980 (((-517) |#2|) 55)) (-4044 ((|#3| |#2|) 25)) (-2289 ((|#3| |#2| (-843)) 14)) (-2542 ((|#3| |#2|) 15)) (-3362 ((|#3| |#2|) 9)) (-1846 ((|#3| |#2|) 10)) (-2468 ((|#3| |#2| (-843)) 62) ((|#3| |#2|) 30)) (-2272 (((-517) |#2|) 57)))
+(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -2272 ((-517) |#2|)) (-15 -2468 (|#3| |#2|)) (-15 -2468 (|#3| |#2| (-843))) (-15 -3980 ((-517) |#2|)) (-15 -2040 ((-517) |#2| (-703))) (-15 -2040 ((-517) |#2|)) (-15 -2289 (|#3| |#2| (-843))) (-15 -4044 (|#3| |#2|)) (-15 -3362 (|#3| |#2|)) (-15 -1846 (|#3| |#2|)) (-15 -2542 (|#3| |#2|))) (-961) (-1131 |#1|) (-13 (-374) (-952 |#1|) (-333) (-1095) (-256))) (T -412))
+((-2542 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-3362 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-4044 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-2289 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1095) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1131 *5)))) (-2040 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))) (-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1131 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1095) (-256))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))) (-2468 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1095) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1131 *5)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-2272 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))))
+(-10 -7 (-15 -2272 ((-517) |#2|)) (-15 -2468 (|#3| |#2|)) (-15 -2468 (|#3| |#2| (-843))) (-15 -3980 ((-517) |#2|)) (-15 -2040 ((-517) |#2| (-703))) (-15 -2040 ((-517) |#2|)) (-15 -2289 (|#3| |#2| (-843))) (-15 -4044 (|#3| |#2|)) (-15 -3362 (|#3| |#2|)) (-15 -1846 (|#3| |#2|)) (-15 -2542 (|#3| |#2|)))
+((-1518 ((|#2| (-1154 |#1|)) 36)) (-1889 ((|#2| |#2| |#1|) 49)) (-2409 ((|#2| |#2| |#1|) 41)) (-2979 ((|#2| |#2|) 38)) (-2909 (((-107) |#2|) 30)) (-2430 (((-583 |#2|) (-843) (-388 |#2|)) 16)) (-2369 ((|#2| (-843) (-388 |#2|)) 21)) (-3819 (((-670 (-703)) (-388 |#2|)) 25)))
+(((-413 |#1| |#2|) (-10 -7 (-15 -2909 ((-107) |#2|)) (-15 -1518 (|#2| (-1154 |#1|))) (-15 -2979 (|#2| |#2|)) (-15 -2409 (|#2| |#2| |#1|)) (-15 -1889 (|#2| |#2| |#1|)) (-15 -3819 ((-670 (-703)) (-388 |#2|))) (-15 -2369 (|#2| (-843) (-388 |#2|))) (-15 -2430 ((-583 |#2|) (-843) (-388 |#2|)))) (-961) (-1131 |#1|)) (T -413))
+((-2430 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-1889 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))) (-2409 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))) (-2979 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-961)) (-4 *2 (-1131 *4)) (-5 *1 (-413 *4 *2)))) (-2909 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -2909 ((-107) |#2|)) (-15 -1518 (|#2| (-1154 |#1|))) (-15 -2979 (|#2| |#2|)) (-15 -2409 (|#2| |#2| |#1|)) (-15 -1889 (|#2| |#2| |#1|)) (-15 -3819 ((-670 (-703)) (-388 |#2|))) (-15 -2369 (|#2| (-843) (-388 |#2|))) (-15 -2430 ((-583 |#2|) (-843) (-388 |#2|))))
+((-2545 (((-703)) 41)) (-2206 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-3125 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-3785 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-2450 (((-703)) 40) (((-703) (-703)) 39)) (-3981 ((|#1| (-703) (-517)) 29)) (-1917 (((-1159)) 43)))
+(((-414 |#1|) (-10 -7 (-15 -3981 (|#1| (-703) (-517))) (-15 -2450 ((-703) (-703))) (-15 -2450 ((-703))) (-15 -2545 ((-703))) (-15 -1917 ((-1159))) (IF (|has| |#1| (-374)) (PROGN (-15 -3785 ((-517) |#1|)) (-15 -3125 ((-517) |#1|)) (-15 -2206 ((-703) (-703))) (-15 -2206 ((-703)))) |noBranch|)) (-961)) (T -414))
+((-2206 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-2206 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-3125 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-3785 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-1917 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2545 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2450 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961)))))
+(-10 -7 (-15 -3981 (|#1| (-703) (-517))) (-15 -2450 ((-703) (-703))) (-15 -2450 ((-703))) (-15 -2545 ((-703))) (-15 -1917 ((-1159))) (IF (|has| |#1| (-374)) (PROGN (-15 -3785 ((-517) |#1|)) (-15 -3125 ((-517) |#1|)) (-15 -2206 ((-703) (-703))) (-15 -2206 ((-703)))) |noBranch|))
+((-3502 (((-583 (-517)) (-517)) 57)) (-2965 (((-107) (-153 (-517))) 61)) (-3693 (((-388 (-153 (-517))) (-153 (-517))) 56)))
+(((-415) (-10 -7 (-15 -3693 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -3502 ((-583 (-517)) (-517))) (-15 -2965 ((-107) (-153 (-517)))))) (T -415))
+((-2965 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-3502 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))))
+(-10 -7 (-15 -3693 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -3502 ((-583 (-517)) (-517))) (-15 -2965 ((-107) (-153 (-517)))))
+((-2419 ((|#4| |#4| (-583 |#4|)) 57)) (-1682 (((-583 |#4|) (-583 |#4|) (-1057) (-1057)) 17) (((-583 |#4|) (-583 |#4|) (-1057)) 16) (((-583 |#4|) (-583 |#4|)) 11)))
+(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2419 (|#4| |#4| (-583 |#4|))) (-15 -1682 ((-583 |#4|) (-583 |#4|))) (-15 -1682 ((-583 |#4|) (-583 |#4|) (-1057))) (-15 -1682 ((-583 |#4|) (-583 |#4|) (-1057) (-1057)))) (-278) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -416))
+((-1682 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-1682 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2419 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2419 (|#4| |#4| (-583 |#4|))) (-15 -1682 ((-583 |#4|) (-583 |#4|))) (-15 -1682 ((-583 |#4|) (-583 |#4|) (-1057))) (-15 -1682 ((-583 |#4|) (-583 |#4|) (-1057) (-1057))))
+((-2142 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 70) (((-583 (-583 |#4|)) (-583 |#4|)) 69) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 63) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 64)) (-2449 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 40) (((-583 (-583 |#4|)) (-583 |#4|)) 60)))
+(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2449 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2142 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2142 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2142 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2142 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -417))
+((-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2142 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2142 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2142 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2449 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(-10 -7 (-15 -2449 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2449 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2142 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2142 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2142 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2142 ((-583 (-583 |#4|)) (-583 |#4|) (-107))))
+((-2211 (((-703) |#4|) 12)) (-1961 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|)))) 31)) (-2214 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3336 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-2390 ((|#4| |#4| (-583 |#4|)) 39)) (-2917 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 68)) (-3380 (((-1159) |#4|) 41)) (-1829 (((-1159) (-583 |#4|)) 50)) (-2316 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 47)) (-3602 (((-1159) (-517)) 75)) (-2281 (((-583 |#4|) (-583 |#4|)) 73)) (-2720 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|)) |#4| (-703)) 25)) (-2937 (((-517) |#4|) 74)) (-3722 ((|#4| |#4|) 29)) (-4100 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 54)) (-3982 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 85)) (-3161 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2201 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-3212 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-3085 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-1451 (((-107) |#2| |#2|) 55)) (-3111 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1999 (((-107) |#2| |#2| |#2| |#2|) 58)) (-3766 ((|#4| |#4| (-583 |#4|)) 69)))
+(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3766 (|#4| |#4| (-583 |#4|))) (-15 -2390 (|#4| |#4| (-583 |#4|))) (-15 -4100 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -2201 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1451 ((-107) |#2| |#2|)) (-15 -1999 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3111 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3085 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3212 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2917 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3722 (|#4| |#4|)) (-15 -1961 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|))))) (-15 -3336 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2214 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2281 ((-583 |#4|) (-583 |#4|))) (-15 -2937 ((-517) |#4|)) (-15 -3380 ((-1159) |#4|)) (-15 -2316 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -3982 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -1829 ((-1159) (-583 |#4|))) (-15 -3602 ((-1159) (-517))) (-15 -3161 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2720 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|)) |#4| (-703))) (-15 -2211 ((-703) |#4|))) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -418))
+((-2211 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-2720 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -4026 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-3161 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3982 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2316 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-3380 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-2937 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2214 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-1961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -4026 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-3085 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3111 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-1999 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-1451 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-4100 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2390 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3766 (|#4| |#4| (-583 |#4|))) (-15 -2390 (|#4| |#4| (-583 |#4|))) (-15 -4100 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -2201 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1451 ((-107) |#2| |#2|)) (-15 -1999 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3111 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3085 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3212 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2917 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3722 (|#4| |#4|)) (-15 -1961 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|))))) (-15 -3336 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2214 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2281 ((-583 |#4|) (-583 |#4|))) (-15 -2937 ((-517) |#4|)) (-15 -3380 ((-1159) |#4|)) (-15 -2316 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -3982 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -1829 ((-1159) (-583 |#4|))) (-15 -3602 ((-1159) (-517))) (-15 -3161 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2720 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -4026 |#4|)) |#4| (-703))) (-15 -2211 ((-703) |#4|)))
+((-3568 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-2089 (((-583 |#4|) (-583 |#4|) (-1057) (-1057)) 41) (((-583 |#4|) (-583 |#4|) (-1057)) 40) (((-583 |#4|) (-583 |#4|)) 35)))
+(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2089 ((-583 |#4|) (-583 |#4|))) (-15 -2089 ((-583 |#4|) (-583 |#4|) (-1057))) (-15 -2089 ((-583 |#4|) (-583 |#4|) (-1057) (-1057))) (IF (|has| |#1| (-333)) (-15 -3568 (|#4| |#4| (-583 |#4|))) |noBranch|)) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -419))
+((-3568 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-2089 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-2089 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2089 ((-583 |#4|) (-583 |#4|))) (-15 -2089 ((-583 |#4|) (-583 |#4|) (-1057))) (-15 -2089 ((-583 |#4|) (-583 |#4|) (-1057) (-1057))) (IF (|has| |#1| (-333)) (-15 -3568 (|#4| |#4| (-583 |#4|))) |noBranch|))
+((-1368 (($ $ $) 14) (($ (-583 $)) 21)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 41)) (-1396 (($ $ $) NIL) (($ (-583 $)) 22)))
+(((-420 |#1|) (-10 -8 (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -1368 (|#1| (-583 |#1|))) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1396 (|#1| (-583 |#1|))) (-15 -1396 (|#1| |#1| |#1|))) (-421)) (T -420))
+NIL
+(-10 -8 (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -1368 (|#1| (-583 |#1|))) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1396 (|#1| (-583 |#1|))) (-15 -1396 (|#1| |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-2349 (((-3 $ "failed") $ $) 42)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-421) (-1185)) (T -421))
+((-1396 (*1 *1 *1 *1) (-4 *1 (-421))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1368 (*1 *1 *1 *1) (-4 *1 (-421))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-4129 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-421)))))
+(-13 (-509) (-10 -8 (-15 -1396 ($ $ $)) (-15 -1396 ($ (-583 $))) (-15 -1368 ($ $ $)) (-15 -1368 ($ (-583 $))) (-15 -4129 ((-1070 $) (-1070 $) (-1070 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 (-377 (-874 |#1|)))) (-1153 $)) NIL) (((-1153 (-623 (-377 (-874 |#1|))))) NIL)) (-3456 (((-1153 $)) NIL)) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL)) (-1450 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2619 (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-2299 (((-377 (-874 |#1|)) $) NIL)) (-3343 (((-623 (-377 (-874 |#1|))) $ (-1153 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2436 (((-1069 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1069 (-377 (-874 |#1|)))) 81 (|has| |#1| (-509)))) (-3380 (($ $ (-843)) NIL)) (-3866 (((-377 (-874 |#1|)) $) NIL)) (-2417 (((-1069 (-377 (-874 |#1|))) $) 79 (|has| (-377 (-874 |#1|)) (-509)))) (-4069 (((-377 (-874 |#1|)) (-1153 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-2085 (((-1069 (-377 (-874 |#1|))) $) NIL)) (-2362 (((-107)) NIL)) (-1967 (($ (-1153 (-377 (-874 |#1|))) (-1153 $)) 101) (($ (-1153 (-377 (-874 |#1|)))) NIL)) (-3621 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2261 (((-843)) NIL)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) NIL)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL)) (-1793 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2010 (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-1188 (((-377 (-874 |#1|)) $) NIL)) (-3914 (((-623 (-377 (-874 |#1|))) $ (-1153 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2300 (((-1069 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1069 (-377 (-874 |#1|)))) 80 (|has| |#1| (-509)))) (-2572 (($ $ (-843)) NIL)) (-3913 (((-377 (-874 |#1|)) $) NIL)) (-4121 (((-1069 (-377 (-874 |#1|))) $) 74 (|has| (-377 (-874 |#1|)) (-509)))) (-1988 (((-377 (-874 |#1|)) (-1153 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-2190 (((-1069 (-377 (-874 |#1|))) $) NIL)) (-3606 (((-107)) NIL)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL)) (-1286 (((-107)) NIL)) (-1848 (((-107)) NIL)) (-3206 (((-1021) $) NIL)) (-3281 (((-377 (-874 |#1|)) $ $) 68 (|has| |#1| (-509)))) (-3834 (((-377 (-874 |#1|)) $) 91 (|has| |#1| (-509)))) (-3776 (((-377 (-874 |#1|)) $) 93 (|has| |#1| (-509)))) (-2311 (((-1069 (-377 (-874 |#1|))) $) 85 (|has| |#1| (-509)))) (-1922 (((-377 (-874 |#1|))) 69 (|has| |#1| (-509)))) (-2076 (((-377 (-874 |#1|)) $ $) 60 (|has| |#1| (-509)))) (-4051 (((-377 (-874 |#1|)) $) 90 (|has| |#1| (-509)))) (-3668 (((-377 (-874 |#1|)) $) 92 (|has| |#1| (-509)))) (-1293 (((-1069 (-377 (-874 |#1|))) $) 84 (|has| |#1| (-509)))) (-4046 (((-377 (-874 |#1|))) 65 (|has| |#1| (-509)))) (-3154 (($) 99) (($ (-1073)) 105) (($ (-1153 (-1073))) 104) (($ (-1153 $)) 94) (($ (-1073) (-1153 $)) 103) (($ (-1153 (-1073)) (-1153 $)) 102)) (-1697 (((-107)) NIL)) (-1449 (((-377 (-874 |#1|)) $ (-517)) NIL)) (-4114 (((-1153 (-377 (-874 |#1|))) $ (-1153 $)) 96) (((-623 (-377 (-874 |#1|))) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 (-874 |#1|))) $) 37) (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL)) (-3645 (((-1153 (-377 (-874 |#1|))) $) NIL) (($ (-1153 (-377 (-874 |#1|)))) 34)) (-2278 (((-583 (-874 (-377 (-874 |#1|)))) (-1153 $)) NIL) (((-583 (-874 (-377 (-874 |#1|))))) NIL) (((-583 (-874 |#1|)) (-1153 $)) 97 (|has| |#1| (-509))) (((-583 (-874 |#1|))) 98 (|has| |#1| (-509)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL)) (-2256 (((-787) $) NIL) (($ (-1153 (-377 (-874 |#1|)))) NIL)) (-1753 (((-1153 $)) 56)) (-1582 (((-583 (-1153 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL)) (-1587 (($ (-623 (-377 (-874 |#1|))) $) NIL)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL)) (-2524 (((-107)) NIL)) (-3642 (((-107)) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) 95)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-874 |#1|))) NIL) (($ (-377 (-874 |#1|)) $) NIL) (($ (-1040 |#2| (-377 (-874 |#1|))) $) NIL)))
-(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-874 |#1|))) (-585 (-1040 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2256 ($ (-1153 (-377 (-874 |#1|))))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -3154 ($)) (-15 -3154 ($ (-1073))) (-15 -3154 ($ (-1153 (-1073)))) (-15 -3154 ($ (-1153 $))) (-15 -3154 ($ (-1073) (-1153 $))) (-15 -3154 ($ (-1153 (-1073)) (-1153 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -2300 ((-1069 (-377 (-874 |#1|))))) (-15 -1293 ((-1069 (-377 (-874 |#1|))) $)) (-15 -4051 ((-377 (-874 |#1|)) $)) (-15 -3668 ((-377 (-874 |#1|)) $)) (-15 -2436 ((-1069 (-377 (-874 |#1|))))) (-15 -2311 ((-1069 (-377 (-874 |#1|))) $)) (-15 -3834 ((-377 (-874 |#1|)) $)) (-15 -3776 ((-377 (-874 |#1|)) $)) (-15 -2076 ((-377 (-874 |#1|)) $ $)) (-15 -4046 ((-377 (-874 |#1|)))) (-15 -3281 ((-377 (-874 |#1|)) $ $)) (-15 -1922 ((-377 (-874 |#1|)))) (-15 -2278 ((-583 (-874 |#1|)) (-1153 $))) (-15 -2278 ((-583 (-874 |#1|))))) |noBranch|))) (-156) (-843) (-583 (-1073)) (-1153 (-623 |#1|))) (T -422))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) (-3550 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2257 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1073))) (-14 *5 (-1153 (-623 *2))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1153 (-1073))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1153 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1153 (-623 *4))))) (-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-1073))) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) (-2300 (*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2436 (*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2076 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-4046 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-1922 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) (-2278 (*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(-13 (-387 (-377 (-874 |#1|))) (-585 (-1040 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2256 ($ (-1153 (-377 (-874 |#1|))))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -3154 ($)) (-15 -3154 ($ (-1073))) (-15 -3154 ($ (-1153 (-1073)))) (-15 -3154 ($ (-1153 $))) (-15 -3154 ($ (-1073) (-1153 $))) (-15 -3154 ($ (-1153 (-1073)) (-1153 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -2300 ((-1069 (-377 (-874 |#1|))))) (-15 -1293 ((-1069 (-377 (-874 |#1|))) $)) (-15 -4051 ((-377 (-874 |#1|)) $)) (-15 -3668 ((-377 (-874 |#1|)) $)) (-15 -2436 ((-1069 (-377 (-874 |#1|))))) (-15 -2311 ((-1069 (-377 (-874 |#1|))) $)) (-15 -3834 ((-377 (-874 |#1|)) $)) (-15 -3776 ((-377 (-874 |#1|)) $)) (-15 -2076 ((-377 (-874 |#1|)) $ $)) (-15 -4046 ((-377 (-874 |#1|)))) (-15 -3281 ((-377 (-874 |#1|)) $ $)) (-15 -1922 ((-377 (-874 |#1|)))) (-15 -2278 ((-583 (-874 |#1|)) (-1153 $))) (-15 -2278 ((-583 (-874 |#1|))))) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 13)) (-1364 (((-583 (-789 |#1|)) $) 73)) (-2352 (((-1069 $) $ (-789 |#1|)) 46) (((-1069 |#2|) $) 115)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) 78)) (-1212 (($ $) 67)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| |#3| $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 58)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) 120) (($ (-1069 $) (-789 |#1|)) 52)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) 59)) (-1339 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 |#3| |#3|) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) 39)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) 41)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 40)) (-4141 ((|#2| $) 113)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 125 (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 85) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 88) (($ $ (-789 |#1|) $) 83) (($ $ (-583 (-789 |#1|)) (-583 $)) 104)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 ((|#3| $) 66) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) 122 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) 141) (($ (-517)) NIL) (($ |#2|) 84) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 16 T CONST)) (-2409 (($) 25 T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 109)) (** (($ $ (-843)) NIL) (($ $ (-703)) 107)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-423 |#1| |#2| |#3|) (-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961) (-212 (-2296 |#1|) (-703))) (T -423))
-((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1073))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2296 *3) (-703))))))
-(-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517))))))
-((-1341 (((-107) |#1| (-583 |#2|)) 65)) (-1877 (((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 74)) (-3477 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|))) 76)) (-3271 ((|#2| |#2| |#1|) 28)) (-2242 (((-703) |#2| (-583 |#2|)) 20)))
-(((-424 |#1| |#2|) (-10 -7 (-15 -3271 (|#2| |#2| |#1|)) (-15 -2242 ((-703) |#2| (-583 |#2|))) (-15 -1877 ((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -3477 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|)))) (-15 -1341 ((-107) |#1| (-583 |#2|)))) (-278) (-1130 |#1|)) (T -424))
-((-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1130 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-3477 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1153 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1130 *4)))) (-1877 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1130 *4)) (-5 *2 (-1153 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1130 *3)))))
-(-10 -7 (-15 -3271 (|#2| |#2| |#1|)) (-15 -2242 ((-703) |#2| (-583 |#2|))) (-15 -1877 ((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -3477 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|)))) (-15 -1341 ((-107) |#1| (-583 |#2|))))
-((-3755 (((-388 |#5|) |#5|) 24)))
-(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3755 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-725) (-509) (-509) (-871 |#4| |#2| |#1|)) (T -425))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))))
-(-10 -7 (-15 -3755 ((-388 |#5|) |#5|)))
-((-2916 ((|#3|) 36)) (-1862 (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 32)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1862 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2916 (|#3|))) (-725) (-779) (-831) (-871 |#3| |#1| |#2|)) (T -426))
-((-2916 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1862 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2916 (|#3|)))
-((-3755 (((-388 (-1069 |#1|)) (-1069 |#1|)) 41)))
-(((-427 |#1|) (-10 -7 (-15 -3755 ((-388 (-1069 |#1|)) (-1069 |#1|)))) (-278)) (T -427))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1069 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1069 *4)))))
-(-10 -7 (-15 -3755 ((-388 (-1069 |#1|)) (-1069 |#1|))))
-((-1590 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703))) 41) (((-51) |#2| (-1073) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-2925 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517))) 77) (((-51) |#2| (-1073) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-1613 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 64)) (-1601 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517))) 47)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703)))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703)))) (-15 -1601 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -1601 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -1613 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -1613 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -428))
-((-2925 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-2925 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-2925 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-1613 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-1613 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-1601 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1590 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-703))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-703))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))))
-(-10 -7 (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703)))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703)))) (-15 -1601 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -1601 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -1613 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -1613 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))))
-((-3271 ((|#2| |#2| |#1|) 15)) (-3965 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-843)) 65)) (-3685 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843)) 58)))
-(((-429 |#1| |#2|) (-10 -7 (-15 -3685 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -3965 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -3271 (|#2| |#2| |#1|))) (-278) (-1130 |#1|)) (T -429))
-((-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1130 *3)))) (-3965 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1130 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-3685 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1130 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
-(-10 -7 (-15 -3685 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -3965 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -3271 (|#2| |#2| |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 28)) (-2847 (($ |#3|) 25)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) 32)) (-3589 (($ |#2| |#4| $) 33)) (-1339 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-4152 (((-646 |#3| |#4| |#5|) $) 15)) (-2684 ((|#3| $) 19)) (-2472 ((|#4| $) 17)) (-1191 ((|#2| $) 29)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1637 (($ |#2| |#3| |#4|) 26)) (-2396 (($) 36 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 34)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1191 (|#2| $)) (-15 -4152 ((-646 |#3| |#4| |#5|) $)) (-15 -2472 (|#4| $)) (-15 -2684 (|#3| $)) (-15 -1212 ($ $)) (-15 -1339 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -2847 ($ |#3|)) (-15 -1637 ($ |#2| |#3| |#4|)) (-15 -3589 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1073)) (-156) (-779) (-212 (-2296 |#1|) (-703)) (-1 (-107) (-2 (|:| -3448 |#3|) (|:| -2077 |#4|)) (-2 (|:| -3448 |#3|) (|:| -2077 |#4|))) (-871 |#2| |#4| (-789 |#1|))) (T -430))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) (-1191 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) (-4152 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) (-2472 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *2)) (-2 (|:| -3448 *5) (|:| -2077 *2)))) (-4 *2 (-212 (-2296 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))) (-2684 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1212 (*1 *1 *1) (-12 (-14 *2 (-583 (-1073))) (-4 *3 (-156)) (-4 *5 (-212 (-2296 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2296 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) (-2847 (*1 *1 *2) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1637 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1073))) (-4 *2 (-156)) (-4 *4 (-212 (-2296 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *4)) (-2 (|:| -3448 *3) (|:| -2077 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))) (-3589 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-4 *3 (-212 (-2296 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *3)) (-2 (|:| -3448 *5) (|:| -2077 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4))))))
-(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1191 (|#2| $)) (-15 -4152 ((-646 |#3| |#4| |#5|) $)) (-15 -2472 (|#4| $)) (-15 -2684 (|#3| $)) (-15 -1212 ($ $)) (-15 -1339 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -2847 ($ |#3|)) (-15 -1637 ($ |#2| |#3| |#4|)) (-15 -3589 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-3899 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
-(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3899 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ |#4|)) (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $))))) (T -431))
-((-3899 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
-(-10 -7 (-15 -3899 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2750 (((-107) $ $) NIL)) (-1364 (((-583 |#3|) $) 41)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 47)) (-3189 (($ (-583 |#4|)) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#4|) $) 18 (|has| $ (-6 -4180)))) (-1976 ((|#3| $) 45)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 14 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 39)) (-1746 (($) 17)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 16)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2276 (($ (-583 |#4|)) 13)) (-2442 (($ $ |#3|) NIL)) (-3759 (($ $ |#3|) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 38) (((-583 |#4|) $) 48)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 30)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-432 |#1| |#2| |#3| |#4|) (-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3645 ($ (-583 |#4|))) (-6 -4180) (-6 -4181))) (-961) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -432))
-((-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))))
-(-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3645 ($ (-583 |#4|))) (-6 -4180) (-6 -4181)))
-((-2396 (($) 11)) (-2409 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -2409 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2396 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433))
-NIL
-(-10 -8 (-15 -2409 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2396 (|#1|)))
-((-2750 (((-107) $ $) 7)) (-1772 (((-3 |#1| "failed") $) 26)) (-3189 ((|#1| $) 25)) (-3485 (($ $ $) 23)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 ((|#2| $) 19)) (-2256 (((-787) $) 11) (($ |#1|) 27)) (-2396 (($) 18 T CONST)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 15) (($ $ $) 13)) (-1642 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-434 |#1| |#2|) (-1184) (-156) (-23)) (T -434))
-((-2409 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3485 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
-(-13 (-439 |t#1| |t#2|) (-952 |t#1|) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3485 ($ $ $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1697 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3029 (((-1154 (-623 (-377 (-874 |#1|)))) (-1154 $)) NIL) (((-1154 (-623 (-377 (-874 |#1|))))) NIL)) (-3624 (((-1154 $)) NIL)) (-3473 (($) NIL T CONST)) (-3072 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL)) (-3672 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-3495 (((-623 (-377 (-874 |#1|))) (-1154 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-3488 (((-377 (-874 |#1|)) $) NIL)) (-3922 (((-623 (-377 (-874 |#1|))) $ (-1154 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2344 (((-1070 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1070 (-377 (-874 |#1|)))) 81 (|has| |#1| (-509)))) (-1246 (($ $ (-843)) NIL)) (-2030 (((-377 (-874 |#1|)) $) NIL)) (-2193 (((-1070 (-377 (-874 |#1|))) $) 79 (|has| (-377 (-874 |#1|)) (-509)))) (-3440 (((-377 (-874 |#1|)) (-1154 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-2134 (((-1070 (-377 (-874 |#1|))) $) NIL)) (-2815 (((-107)) NIL)) (-3291 (($ (-1154 (-377 (-874 |#1|))) (-1154 $)) 101) (($ (-1154 (-377 (-874 |#1|)))) NIL)) (-1568 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-3795 (((-843)) NIL)) (-1837 (((-107)) NIL)) (-3092 (($ $ (-843)) NIL)) (-3419 (((-107)) NIL)) (-3841 (((-107)) NIL)) (-3229 (((-107)) NIL)) (-2054 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL)) (-3004 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2507 (((-623 (-377 (-874 |#1|))) (-1154 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-3823 (((-377 (-874 |#1|)) $) NIL)) (-2386 (((-623 (-377 (-874 |#1|))) $ (-1154 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-3526 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-3503 (((-1070 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1070 (-377 (-874 |#1|)))) 80 (|has| |#1| (-509)))) (-1313 (($ $ (-843)) NIL)) (-2377 (((-377 (-874 |#1|)) $) NIL)) (-2621 (((-1070 (-377 (-874 |#1|))) $) 74 (|has| (-377 (-874 |#1|)) (-509)))) (-3532 (((-377 (-874 |#1|)) (-1154 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-3737 (((-1070 (-377 (-874 |#1|))) $) NIL)) (-1440 (((-107)) NIL)) (-3865 (((-1057) $) NIL)) (-3156 (((-107)) NIL)) (-2688 (((-107)) NIL)) (-4022 (((-107)) NIL)) (-3094 (((-1021) $) NIL)) (-1562 (((-377 (-874 |#1|)) $ $) 68 (|has| |#1| (-509)))) (-2780 (((-377 (-874 |#1|)) $) 91 (|has| |#1| (-509)))) (-3511 (((-377 (-874 |#1|)) $) 93 (|has| |#1| (-509)))) (-3625 (((-1070 (-377 (-874 |#1|))) $) 85 (|has| |#1| (-509)))) (-4113 (((-377 (-874 |#1|))) 69 (|has| |#1| (-509)))) (-2049 (((-377 (-874 |#1|)) $ $) 60 (|has| |#1| (-509)))) (-3220 (((-377 (-874 |#1|)) $) 90 (|has| |#1| (-509)))) (-3790 (((-377 (-874 |#1|)) $) 92 (|has| |#1| (-509)))) (-2763 (((-1070 (-377 (-874 |#1|))) $) 84 (|has| |#1| (-509)))) (-3165 (((-377 (-874 |#1|))) 65 (|has| |#1| (-509)))) (-2700 (($) 99) (($ (-1074)) 105) (($ (-1154 (-1074))) 104) (($ (-1154 $)) 94) (($ (-1074) (-1154 $)) 103) (($ (-1154 (-1074)) (-1154 $)) 102)) (-3662 (((-107)) NIL)) (-1986 (((-377 (-874 |#1|)) $ (-517)) NIL)) (-2575 (((-1154 (-377 (-874 |#1|))) $ (-1154 $)) 96) (((-623 (-377 (-874 |#1|))) (-1154 $) (-1154 $)) NIL) (((-1154 (-377 (-874 |#1|))) $) 37) (((-623 (-377 (-874 |#1|))) (-1154 $)) NIL)) (-3582 (((-1154 (-377 (-874 |#1|))) $) NIL) (($ (-1154 (-377 (-874 |#1|)))) 34)) (-3254 (((-583 (-874 (-377 (-874 |#1|)))) (-1154 $)) NIL) (((-583 (-874 (-377 (-874 |#1|))))) NIL) (((-583 (-874 |#1|)) (-1154 $)) 97 (|has| |#1| (-509))) (((-583 (-874 |#1|))) 98 (|has| |#1| (-509)))) (-3064 (($ $ $) NIL)) (-3010 (((-107)) NIL)) (-2182 (((-787) $) NIL) (($ (-1154 (-377 (-874 |#1|)))) NIL)) (-3809 (((-1154 $)) 56)) (-2971 (((-583 (-1154 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2411 (($ $ $ $) NIL)) (-2902 (((-107)) NIL)) (-1574 (($ (-623 (-377 (-874 |#1|))) $) NIL)) (-3168 (($ $ $) NIL)) (-2883 (((-107)) NIL)) (-3832 (((-107)) NIL)) (-1781 (((-107)) NIL)) (-2297 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) 95)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-874 |#1|))) NIL) (($ (-377 (-874 |#1|)) $) NIL) (($ (-1041 |#2| (-377 (-874 |#1|))) $) NIL)))
+(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-874 |#1|))) (-585 (-1041 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2182 ($ (-1154 (-377 (-874 |#1|))))) (-15 -2054 ((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed"))) (-15 -3072 ((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed"))) (-15 -2700 ($)) (-15 -2700 ($ (-1074))) (-15 -2700 ($ (-1154 (-1074)))) (-15 -2700 ($ (-1154 $))) (-15 -2700 ($ (-1074) (-1154 $))) (-15 -2700 ($ (-1154 (-1074)) (-1154 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -3503 ((-1070 (-377 (-874 |#1|))))) (-15 -2763 ((-1070 (-377 (-874 |#1|))) $)) (-15 -3220 ((-377 (-874 |#1|)) $)) (-15 -3790 ((-377 (-874 |#1|)) $)) (-15 -2344 ((-1070 (-377 (-874 |#1|))))) (-15 -3625 ((-1070 (-377 (-874 |#1|))) $)) (-15 -2780 ((-377 (-874 |#1|)) $)) (-15 -3511 ((-377 (-874 |#1|)) $)) (-15 -2049 ((-377 (-874 |#1|)) $ $)) (-15 -3165 ((-377 (-874 |#1|)))) (-15 -1562 ((-377 (-874 |#1|)) $ $)) (-15 -4113 ((-377 (-874 |#1|)))) (-15 -3254 ((-583 (-874 |#1|)) (-1154 $))) (-15 -3254 ((-583 (-874 |#1|))))) |noBranch|))) (-156) (-843) (-583 (-1074)) (-1154 (-623 |#1|))) (T -422))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1154 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))))) (-2054 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -3809 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3072 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -3809 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2700 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1074))) (-14 *5 (-1154 (-623 *2))))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1154 (-623 *3))))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-1154 (-1074))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-1154 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2700 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1154 (-623 *4))))) (-2700 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-1074))) (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1074))) (-14 *7 (-1154 (-623 *4))))) (-3503 (*1 *2) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2344 (*1 *2) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2049 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3165 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-1562 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-4113 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1074))) (-14 *7 (-1154 (-623 *4))))) (-3254 (*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(-13 (-387 (-377 (-874 |#1|))) (-585 (-1041 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2182 ($ (-1154 (-377 (-874 |#1|))))) (-15 -2054 ((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed"))) (-15 -3072 ((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed"))) (-15 -2700 ($)) (-15 -2700 ($ (-1074))) (-15 -2700 ($ (-1154 (-1074)))) (-15 -2700 ($ (-1154 $))) (-15 -2700 ($ (-1074) (-1154 $))) (-15 -2700 ($ (-1154 (-1074)) (-1154 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -3503 ((-1070 (-377 (-874 |#1|))))) (-15 -2763 ((-1070 (-377 (-874 |#1|))) $)) (-15 -3220 ((-377 (-874 |#1|)) $)) (-15 -3790 ((-377 (-874 |#1|)) $)) (-15 -2344 ((-1070 (-377 (-874 |#1|))))) (-15 -3625 ((-1070 (-377 (-874 |#1|))) $)) (-15 -2780 ((-377 (-874 |#1|)) $)) (-15 -3511 ((-377 (-874 |#1|)) $)) (-15 -2049 ((-377 (-874 |#1|)) $ $)) (-15 -3165 ((-377 (-874 |#1|)))) (-15 -1562 ((-377 (-874 |#1|)) $ $)) (-15 -4113 ((-377 (-874 |#1|)))) (-15 -3254 ((-583 (-874 |#1|)) (-1154 $))) (-15 -3254 ((-583 (-874 |#1|))))) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 13)) (-1363 (((-583 (-789 |#1|)) $) 73)) (-2255 (((-1070 $) $ (-789 |#1|)) 46) (((-1070 |#2|) $) 115)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3209 (($ $) NIL (|has| |#2| (-509)))) (-1452 (((-107) $) NIL (|has| |#2| (-509)))) (-3860 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3938 (($ $) NIL (|has| |#2| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3076 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-1309 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1436 (($ $ (-583 (-517))) 78)) (-1217 (($ $) 67)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#2| (-831)))) (-2253 (($ $ |#2| |#3| $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) 58)) (-1352 (($ (-1070 |#2|) (-789 |#1|)) 120) (($ (-1070 $) (-789 |#1|)) 52)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) 59)) (-1343 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-789 |#1|)) NIL)) (-2672 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-1575 (($ $ $) NIL (|has| |#2| (-779)))) (-2986 (($ $ $) NIL (|has| |#2| (-779)))) (-3751 (($ (-1 |#3| |#3|) $) NIL)) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-1954 (((-3 (-789 |#1|) "failed") $) 39)) (-4159 (($ $) NIL)) (-1192 ((|#2| $) 41)) (-1368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3865 (((-1057) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2059 (-703))) "failed") $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) 40)) (-4144 ((|#2| $) 113)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 125 (|has| |#2| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2349 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 85) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 88) (($ $ (-789 |#1|) $) 83) (($ $ (-583 (-789 |#1|)) (-583 $)) 104)) (-4042 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1699 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-4007 ((|#3| $) 66) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-1423 ((|#2| $) 122 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2182 (((-787) $) 141) (($ (-517)) NIL) (($ |#2|) 84) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3763 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 16 T CONST)) (-2306 (($) 25 T CONST)) (-2553 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1593 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1649 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 109)) (** (($ $ (-843)) NIL) (($ $ (-703)) 107)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-423 |#1| |#2| |#3|) (-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -1436 ($ $ (-583 (-517)))))) (-583 (-1074)) (-961) (-212 (-2210 |#1|) (-703))) (T -423))
+((-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1074))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2210 *3) (-703))))))
+(-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -1436 ($ $ (-583 (-517))))))
+((-2762 (((-107) |#1| (-583 |#2|)) 65)) (-3657 (((-3 (-1154 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 74)) (-2524 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1154 (-583 |#2|))) 76)) (-1476 ((|#2| |#2| |#1|) 28)) (-1224 (((-703) |#2| (-583 |#2|)) 20)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -1476 (|#2| |#2| |#1|)) (-15 -1224 ((-703) |#2| (-583 |#2|))) (-15 -3657 ((-3 (-1154 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2524 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1154 (-583 |#2|)))) (-15 -2762 ((-107) |#1| (-583 |#2|)))) (-278) (-1131 |#1|)) (T -424))
+((-2762 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1131 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-2524 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1154 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1131 *4)))) (-3657 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1131 *4)) (-5 *2 (-1154 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-1224 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-1476 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1131 *3)))))
+(-10 -7 (-15 -1476 (|#2| |#2| |#1|)) (-15 -1224 ((-703) |#2| (-583 |#2|))) (-15 -3657 ((-3 (-1154 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2524 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1154 (-583 |#2|)))) (-15 -2762 ((-107) |#1| (-583 |#2|))))
+((-3693 (((-388 |#5|) |#5|) 24)))
+(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3693 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074))))) (-725) (-509) (-509) (-871 |#4| |#2| |#1|)) (T -425))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))))
+(-10 -7 (-15 -3693 ((-388 |#5|) |#5|)))
+((-1472 ((|#3|) 36)) (-4129 (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 32)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4129 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -1472 (|#3|))) (-725) (-779) (-831) (-871 |#3| |#1| |#2|)) (T -426))
+((-1472 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) (-4129 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))))
+(-10 -7 (-15 -4129 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -1472 (|#3|)))
+((-3693 (((-388 (-1070 |#1|)) (-1070 |#1|)) 41)))
+(((-427 |#1|) (-10 -7 (-15 -3693 ((-388 (-1070 |#1|)) (-1070 |#1|)))) (-278)) (T -427))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1070 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1070 *4)))))
+(-10 -7 (-15 -3693 ((-388 (-1070 |#1|)) (-1070 |#1|))))
+((-1579 (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-703))) 41) (((-51) |#2| (-1074) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-1534 (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517))) 77) (((-51) |#2| (-1074) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-1602 (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))) 64)) (-1590 (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517))) 47)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -1579 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1579 ((-51) |#2| (-1074) (-265 |#2|))) (-15 -1579 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-703)))) (-15 -1579 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-703)))) (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517)))) (-15 -1590 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517)))) (-15 -1602 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -1602 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -1534 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1534 ((-51) |#2| (-1074) (-265 |#2|))) (-15 -1534 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517)))) (-15 -1534 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517)))) (-15 -1534 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -1534 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -428))
+((-1534 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-1534 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1122 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-1534 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-517))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1534 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-1602 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-1602 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1122 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-1590 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-517))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1579 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-703))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-703))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))))
+(-10 -7 (-15 -1579 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1579 ((-51) |#2| (-1074) (-265 |#2|))) (-15 -1579 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-703)))) (-15 -1579 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-703)))) (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517)))) (-15 -1590 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517)))) (-15 -1602 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -1602 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -1534 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1534 ((-51) |#2| (-1074) (-265 |#2|))) (-15 -1534 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517)))) (-15 -1534 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517)))) (-15 -1534 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -1534 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))))
+((-1476 ((|#2| |#2| |#1|) 15)) (-1863 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-843)) 65)) (-3979 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843)) 58)))
+(((-429 |#1| |#2|) (-10 -7 (-15 -3979 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -1863 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -1476 (|#2| |#2| |#1|))) (-278) (-1131 |#1|)) (T -429))
+((-1476 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1131 *3)))) (-1863 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1131 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-3979 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1131 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
+(-10 -7 (-15 -3979 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -1863 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -1476 (|#2| |#2| |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 28)) (-1991 (($ |#3|) 25)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1217 (($ $) 32)) (-2346 (($ |#2| |#4| $) 33)) (-1343 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-4159 (((-646 |#3| |#4| |#5|) $) 15)) (-2838 ((|#3| $) 19)) (-1603 ((|#4| $) 17)) (-1192 ((|#2| $) 29)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-1735 (($ |#2| |#3| |#4|) 26)) (-2297 (($) 36 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 34)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1192 (|#2| $)) (-15 -4159 ((-646 |#3| |#4| |#5|) $)) (-15 -1603 (|#4| $)) (-15 -2838 (|#3| $)) (-15 -1217 ($ $)) (-15 -1343 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -1991 ($ |#3|)) (-15 -1735 ($ |#2| |#3| |#4|)) (-15 -2346 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1074)) (-156) (-779) (-212 (-2210 |#1|) (-703)) (-1 (-107) (-2 (|:| -3353 |#3|) (|:| -2059 |#4|)) (-2 (|:| -3353 |#3|) (|:| -2059 |#4|))) (-871 |#2| |#4| (-789 |#1|))) (T -430))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *6 (-212 (-2210 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *6)) (-2 (|:| -3353 *5) (|:| -2059 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) (-1192 (*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *5 (-212 (-2210 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *4) (|:| -2059 *5)) (-2 (|:| -3353 *4) (|:| -2059 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) (-4159 (*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *6 (-212 (-2210 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *6)) (-2 (|:| -3353 *5) (|:| -2059 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) (-1603 (*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *2)) (-2 (|:| -3353 *5) (|:| -2059 *2)))) (-4 *2 (-212 (-2210 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))) (-2838 (*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *5 (-212 (-2210 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *2) (|:| -2059 *5)) (-2 (|:| -3353 *2) (|:| -2059 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1217 (*1 *1 *1) (-12 (-14 *2 (-583 (-1074))) (-4 *3 (-156)) (-4 *5 (-212 (-2210 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *4) (|:| -2059 *5)) (-2 (|:| -3353 *4) (|:| -2059 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) (-1343 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2210 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *6)) (-2 (|:| -3353 *5) (|:| -2059 *6)))) (-14 *4 (-583 (-1074))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) (-1991 (*1 *1 *2) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *5 (-212 (-2210 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *2) (|:| -2059 *5)) (-2 (|:| -3353 *2) (|:| -2059 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1735 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1074))) (-4 *2 (-156)) (-4 *4 (-212 (-2210 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *3) (|:| -2059 *4)) (-2 (|:| -3353 *3) (|:| -2059 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))) (-2346 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1074))) (-4 *2 (-156)) (-4 *3 (-212 (-2210 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *3)) (-2 (|:| -3353 *5) (|:| -2059 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4))))))
+(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1192 (|#2| $)) (-15 -4159 ((-646 |#3| |#4| |#5|) $)) (-15 -1603 (|#4| $)) (-15 -2838 (|#3| $)) (-15 -1217 ($ $)) (-15 -1343 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -1991 ($ |#3|)) (-15 -1735 ($ |#2| |#3| |#4|)) (-15 -2346 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2282 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
+(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2282 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2182 ($ |#4|)) (-15 -1772 (|#4| $)) (-15 -1783 (|#4| $))))) (T -431))
+((-2282 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))))
+(-10 -7 (-15 -2282 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2571 (((-107) $ $) NIL)) (-1363 (((-583 |#3|) $) 41)) (-3521 (((-107) $) NIL)) (-2320 (((-107) $) NIL (|has| |#1| (-509)))) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-3451 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1216 (((-107) $) NIL (|has| |#1| (-509)))) (-1930 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1660 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3045 (((-107) $) NIL (|has| |#1| (-509)))) (-3515 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) 47)) (-3076 (($ (-583 |#4|)) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1971 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183)))) (-3037 (((-583 |#4|) $) 18 (|has| $ (-6 -4183)))) (-3377 ((|#3| $) 45)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#4|) $) 14 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1213 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 21)) (-2434 (((-583 |#3|) $) NIL)) (-2995 (((-107) |#3| $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3094 (((-1021) $) NIL)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2925 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 39)) (-1326 (($) 17)) (-3105 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) 16)) (-3582 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2197 (($ (-583 |#4|)) 13)) (-2399 (($ $ |#3|) NIL)) (-3339 (($ $ |#3|) NIL)) (-4011 (($ $ |#3|) NIL)) (-2182 (((-787) $) 38) (((-583 |#4|) $) 48)) (-3883 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 30)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-432 |#1| |#2| |#3| |#4|) (-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3582 ($ (-583 |#4|))) (-6 -4183) (-6 -4184))) (-961) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -432))
+((-3582 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))))
+(-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3582 ($ (-583 |#4|))) (-6 -4183) (-6 -4184)))
+((-2297 (($) 11)) (-2306 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -2306 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2297 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433))
+NIL
+(-10 -8 (-15 -2306 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2297 (|#1|)))
+((-2571 (((-107) $ $) 7)) (-1759 (((-3 |#1| "failed") $) 26)) (-3076 ((|#1| $) 25)) (-2591 (($ $ $) 23)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4007 ((|#2| $) 19)) (-2182 (((-787) $) 11) (($ |#1|) 27)) (-2297 (($) 18 T CONST)) (-2306 (($) 24 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 15) (($ $ $) 13)) (-1626 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-434 |#1| |#2|) (-1185) (-156) (-23)) (T -434))
+((-2306 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-2591 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
+(-13 (-439 |t#1| |t#2|) (-952 |t#1|) (-10 -8 (-15 (-2306) ($) -1605) (-15 -2591 ($ $ $))))
(((-97) . T) ((-557 (-787)) . T) ((-439 |#1| |#2|) . T) ((-952 |#1|) . T) ((-1003) . T))
-((-3049 (((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843)) 18)) (-1614 (((-1153 (-1153 (-517))) (-843)) 16)))
-(((-435) (-10 -7 (-15 -3049 ((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843))) (-15 -1614 ((-1153 (-1153 (-517))) (-843))))) (T -435))
-((-1614 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 (-517)))) (-5 *1 (-435)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 (-1153 (-517)))) (-5 *3 (-843)) (-5 *1 (-435)))))
-(-10 -7 (-15 -3049 ((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843))) (-15 -1614 ((-1153 (-1153 (-517))) (-843))))
-((-3553 (((-517) (-517)) 30) (((-517)) 22)) (-2761 (((-517) (-517)) 26) (((-517)) 18)) (-4056 (((-517) (-517)) 28) (((-517)) 20)) (-3579 (((-107) (-107)) 12) (((-107)) 10)) (-3742 (((-107) (-107)) 11) (((-107)) 9)) (-2594 (((-107) (-107)) 24) (((-107)) 15)))
-(((-436) (-10 -7 (-15 -3742 ((-107))) (-15 -3579 ((-107))) (-15 -3742 ((-107) (-107))) (-15 -3579 ((-107) (-107))) (-15 -2594 ((-107))) (-15 -4056 ((-517))) (-15 -2761 ((-517))) (-15 -3553 ((-517))) (-15 -2594 ((-107) (-107))) (-15 -4056 ((-517) (-517))) (-15 -2761 ((-517) (-517))) (-15 -3553 ((-517) (-517))))) (T -436))
-((-3553 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2594 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3553 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2761 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-4056 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2594 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3742 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3579 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3742 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(-10 -7 (-15 -3742 ((-107))) (-15 -3579 ((-107))) (-15 -3742 ((-107) (-107))) (-15 -3579 ((-107) (-107))) (-15 -2594 ((-107))) (-15 -4056 ((-517))) (-15 -2761 ((-517))) (-15 -3553 ((-517))) (-15 -2594 ((-107) (-107))) (-15 -4056 ((-517) (-517))) (-15 -2761 ((-517) (-517))) (-15 -3553 ((-517) (-517))))
-((-2750 (((-107) $ $) NIL)) (-3029 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 90)) (-1868 (((-583 (-998 (-349))) $) 14) (((-583 (-998 (-349))) $ (-583 (-998 (-349)))) 87)) (-3729 (((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797))) 42)) (-1985 (((-583 (-583 (-865 (-199)))) $) 83)) (-2889 (((-1158) $ (-865 (-199)) (-797)) 103)) (-1452 (($ $) 82) (($ (-583 (-583 (-865 (-199))))) 93) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843))) 92) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236))) 94)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 65)) (-3206 (((-1021) $) NIL)) (-2089 (($) 91)) (-2267 (((-583 (-199)) (-583 (-583 (-865 (-199))))) 52)) (-2271 (((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843)) 97) (((-1158) $ (-865 (-199))) 99) (((-1158) $ (-865 (-199)) (-797) (-797) (-843)) 98)) (-2256 (((-787) $) 109) (($ (-583 (-583 (-865 (-199))))) 104)) (-3366 (((-1158) $ (-865 (-199))) 102)) (-1547 (((-107) $ $) NIL)))
-(((-437) (-13 (-1003) (-10 -8 (-15 -2089 ($)) (-15 -1452 ($ $)) (-15 -1452 ($ (-583 (-583 (-865 (-199)))))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -1985 ((-583 (-583 (-865 (-199)))) $)) (-15 -3435 ((-517) $)) (-15 -1868 ((-583 (-998 (-349))) $)) (-15 -1868 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -3029 ((-583 (-349)) $)) (-15 -3029 ((-583 (-349)) $ (-583 (-349)))) (-15 -2271 ((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -2271 ((-1158) $ (-865 (-199)))) (-15 -2271 ((-1158) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -3366 ((-1158) $ (-865 (-199)))) (-15 -2889 ((-1158) $ (-865 (-199)) (-797))) (-15 -2256 ($ (-583 (-583 (-865 (-199)))))) (-15 -2256 ((-787) $)) (-15 -3729 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -2267 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))) (T -437))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-2089 (*1 *1) (-5 *1 (-437))) (-1452 (*1 *1 *1) (-5 *1 (-437))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-1452 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) (-1452 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-1868 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-3029 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-3366 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3729 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
-(-13 (-1003) (-10 -8 (-15 -2089 ($)) (-15 -1452 ($ $)) (-15 -1452 ($ (-583 (-583 (-865 (-199)))))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -1985 ((-583 (-583 (-865 (-199)))) $)) (-15 -3435 ((-517) $)) (-15 -1868 ((-583 (-998 (-349))) $)) (-15 -1868 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -3029 ((-583 (-349)) $)) (-15 -3029 ((-583 (-349)) $ (-583 (-349)))) (-15 -2271 ((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -2271 ((-1158) $ (-865 (-199)))) (-15 -2271 ((-1158) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -3366 ((-1158) $ (-865 (-199)))) (-15 -2889 ((-1158) $ (-865 (-199)) (-797))) (-15 -2256 ($ (-583 (-583 (-865 (-199)))))) (-15 -2256 ((-787) $)) (-15 -3729 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -2267 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))
-((-1654 (($ $) NIL) (($ $ $) 11)))
-(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438))
-NIL
-(-10 -8 (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 ((|#2| $) 19)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 15) (($ $ $) 13)) (-1642 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-439 |#1| |#2|) (-1184) (-156) (-23)) (T -439))
-((-3688 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-2396 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
-(-13 (-1003) (-10 -8 (-15 -3688 (|t#2| $)) (-15 (-2396) ($) -1619) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1654 ($ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $))))
+((-3081 (((-1154 (-1154 (-517))) (-1154 (-1154 (-517))) (-843)) 18)) (-1202 (((-1154 (-1154 (-517))) (-843)) 16)))
+(((-435) (-10 -7 (-15 -3081 ((-1154 (-1154 (-517))) (-1154 (-1154 (-517))) (-843))) (-15 -1202 ((-1154 (-1154 (-517))) (-843))))) (T -435))
+((-1202 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 (-1154 (-517)))) (-5 *1 (-435)))) (-3081 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-1154 (-517)))) (-5 *3 (-843)) (-5 *1 (-435)))))
+(-10 -7 (-15 -3081 ((-1154 (-1154 (-517))) (-1154 (-1154 (-517))) (-843))) (-15 -1202 ((-1154 (-1154 (-517))) (-843))))
+((-2087 (((-517) (-517)) 30) (((-517)) 22)) (-3514 (((-517) (-517)) 26) (((-517)) 18)) (-3278 (((-517) (-517)) 28) (((-517)) 20)) (-2259 (((-107) (-107)) 12) (((-107)) 10)) (-3182 (((-107) (-107)) 11) (((-107)) 9)) (-3225 (((-107) (-107)) 24) (((-107)) 15)))
+(((-436) (-10 -7 (-15 -3182 ((-107))) (-15 -2259 ((-107))) (-15 -3182 ((-107) (-107))) (-15 -2259 ((-107) (-107))) (-15 -3225 ((-107))) (-15 -3278 ((-517))) (-15 -3514 ((-517))) (-15 -2087 ((-517))) (-15 -3225 ((-107) (-107))) (-15 -3278 ((-517) (-517))) (-15 -3514 ((-517) (-517))) (-15 -2087 ((-517) (-517))))) (T -436))
+((-2087 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3514 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3225 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2087 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3514 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3278 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3225 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2259 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3182 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(-10 -7 (-15 -3182 ((-107))) (-15 -2259 ((-107))) (-15 -3182 ((-107) (-107))) (-15 -2259 ((-107) (-107))) (-15 -3225 ((-107))) (-15 -3278 ((-517))) (-15 -3514 ((-517))) (-15 -2087 ((-517))) (-15 -3225 ((-107) (-107))) (-15 -3278 ((-517) (-517))) (-15 -3514 ((-517) (-517))) (-15 -2087 ((-517) (-517))))
+((-2571 (((-107) $ $) NIL)) (-2899 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 90)) (-1186 (((-583 (-998 (-349))) $) 14) (((-583 (-998 (-349))) $ (-583 (-998 (-349)))) 87)) (-3083 (((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797))) 42)) (-3496 (((-583 (-583 (-865 (-199)))) $) 83)) (-1503 (((-1159) $ (-865 (-199)) (-797)) 103)) (-3703 (($ $) 82) (($ (-583 (-583 (-865 (-199))))) 93) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843))) 92) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236))) 94)) (-3865 (((-1057) $) NIL)) (-3342 (((-517) $) 65)) (-3094 (((-1021) $) NIL)) (-2157 (($) 91)) (-3155 (((-583 (-199)) (-583 (-583 (-865 (-199))))) 52)) (-3195 (((-1159) $ (-583 (-865 (-199))) (-797) (-797) (-843)) 97) (((-1159) $ (-865 (-199))) 99) (((-1159) $ (-865 (-199)) (-797) (-797) (-843)) 98)) (-2182 (((-787) $) 109) (($ (-583 (-583 (-865 (-199))))) 104)) (-4097 (((-1159) $ (-865 (-199))) 102)) (-1539 (((-107) $ $) NIL)))
+(((-437) (-13 (-1003) (-10 -8 (-15 -2157 ($)) (-15 -3703 ($ $)) (-15 -3703 ($ (-583 (-583 (-865 (-199)))))) (-15 -3703 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -3703 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -3496 ((-583 (-583 (-865 (-199)))) $)) (-15 -3342 ((-517) $)) (-15 -1186 ((-583 (-998 (-349))) $)) (-15 -1186 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -2899 ((-583 (-349)) $)) (-15 -2899 ((-583 (-349)) $ (-583 (-349)))) (-15 -3195 ((-1159) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -3195 ((-1159) $ (-865 (-199)))) (-15 -3195 ((-1159) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -4097 ((-1159) $ (-865 (-199)))) (-15 -1503 ((-1159) $ (-865 (-199)) (-797))) (-15 -2182 ($ (-583 (-583 (-865 (-199)))))) (-15 -2182 ((-787) $)) (-15 -3083 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -3155 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))) (T -437))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-2157 (*1 *1) (-5 *1 (-437))) (-3703 (*1 *1 *1) (-5 *1 (-437))) (-3703 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3703 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) (-3703 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-1186 (*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-1186 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2899 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-3195 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1159)) (-5 *1 (-437)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-437)))) (-3195 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1159)) (-5 *1 (-437)))) (-4097 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-437)))) (-1503 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-437)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3083 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
+(-13 (-1003) (-10 -8 (-15 -2157 ($)) (-15 -3703 ($ $)) (-15 -3703 ($ (-583 (-583 (-865 (-199)))))) (-15 -3703 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -3703 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -3496 ((-583 (-583 (-865 (-199)))) $)) (-15 -3342 ((-517) $)) (-15 -1186 ((-583 (-998 (-349))) $)) (-15 -1186 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -2899 ((-583 (-349)) $)) (-15 -2899 ((-583 (-349)) $ (-583 (-349)))) (-15 -3195 ((-1159) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -3195 ((-1159) $ (-865 (-199)))) (-15 -3195 ((-1159) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -4097 ((-1159) $ (-865 (-199)))) (-15 -1503 ((-1159) $ (-865 (-199)) (-797))) (-15 -2182 ($ (-583 (-583 (-865 (-199)))))) (-15 -2182 ((-787) $)) (-15 -3083 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -3155 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))
+((-1637 (($ $) NIL) (($ $ $) 11)))
+(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438))
+NIL
+(-10 -8 (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4007 ((|#2| $) 19)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 15) (($ $ $) 13)) (-1626 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-439 |#1| |#2|) (-1185) (-156) (-23)) (T -439))
+((-4007 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-2297 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1637 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1626 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1637 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
+(-13 (-1003) (-10 -8 (-15 -4007 (|t#2| $)) (-15 (-2297) ($) -1605) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1637 ($ $)) (-15 -1626 ($ $ $)) (-15 -1637 ($ $ $))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2796 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-2615 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 86)) (-3285 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58)))
-(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -2615 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -3285 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1073)) (-421) (-421)) (T -440))
-((-3285 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-2796 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
-(-10 -7 (-15 -2615 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -3285 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))))
-((-3621 (((-3 $ "failed") $) 11)) (-1487 (($ $ $) 20)) (-3394 (($ $ $) 21)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1667 (($ $ $) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19)))
-(((-441 |#1|) (-10 -8 (-15 -3394 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-442)) (T -441))
-NIL
-(-10 -8 (-15 -3394 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
-((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 19)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 27)) (-3206 (((-1021) $) 10)) (-1487 (($ $ $) 23)) (-3394 (($ $ $) 22)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2409 (($) 21 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
-(((-442) (-1184)) (T -442))
-((-4118 (*1 *1 *1) (-4 *1 (-442))) (-1667 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-1487 (*1 *1 *1 *1) (-4 *1 (-442))) (-3394 (*1 *1 *1 *1) (-4 *1 (-442))))
-(-13 (-659) (-10 -8 (-15 -4118 ($ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2207 ($ $ (-517))) (-6 -4177) (-15 -1487 ($ $ $)) (-15 -3394 ($ $ $))))
+((-2572 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-3461 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 86)) (-1594 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58)))
+(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -3461 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2572 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1594 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1074)) (-421) (-421)) (T -440))
+((-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-2572 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-3461 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(-10 -7 (-15 -3461 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2572 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1594 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))))
+((-1568 (((-3 $ "failed") $) 11)) (-2013 (($ $ $) 20)) (-3064 (($ $ $) 21)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1649 (($ $ $) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19)))
+(((-441 |#1|) (-10 -8 (-15 -3064 (|#1| |#1| |#1|)) (-15 -2013 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1649 (|#1| |#1| |#1|)) (-15 -1568 ((-3 |#1| "failed") |#1|)) (-15 -2146 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2146 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-442)) (T -441))
+NIL
+(-10 -8 (-15 -3064 (|#1| |#1| |#1|)) (-15 -2013 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1649 (|#1| |#1| |#1|)) (-15 -1568 ((-3 |#1| "failed") |#1|)) (-15 -2146 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2146 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
+((-2571 (((-107) $ $) 7)) (-3473 (($) 20 T CONST)) (-1568 (((-3 $ "failed") $) 16)) (-2955 (((-107) $) 19)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 27)) (-3094 (((-1021) $) 10)) (-2013 (($ $ $) 23)) (-3064 (($ $ $) 22)) (-2182 (((-787) $) 11)) (-2146 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2306 (($) 21 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
+(((-442) (-1185)) (T -442))
+((-4123 (*1 *1 *1) (-4 *1 (-442))) (-1649 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2146 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2013 (*1 *1 *1 *1) (-4 *1 (-442))) (-3064 (*1 *1 *1 *1) (-4 *1 (-442))))
+(-13 (-659) (-10 -8 (-15 -4123 ($ $)) (-15 -1649 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2146 ($ $ (-517))) (-6 -4180) (-15 -2013 ($ $ $)) (-15 -3064 ($ $ $))))
(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 17)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 22)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 33 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 15)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1149 |#2|)) NIL) (($ (-1139 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 18)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 24)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-443 |#1| |#2| |#3|) (-13 (-1135 |#1|) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -2256 ($ (-1139 |#1| |#2| |#3|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -443))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1135 |#1|) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -2256 ($ (-1139 |#1| |#2| |#3|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) 18)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 19)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 16)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-444 |#1| |#2| |#3| |#4|) (-1085 |#1| |#2|) (-1003) (-1003) (-1085 |#1| |#2|) |#2|) (T -444))
-NIL
-(-1085 |#1| |#2|)
-((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) NIL)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2068 (((-3 |#4| "failed") $) 37)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 46)) (-1672 (($ $ |#4|) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-1871 (((-107) |#3| $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-445 |#1| |#2| |#3| |#4|) (-1102 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -445))
-NIL
-(-1102 |#1| |#2| |#3| |#4|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2645 (($) 18)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3645 (((-349) $) 22) (((-199) $) 25) (((-377 (-1069 (-517))) $) 19) (((-493) $) 52)) (-2256 (((-787) $) 50) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 36 T CONST)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-446) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1069 (-517)))) (-558 (-493)) (-10 -8 (-15 -2645 ($))))) (T -446))
-((-2645 (*1 *1) (-5 *1 (-446))))
-(-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1069 (-517)))) (-558 (-493)) (-10 -8 (-15 -2645 ($))))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) 16)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 20)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 18)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) 13)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 19)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 11 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) 15 (|has| $ (-6 -4180)))))
-(((-447 |#1| |#2| |#3|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003) (-1056)) (T -447))
-NIL
-(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))
-((-1991 (((-517) (-517) (-517)) 7)) (-2973 (((-107) (-517) (-517) (-517) (-517)) 11)) (-3464 (((-1153 (-583 (-517))) (-703) (-703)) 22)))
-(((-448) (-10 -7 (-15 -1991 ((-517) (-517) (-517))) (-15 -2973 ((-107) (-517) (-517) (-517) (-517))) (-15 -3464 ((-1153 (-583 (-517))) (-703) (-703))))) (T -448))
-((-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1153 (-583 (-517)))) (-5 *1 (-448)))) (-2973 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-1991 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
-(-10 -7 (-15 -1991 ((-517) (-517) (-517))) (-15 -2973 ((-107) (-517) (-517) (-517) (-517))) (-15 -3464 ((-1153 (-583 (-517))) (-703) (-703))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) NIL)) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-450 (-2296 |#1|) (-703)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-450 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-450 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-450 (-2296 |#1|) (-703)) (-450 (-2296 |#1|) (-703))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-450 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-450 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-449 |#1| |#2|) (-13 (-871 |#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961)) (T -449))
-((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))))
-(-13 (-871 |#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517))))))
-((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) NIL (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 11)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) NIL)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) NIL (|has| |#2| (-123)) CONST)) (-2409 (($) NIL (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 15 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 17)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3349 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-4040 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1834 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1812 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1851 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) 22)) (-1826 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-2863 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 33 (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ (-377 (-517))) NIL)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1150 |#2|)) 15)) (-4007 (((-377 (-517)) $) NIL)) (-1860 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1150 |#2|)) NIL) (($ (-1140 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3086 ((|#1| $ (-377 (-517))) NIL)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-2840 ((|#1| $) 18)) (-3642 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) 24)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-443 |#1| |#2| |#3|) (-13 (-1136 |#1|) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -2182 ($ (-1140 |#1| |#2| |#3|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|))) (-961) (-1074) |#1|) (T -443))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1136 |#1|) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -2182 ($ (-1140 |#1| |#2| |#3|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|)))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3423 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#2| $ |#1| |#2|) 18)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 |#2| "failed") |#1| $) 19)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 16)) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) NIL)) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 ((|#1| $) NIL (|has| |#1| (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 ((|#1| $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3799 (((-583 |#1|) $) NIL)) (-2555 (((-107) |#1| $) NIL)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-4086 (((-583 |#1|) $) NIL)) (-3646 (((-107) |#1| $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1631 ((|#2| $) NIL (|has| |#1| (-779)))) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-444 |#1| |#2| |#3| |#4|) (-1086 |#1| |#2|) (-1003) (-1003) (-1086 |#1| |#2|) |#2|) (T -444))
+NIL
+(-1086 |#1| |#2|)
+((-2571 (((-107) $ $) NIL)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) NIL)) (-1310 (((-583 $) (-583 |#4|)) NIL)) (-1363 (((-583 |#3|) $) NIL)) (-3521 (((-107) $) NIL)) (-2320 (((-107) $) NIL (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2356 ((|#4| |#4| $) NIL)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-3451 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3473 (($) NIL T CONST)) (-1216 (((-107) $) 26 (|has| |#1| (-509)))) (-1930 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1660 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3045 (((-107) $) NIL (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3515 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3076 (($ (-583 |#4|)) NIL)) (-1644 (((-3 $ "failed") $) 39)) (-1907 ((|#4| |#4| $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1971 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-3197 ((|#4| |#4| $) NIL)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) NIL)) (-3037 (((-583 |#4|) $) 16 (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3377 ((|#3| $) 33)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#4|) $) 17 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1213 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 21)) (-2434 (((-583 |#3|) $) NIL)) (-2995 (((-107) |#3| $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-1988 (((-3 |#4| "failed") $) 37)) (-2425 (((-583 |#4|) $) NIL)) (-2998 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2946 ((|#4| |#4| $) NIL)) (-3196 (((-107) $ $) NIL)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3006 ((|#4| |#4| $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-3 |#4| "failed") $) 35)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3886 (((-3 $ "failed") $ |#4|) 46)) (-3467 (($ $ |#4|) NIL)) (-2925 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 15)) (-1326 (($) 13)) (-4007 (((-703) $) NIL)) (-3105 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) 12)) (-3582 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 20)) (-2399 (($ $ |#3|) 42)) (-3339 (($ $ |#3|) 43)) (-3529 (($ $) NIL)) (-4011 (($ $ |#3|) NIL)) (-2182 (((-787) $) 31) (((-583 |#4|) $) 40)) (-4124 (((-703) $) NIL (|has| |#3| (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3883 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) NIL)) (-1223 (((-107) |#3| $) NIL)) (-1539 (((-107) $ $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-445 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -445))
+NIL
+(-1103 |#1| |#2| |#3| |#4|)
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3076 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2475 (($) 18)) (-2955 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3582 (((-349) $) 22) (((-199) $) 25) (((-377 (-1070 (-517))) $) 19) (((-493) $) 52)) (-2182 (((-787) $) 50) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-1865 (((-703)) NIL)) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 36 T CONST)) (-2306 (($) 11 T CONST)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-446) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1070 (-517)))) (-558 (-493)) (-10 -8 (-15 -2475 ($))))) (T -446))
+((-2475 (*1 *1) (-5 *1 (-446))))
+(-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1070 (-517)))) (-558 (-493)) (-10 -8 (-15 -2475 ($))))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3423 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#2| $ |#1| |#2|) 16)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 |#2| "failed") |#1| $) 20)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 18)) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) NIL)) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 ((|#1| $) NIL (|has| |#1| (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 ((|#1| $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3799 (((-583 |#1|) $) 13)) (-2555 (((-107) |#1| $) NIL)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-4086 (((-583 |#1|) $) NIL)) (-3646 (((-107) |#1| $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1631 ((|#2| $) NIL (|has| |#1| (-779)))) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 19)) (-1986 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 11 (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2210 (((-703) $) 15 (|has| $ (-6 -4183)))))
+(((-447 |#1| |#2| |#3|) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183))) (-1003) (-1003) (-1057)) (T -447))
+NIL
+(-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))
+((-3570 (((-517) (-517) (-517)) 7)) (-3718 (((-107) (-517) (-517) (-517) (-517)) 11)) (-3368 (((-1154 (-583 (-517))) (-703) (-703)) 22)))
+(((-448) (-10 -7 (-15 -3570 ((-517) (-517) (-517))) (-15 -3718 ((-107) (-517) (-517) (-517) (-517))) (-15 -3368 ((-1154 (-583 (-517))) (-703) (-703))))) (T -448))
+((-3368 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1154 (-583 (-517)))) (-5 *1 (-448)))) (-3718 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-3570 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(-10 -7 (-15 -3570 ((-517) (-517) (-517))) (-15 -3718 ((-107) (-517) (-517) (-517) (-517))) (-15 -3368 ((-1154 (-583 (-517))) (-703) (-703))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-789 |#1|)) $) NIL)) (-2255 (((-1070 $) $ (-789 |#1|)) NIL) (((-1070 |#2|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3209 (($ $) NIL (|has| |#2| (-509)))) (-1452 (((-107) $) NIL (|has| |#2| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3938 (($ $) NIL (|has| |#2| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3076 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-1309 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1436 (($ $ (-583 (-517))) NIL)) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#2| (-831)))) (-2253 (($ $ |#2| (-450 (-2210 |#1|) (-703)) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-1352 (($ (-1070 |#2|) (-789 |#1|)) NIL) (($ (-1070 $) (-789 |#1|)) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#2| (-450 (-2210 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-789 |#1|)) NIL)) (-2672 (((-450 (-2210 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-1575 (($ $ $) NIL (|has| |#2| (-779)))) (-2986 (($ $ $) NIL (|has| |#2| (-779)))) (-3751 (($ (-1 (-450 (-2210 |#1|) (-703)) (-450 (-2210 |#1|) (-703))) $) NIL)) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-1954 (((-3 (-789 |#1|) "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#2| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3865 (((-1057) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2059 (-703))) "failed") $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#2| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2349 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-4042 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1699 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-4007 (((-450 (-2210 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-1423 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3763 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ (-450 (-2210 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1593 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-449 |#1| |#2|) (-13 (-871 |#2| (-450 (-2210 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -1436 ($ $ (-583 (-517)))))) (-583 (-1074)) (-961)) (T -449))
+((-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1074))) (-4 *4 (-961)))))
+(-13 (-871 |#2| (-450 (-2210 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -1436 ($ $ (-583 (-517))))))
+((-2571 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2745 (((-107) $) NIL (|has| |#2| (-123)))) (-1991 (($ (-843)) NIL (|has| |#2| (-961)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1754 (($ $ $) NIL (|has| |#2| (-725)))) (-1387 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-1799 (((-107) $ (-703)) NIL)) (-1598 (((-703)) NIL (|has| |#2| (-338)))) (-1207 (((-517) $) NIL (|has| |#2| (-777)))) (-2307 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3076 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-4012 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-1568 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-3098 (($) NIL (|has| |#2| (-338)))) (-1226 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ (-517)) 11)) (-2099 (((-107) $) NIL (|has| |#2| (-777)))) (-3037 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2955 (((-107) $) NIL (|has| |#2| (-961)))) (-1624 (((-107) $) NIL (|has| |#2| (-777)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1196 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1213 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-2903 (((-843) $) NIL (|has| |#2| (-338)))) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#2| (-1003)))) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3353 (($ (-843)) NIL (|has| |#2| (-338)))) (-3094 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1631 ((|#2| $) NIL (|has| (-517) (-779)))) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-2736 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3739 (($ (-1154 |#2|)) NIL)) (-2586 (((-125)) NIL (|has| |#2| (-333)))) (-1699 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3105 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-1154 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3763 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-1865 (((-703)) NIL (|has| |#2| (-961)))) (-3883 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1221 (($ $) NIL (|has| |#2| (-777)))) (-2146 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2297 (($) NIL (|has| |#2| (-123)) CONST)) (-2306 (($) NIL (|has| |#2| (-961)) CONST)) (-2553 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1593 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1570 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1539 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1582 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1560 (((-107) $ $) 15 (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1626 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
(((-450 |#1| |#2|) (-212 |#1| |#2|) (-703) (-725)) (T -450))
NIL
(-212 |#1| |#2|)
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2797 (($ $ $) 32)) (-3237 (($ $ $) 31)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3099 ((|#1| $) 26)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 27)) (-1710 (($ |#1| $) 10)) (-1189 (($ (-583 |#1|)) 12)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 23)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 9)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 29)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) 21 (|has| $ (-6 -4180)))))
-(((-451 |#1|) (-13 (-886 |#1|) (-10 -8 (-15 -1189 ($ (-583 |#1|))))) (-779)) (T -451))
-((-1189 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
-(-13 (-886 |#1|) (-10 -8 (-15 -1189 ($ (-583 |#1|)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ $) 69)) (-1470 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-3206 (((-1021) $) NIL)) (-3220 (((-3 |#4| "failed") $) 105)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2256 (((-787) $) 100)) (-2396 (($) 33 T CONST)) (-1547 (((-107) $ $) 107)) (-1654 (($ $) 72) (($ $ $) NIL)) (-1642 (($ $ $) 70)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73)))
-(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) NIL)) (-3473 (($) NIL T CONST)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2581 (($ $ $) 32)) (-2262 (($ $ $) 31)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2986 ((|#1| $) 26)) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1835 ((|#1| $) 27)) (-3816 (($ |#1| $) 10)) (-3836 (($ (-583 |#1|)) 12)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4049 ((|#1| $) 23)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 9)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 29)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) 21 (|has| $ (-6 -4183)))))
+(((-451 |#1|) (-13 (-886 |#1|) (-10 -8 (-15 -3836 ($ (-583 |#1|))))) (-779)) (T -451))
+((-3836 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+(-13 (-886 |#1|) (-10 -8 (-15 -3836 ($ (-583 |#1|)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-2521 (($ $) 69)) (-3866 (((-107) $) NIL)) (-3865 (((-1057) $) NIL)) (-4132 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-3094 (((-1021) $) NIL)) (-3107 (((-3 |#4| "failed") $) 105)) (-3280 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-1435 (((-2 (|:| -3306 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2182 (((-787) $) 100)) (-2297 (($) 33 T CONST)) (-1539 (((-107) $ $) 107)) (-1637 (($ $) 72) (($ $ $) NIL)) (-1626 (($ $ $) 70)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73)))
+(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452))
NIL
(-305 |#1| |#2| |#3| |#4|)
-((-2189 (((-517) (-583 (-517))) 28)) (-3717 ((|#1| (-583 |#1|)) 54)) (-2292 (((-583 |#1|) (-583 |#1|)) 55)) (-3315 (((-583 |#1|) (-583 |#1|)) 57)) (-1401 ((|#1| (-583 |#1|)) 56)) (-3266 (((-583 (-517)) (-583 |#1|)) 31)))
-(((-453 |#1|) (-10 -7 (-15 -1401 (|#1| (-583 |#1|))) (-15 -3717 (|#1| (-583 |#1|))) (-15 -3315 ((-583 |#1|) (-583 |#1|))) (-15 -2292 ((-583 |#1|) (-583 |#1|))) (-15 -3266 ((-583 (-517)) (-583 |#1|))) (-15 -2189 ((-517) (-583 (-517))))) (-1130 (-517))) (T -453))
-((-2189 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1130 *2)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1130 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))))
-(-10 -7 (-15 -1401 (|#1| (-583 |#1|))) (-15 -3717 (|#1| (-583 |#1|))) (-15 -3315 ((-583 |#1|) (-583 |#1|))) (-15 -2292 ((-583 |#1|) (-583 |#1|))) (-15 -3266 ((-583 (-517)) (-583 |#1|))) (-15 -2189 ((-517) (-583 (-517)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-1229 (($ (-377 (-517))) 8)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 16) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-454) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 16) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1229 ($ (-377 (-517))))))) (T -454))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
-(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 16) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1229 ($ (-377 (-517))))))
-((-2560 (((-583 |#2|) $) 22)) (-2787 (((-107) |#2| $) 27)) (-2048 (((-107) (-1 (-107) |#2|) $) 20)) (-2051 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-3217 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2256 (((-787) $) 36)) (-3675 (((-107) (-1 (-107) |#2|) $) 19)) (-1547 (((-107) $ $) 30)) (-2296 (((-703) $) 16)))
-(((-455 |#1| |#2|) (-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -2560 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|))) (-456 |#2|) (-1108)) (T -455))
-NIL
-(-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -2560 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)))
-((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-456 |#1|) (-1184) (-1108)) (T -456))
-((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) (-1433 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) (-3675 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-2048 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-3217 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-703)))) (-1536 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-2560 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-3217 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-2787 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |t#1| (-1003)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |noBranch|) |noBranch|) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4181)) (-15 -1433 ($ (-1 |t#1| |t#1|) $)) |noBranch|) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3675 ((-107) (-1 (-107) |t#1|) $)) (-15 -2048 ((-107) (-1 (-107) |t#1|) $)) (-15 -3217 ((-703) (-1 (-107) |t#1|) $)) (-15 -1536 ((-583 |t#1|) $)) (-15 -2560 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3217 ((-703) |t#1| $)) (-15 -2787 ((-107) |t#1| $))) |noBranch|)) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-1865 (($ $) 15)) (-1839 (($ $) 24)) (-1887 (($ $) 12)) (-1898 (($ $) 10)) (-1876 (($ $) 17)) (-1853 (($ $) 22)))
-(((-457 |#1|) (-10 -8 (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|))) (-458)) (T -457))
-NIL
-(-10 -8 (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)))
-((-1865 (($ $) 11)) (-1839 (($ $) 10)) (-1887 (($ $) 9)) (-1898 (($ $) 8)) (-1876 (($ $) 7)) (-1853 (($ $) 6)))
-(((-458) (-1184)) (T -458))
-((-1865 (*1 *1 *1) (-4 *1 (-458))) (-1839 (*1 *1 *1) (-4 *1 (-458))) (-1887 (*1 *1 *1) (-4 *1 (-458))) (-1898 (*1 *1 *1) (-4 *1 (-458))) (-1876 (*1 *1 *1) (-4 *1 (-458))) (-1853 (*1 *1 *1) (-4 *1 (-458))))
-(-13 (-10 -8 (-15 -1853 ($ $)) (-15 -1876 ($ $)) (-15 -1898 ($ $)) (-15 -1887 ($ $)) (-15 -1839 ($ $)) (-15 -1865 ($ $))))
-((-3755 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42)))
-(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1130 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1130 |#3|)) (T -459))
-((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1130 *7)))))
-(-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|))))
-((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3869 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-2814 (((-107) $) 36)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3865 (((-107) $ $) 62)) (-3726 (((-583 (-556 $)) $) 46)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1649 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3267 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 48)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-377 (-517)))) (|:| |vec| (-1153 (-377 (-517))))) (-623 $) (-1153 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-3225 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) 39)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1787 (((-1026 (-517) (-556 $)) $) 34)) (-3824 (($ $ (-517)) NIL)) (-1506 (((-1069 $) (-1069 $) (-556 $)) 77) (((-1069 $) (-1069 $) (-583 (-556 $))) 53) (($ $ (-556 $)) 66) (($ $ (-583 (-556 $))) 67)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1607 (((-1069 $) (-556 $)) 64 (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-4118 (($ $) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3146 (((-703) $) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) 33)) (-1800 (((-1026 (-517) (-556 $)) $) 17)) (-2135 (($ $) NIL (|has| $ (-961)))) (-3645 (((-349) $) 91) (((-199) $) 99) (((-153 (-349)) $) 107)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) 18)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) 83)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 21)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) 41)) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 44) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 24) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
-(((-460) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -3865 ((-107) $ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))) (T -460))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-3225 (*1 *1 *1) (-5 *1 (-460))) (-3865 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))))
-(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -3865 ((-107) $ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 21)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 14)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 12 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) 23 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 10 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 13)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 9 (|has| $ (-6 -4180)))))
-(((-461 |#1| |#2|) (-19 |#1|) (-1108) (-517)) (T -461))
+((-3725 (((-517) (-583 (-517))) 28)) (-1282 ((|#1| (-583 |#1|)) 54)) (-3405 (((-583 |#1|) (-583 |#1|)) 55)) (-1870 (((-583 |#1|) (-583 |#1|)) 57)) (-1396 ((|#1| (-583 |#1|)) 56)) (-1423 (((-583 (-517)) (-583 |#1|)) 31)))
+(((-453 |#1|) (-10 -7 (-15 -1396 (|#1| (-583 |#1|))) (-15 -1282 (|#1| (-583 |#1|))) (-15 -1870 ((-583 |#1|) (-583 |#1|))) (-15 -3405 ((-583 |#1|) (-583 |#1|))) (-15 -1423 ((-583 (-517)) (-583 |#1|))) (-15 -3725 ((-517) (-583 (-517))))) (-1131 (-517))) (T -453))
+((-3725 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1131 *2)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1131 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-3405 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1131 (-517))) (-5 *1 (-453 *3)))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1131 (-517))) (-5 *1 (-453 *3)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1131 (-517))))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1131 (-517))))))
+(-10 -7 (-15 -1396 (|#1| (-583 |#1|))) (-15 -1282 (|#1| (-583 |#1|))) (-15 -1870 ((-583 |#1|) (-583 |#1|))) (-15 -3405 ((-583 |#1|) (-583 |#1|))) (-15 -1423 ((-583 (-517)) (-583 |#1|))) (-15 -3725 ((-517) (-583 (-517)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 (((-517) $) NIL (|has| (-517) (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| (-517) (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-517) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3076 (((-517) $) NIL) (((-1074) $) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-517) (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) NIL (|has| (-517) (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL)) (-1772 (((-517) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| (-517) (-1050)))) (-1624 (((-107) $) NIL (|has| (-517) (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| (-517) (-779)))) (-1857 (($ (-1 (-517) (-517)) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-517) (-1050)) CONST)) (-3471 (($ (-377 (-517))) 8)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-3263 (((-517) $) NIL (|has| (-517) (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1074)) (-583 (-517))) NIL (|has| (-517) (-478 (-1074) (-517)))) (($ $ (-1074) (-517)) NIL (|has| (-517) (-478 (-1074) (-517))))) (-2623 (((-703) $) NIL)) (-1986 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-3691 (($ $) NIL)) (-1783 (((-517) $) NIL)) (-3582 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1074)) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL) (((-920 16) $) 9)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-1865 (((-703)) NIL)) (-3112 (((-517) $) NIL (|has| (-517) (-502)))) (-3767 (((-107) $ $) NIL)) (-1221 (($ $) NIL (|has| (-517) (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1593 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1560 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1649 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-454) (-13 (-909 (-517)) (-10 -8 (-15 -2182 ((-377 (-517)) $)) (-15 -2182 ((-920 16) $)) (-15 -1194 ((-377 (-517)) $)) (-15 -3471 ($ (-377 (-517))))))) (T -454))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) (-1194 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
+(-13 (-909 (-517)) (-10 -8 (-15 -2182 ((-377 (-517)) $)) (-15 -2182 ((-920 16) $)) (-15 -1194 ((-377 (-517)) $)) (-15 -3471 ($ (-377 (-517))))))
+((-1196 (((-583 |#2|) $) 22)) (-2502 (((-107) |#2| $) 27)) (-2925 (((-107) (-1 (-107) |#2|) $) 20)) (-1979 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-3105 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2182 (((-787) $) 36)) (-3883 (((-107) (-1 (-107) |#2|) $) 19)) (-1539 (((-107) $ $) 30)) (-2210 (((-703) $) 16)))
+(((-455 |#1| |#2|) (-10 -8 (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -1979 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#2| |#2|)) (-15 -1979 (|#1| |#1| (-265 |#2|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2502 ((-107) |#2| |#1|)) (-15 -3105 ((-703) |#2| |#1|)) (-15 -1196 ((-583 |#2|) |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2210 ((-703) |#1|))) (-456 |#2|) (-1109)) (T -455))
+NIL
+(-10 -8 (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -1979 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#2| |#2|)) (-15 -1979 (|#1| |#1| (-265 |#2|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2502 ((-107) |#2| |#1|)) (-15 -3105 ((-703) |#2| |#1|)) (-15 -1196 ((-583 |#2|) |#1|)) (-15 -3105 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2210 ((-703) |#1|)))
+((-2571 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-3473 (($) 7 T CONST)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-456 |#1|) (-1185) (-1109)) (T -456))
+((-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1109)))) (-1213 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4184)) (-4 *1 (-456 *3)) (-4 *3 (-1109)))) (-3883 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))) (-2925 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))) (-3105 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-703)))) (-3037 (*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))) (-1196 (*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))) (-3105 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-2502 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |t#1| (-1003)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |noBranch|) |noBranch|) (-15 -1857 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4184)) (-15 -1213 ($ (-1 |t#1| |t#1|) $)) |noBranch|) (IF (|has| $ (-6 -4183)) (PROGN (-15 -3883 ((-107) (-1 (-107) |t#1|) $)) (-15 -2925 ((-107) (-1 (-107) |t#1|) $)) (-15 -3105 ((-703) (-1 (-107) |t#1|) $)) (-15 -3037 ((-583 |t#1|) $)) (-15 -1196 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3105 ((-703) |t#1| $)) (-15 -2502 ((-107) |t#1| $))) |noBranch|)) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-1834 (($ $) 15)) (-1812 (($ $) 24)) (-1851 (($ $) 12)) (-1860 (($ $) 10)) (-1842 (($ $) 17)) (-1824 (($ $) 22)))
+(((-457 |#1|) (-10 -8 (-15 -1824 (|#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1860 (|#1| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 -1834 (|#1| |#1|))) (-458)) (T -457))
+NIL
+(-10 -8 (-15 -1824 (|#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1860 (|#1| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)))
+((-1834 (($ $) 11)) (-1812 (($ $) 10)) (-1851 (($ $) 9)) (-1860 (($ $) 8)) (-1842 (($ $) 7)) (-1824 (($ $) 6)))
+(((-458) (-1185)) (T -458))
+((-1834 (*1 *1 *1) (-4 *1 (-458))) (-1812 (*1 *1 *1) (-4 *1 (-458))) (-1851 (*1 *1 *1) (-4 *1 (-458))) (-1860 (*1 *1 *1) (-4 *1 (-458))) (-1842 (*1 *1 *1) (-4 *1 (-458))) (-1824 (*1 *1 *1) (-4 *1 (-458))))
+(-13 (-10 -8 (-15 -1824 ($ $)) (-15 -1842 ($ $)) (-15 -1860 ($ $)) (-15 -1851 ($ $)) (-15 -1812 ($ $)) (-15 -1834 ($ $))))
+((-3693 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42)))
+(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1131 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1131 |#3|)) (T -459))
+((-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1131 *7)))))
+(-10 -7 (-15 -3693 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|))))
+((-2571 (((-107) $ $) NIL)) (-2302 (((-583 $) (-1070 $) (-1074)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-874 $)) NIL)) (-2060 (($ (-1070 $) (-1074)) NIL) (($ (-1070 $)) NIL) (($ (-874 $)) NIL)) (-2745 (((-107) $) 36)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-2021 (((-107) $ $) 62)) (-3656 (((-583 (-556 $)) $) 46)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2173 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3706 (($ $) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1899 (((-583 $) (-1070 $) (-1074)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-874 $)) NIL)) (-1434 (($ (-1070 $) (-1074)) NIL) (($ (-1070 $)) NIL) (($ (-874 $)) NIL)) (-1759 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3076 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 48)) (-2383 (($ $ $) NIL)) (-4012 (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2522 (-623 (-377 (-517)))) (|:| |vec| (-1154 (-377 (-517))))) (-623 $) (-1154 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-2521 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-1187 (($ $) NIL) (($ (-583 $)) NIL)) (-4025 (((-583 (-109)) $) NIL)) (-3270 (((-109) (-109)) NIL)) (-2955 (((-107) $) 39)) (-2393 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1772 (((-1026 (-517) (-556 $)) $) 34)) (-2666 (($ $ (-517)) NIL)) (-2289 (((-1070 $) (-1070 $) (-556 $)) 77) (((-1070 $) (-1070 $) (-583 (-556 $))) 53) (($ $ (-556 $)) 66) (($ $ (-583 (-556 $))) 67)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4133 (((-1070 $) (-556 $)) 64 (|has| $ (-961)))) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 $ $) (-556 $)) NIL)) (-2726 (((-3 (-556 $) "failed") $) NIL)) (-1368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-2247 (((-583 (-556 $)) $) NIL)) (-1822 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-4158 (((-107) $ (-109)) NIL) (((-107) $ (-1074)) NIL)) (-4123 (($ $) NIL)) (-1846 (((-703) $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ (-583 $)) NIL) (($ $ $) NIL)) (-2754 (((-107) $ $) NIL) (((-107) $ (-1074)) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3994 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1979 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-2623 (((-703) $) NIL)) (-1986 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1662 (($ $) NIL) (($ $ $) NIL)) (-1699 (($ $ (-703)) NIL) (($ $) 33)) (-1783 (((-1026 (-517) (-556 $)) $) 17)) (-1457 (($ $) NIL (|has| $ (-961)))) (-3582 (((-349) $) 91) (((-199) $) 99) (((-153 (-349)) $) 107)) (-2182 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) 18)) (-1865 (((-703)) NIL)) (-3549 (($ $) NIL) (($ (-583 $)) NIL)) (-3494 (((-107) (-109)) 83)) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2297 (($) 9 T CONST)) (-2306 (($) 19 T CONST)) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 21)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1649 (($ $ $) 41)) (-1637 (($ $ $) NIL) (($ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 44) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 24) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-460) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2182 ($ (-1026 (-517) (-556 $)))) (-15 -1772 ((-1026 (-517) (-556 $)) $)) (-15 -1783 ((-1026 (-517) (-556 $)) $)) (-15 -2521 ($ $)) (-15 -2021 ((-107) $ $)) (-15 -2289 ((-1070 $) (-1070 $) (-556 $))) (-15 -2289 ((-1070 $) (-1070 $) (-583 (-556 $)))) (-15 -2289 ($ $ (-556 $))) (-15 -2289 ($ $ (-583 (-556 $))))))) (T -460))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-2521 (*1 *1 *1) (-5 *1 (-460))) (-2021 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-2289 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-2289 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))))
+(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2182 ($ (-1026 (-517) (-556 $)))) (-15 -1772 ((-1026 (-517) (-556 $)) $)) (-15 -1783 ((-1026 (-517) (-556 $)) $)) (-15 -2521 ($ $)) (-15 -2021 ((-107) $ $)) (-15 -2289 ((-1070 $) (-1070 $) (-556 $))) (-15 -2289 ((-1070 $) (-1070 $) (-583 (-556 $)))) (-15 -2289 ($ $ (-556 $))) (-15 -2289 ($ $ (-583 (-556 $))))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 21)) (-2446 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3366 (($ (-703) |#1|) 14)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) 12 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) 23 (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) NIL (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) 10 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 13)) (-1986 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1122 (-517))) NIL)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-2337 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2210 (((-703) $) 9 (|has| $ (-6 -4183)))))
+(((-461 |#1| |#2|) (-19 |#1|) (-1109) (-517)) (T -461))
NIL
(-19 |#1|)
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4087 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-3739 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-3092 (($) NIL T CONST)) (-1939 (((-461 |#1| |#3|) $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1108) (-517) (-517)) (T -462))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3635 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-3160 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-3473 (($) NIL T CONST)) (-3023 (((-461 |#1| |#3|) $ (-517)) NIL)) (-1226 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4020 ((|#1| $ (-517) (-517)) NIL)) (-3037 (((-583 |#1|) $) NIL)) (-4122 (((-703) $) NIL)) (-3366 (($ (-703) (-703) |#1|) NIL)) (-1875 (((-703) $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2734 (((-517) $) NIL)) (-2397 (((-517) $) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3070 (((-517) $) NIL)) (-2820 (((-517) $) NIL)) (-1213 (($ (-1 |#1| |#1|) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1254 (($ $ |#1|) NIL)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-1377 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1109) (-517) (-517)) (T -462))
NIL
(-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|))
-((-1631 (((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-3176 (((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-1659 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 83)))
-(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -3176 ((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1631 ((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -1659 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1130 |#1|) (-1130 |#2|)) (T -463))
-((-1659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1130 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-1631 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1130 *6)))) (-3176 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1130 *3)) (-5 *2 (-583 (-1069 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1130 *5)))))
-(-10 -7 (-15 -3176 ((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1631 ((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -1659 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703))))
-((-2293 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-1358 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-2240 (((-703) (-703) (-703)) 30)) (-1954 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-2368 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-2184 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-2671 ((|#1| (-623 |#1|)) 18)))
-(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -2671 (|#1| (-623 |#1|))) (-15 -1358 (|#1| (-623 |#1|) |#1| (-703))) (-15 -2184 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2240 ((-703) (-703) (-703))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1954 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2293 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $)))) (-1130 |#1|) (-379 |#1| |#2|)) (T -464))
-((-2293 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2368 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2368 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2240 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2184 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-1358 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1130 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))))
-(-10 -7 (-15 -2671 (|#1| (-623 |#1|))) (-15 -1358 (|#1| (-623 |#1|) |#1| (-703))) (-15 -2184 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2240 ((-703) (-703) (-703))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1954 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2293 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))))
-((-2750 (((-107) $ $) NIL)) (-1460 (($ $) NIL)) (-2775 (($ $ $) 35)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-107) $ (-1121 (-517)) (-107)) NIL (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-2052 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1445 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) NIL)) (-2607 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1536 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-4025 (($ $ $) 33)) (-2630 (($ $) NIL)) (-1888 (($ $ $) NIL)) (-3462 (($ (-703) (-107)) 23)) (-1514 (($ $ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 8 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL)) (-3237 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2560 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL)) (-1433 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-107) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2565 (($ $ (-107)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 24)) (-1449 (($ $ (-1121 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3217 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) 25)) (-3645 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) NIL)) (-2452 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2256 (((-787) $) 22)) (-3675 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-4035 (($ $ $) 31)) (-2207 (($ $) NIL)) (-2391 (($ $ $) NIL)) (-3555 (($ $ $) 39)) (-3563 (($ $) 37)) (-3545 (($ $ $) 38)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 27)) (-2382 (($ $ $) NIL)) (-2296 (((-703) $) 10 (|has| $ (-6 -4180)))))
-(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3563 ($ $)) (-15 -3555 ($ $ $)) (-15 -3545 ($ $ $)))) (-517)) (T -465))
-((-3563 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3555 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3545 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))))
-(-13 (-118) (-10 -8 (-15 -3563 ($ $)) (-15 -3555 ($ $ $)) (-15 -3545 ($ $ $))))
-((-2449 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|)) 34)) (-1718 (((-1069 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1069 |#4|)) 21)) (-3863 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|))) 45)) (-3138 (((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
-(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1718 (|#2| (-1 |#1| |#4|) (-1069 |#4|))) (-15 -1718 ((-1069 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2449 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|))) (-15 -3863 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|)))) (-15 -3138 ((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1130 |#1|) (-1130 |#2|) (-961)) (T -466))
-((-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1130 *6)))) (-3863 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1069 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1130 *6)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1130 *5)) (-5 *2 (-1069 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1130 *4)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))))
-(-10 -7 (-15 -1718 (|#2| (-1 |#1| |#4|) (-1069 |#4|))) (-15 -1718 ((-1069 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2449 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|))) (-15 -3863 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|)))) (-15 -3138 ((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3307 (((-1158) $) 18)) (-1449 (((-1056) $ (-1073)) 22)) (-1242 (((-1158) $) 14)) (-2256 (((-787) $) 20) (($ (-1056)) 19)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 8)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 7)))
-(((-467) (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -2256 ($ (-1056)))))) (T -467))
-((-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1056)) (-5 *1 (-467)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-467)))))
-(-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -2256 ($ (-1056)))))
-((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3484 ((|#1| |#4|) 10)) (-1897 ((|#3| |#4|) 17)))
-(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3484 (|#1| |#4|)) (-15 -1897 (|#3| |#4|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-909 |#1|) (-343 |#1|) (-343 |#2|)) (T -468))
-((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-1897 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))))
-(-10 -7 (-15 -3484 (|#1| |#4|)) (-15 -1897 (|#3| |#4|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2750 (((-107) $ $) NIL)) (-2591 (((-107) $ (-583 |#3|)) 101) (((-107) $) 102)) (-2814 (((-107) $) 144)) (-4145 (($ $ |#4|) 93) (($ $ |#4| (-583 |#3|)) 97)) (-3382 (((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|)) 137 (|has| |#3| (-558 (-1073))))) (-3425 (($ $ $) 87) (($ $ |#4|) 85)) (-3848 (((-107) $) 143)) (-3769 (($ $) 105)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 79) (($ (-583 $)) 81)) (-2549 (((-107) |#4| $) 104)) (-1204 (((-107) $ $) 68)) (-4014 (($ (-583 |#4|)) 86)) (-3206 (((-1021) $) NIL)) (-4060 (($ (-583 |#4|)) 141)) (-2745 (((-107) $) 142)) (-1759 (($ $) 70)) (-3079 (((-583 |#4|) $) 55)) (-1419 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-2224 (((-107) |#4| $) 73)) (-3141 (((-517) $ (-583 |#3|)) 106) (((-517) $) 107)) (-2256 (((-787) $) 140) (($ (-583 |#4|)) 82)) (-2058 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1547 (((-107) $ $) 69)) (-1642 (($ $ $) 89)) (** (($ $ (-703)) 92)) (* (($ $ $) 91)))
-(((-469 |#1| |#2| |#3| |#4|) (-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1642 ($ $ $)) (-15 -3848 ((-107) $)) (-15 -2814 ((-107) $)) (-15 -2224 ((-107) |#4| $)) (-15 -1204 ((-107) $ $)) (-15 -2549 ((-107) |#4| $)) (-15 -2591 ((-107) $ (-583 |#3|))) (-15 -2591 ((-107) $)) (-15 -1812 ($ $ $)) (-15 -1812 ($ (-583 $))) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ |#4|)) (-15 -1759 ($ $)) (-15 -1419 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -2058 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -3141 ((-517) $ (-583 |#3|))) (-15 -3141 ((-517) $)) (-15 -3769 ($ $)) (-15 -4014 ($ (-583 |#4|))) (-15 -4060 ($ (-583 |#4|))) (-15 -2745 ((-107) $)) (-15 -3079 ((-583 |#4|) $)) (-15 -2256 ($ (-583 |#4|))) (-15 -4145 ($ $ |#4|)) (-15 -4145 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1073))) (-15 -3382 ((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |noBranch|))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -469))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3848 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2814 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2224 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1204 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2549 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2591 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3425 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3425 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-1759 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1419 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-3141 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3769 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-4060 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2745 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3079 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-4145 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1073))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1063 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
-(-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1642 ($ $ $)) (-15 -3848 ((-107) $)) (-15 -2814 ((-107) $)) (-15 -2224 ((-107) |#4| $)) (-15 -1204 ((-107) $ $)) (-15 -2549 ((-107) |#4| $)) (-15 -2591 ((-107) $ (-583 |#3|))) (-15 -2591 ((-107) $)) (-15 -1812 ($ $ $)) (-15 -1812 ($ (-583 $))) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ |#4|)) (-15 -1759 ($ $)) (-15 -1419 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -2058 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -3141 ((-517) $ (-583 |#3|))) (-15 -3141 ((-517) $)) (-15 -3769 ($ $)) (-15 -4014 ($ (-583 |#4|))) (-15 -4060 ($ (-583 |#4|))) (-15 -2745 ((-107) $)) (-15 -3079 ((-583 |#4|) $)) (-15 -2256 ($ (-583 |#4|))) (-15 -4145 ($ $ |#4|)) (-15 -4145 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1073))) (-15 -3382 ((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |noBranch|)))
-((-1597 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 144)) (-3164 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 145)) (-3702 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 103)) (-3849 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-3984 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-2920 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 159)))
-(((-470 |#1| |#2|) (-10 -7 (-15 -1597 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3164 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3849 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3702 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3984 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2920 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1073)) (-703)) (T -470))
-((-2920 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-3984 (*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
-(-10 -7 (-15 -1597 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3164 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3849 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3702 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3984 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2920 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) 12 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 11) (($ $ $) 23)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 18)))
+((-1673 (((-583 (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-2939 (((-583 (-1070 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-2887 (((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 83)))
+(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-583 (-1070 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1673 ((-583 (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -2887 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1131 |#1|) (-1131 |#2|)) (T -463))
+((-2887 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -3809 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1131 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -3809 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-1673 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -3809 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -3809 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1131 *6)))) (-2939 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1131 *3)) (-5 *2 (-583 (-1070 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1131 *5)))))
+(-10 -7 (-15 -2939 ((-583 (-1070 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1673 ((-583 (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -2887 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703))))
+((-3420 (((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-3770 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-1199 (((-703) (-703) (-703)) 30)) (-3158 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-2886 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-1908 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-2705 ((|#1| (-623 |#1|)) 18)))
+(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -2705 (|#1| (-623 |#1|))) (-15 -3770 (|#1| (-623 |#1|) |#1| (-703))) (-15 -1908 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -1199 ((-703) (-703) (-703))) (-15 -2886 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2886 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3158 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3420 ((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $)))) (-1131 |#1|) (-379 |#1| |#2|)) (T -464))
+((-3420 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3158 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2886 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1199 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1908 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *5 (-1131 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-3770 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *5 (-1131 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1131 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))))
+(-10 -7 (-15 -2705 (|#1| (-623 |#1|))) (-15 -3770 (|#1| (-623 |#1|) |#1| (-703))) (-15 -1908 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -1199 ((-703) (-703) (-703))) (-15 -2886 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2886 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3158 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3420 ((-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3809 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))))
+((-2571 (((-107) $ $) NIL)) (-1458 (($ $) NIL)) (-3805 (($ $ $) 35)) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-2740 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4184)))) (-3056 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-2307 (((-107) $ (-1122 (-517)) (-107)) NIL (|has| $ (-6 -4184))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-1971 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-2521 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-1226 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4184)))) (-4020 (((-107) $ (-517)) NIL)) (-2446 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-3037 (((-583 (-107)) $) NIL (|has| $ (-6 -4183)))) (-1639 (($ $ $) 33)) (-2455 (($ $) NIL)) (-3764 (($ $ $) NIL)) (-3366 (($ (-703) (-107)) 23)) (-2332 (($ $ $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) 8 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL)) (-2262 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-1196 (((-583 (-107)) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL)) (-1213 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-2454 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-107) $) NIL (|has| (-517) (-779)))) (-2293 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-1254 (($ $ (-107)) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3042 (((-583 (-107)) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 24)) (-1986 (($ $ (-1122 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3685 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3105 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) 25)) (-3582 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2197 (($ (-583 (-107))) NIL)) (-2337 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2182 (((-787) $) 22)) (-3883 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-1651 (($ $ $) 31)) (-2146 (($ $) NIL)) (-2291 (($ $ $) NIL)) (-3479 (($ $ $) 39)) (-3491 (($ $) 37)) (-3465 (($ $ $) 38)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 26)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 27)) (-2283 (($ $ $) NIL)) (-2210 (((-703) $) 10 (|has| $ (-6 -4183)))))
+(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3491 ($ $)) (-15 -3479 ($ $ $)) (-15 -3465 ($ $ $)))) (-517)) (T -465))
+((-3491 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3479 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3465 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))))
+(-13 (-118) (-10 -8 (-15 -3491 ($ $)) (-15 -3479 ($ $ $)) (-15 -3465 ($ $ $))))
+((-1404 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1070 |#4|)) 34)) (-1618 (((-1070 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1070 |#4|)) 21)) (-2004 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1070 |#4|))) 45)) (-2567 (((-1070 (-1070 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
+(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1618 (|#2| (-1 |#1| |#4|) (-1070 |#4|))) (-15 -1618 ((-1070 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1404 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1070 |#4|))) (-15 -2004 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1070 |#4|)))) (-15 -2567 ((-1070 (-1070 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1131 |#1|) (-1131 |#2|) (-961)) (T -466))
+((-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1131 *5)) (-5 *2 (-1070 (-1070 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1131 *6)))) (-2004 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1070 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1131 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1131 *6)))) (-1404 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1070 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1131 *2)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1131 *5)) (-5 *2 (-1070 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1131 *4)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1070 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1131 *2)))))
+(-10 -7 (-15 -1618 (|#2| (-1 |#1| |#4|) (-1070 |#4|))) (-15 -1618 ((-1070 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1404 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1070 |#4|))) (-15 -2004 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1070 |#4|)))) (-15 -2567 ((-1070 (-1070 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2571 (((-107) $ $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1815 (((-1159) $) 18)) (-1986 (((-1057) $ (-1074)) 22)) (-1250 (((-1159) $) 14)) (-2182 (((-787) $) 20) (($ (-1057)) 19)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 8)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 7)))
+(((-467) (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $)) (-15 -2182 ($ (-1057)))))) (T -467))
+((-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1057)) (-5 *1 (-467)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-467)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-467)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-467)))))
+(-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $)) (-15 -2182 ($ (-1057)))))
+((-2558 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2583 ((|#1| |#4|) 10)) (-3882 ((|#3| |#4|) 17)))
+(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2583 (|#1| |#4|)) (-15 -3882 (|#3| |#4|)) (-15 -2558 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-909 |#1|) (-343 |#1|) (-343 |#2|)) (T -468))
+((-2558 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))))
+(-10 -7 (-15 -2583 (|#1| |#4|)) (-15 -3882 (|#3| |#4|)) (-15 -2558 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2571 (((-107) $ $) NIL)) (-3193 (((-107) $ (-583 |#3|)) 101) (((-107) $) 102)) (-2745 (((-107) $) 144)) (-2821 (($ $ |#4|) 93) (($ $ |#4| (-583 |#3|)) 97)) (-1268 (((-1064 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|)) 137 (|has| |#3| (-558 (-1074))))) (-3319 (($ $ $) 87) (($ $ |#4|) 85)) (-2955 (((-107) $) 143)) (-3431 (($ $) 105)) (-3865 (((-1057) $) NIL)) (-2551 (($ $ $) 79) (($ (-583 $)) 81)) (-4052 (((-107) |#4| $) 104)) (-2668 (((-107) $ $) 68)) (-4132 (($ (-583 |#4|)) 86)) (-3094 (((-1021) $) NIL)) (-3321 (($ (-583 |#4|)) 141)) (-3317 (((-107) $) 142)) (-2089 (($ $) 70)) (-3326 (((-583 |#4|) $) 55)) (-1489 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-4048 (((-107) |#4| $) 73)) (-2586 (((-517) $ (-583 |#3|)) 106) (((-517) $) 107)) (-2182 (((-787) $) 140) (($ (-583 |#4|)) 82)) (-1932 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1539 (((-107) $ $) 69)) (-1626 (($ $ $) 89)) (** (($ $ (-703)) 92)) (* (($ $ $) 91)))
+(((-469 |#1| |#2| |#3| |#4|) (-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1626 ($ $ $)) (-15 -2955 ((-107) $)) (-15 -2745 ((-107) $)) (-15 -4048 ((-107) |#4| $)) (-15 -2668 ((-107) $ $)) (-15 -4052 ((-107) |#4| $)) (-15 -3193 ((-107) $ (-583 |#3|))) (-15 -3193 ((-107) $)) (-15 -2551 ($ $ $)) (-15 -2551 ($ (-583 $))) (-15 -3319 ($ $ $)) (-15 -3319 ($ $ |#4|)) (-15 -2089 ($ $)) (-15 -1489 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1932 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -2586 ((-517) $ (-583 |#3|))) (-15 -2586 ((-517) $)) (-15 -3431 ($ $)) (-15 -4132 ($ (-583 |#4|))) (-15 -3321 ($ (-583 |#4|))) (-15 -3317 ((-107) $)) (-15 -3326 ((-583 |#4|) $)) (-15 -2182 ($ (-583 |#4|))) (-15 -2821 ($ $ |#4|)) (-15 -2821 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1074))) (-15 -1268 ((-1064 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |noBranch|))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -469))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1626 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-2955 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2745 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-4048 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-2668 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-4052 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-3193 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2551 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3319 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3319 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-2089 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2586 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2586 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3431 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-3321 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-3317 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2821 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-2821 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) (-1268 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1074))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1064 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
+(-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1626 ($ $ $)) (-15 -2955 ((-107) $)) (-15 -2745 ((-107) $)) (-15 -4048 ((-107) |#4| $)) (-15 -2668 ((-107) $ $)) (-15 -4052 ((-107) |#4| $)) (-15 -3193 ((-107) $ (-583 |#3|))) (-15 -3193 ((-107) $)) (-15 -2551 ($ $ $)) (-15 -2551 ($ (-583 $))) (-15 -3319 ($ $ $)) (-15 -3319 ($ $ |#4|)) (-15 -2089 ($ $)) (-15 -1489 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1932 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -2586 ((-517) $ (-583 |#3|))) (-15 -2586 ((-517) $)) (-15 -3431 ($ $)) (-15 -4132 ($ (-583 |#4|))) (-15 -3321 ($ (-583 |#4|))) (-15 -3317 ((-107) $)) (-15 -3326 ((-583 |#4|) $)) (-15 -2182 ($ (-583 |#4|))) (-15 -2821 ($ $ |#4|)) (-15 -2821 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1074))) (-15 -1268 ((-1064 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |noBranch|)))
+((-4059 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 144)) (-2810 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 145)) (-4069 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 103)) (-2965 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-3853 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-1506 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 159)))
+(((-470 |#1| |#2|) (-10 -7 (-15 -4059 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2810 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2965 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -4069 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3853 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1506 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1074)) (-703)) (T -470))
+((-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-3853 (*1 *2 *3) (-12 (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1074))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
+(-10 -7 (-15 -4059 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2810 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2965 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -4069 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3853 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1506 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1343 (($ |#1| |#2|) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-3302 ((|#2| $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-2297 (($) 12 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) 11) (($ $ $) 23)) (-1626 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 18)))
(((-471 |#1| |#2|) (-13 (-21) (-473 |#1| |#2|)) (-21) (-779)) (T -471))
NIL
(-13 (-21) (-473 |#1| |#2|))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 12)) (-3092 (($) NIL T CONST)) (-1212 (($ $) 26)) (-1339 (($ |#1| |#2|) 23)) (-1893 (($ (-1 |#1| |#1|) $) 25)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) 10 T CONST)) (-1547 (((-107) $ $) NIL)) (-1642 (($ $ $) 17)) (* (($ (-843) $) NIL) (($ (-703) $) 22)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 12)) (-3473 (($) NIL T CONST)) (-1217 (($ $) 26)) (-1343 (($ |#1| |#2|) 23)) (-1857 (($ (-1 |#1| |#1|) $) 25)) (-3302 ((|#2| $) NIL)) (-1192 ((|#1| $) 27)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-2297 (($) 10 T CONST)) (-1539 (((-107) $ $) NIL)) (-1626 (($ $ $) 17)) (* (($ (-843) $) NIL) (($ (-703) $) 22)))
(((-472 |#1| |#2|) (-13 (-23) (-473 |#1| |#2|)) (-23) (-779)) (T -472))
NIL
(-13 (-23) (-473 |#1| |#2|))
-((-2750 (((-107) $ $) 7)) (-1212 (($ $) 13)) (-1339 (($ |#1| |#2|) 16)) (-1893 (($ (-1 |#1| |#1|) $) 17)) (-1968 ((|#2| $) 14)) (-1191 ((|#1| $) 15)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
-(((-473 |#1| |#2|) (-1184) (-1003) (-779)) (T -473))
-((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) (-1339 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))))
-(-13 (-1003) (-10 -8 (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -1339 ($ |t#1| |t#2|)) (-15 -1191 (|t#1| $)) (-15 -1968 (|t#2| $)) (-15 -1212 ($ $))))
+((-2571 (((-107) $ $) 7)) (-1217 (($ $) 13)) (-1343 (($ |#1| |#2|) 16)) (-1857 (($ (-1 |#1| |#1|) $) 17)) (-3302 ((|#2| $) 14)) (-1192 ((|#1| $) 15)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)))
+(((-473 |#1| |#2|) (-1185) (-1003) (-779)) (T -473))
+((-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) (-1343 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) (-1192 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))))
+(-13 (-1003) (-10 -8 (-15 -1857 ($ (-1 |t#1| |t#1|) $)) (-15 -1343 ($ |t#1| |t#2|)) (-15 -1192 (|t#1| $)) (-15 -3302 (|t#2| $)) (-15 -1217 ($ $))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 13)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1343 (($ |#1| |#2|) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-3302 ((|#2| $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-2297 (($) NIL T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 13)) (-1626 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
(((-474 |#1| |#2|) (-13 (-724) (-473 |#1| |#2|)) (-724) (-779)) (T -474))
NIL
(-13 (-724) (-473 |#1| |#2|))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) 16)) (-4038 (((-3 $ "failed") $ $) 13)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1754 (($ $ $) 16)) (-1387 (((-3 $ "failed") $ $) 13)) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1343 (($ |#1| |#2|) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-3302 ((|#2| $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL)) (-2297 (($) NIL T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1626 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
(((-475 |#1| |#2|) (-13 (-725) (-473 |#1| |#2|)) (-725) (-779)) (T -475))
NIL
(-13 (-725) (-473 |#1| |#2|))
-((-2750 (((-107) $ $) NIL)) (-1212 (($ $) 24)) (-1339 (($ |#1| |#2|) 21)) (-1893 (($ (-1 |#1| |#1|) $) 23)) (-1968 ((|#2| $) 26)) (-1191 ((|#1| $) 25)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 20)) (-1547 (((-107) $ $) 13)))
+((-2571 (((-107) $ $) NIL)) (-1217 (($ $) 24)) (-1343 (($ |#1| |#2|) 21)) (-1857 (($ (-1 |#1| |#1|) $) 23)) (-3302 ((|#2| $) 26)) (-1192 ((|#1| $) 25)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 20)) (-1539 (((-107) $ $) 13)))
(((-476 |#1| |#2|) (-473 |#1| |#2|) (-1003) (-779)) (T -476))
NIL
(-473 |#1| |#2|)
-((-2051 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -2051 (|#1| |#1| |#2| |#3|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1003) (-1108)) (T -477))
-NIL
-(-10 -8 (-15 -2051 (|#1| |#1| |#2| |#3|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#3|))))
-((-2051 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-478 |#1| |#2|) (-1184) (-1003) (-1108)) (T -478))
-((-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1108)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1108)))))
-(-13 (-10 -8 (-15 -2051 ($ $ |t#1| |t#2|)) (-15 -2051 ($ $ (-583 |t#1|) (-583 |t#2|)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 16)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 18)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) 23)) (-2902 ((|#2| $ (-517)) 21)) (-3420 (($ (-1 |#1| |#1|) $) 46)) (-2777 (($ (-1 |#2| |#2|) $) 43)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) 53 (|has| |#2| (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 42) (($ |#1|) NIL)) (-2720 ((|#2| |#1| $) 49)) (-2396 (($) 11 T CONST)) (-1547 (((-107) $ $) 29)) (-1642 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31)))
+((-1979 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -1979 (|#1| |#1| |#2| |#3|)) (-15 -1979 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1003) (-1109)) (T -477))
+NIL
+(-10 -8 (-15 -1979 (|#1| |#1| |#2| |#3|)) (-15 -1979 (|#1| |#1| (-583 |#2|) (-583 |#3|))))
+((-1979 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-478 |#1| |#2|) (-1185) (-1003) (-1109)) (T -478))
+((-1979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1109)))) (-1979 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1109)))))
+(-13 (-10 -8 (-15 -1979 ($ $ |t#1| |t#2|)) (-15 -1979 ($ $ (-583 |t#1|) (-583 |t#2|)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 16)) (-4040 (((-583 (-2 (|:| |gen| |#1|) (|:| -2459 |#2|))) $) 18)) (-1387 (((-3 $ "failed") $ $) NIL)) (-1598 (((-703) $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-2445 ((|#1| $ (-517)) 23)) (-1342 ((|#2| $ (-517)) 21)) (-3276 (($ (-1 |#1| |#1|) $) 46)) (-2436 (($ (-1 |#2| |#2|) $) 43)) (-3865 (((-1057) $) NIL)) (-1743 (($ $ $) 53 (|has| |#2| (-724)))) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 42) (($ |#1|) NIL)) (-3086 ((|#2| |#1| $) 49)) (-2297 (($) 11 T CONST)) (-1539 (((-107) $ $) 29)) (-1626 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31)))
(((-479 |#1| |#2| |#3|) (-293 |#1| |#2|) (-1003) (-123) |#2|) (T -479))
NIL
(-293 |#1| |#2|)
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2484 (((-107) (-107)) 24)) (-2411 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 51)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3483 (($ $) 54 (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 43)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3809 (($ $ (-517)) 13)) (-4019 (((-703) $) 11)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 22)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 20 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) 19 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1977 (($ (-583 |#1|)) 28)) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 18 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 39)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 14)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1121 (-517))) NIL)) (-2154 (($ $ (-1121 (-517))) 49) (($ $ (-517)) 44)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) 40 (|has| $ (-6 -4181)))) (-2433 (($ $) 31)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) 41) (($ $ |#1|) 38)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 15 (|has| $ (-6 -4180)))))
-(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107))))) (-1108) (-517)) (T -480))
-((-1977 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 *2))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))))
-(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-530 |#1|) "failed") $) NIL)) (-3189 (((-530 |#1|) $) NIL)) (-1967 (($ (-1153 (-530 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-530 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-530 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-530 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-1506 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-530 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-530 |#1|) (-338)))) (-1704 (((-1069 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-2729 (((-1069 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1069 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-3600 (($ $ (-1069 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| (-530 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-530 |#1|))) NIL)) (-1766 (($) NIL (|has| (-530 |#1|) (-338)))) (-1224 (($) NIL (|has| (-530 |#1|) (-338)))) (-4114 (((-1153 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL)))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-1718 (((-107) (-107)) 24)) (-2307 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-2582 (($ (-1 (-107) |#1|) $) 51)) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-2573 (($ $) 54 (|has| |#1| (-1003)))) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2111 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 43)) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2446 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-2548 (($ $ (-517)) 13)) (-1214 (((-703) $) 11)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3366 (($ (-703) |#1|) 22)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) 20 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2581 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) 19 (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3816 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-2454 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3388 (($ (-583 |#1|)) 28)) (-1631 ((|#1| $) NIL (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) 18 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 39)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 14)) (-1986 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1122 (-517))) NIL)) (-1628 (($ $ (-1122 (-517))) 49) (($ $ (-517)) 44)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) 40 (|has| $ (-6 -4184)))) (-2322 (($ $) 31)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-1286 (($ $ $) 41) (($ $ |#1|) 38)) (-2337 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2210 (((-703) $) 15 (|has| $ (-6 -4183)))))
+(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -3388 ($ (-583 |#1|))) (-15 -1214 ((-703) $)) (-15 -2548 ($ $ (-517))) (-15 -1718 ((-107) (-107))))) (-1109) (-517)) (T -480))
+((-3388 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-1214 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-517)))) (-2548 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 *2))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-517)))))
+(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -3388 ($ (-583 |#1|))) (-15 -1214 ((-703) $)) (-15 -2548 ($ $ (-517))) (-15 -1718 ((-107) (-107)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-530 |#1|) "failed") $) NIL)) (-3076 (((-530 |#1|) $) NIL)) (-3291 (($ (-1154 (-530 |#1|))) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-530 |#1|) (-338)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) NIL (|has| (-530 |#1|) (-338)))) (-1337 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2990 (($ $ (-703)) NIL (-3763 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3763 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2965 (((-107) $) NIL)) (-1921 (((-843) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-843)) $) NIL (-3763 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2955 (((-107) $) NIL)) (-1441 (($) NIL (|has| (-530 |#1|) (-338)))) (-2327 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2289 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-3744 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 (-530 |#1|)) $) NIL) (((-1070 $) $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-2903 (((-843) $) NIL (|has| (-530 |#1|) (-338)))) (-3740 (((-1070 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-3153 (((-1070 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1070 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-2426 (($ $ (-1070 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-3353 (($ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-2039 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-3107 (($) NIL (|has| (-530 |#1|) (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-3693 (((-388 $) $) NIL)) (-3738 (((-765 (-843))) NIL) (((-843)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3763 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2586 (((-125)) NIL)) (-1699 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-4007 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-1457 (((-1070 (-530 |#1|))) NIL)) (-3788 (($) NIL (|has| (-530 |#1|) (-338)))) (-2379 (($) NIL (|has| (-530 |#1|) (-338)))) (-2575 (((-1154 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1154 $)) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-1589 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3763 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2496 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-2553 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL)))
(((-481 |#1| |#2|) (-299 (-530 |#1|)) (-843) (-843)) (T -481))
NIL
(-299 (-530 |#1|))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) 33)) (-4087 (($ $ (-517) |#4|) NIL)) (-3739 (($ $ (-517) |#5|) NIL)) (-3092 (($) NIL T CONST)) (-1939 ((|#4| $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) 32)) (-1377 ((|#1| $ (-517) (-517)) 30)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) 26)) (-3462 (($ (-703) (-703) |#1|) 23)) (-1486 (((-703) $) 28)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) 24)) (-1338 (((-517) $) 25)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 27)) (-1307 (((-517) $) 29)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) 36 (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 15)) (-1449 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 ((|#5| $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1108) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) (-517) |#1|) 33)) (-3635 (($ $ (-517) |#4|) NIL)) (-3160 (($ $ (-517) |#5|) NIL)) (-3473 (($) NIL T CONST)) (-3023 ((|#4| $ (-517)) NIL)) (-1226 ((|#1| $ (-517) (-517) |#1|) 32)) (-4020 ((|#1| $ (-517) (-517)) 30)) (-3037 (((-583 |#1|) $) NIL)) (-4122 (((-703) $) 26)) (-3366 (($ (-703) (-703) |#1|) 23)) (-1875 (((-703) $) 28)) (-4064 (((-107) $ (-703)) NIL)) (-2734 (((-517) $) 24)) (-2397 (((-517) $) 25)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3070 (((-517) $) 27)) (-2820 (((-517) $) 29)) (-1213 (($ (-1 |#1| |#1|) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) 36 (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1254 (($ $ |#1|) NIL)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 14)) (-1326 (($) 15)) (-1986 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-1377 ((|#5| $ (-517)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1109) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482))
NIL
(-55 |#1| |#4| |#5|)
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 57 (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 55 (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 23 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 21 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4181))) (($ $ "rest" $) 24 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) 28 (|has| $ (-6 -4181)))) (-3093 (($ $) 29)) (-1660 (($ $) 18) (($ $ (-703)) 32)) (-3483 (($ $) 53 (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) 27 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 31 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 56)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 51 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) 50 (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) 13) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 12)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) 17)) (-1746 (($) 16)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2655 (((-107) $) 33)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) 35)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) 34)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 26)) (-2568 (($ $ $) 52) (($ $ |#1|) NIL)) (-2452 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (((-787) $) 45 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 47 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 9 (|has| $ (-6 -4180)))))
-(((-483 |#1| |#2|) (-603 |#1|) (-1108) (-517)) (T -483))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) NIL)) (-2864 ((|#1| $) NIL)) (-2602 (($ $) NIL)) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) 57 (|has| $ (-6 -4184)))) (-2866 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2740 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 55 (|has| $ (-6 -4184)))) (-3056 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-4072 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3499 (($ $ $) 23 (|has| $ (-6 -4184)))) (-3573 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3043 ((|#1| $ |#1|) 21 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4184))) (($ $ "rest" $) 24 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2849 ((|#1| $) NIL)) (-3473 (($) NIL T CONST)) (-1227 (($ $) 28 (|has| $ (-6 -4184)))) (-2979 (($ $) 29)) (-1644 (($ $) 18) (($ $ (-703)) 32)) (-2573 (($ $) 53 (|has| |#1| (-1003)))) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2111 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-1971 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2570 (((-107) $) NIL)) (-2446 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-3037 (((-583 |#1|) $) 27 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3366 (($ (-703) |#1|) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) 31 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2581 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 56)) (-2262 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 51 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1524 (($ |#1|) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) NIL)) (-3865 (((-1057) $) 50 (|has| |#1| (-1003)))) (-1988 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3816 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2454 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) 13) (($ $ (-703)) NIL)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-2660 (((-107) $) NIL)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 12)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) 17)) (-1326 (($) 16)) (-1986 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1122 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-1482 (((-517) $ $) NIL)) (-1628 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3685 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-2562 (((-107) $) 33)) (-4084 (($ $) NIL)) (-3145 (($ $) NIL (|has| $ (-6 -4184)))) (-2943 (((-703) $) NIL)) (-2103 (($ $) 35)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) 34)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 26)) (-1286 (($ $ $) 52) (($ $ |#1|) NIL)) (-2337 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2182 (((-787) $) 45 (|has| |#1| (-557 (-787))))) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) 47 (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2210 (((-703) $) 9 (|has| $ (-6 -4183)))))
+(((-483 |#1| |#2|) (-603 |#1|) (-1109) (-517)) (T -483))
NIL
(-603 |#1|)
-((-2468 ((|#4| |#4|) 26)) (-2261 (((-703) |#4|) 31)) (-1948 (((-703) |#4|) 32)) (-3706 (((-583 |#3|) |#4|) 37 (|has| |#3| (-6 -4181)))) (-2104 (((-3 |#4| "failed") |#4|) 47)) (-1431 ((|#4| |#4|) 40)) (-3057 ((|#1| |#4|) 39)))
-(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2468 (|#4| |#4|)) (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (IF (|has| |#3| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|) (-15 -3057 (|#1| |#4|)) (-15 -1431 (|#4| |#4|)) (-15 -2104 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484))
-((-2104 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3057 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-3706 (*1 *2 *3) (-12 (|has| *6 (-6 -4181)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2261 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -2468 (|#4| |#4|)) (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (IF (|has| |#3| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|) (-15 -3057 (|#1| |#4|)) (-15 -1431 (|#4| |#4|)) (-15 -2104 ((-3 |#4| "failed") |#4|)))
-((-2468 ((|#8| |#4|) 20)) (-3706 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4181)))) (-2104 (((-3 |#8| "failed") |#4|) 23)))
-(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2468 (|#8| |#4|)) (-15 -2104 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-909 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485))
-((-3706 (*1 *2 *3) (-12 (|has| *9 (-6 -4181)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-2104 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))))
-(-10 -7 (-15 -2468 (|#8| |#4|)) (-15 -2104 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) NIL)) (-1231 (($ $ $) NIL)) (-2033 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) 12)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-3739 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-3487 (($ (-703) |#1|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 19 (|has| |#1| (-278)))) (-1939 (((-548 |#1| |#3|) $ (-517)) NIL)) (-2261 (((-703) $) 22 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) 24 (|has| |#1| (-509)))) (-3706 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) 17 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 10)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 11)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#1|))) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) 15 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-548 |#1| |#2|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+((-1558 ((|#4| |#4|) 26)) (-3795 (((-703) |#4|) 31)) (-3101 (((-703) |#4|) 32)) (-4163 (((-583 |#3|) |#4|) 37 (|has| |#3| (-6 -4184)))) (-2263 (((-3 |#4| "failed") |#4|) 47)) (-2078 ((|#4| |#4|) 40)) (-3139 ((|#1| |#4|) 39)))
+(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1558 (|#4| |#4|)) (-15 -3795 ((-703) |#4|)) (-15 -3101 ((-703) |#4|)) (IF (|has| |#3| (-6 -4184)) (-15 -4163 ((-583 |#3|) |#4|)) |noBranch|) (-15 -3139 (|#1| |#4|)) (-15 -2078 (|#4| |#4|)) (-15 -2263 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484))
+((-2263 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2078 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3139 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-4163 (*1 *2 *3) (-12 (|has| *6 (-6 -4184)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3795 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -1558 (|#4| |#4|)) (-15 -3795 ((-703) |#4|)) (-15 -3101 ((-703) |#4|)) (IF (|has| |#3| (-6 -4184)) (-15 -4163 ((-583 |#3|) |#4|)) |noBranch|) (-15 -3139 (|#1| |#4|)) (-15 -2078 (|#4| |#4|)) (-15 -2263 ((-3 |#4| "failed") |#4|)))
+((-1558 ((|#8| |#4|) 20)) (-4163 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4184)))) (-2263 (((-3 |#8| "failed") |#4|) 23)))
+(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1558 (|#8| |#4|)) (-15 -2263 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4184)) (-15 -4163 ((-583 |#3|) |#4|)) |noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-909 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485))
+((-4163 (*1 *2 *3) (-12 (|has| *9 (-6 -4184)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-2263 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))))
+(-10 -7 (-15 -1558 (|#8| |#4|)) (-15 -2263 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4184)) (-15 -4163 ((-583 |#3|) |#4|)) |noBranch|))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3437 (($ (-703) (-703)) NIL)) (-3497 (($ $ $) NIL)) (-2729 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-2794 (((-107) $) NIL)) (-3758 (($ $ (-517) (-517)) 12)) (-2443 (($ $ (-517) (-517)) NIL)) (-3834 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4068 (($ $) NIL)) (-2119 (((-107) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-2165 (($ $ (-517) (-517) $) NIL)) (-2307 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3635 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-3160 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-2609 (($ (-703) |#1|) NIL)) (-3473 (($) NIL T CONST)) (-1558 (($ $) 19 (|has| |#1| (-278)))) (-3023 (((-548 |#1| |#3|) $ (-517)) NIL)) (-3795 (((-703) $) 22 (|has| |#1| (-509)))) (-1226 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4020 ((|#1| $ (-517) (-517)) NIL)) (-3037 (((-583 |#1|) $) NIL)) (-3101 (((-703) $) 24 (|has| |#1| (-509)))) (-4163 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-4122 (((-703) $) NIL)) (-3366 (($ (-703) (-703) |#1|) NIL)) (-1875 (((-703) $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-3464 ((|#1| $) 17 (|has| |#1| (-6 (-4185 "*"))))) (-2734 (((-517) $) 10)) (-2397 (((-517) $) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3070 (((-517) $) 11)) (-2820 (((-517) $) NIL)) (-1813 (($ (-583 (-583 |#1|))) NIL)) (-1213 (($ (-1 |#1| |#1|) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1263 (((-583 (-583 |#1|)) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2263 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-3773 (($ $ $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1254 (($ $ |#1|) NIL)) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3681 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1274 (((-107) $) NIL)) (-3139 ((|#1| $) 15 (|has| |#1| (-6 (-4185 "*"))))) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-1377 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-548 |#1| |#2|)) NIL)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3565 (((-107) $) NIL)) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $ $) NIL) (($ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
(((-486 |#1| |#2| |#3|) (-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) (-961) (-517) (-517)) (T -486))
NIL
(-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|))
-((-1992 (((-1069 |#1|) (-703)) 74)) (-1472 (((-1153 |#1|) (-1153 |#1|) (-843)) 67)) (-4052 (((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|) 82)) (-3313 (((-1153 |#1|) (-1153 |#1|) (-703)) 36)) (-3209 (((-1153 |#1|) (-843)) 69)) (-3122 (((-1153 |#1|) (-1153 |#1|) (-517)) 24)) (-1913 (((-1069 |#1|) (-1153 |#1|)) 75)) (-2453 (((-1153 |#1|) (-843)) 93)) (-2434 (((-107) (-1153 |#1|)) 78)) (-1506 (((-1153 |#1|) (-1153 |#1|) (-843)) 59)) (-3777 (((-1069 |#1|) (-1153 |#1|)) 87)) (-1549 (((-843) (-1153 |#1|)) 56)) (-4118 (((-1153 |#1|) (-1153 |#1|)) 30)) (-3448 (((-1153 |#1|) (-843) (-843)) 95)) (-2583 (((-1153 |#1|) (-1153 |#1|) (-1021) (-1021)) 23)) (-3844 (((-1153 |#1|) (-1153 |#1|) (-703) (-1021)) 37)) (-1753 (((-1153 (-1153 |#1|)) (-843)) 92)) (-1667 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 79)) (** (((-1153 |#1|) (-1153 |#1|) (-517)) 43)) (* (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 25)))
-(((-487 |#1|) (-10 -7 (-15 -4052 ((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|)) (-15 -3209 ((-1153 |#1|) (-843))) (-15 -3448 ((-1153 |#1|) (-843) (-843))) (-15 -1913 ((-1069 |#1|) (-1153 |#1|))) (-15 -1992 ((-1069 |#1|) (-703))) (-15 -3844 ((-1153 |#1|) (-1153 |#1|) (-703) (-1021))) (-15 -3313 ((-1153 |#1|) (-1153 |#1|) (-703))) (-15 -2583 ((-1153 |#1|) (-1153 |#1|) (-1021) (-1021))) (-15 -3122 ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1667 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1506 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -1472 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -4118 ((-1153 |#1|) (-1153 |#1|))) (-15 -1549 ((-843) (-1153 |#1|))) (-15 -2434 ((-107) (-1153 |#1|))) (-15 -1753 ((-1153 (-1153 |#1|)) (-843))) (-15 -2453 ((-1153 |#1|) (-843))) (-15 -3777 ((-1069 |#1|) (-1153 |#1|)))) (-319)) (T -487))
-((-3777 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-1472 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1667 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3122 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2583 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3313 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3844 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1153 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))) (-3448 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1158)) (-5 *1 (-487 *4)))))
-(-10 -7 (-15 -4052 ((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|)) (-15 -3209 ((-1153 |#1|) (-843))) (-15 -3448 ((-1153 |#1|) (-843) (-843))) (-15 -1913 ((-1069 |#1|) (-1153 |#1|))) (-15 -1992 ((-1069 |#1|) (-703))) (-15 -3844 ((-1153 |#1|) (-1153 |#1|) (-703) (-1021))) (-15 -3313 ((-1153 |#1|) (-1153 |#1|) (-703))) (-15 -2583 ((-1153 |#1|) (-1153 |#1|) (-1021) (-1021))) (-15 -3122 ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1667 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1506 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -1472 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -4118 ((-1153 |#1|) (-1153 |#1|))) (-15 -1549 ((-843) (-1153 |#1|))) (-15 -2434 ((-107) (-1153 |#1|))) (-15 -1753 ((-1153 (-1153 |#1|)) (-843))) (-15 -2453 ((-1153 |#1|) (-843))) (-15 -3777 ((-1069 |#1|) (-1153 |#1|))))
-((-3488 (((-1 |#1| |#1|) |#1|) 11)) (-1383 (((-1 |#1| |#1|)) 10)))
-(((-488 |#1|) (-10 -7 (-15 -1383 ((-1 |#1| |#1|))) (-15 -3488 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488))
-((-3488 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-1383 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(-10 -7 (-15 -1383 ((-1 |#1| |#1|))) (-15 -3488 ((-1 |#1| |#1|) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ (-703) |#1|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 (-703) (-703)) $) NIL)) (-1968 ((|#1| $) NIL)) (-1191 (((-703) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 20)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+((-3584 (((-1070 |#1|) (-703)) 74)) (-1470 (((-1154 |#1|) (-1154 |#1|) (-843)) 67)) (-3231 (((-1159) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) |#1|) 82)) (-1861 (((-1154 |#1|) (-1154 |#1|) (-703)) 36)) (-3098 (((-1154 |#1|) (-843)) 69)) (-2456 (((-1154 |#1|) (-1154 |#1|) (-517)) 24)) (-4026 (((-1070 |#1|) (-1154 |#1|)) 75)) (-1441 (((-1154 |#1|) (-843)) 93)) (-2327 (((-107) (-1154 |#1|)) 78)) (-2289 (((-1154 |#1|) (-1154 |#1|) (-843)) 59)) (-3523 (((-1070 |#1|) (-1154 |#1|)) 87)) (-2903 (((-843) (-1154 |#1|)) 56)) (-4123 (((-1154 |#1|) (-1154 |#1|)) 30)) (-3353 (((-1154 |#1|) (-843) (-843)) 95)) (-3122 (((-1154 |#1|) (-1154 |#1|) (-1021) (-1021)) 23)) (-2894 (((-1154 |#1|) (-1154 |#1|) (-703) (-1021)) 37)) (-3809 (((-1154 (-1154 |#1|)) (-843)) 92)) (-1649 (((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)) 79)) (** (((-1154 |#1|) (-1154 |#1|) (-517)) 43)) (* (((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)) 25)))
+(((-487 |#1|) (-10 -7 (-15 -3231 ((-1159) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) |#1|)) (-15 -3098 ((-1154 |#1|) (-843))) (-15 -3353 ((-1154 |#1|) (-843) (-843))) (-15 -4026 ((-1070 |#1|) (-1154 |#1|))) (-15 -3584 ((-1070 |#1|) (-703))) (-15 -2894 ((-1154 |#1|) (-1154 |#1|) (-703) (-1021))) (-15 -1861 ((-1154 |#1|) (-1154 |#1|) (-703))) (-15 -3122 ((-1154 |#1|) (-1154 |#1|) (-1021) (-1021))) (-15 -2456 ((-1154 |#1|) (-1154 |#1|) (-517))) (-15 ** ((-1154 |#1|) (-1154 |#1|) (-517))) (-15 * ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1649 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -2289 ((-1154 |#1|) (-1154 |#1|) (-843))) (-15 -1470 ((-1154 |#1|) (-1154 |#1|) (-843))) (-15 -4123 ((-1154 |#1|) (-1154 |#1|))) (-15 -2903 ((-843) (-1154 |#1|))) (-15 -2327 ((-107) (-1154 |#1|))) (-15 -3809 ((-1154 (-1154 |#1|)) (-843))) (-15 -1441 ((-1154 |#1|) (-843))) (-15 -3523 ((-1070 |#1|) (-1154 |#1|)))) (-319)) (T -487))
+((-3523 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 (-1154 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))) (-4123 (*1 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-1470 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2289 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1649 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2456 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3122 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1861 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2894 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1154 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-4026 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)))) (-3353 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1159)) (-5 *1 (-487 *4)))))
+(-10 -7 (-15 -3231 ((-1159) (-1154 (-583 (-2 (|:| -3088 |#1|) (|:| -3353 (-1021))))) |#1|)) (-15 -3098 ((-1154 |#1|) (-843))) (-15 -3353 ((-1154 |#1|) (-843) (-843))) (-15 -4026 ((-1070 |#1|) (-1154 |#1|))) (-15 -3584 ((-1070 |#1|) (-703))) (-15 -2894 ((-1154 |#1|) (-1154 |#1|) (-703) (-1021))) (-15 -1861 ((-1154 |#1|) (-1154 |#1|) (-703))) (-15 -3122 ((-1154 |#1|) (-1154 |#1|) (-1021) (-1021))) (-15 -2456 ((-1154 |#1|) (-1154 |#1|) (-517))) (-15 ** ((-1154 |#1|) (-1154 |#1|) (-517))) (-15 * ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1649 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -2289 ((-1154 |#1|) (-1154 |#1|) (-843))) (-15 -1470 ((-1154 |#1|) (-1154 |#1|) (-843))) (-15 -4123 ((-1154 |#1|) (-1154 |#1|))) (-15 -2903 ((-843) (-1154 |#1|))) (-15 -2327 ((-107) (-1154 |#1|))) (-15 -3809 ((-1154 (-1154 |#1|)) (-843))) (-15 -1441 ((-1154 |#1|) (-843))) (-15 -3523 ((-1070 |#1|) (-1154 |#1|))))
+((-3393 (((-1 |#1| |#1|) |#1|) 11)) (-2783 (((-1 |#1| |#1|)) 10)))
+(((-488 |#1|) (-10 -7 (-15 -2783 ((-1 |#1| |#1|))) (-15 -3393 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488))
+((-3393 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-2783 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(-10 -7 (-15 -2783 ((-1 |#1| |#1|))) (-15 -3393 ((-1 |#1| |#1|) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1754 (($ $ $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1343 (($ (-703) |#1|) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 (-703) (-703)) $) NIL)) (-3302 ((|#1| $) NIL)) (-1192 (((-703) $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 20)) (-2297 (($) NIL T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1626 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
(((-489 |#1|) (-13 (-725) (-473 (-703) |#1|)) (-779)) (T -489))
NIL
(-13 (-725) (-473 (-703) |#1|))
-((-1657 (((-583 |#2|) (-1069 |#1|) |#3|) 83)) (-1252 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|))) 99)) (-4084 (((-1069 |#1|) (-623 |#1|)) 95)))
-(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -4084 ((-1069 |#1|) (-623 |#1|))) (-15 -1657 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -1252 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490))
-((-1252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1069 *6)) (-1069 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1069 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
-(-10 -7 (-15 -4084 ((-1069 |#1|) (-623 |#1|))) (-15 -1657 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -1252 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|)))))
-((-2699 (((-772 (-517))) 11)) (-2722 (((-772 (-517))) 13)) (-2676 (((-765 (-517))) 8)))
-(((-491) (-10 -7 (-15 -2676 ((-765 (-517)))) (-15 -2699 ((-772 (-517)))) (-15 -2722 ((-772 (-517)))))) (T -491))
-((-2722 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2699 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2676 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))))
-(-10 -7 (-15 -2676 ((-765 (-517)))) (-15 -2699 ((-772 (-517)))) (-15 -2722 ((-772 (-517)))))
-((-3537 (((-493) (-1073)) 15)) (-2659 ((|#1| (-493)) 20)))
-(((-492 |#1|) (-10 -7 (-15 -3537 ((-493) (-1073))) (-15 -2659 (|#1| (-493)))) (-1108)) (T -492))
-((-2659 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1108)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1108)))))
-(-10 -7 (-15 -3537 ((-493) (-1073))) (-15 -2659 (|#1| (-493))))
-((-2750 (((-107) $ $) NIL)) (-3970 (((-1056) $) 46)) (-2710 (((-107) $) 43)) (-3881 (((-1073) $) 44)) (-2347 (((-107) $) 41)) (-3890 (((-1056) $) 42)) (-1533 (((-107) $) NIL)) (-2636 (((-107) $) NIL)) (-3567 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-1411 (($ $ (-583 (-1073))) 20)) (-2659 (((-51) $) 22)) (-1973 (((-107) $) NIL)) (-3912 (((-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1234 (($ $ (-583 (-1073)) (-1073)) 58)) (-2056 (((-107) $) NIL)) (-4005 (((-199) $) NIL)) (-2219 (($ $) 38)) (-1556 (((-787) $) NIL)) (-2131 (((-107) $ $) NIL)) (-1449 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3814 (((-583 $) $) 28)) (-1970 (((-1073) (-583 $)) 47)) (-3645 (($ (-583 $)) 51) (($ (-1056)) NIL) (($ (-1073)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1007) $) 11) (($ (-1007)) 12)) (-3628 (((-1073) (-1073) (-583 $)) 50)) (-2256 (((-787) $) NIL)) (-2705 (($ $) 49)) (-2694 (($ $) 48)) (-4146 (($ $ (-583 $)) 55)) (-1491 (((-107) $) 27)) (-2396 (($) 9 T CONST)) (-2409 (($) 10 T CONST)) (-1547 (((-107) $ $) 59)) (-1667 (($ $ $) 64)) (-1642 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-2296 (((-517) $) NIL)))
-(((-493) (-13 (-1006 (-1056) (-1073) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2659 ((-51) $)) (-15 -3645 ($ (-1007))) (-15 -4146 ($ $ (-583 $))) (-15 -1234 ($ $ (-583 (-1073)) (-1073))) (-15 -1411 ($ $ (-583 (-1073)))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -1619) (-15 1 ($) -1619) (-15 -2219 ($ $)) (-15 -3970 ((-1056) $)) (-15 -1970 ((-1073) (-583 $))) (-15 -3628 ((-1073) (-1073) (-583 $)))))) (T -493))
-((-2659 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) (-4146 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-1234 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1073)) (-5 *1 (-493)))) (-1411 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-493)))) (-1642 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1667 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-2396 (*1 *1) (-5 *1 (-493))) (-2409 (*1 *1) (-5 *1 (-493))) (-2219 (*1 *1 *1) (-5 *1 (-493))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-493)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1073)) (-5 *1 (-493)))) (-3628 (*1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
-(-13 (-1006 (-1056) (-1073) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2659 ((-51) $)) (-15 -3645 ($ (-1007))) (-15 -4146 ($ $ (-583 $))) (-15 -1234 ($ $ (-583 (-1073)) (-1073))) (-15 -1411 ($ $ (-583 (-1073)))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-2396) ($) -1619) (-15 (-2409) ($) -1619) (-15 -2219 ($ $)) (-15 -3970 ((-1056) $)) (-15 -1970 ((-1073) (-583 $))) (-15 -3628 ((-1073) (-1073) (-583 $)))))
-((-4076 ((|#2| |#2|) 17)) (-3599 ((|#2| |#2|) 13)) (-2667 ((|#2| |#2| (-517) (-517)) 20)) (-2825 ((|#2| |#2|) 15)))
-(((-494 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1145 |#1|)) (T -494))
-((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1145 *4)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))))
-(-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517))))
-((-3344 (((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073))) 32)) (-2730 (((-583 |#2|) (-874 |#1|) |#3|) 53) (((-583 |#2|) (-1069 |#1|) |#3|) 52)) (-3429 (((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|) 87)))
-(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -2730 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -2730 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -3429 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|)) (-15 -3344 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073))))) (-421) (-333) (-13 (-333) (-777))) (T -495))
-((-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1073))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-3429 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -2730 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -2730 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -3429 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|)) (-15 -3344 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073)))))
-((-3271 ((|#2| |#2| |#1|) 17)) (-3903 ((|#2| (-583 |#2|)) 26)) (-3845 ((|#2| (-583 |#2|)) 45)))
-(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3903 (|#2| (-583 |#2|))) (-15 -3845 (|#2| (-583 |#2|))) (-15 -3271 (|#2| |#2| |#1|))) (-278) (-1130 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496))
-((-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1130 *3)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
-(-10 -7 (-15 -3903 (|#2| (-583 |#2|))) (-15 -3845 (|#2| (-583 |#2|))) (-15 -3271 (|#2| |#2| |#1|)))
-((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|))) 164)))
-(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|)))) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -497))
-((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1069 *8)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))))
-(-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|)))) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|)))))
-((-4076 ((|#4| |#4|) 73)) (-3599 ((|#4| |#4|) 69)) (-2667 ((|#4| |#4| (-517) (-517)) 75)) (-2825 ((|#4| |#4|) 71)))
-(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3599 (|#4| |#4|)) (-15 -2825 (|#4| |#4|)) (-15 -4076 (|#4| |#4|)) (-15 -2667 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1130 |#1|) (-657 |#1| |#2|) (-1145 |#3|)) (T -498))
-((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1130 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1145 *6)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))))
-(-10 -7 (-15 -3599 (|#4| |#4|)) (-15 -2825 (|#4| |#4|)) (-15 -4076 (|#4| |#4|)) (-15 -2667 (|#4| |#4| (-517) (-517))))
-((-4076 ((|#2| |#2|) 27)) (-3599 ((|#2| |#2|) 23)) (-2667 ((|#2| |#2| (-517) (-517)) 29)) (-2825 ((|#2| |#2|) 25)))
-(((-499 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1145 |#1|)) (T -499))
-((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1145 *4)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))))
-(-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517))))
-((-2134 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26)))
-(((-500 |#1| |#2|) (-10 -7 (-15 -2134 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-961) (-1130 |#1|)) (T -500))
-((-2134 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) (-2134 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) (-2134 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1130 *5)))))
-(-10 -7 (-15 -2134 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|))))
-((-2635 (($ $ $) 78)) (-2759 (((-388 $) $) 46)) (-1772 (((-3 (-517) "failed") $) 58)) (-3189 (((-517) $) 36)) (-1256 (((-3 (-377 (-517)) "failed") $) 73)) (-1355 (((-107) $) 23)) (-3364 (((-377 (-517)) $) 71)) (-3849 (((-107) $) 49)) (-4113 (($ $ $ $) 85)) (-3556 (((-107) $) 15)) (-3647 (($ $ $) 56)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 68)) (-1319 (((-3 $ "failed") $) 63)) (-1522 (($ $) 22)) (-1997 (($ $ $) 83)) (-2836 (($) 59)) (-3663 (($ $) 52)) (-3755 (((-388 $) $) 44)) (-3998 (((-107) $) 13)) (-3146 (((-703) $) 27)) (-3127 (($ $ (-703)) NIL) (($ $) 10)) (-2433 (($ $) 16)) (-3645 (((-517) $) NIL) (((-493) $) 35) (((-814 (-517)) $) 39) (((-349) $) 30) (((-199) $) 32)) (-2961 (((-703)) 8)) (-2746 (((-107) $ $) 19)) (-1270 (($ $ $) 54)))
-(((-501 |#1|) (-10 -8 (-15 -1997 (|#1| |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -2746 ((-107) |#1| |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1270 (|#1| |#1| |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3645 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3556 ((-107) |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2961 ((-703)))) (-502)) (T -501))
-((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))))
-(-10 -8 (-15 -1997 (|#1| |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -2746 ((-107) |#1| |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1270 (|#1| |#1| |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3645 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3556 ((-107) |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2961 ((-703))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2635 (($ $ $) 85)) (-4038 (((-3 $ "failed") $ $) 19)) (-3548 (($ $ $ $) 73)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-1707 (((-107) $ $) 125)) (-3709 (((-517) $) 114)) (-1363 (($ $ $) 88)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 106)) (-3189 (((-517) $) 105)) (-2518 (($ $ $) 129)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-3621 (((-3 $ "failed") $) 34)) (-1256 (((-3 (-377 (-517)) "failed") $) 82)) (-1355 (((-107) $) 84)) (-3364 (((-377 (-517)) $) 83)) (-3209 (($) 81) (($ $) 80)) (-2497 (($ $ $) 128)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 123)) (-3849 (((-107) $) 53)) (-4113 (($ $ $ $) 71)) (-1756 (($ $ $) 86)) (-3556 (((-107) $) 116)) (-3647 (($ $ $) 97)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 100)) (-3848 (((-107) $) 31)) (-1769 (((-107) $) 92)) (-1319 (((-3 $ "failed") $) 94)) (-2475 (((-107) $) 115)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-1813 (($ $ $ $) 72)) (-2967 (($ $ $) 117)) (-3099 (($ $ $) 118)) (-1522 (($ $) 75)) (-2195 (($ $) 89)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-1997 (($ $ $) 70)) (-2836 (($) 93 T CONST)) (-3251 (($ $) 77)) (-3206 (((-1021) $) 10) (($ $) 79)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3663 (($ $) 98)) (-3755 (((-388 $) $) 50)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 130)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-3998 (((-107) $) 91)) (-3146 (((-703) $) 126)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 127)) (-3127 (($ $ (-703)) 111) (($ $) 109)) (-2789 (($ $) 76)) (-2433 (($ $) 78)) (-3645 (((-517) $) 108) (((-493) $) 102) (((-814 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-2961 (((-703)) 29)) (-2746 (((-107) $ $) 87)) (-1270 (($ $ $) 99)) (-2372 (($) 90)) (-3329 (((-107) $ $) 39)) (-1917 (($ $ $ $) 74)) (-3710 (($ $) 113)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-703)) 112) (($ $) 110)) (-1606 (((-107) $ $) 120)) (-1583 (((-107) $ $) 121)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 119)) (-1572 (((-107) $ $) 122)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-502) (-1184)) (T -502))
-((-1769 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-2372 (*1 *1) (-4 *1 (-502))) (-2195 (*1 *1 *1) (-4 *1 (-502))) (-1363 (*1 *1 *1 *1) (-4 *1 (-502))) (-2746 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-1756 (*1 *1 *1 *1) (-4 *1 (-502))) (-2635 (*1 *1 *1 *1) (-4 *1 (-502))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-3209 (*1 *1) (-4 *1 (-502))) (-3209 (*1 *1 *1) (-4 *1 (-502))) (-3206 (*1 *1 *1) (-4 *1 (-502))) (-2433 (*1 *1 *1) (-4 *1 (-502))) (-3251 (*1 *1 *1) (-4 *1 (-502))) (-2789 (*1 *1 *1) (-4 *1 (-502))) (-1522 (*1 *1 *1) (-4 *1 (-502))) (-1917 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3548 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1813 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-4113 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1997 (*1 *1 *1 *1) (-4 *1 (-502))))
-(-13 (-1112) (-278) (-752) (-207) (-558 (-517)) (-952 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-814 (-517))) (-808 (-517)) (-130) (-937) (-134) (-1049) (-10 -8 (-15 -1769 ((-107) $)) (-15 -3998 ((-107) $)) (-6 -4179) (-15 -2372 ($)) (-15 -2195 ($ $)) (-15 -1363 ($ $ $)) (-15 -2746 ((-107) $ $)) (-15 -1756 ($ $ $)) (-15 -2635 ($ $ $)) (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $)) (-15 -3209 ($)) (-15 -3209 ($ $)) (-15 -3206 ($ $)) (-15 -2433 ($ $)) (-15 -3251 ($ $)) (-15 -2789 ($ $)) (-15 -1522 ($ $)) (-15 -1917 ($ $ $ $)) (-15 -3548 ($ $ $ $)) (-15 -1813 ($ $ $ $)) (-15 -4113 ($ $ $ $)) (-15 -1997 ($ $ $)) (-6 -4178)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-814 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-808 (-517)) . T) ((-842) . T) ((-937) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) . T) ((-1112) . T))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-503 |#1| |#2| |#3|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))) (T -503))
-NIL
-(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))
-((-1864 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|))) 49)))
-(((-504 |#1| |#2|) (-10 -7 (-15 -1864 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504))
-((-1864 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1069 *3) (-1069 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
-(-10 -7 (-15 -1864 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|)))))
-((-3546 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2342 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2724 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198)))
-(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2724 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3546 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2342 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-952 (-517))) (-13 (-27) (-400 |#1|)) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505))
-((-2342 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1130 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
-(-10 -7 (-15 -2724 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3546 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2342 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3949 (((-107) (-517) (-517)) 10)) (-2120 (((-517) (-517)) 7)) (-3470 (((-517) (-517) (-517)) 8)))
-(((-506) (-10 -7 (-15 -2120 ((-517) (-517))) (-15 -3470 ((-517) (-517) (-517))) (-15 -3949 ((-107) (-517) (-517))))) (T -506))
-((-3949 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-3470 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
-(-10 -7 (-15 -2120 ((-517) (-517))) (-15 -3470 ((-517) (-517) (-517))) (-15 -3949 ((-107) (-517) (-517))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2095 ((|#1| $) 61)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1865 (($ $) 91)) (-1721 (($ $) 74)) (-1640 ((|#1| $) 62)) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 73)) (-1839 (($ $) 90)) (-1701 (($ $) 75)) (-1887 (($ $) 89)) (-1743 (($ $) 76)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 69)) (-3189 (((-517) $) 68)) (-3621 (((-3 $ "failed") $) 34)) (-2458 (($ |#1| |#1|) 66)) (-3556 (((-107) $) 60)) (-2645 (($) 101)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 72)) (-2475 (((-107) $) 59)) (-2967 (($ $ $) 107)) (-3099 (($ $ $) 106)) (-1867 (($ $) 98)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4015 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-1933 ((|#1| $) 63)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-2624 (($ $) 99)) (-1898 (($ $) 88)) (-1754 (($ $) 77)) (-1876 (($ $) 87)) (-1732 (($ $) 78)) (-1853 (($ $) 86)) (-1711 (($ $) 79)) (-2613 (((-107) $ |#1|) 58)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-2961 (((-703)) 29)) (-3707 (($ $) 97)) (-1788 (($ $) 85)) (-3329 (((-107) $ $) 39)) (-3683 (($ $) 96)) (-1765 (($ $) 84)) (-3731 (($ $) 95)) (-1814 (($ $) 83)) (-1492 (($ $) 94)) (-1827 (($ $) 82)) (-3719 (($ $) 93)) (-1802 (($ $) 81)) (-3695 (($ $) 92)) (-1777 (($ $) 80)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 104)) (-1583 (((-107) $ $) 103)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 105)) (-1572 (((-107) $ $) 102)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-507 |#1|) (-1184) (-13 (-374) (-1094))) (T -507))
-((-4015 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-2458 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-4015 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-2095 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) (-2613 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))))
-(-13 (-421) (-779) (-1094) (-918) (-952 (-517)) (-10 -8 (-6 -3383) (-15 -4015 ($ |t#1| |t#1|)) (-15 -2458 ($ |t#1| |t#1|)) (-15 -4015 ($ |t#1|)) (-15 -4015 ($ (-377 (-517)))) (-15 -1933 (|t#1| $)) (-15 -1640 (|t#1| $)) (-15 -2095 (|t#1| $)) (-15 -3556 ((-107) $)) (-15 -2475 ((-107) $)) (-15 -2613 ((-107) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-918) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) . T) ((-1097) . T))
-((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 9)) (-1213 (($ $) 11)) (-2454 (((-107) $) 18)) (-3621 (((-3 $ "failed") $) 16)) (-3329 (((-107) $ $) 20)))
-(((-508 |#1|) (-10 -8 (-15 -2454 ((-107) |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|))) (-509)) (T -508))
-NIL
-(-10 -8 (-15 -2454 ((-107) |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-509) (-1184)) (T -509))
-((-2476 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3295 *1) (|:| -4167 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-1213 (*1 *1 *1) (-4 *1 (-509))) (-3329 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2476 ((-3 $ "failed") $ $)) (-15 -2942 ((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $)) (-15 -1213 ($ $)) (-15 -3329 ((-107) $ $)) (-15 -2454 ((-107) $))))
+((-1952 (((-583 |#2|) (-1070 |#1|) |#3|) 83)) (-1395 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1070 |#1|)) (-1070 |#1|))) 99)) (-3606 (((-1070 |#1|) (-623 |#1|)) 95)))
+(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3606 ((-1070 |#1|) (-623 |#1|))) (-15 -1952 ((-583 |#2|) (-1070 |#1|) |#3|)) (-15 -1395 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1070 |#1|)) (-1070 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490))
+((-1395 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1070 *6)) (-1070 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1070 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3606 ((-1070 |#1|) (-623 |#1|))) (-15 -1952 ((-583 |#2|) (-1070 |#1|) |#3|)) (-15 -1395 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1070 |#1|)) (-1070 |#1|)))))
+((-2523 (((-772 (-517))) 11)) (-2543 (((-772 (-517))) 13)) (-2501 (((-765 (-517))) 8)))
+(((-491) (-10 -7 (-15 -2501 ((-765 (-517)))) (-15 -2523 ((-772 (-517)))) (-15 -2543 ((-772 (-517)))))) (T -491))
+((-2543 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2523 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2501 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))))
+(-10 -7 (-15 -2501 ((-765 (-517)))) (-15 -2523 ((-772 (-517)))) (-15 -2543 ((-772 (-517)))))
+((-1968 (((-493) (-1074)) 15)) (-2487 ((|#1| (-493)) 20)))
+(((-492 |#1|) (-10 -7 (-15 -1968 ((-493) (-1074))) (-15 -2487 (|#1| (-493)))) (-1109)) (T -492))
+((-2487 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1109)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1109)))))
+(-10 -7 (-15 -1968 ((-493) (-1074))) (-15 -2487 (|#1| (-493))))
+((-2571 (((-107) $ $) NIL)) (-1902 (((-1057) $) 46)) (-2999 (((-107) $) 43)) (-3873 (((-1074) $) 44)) (-2649 (((-107) $) 41)) (-3887 (((-1057) $) 42)) (-1394 (((-107) $) NIL)) (-3649 (((-107) $) NIL)) (-2179 (((-107) $) NIL)) (-3865 (((-1057) $) NIL)) (-2294 (($ $ (-583 (-1074))) 20)) (-2487 (((-51) $) 22)) (-3337 (((-107) $) NIL)) (-3910 (((-517) $) NIL)) (-3094 (((-1021) $) NIL)) (-1243 (($ $ (-583 (-1074)) (-1074)) 58)) (-2996 (((-107) $) NIL)) (-4009 (((-199) $) NIL)) (-2153 (($ $) 38)) (-1549 (((-787) $) NIL)) (-2075 (((-107) $ $) NIL)) (-1986 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3775 (((-583 $) $) 28)) (-1913 (((-1074) (-583 $)) 47)) (-3582 (($ (-583 $)) 51) (($ (-1057)) NIL) (($ (-1074)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1007) $) 11) (($ (-1007)) 12)) (-3562 (((-1074) (-1074) (-583 $)) 50)) (-2182 (((-787) $) NIL)) (-2048 (($ $) 49)) (-2036 (($ $) 48)) (-2835 (($ $ (-583 $)) 55)) (-2041 (((-107) $) 27)) (-2297 (($) 9 T CONST)) (-2306 (($) 10 T CONST)) (-1539 (((-107) $ $) 59)) (-1649 (($ $ $) 64)) (-1626 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-2210 (((-517) $) NIL)))
+(((-493) (-13 (-1006 (-1057) (-1074) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2487 ((-51) $)) (-15 -3582 ($ (-1007))) (-15 -2835 ($ $ (-583 $))) (-15 -1243 ($ $ (-583 (-1074)) (-1074))) (-15 -2294 ($ $ (-583 (-1074)))) (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 -1649 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -1605) (-15 1 ($) -1605) (-15 -2153 ($ $)) (-15 -1902 ((-1057) $)) (-15 -1913 ((-1074) (-583 $))) (-15 -3562 ((-1074) (-1074) (-583 $)))))) (T -493))
+((-2487 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-1243 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-1074)) (-5 *1 (-493)))) (-2294 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-493)))) (-1626 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1649 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-2297 (*1 *1) (-5 *1 (-493))) (-2306 (*1 *1) (-5 *1 (-493))) (-2153 (*1 *1 *1) (-5 *1 (-493))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-493)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1074)) (-5 *1 (-493)))) (-3562 (*1 *2 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+(-13 (-1006 (-1057) (-1074) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2487 ((-51) $)) (-15 -3582 ($ (-1007))) (-15 -2835 ($ $ (-583 $))) (-15 -1243 ($ $ (-583 (-1074)) (-1074))) (-15 -2294 ($ $ (-583 (-1074)))) (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 -1649 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-2297) ($) -1605) (-15 (-2306) ($) -1605) (-15 -2153 ($ $)) (-15 -1902 ((-1057) $)) (-15 -1913 ((-1074) (-583 $))) (-15 -3562 ((-1074) (-1074) (-583 $)))))
+((-3518 ((|#2| |#2|) 17)) (-2420 ((|#2| |#2|) 13)) (-2656 ((|#2| |#2| (-517) (-517)) 20)) (-2872 ((|#2| |#2|) 15)))
+(((-494 |#1| |#2|) (-10 -7 (-15 -2420 (|#2| |#2|)) (-15 -2872 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -2656 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1146 |#1|)) (T -494))
+((-2656 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1146 *4)))) (-3518 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) (-2872 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))))
+(-10 -7 (-15 -2420 (|#2| |#2|)) (-15 -2872 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -2656 (|#2| |#2| (-517) (-517))))
+((-3932 (((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1074))) 32)) (-3162 (((-583 |#2|) (-874 |#1|) |#3|) 53) (((-583 |#2|) (-1070 |#1|) |#3|) 52)) (-3355 (((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)) |#3|) 87)))
+(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -3162 ((-583 |#2|) (-1070 |#1|) |#3|)) (-15 -3162 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -3355 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)) |#3|)) (-15 -3932 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1074))))) (-421) (-333) (-13 (-333) (-777))) (T -495))
+((-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1074))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-3355 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3162 ((-583 |#2|) (-1070 |#1|) |#3|)) (-15 -3162 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -3355 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)) |#3|)) (-15 -3932 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1074)))))
+((-1476 ((|#2| |#2| |#1|) 17)) (-2310 ((|#2| (-583 |#2|)) 26)) (-2913 ((|#2| (-583 |#2|)) 45)))
+(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2310 (|#2| (-583 |#2|))) (-15 -2913 (|#2| (-583 |#2|))) (-15 -1476 (|#2| |#2| |#1|))) (-278) (-1131 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496))
+((-1476 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1131 *3)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(-10 -7 (-15 -2310 (|#2| (-583 |#2|))) (-15 -2913 (|#2| (-583 |#2|))) (-15 -1476 (|#2| |#2| |#1|)))
+((-3693 (((-388 (-1070 |#4|)) (-1070 |#4|) (-1 (-388 (-1070 |#3|)) (-1070 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1070 |#3|)) (-1070 |#3|))) 164)))
+(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 ((-388 |#4|) |#4| (-1 (-388 (-1070 |#3|)) (-1070 |#3|)))) (-15 -3693 ((-388 (-1070 |#4|)) (-1070 |#4|) (-1 (-388 (-1070 |#3|)) (-1070 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -497))
+((-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1070 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1070 *8)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))))
+(-10 -7 (-15 -3693 ((-388 |#4|) |#4| (-1 (-388 (-1070 |#3|)) (-1070 |#3|)))) (-15 -3693 ((-388 (-1070 |#4|)) (-1070 |#4|) (-1 (-388 (-1070 |#3|)) (-1070 |#3|)))))
+((-3518 ((|#4| |#4|) 73)) (-2420 ((|#4| |#4|) 69)) (-2656 ((|#4| |#4| (-517) (-517)) 75)) (-2872 ((|#4| |#4|) 71)))
+(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2420 (|#4| |#4|)) (-15 -2872 (|#4| |#4|)) (-15 -3518 (|#4| |#4|)) (-15 -2656 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1131 |#1|) (-657 |#1| |#2|) (-1146 |#3|)) (T -498))
+((-2656 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1131 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1146 *6)))) (-3518 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) (-2872 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))))
+(-10 -7 (-15 -2420 (|#4| |#4|)) (-15 -2872 (|#4| |#4|)) (-15 -3518 (|#4| |#4|)) (-15 -2656 (|#4| |#4| (-517) (-517))))
+((-3518 ((|#2| |#2|) 27)) (-2420 ((|#2| |#2|) 23)) (-2656 ((|#2| |#2| (-517) (-517)) 29)) (-2872 ((|#2| |#2|) 25)))
+(((-499 |#1| |#2|) (-10 -7 (-15 -2420 (|#2| |#2|)) (-15 -2872 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -2656 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1146 |#1|)) (T -499))
+((-2656 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1146 *4)))) (-3518 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) (-2872 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))))
+(-10 -7 (-15 -2420 (|#2| |#2|)) (-15 -2872 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -2656 (|#2| |#2| (-517) (-517))))
+((-1445 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26)))
+(((-500 |#1| |#2|) (-10 -7 (-15 -1445 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -1445 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -1445 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-961) (-1131 |#1|)) (T -500))
+((-1445 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1131 *4)))) (-1445 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1131 *4)))) (-1445 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1131 *5)))))
+(-10 -7 (-15 -1445 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -1445 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -1445 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|))))
+((-3641 (($ $ $) 78)) (-3490 (((-388 $) $) 46)) (-1759 (((-3 (-517) "failed") $) 58)) (-3076 (((-517) $) 36)) (-1422 (((-3 (-377 (-517)) "failed") $) 73)) (-2712 (((-107) $) 23)) (-4078 (((-377 (-517)) $) 71)) (-2965 (((-107) $) 49)) (-2566 (($ $ $ $) 85)) (-2099 (((-107) $) 15)) (-1808 (($ $ $) 56)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 68)) (-3744 (((-3 $ "failed") $) 63)) (-1520 (($ $) 22)) (-3638 (($ $ $) 83)) (-2663 (($) 59)) (-1938 (($ $) 52)) (-3693 (((-388 $) $) 44)) (-3994 (((-107) $) 13)) (-2623 (((-703) $) 27)) (-1699 (($ $ (-703)) NIL) (($ $) 10)) (-2322 (($ $) 16)) (-3582 (((-517) $) NIL) (((-493) $) 35) (((-814 (-517)) $) 39) (((-349) $) 30) (((-199) $) 32)) (-1865 (((-703)) 8)) (-3329 (((-107) $ $) 19)) (-1679 (($ $ $) 54)))
+(((-501 |#1|) (-10 -8 (-15 -3638 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -2322 (|#1| |#1|)) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -3641 (|#1| |#1| |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -3994 ((-107) |#1|)) (-15 -2663 (|#1|)) (-15 -3744 ((-3 |#1| "failed") |#1|)) (-15 -3582 ((-199) |#1|)) (-15 -3582 ((-349) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#1|)) (-15 -1679 (|#1| |#1| |#1|)) (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3582 ((-517) |#1|)) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -2099 ((-107) |#1|)) (-15 -2623 ((-703) |#1|)) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -2965 ((-107) |#1|)) (-15 -1865 ((-703)))) (-502)) (T -501))
+((-1865 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))))
+(-10 -8 (-15 -3638 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -2322 (|#1| |#1|)) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -3641 (|#1| |#1| |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -3994 ((-107) |#1|)) (-15 -2663 (|#1|)) (-15 -3744 ((-3 |#1| "failed") |#1|)) (-15 -3582 ((-199) |#1|)) (-15 -3582 ((-349) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#1|)) (-15 -1679 (|#1| |#1| |#1|)) (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3582 ((-517) |#1|)) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -2099 ((-107) |#1|)) (-15 -2623 ((-703) |#1|)) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -2965 ((-107) |#1|)) (-15 -1865 ((-703))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-3641 (($ $ $) 85)) (-1387 (((-3 $ "failed") $ $) 19)) (-2044 (($ $ $ $) 73)) (-3938 (($ $) 51)) (-3490 (((-388 $) $) 52)) (-3765 (((-107) $ $) 125)) (-1207 (((-517) $) 114)) (-1362 (($ $ $) 88)) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 106)) (-3076 (((-517) $) 105)) (-2383 (($ $ $) 129)) (-4012 (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-1568 (((-3 $ "failed") $) 34)) (-1422 (((-3 (-377 (-517)) "failed") $) 82)) (-2712 (((-107) $) 84)) (-4078 (((-377 (-517)) $) 83)) (-3098 (($) 81) (($ $) 80)) (-2366 (($ $ $) 128)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 123)) (-2965 (((-107) $) 53)) (-2566 (($ $ $ $) 71)) (-3837 (($ $ $) 86)) (-2099 (((-107) $) 116)) (-1808 (($ $ $) 97)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 100)) (-2955 (((-107) $) 31)) (-2393 (((-107) $) 92)) (-3744 (((-3 $ "failed") $) 94)) (-1624 (((-107) $) 115)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-3601 (($ $ $ $) 72)) (-1575 (($ $ $) 117)) (-2986 (($ $ $) 118)) (-1520 (($ $) 75)) (-2542 (($ $) 89)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-3638 (($ $ $) 70)) (-2663 (($) 93 T CONST)) (-3143 (($ $) 77)) (-3094 (((-1021) $) 10) (($ $) 79)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-1938 (($ $) 98)) (-3693 (((-388 $) $) 50)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 130)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-3994 (((-107) $) 91)) (-2623 (((-703) $) 126)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 127)) (-1699 (($ $ (-703)) 111) (($ $) 109)) (-1347 (($ $) 76)) (-2322 (($ $) 78)) (-3582 (((-517) $) 108) (((-493) $) 102) (((-814 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-1865 (((-703)) 29)) (-3329 (((-107) $ $) 87)) (-1679 (($ $ $) 99)) (-4103 (($) 90)) (-3767 (((-107) $ $) 39)) (-4061 (($ $ $ $) 74)) (-1221 (($ $) 113)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-703)) 112) (($ $) 110)) (-1593 (((-107) $ $) 120)) (-1570 (((-107) $ $) 121)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 119)) (-1560 (((-107) $ $) 122)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-502) (-1185)) (T -502))
+((-2393 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-4103 (*1 *1) (-4 *1 (-502))) (-2542 (*1 *1 *1) (-4 *1 (-502))) (-1362 (*1 *1 *1 *1) (-4 *1 (-502))) (-3329 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3837 (*1 *1 *1 *1) (-4 *1 (-502))) (-3641 (*1 *1 *1 *1) (-4 *1 (-502))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-1422 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-3098 (*1 *1) (-4 *1 (-502))) (-3098 (*1 *1 *1) (-4 *1 (-502))) (-3094 (*1 *1 *1) (-4 *1 (-502))) (-2322 (*1 *1 *1) (-4 *1 (-502))) (-3143 (*1 *1 *1) (-4 *1 (-502))) (-1347 (*1 *1 *1) (-4 *1 (-502))) (-1520 (*1 *1 *1) (-4 *1 (-502))) (-4061 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3601 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2566 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3638 (*1 *1 *1 *1) (-4 *1 (-502))))
+(-13 (-1113) (-278) (-752) (-207) (-558 (-517)) (-952 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-814 (-517))) (-808 (-517)) (-130) (-937) (-134) (-1050) (-10 -8 (-15 -2393 ((-107) $)) (-15 -3994 ((-107) $)) (-6 -4182) (-15 -4103 ($)) (-15 -2542 ($ $)) (-15 -1362 ($ $ $)) (-15 -3329 ((-107) $ $)) (-15 -3837 ($ $ $)) (-15 -3641 ($ $ $)) (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $)) (-15 -3098 ($)) (-15 -3098 ($ $)) (-15 -3094 ($ $)) (-15 -2322 ($ $)) (-15 -3143 ($ $)) (-15 -1347 ($ $)) (-15 -1520 ($ $)) (-15 -4061 ($ $ $ $)) (-15 -2044 ($ $ $ $)) (-15 -3601 ($ $ $ $)) (-15 -2566 ($ $ $ $)) (-15 -3638 ($ $ $)) (-6 -4181)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-814 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-808 (-517)) . T) ((-842) . T) ((-937) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) . T) ((-1113) . T))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3423 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 |#2| "failed") |#1| $) NIL)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) NIL)) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) NIL)) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 ((|#1| $) NIL (|has| |#1| (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 ((|#1| $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3799 (((-583 |#1|) $) NIL)) (-2555 (((-107) |#1| $) NIL)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-4086 (((-583 |#1|) $) NIL)) (-3646 (((-107) |#1| $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1631 ((|#2| $) NIL (|has| |#1| (-779)))) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-503 |#1| |#2| |#3|) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183))) (-1003) (-1003) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))) (T -503))
+NIL
+(-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))
+((-4139 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1070 |#2|) (-1070 |#2|))) 49)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -4139 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1070 |#2|) (-1070 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504))
+((-4139 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1070 *3) (-1070 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
+(-10 -7 (-15 -4139 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1070 |#2|) (-1070 |#2|)))))
+((-2024 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2607 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-3106 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198)))
+(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3106 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2024 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2607 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-952 (-517))) (-13 (-27) (-400 |#1|)) (-1131 |#2|) (-1131 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505))
+((-2607 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1131 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-2024 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1131 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1131 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(-10 -7 (-15 -3106 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2024 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2607 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1702 (((-107) (-517) (-517)) 10)) (-2394 (((-517) (-517)) 7)) (-2469 (((-517) (-517) (-517)) 8)))
+(((-506) (-10 -7 (-15 -2394 ((-517) (-517))) (-15 -2469 ((-517) (-517) (-517))) (-15 -1702 ((-107) (-517) (-517))))) (T -506))
+((-1702 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-2469 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-2394 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(-10 -7 (-15 -2394 ((-517) (-517))) (-15 -2469 ((-517) (-517) (-517))) (-15 -1702 ((-107) (-517) (-517))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-2026 ((|#1| $) 61)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1834 (($ $) 91)) (-1710 (($ $) 74)) (-1754 ((|#1| $) 62)) (-1387 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-1812 (($ $) 90)) (-1685 (($ $) 75)) (-1851 (($ $) 89)) (-1731 (($ $) 76)) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 69)) (-3076 (((-517) $) 68)) (-1568 (((-3 $ "failed") $) 34)) (-1471 (($ |#1| |#1|) 66)) (-2099 (((-107) $) 60)) (-2475 (($) 101)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 72)) (-1624 (((-107) $) 59)) (-1575 (($ $ $) 107)) (-2986 (($ $ $) 106)) (-1826 (($ $) 98)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4142 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-1253 ((|#1| $) 63)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-2349 (((-3 $ "failed") $ $) 42)) (-2459 (($ $) 99)) (-1860 (($ $) 88)) (-1741 (($ $) 77)) (-1842 (($ $) 87)) (-1722 (($ $) 78)) (-1824 (($ $) 86)) (-1698 (($ $) 79)) (-3432 (((-107) $ |#1|) 58)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-1865 (((-703)) 29)) (-3642 (($ $) 97)) (-1773 (($ $) 85)) (-3767 (((-107) $ $) 39)) (-3622 (($ $) 96)) (-1751 (($ $) 84)) (-3661 (($ $) 95)) (-1794 (($ $) 83)) (-1279 (($ $) 94)) (-1803 (($ $) 82)) (-3650 (($ $) 93)) (-1784 (($ $) 81)) (-3631 (($ $) 92)) (-1762 (($ $) 80)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1593 (((-107) $ $) 104)) (-1570 (((-107) $ $) 103)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 105)) (-1560 (((-107) $ $) 102)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-507 |#1|) (-1185) (-13 (-374) (-1095))) (T -507))
+((-4142 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-1471 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-4142 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))))) (-1253 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))) (-3432 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))))
+(-13 (-421) (-779) (-1095) (-918) (-952 (-517)) (-10 -8 (-6 -3284) (-15 -4142 ($ |t#1| |t#1|)) (-15 -1471 ($ |t#1| |t#1|)) (-15 -4142 ($ |t#1|)) (-15 -4142 ($ (-377 (-517)))) (-15 -1253 (|t#1| $)) (-15 -1754 (|t#1| $)) (-15 -2026 (|t#1| $)) (-15 -2099 ((-107) $)) (-15 -1624 ((-107) $)) (-15 -3432 ((-107) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-918) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) . T) ((-1098) . T))
+((-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 9)) (-3209 (($ $) 11)) (-1452 (((-107) $) 18)) (-1568 (((-3 $ "failed") $) 16)) (-3767 (((-107) $ $) 20)))
+(((-508 |#1|) (-10 -8 (-15 -1452 ((-107) |#1|)) (-15 -3767 ((-107) |#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -1692 ((-2 (|:| -1697 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1568 ((-3 |#1| "failed") |#1|))) (-509)) (T -508))
+NIL
+(-10 -8 (-15 -1452 ((-107) |#1|)) (-15 -3767 ((-107) |#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -1692 ((-2 (|:| -1697 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1568 ((-3 |#1| "failed") |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ $) 42)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-509) (-1185)) (T -509))
+((-2349 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1697 *1) (|:| -4170 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-3209 (*1 *1 *1) (-4 *1 (-509))) (-3767 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-1452 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2349 ((-3 $ "failed") $ $)) (-15 -1692 ((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $)) (-15 -3209 ($ $)) (-15 -3767 ((-107) $ $)) (-15 -1452 ((-107) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2081 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|)) 35)) (-3767 (((-534 |#2|) |#2| (-1073)) 58)) (-1585 (((-3 |#2| "failed") |#2| (-1073)) 148)) (-1447 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|))) 151)) (-3257 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|) 38)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -3257 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|)) (-15 -2081 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|))) (-15 -1585 ((-3 |#2| "failed") |#2| (-1073))) (-15 -3767 ((-534 |#2|) |#2| (-1073))) (-15 -1447 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -510))
-((-1447 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1073)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1585 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2081 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-3257 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
-(-10 -7 (-15 -3257 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|)) (-15 -2081 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|))) (-15 -1585 ((-3 |#2| "failed") |#2| (-1073))) (-15 -3767 ((-534 |#2|) |#2| (-1073))) (-15 -1447 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|)))))
-((-2759 (((-388 |#1|) |#1|) 18)) (-3755 (((-388 |#1|) |#1|) 33)) (-2281 (((-3 |#1| "failed") |#1|) 44)) (-2439 (((-388 |#1|) |#1|) 51)))
-(((-511 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2439 ((-388 |#1|) |#1|)) (-15 -2281 ((-3 |#1| "failed") |#1|))) (-502)) (T -511))
-((-2281 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-2439 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-2759 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2439 ((-388 |#1|) |#1|)) (-15 -2281 ((-3 |#1| "failed") |#1|)))
-((-2320 (($) 9)) (-2513 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-2274 (((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-1710 (($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2071 (($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1257 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-1941 (((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-2601 (((-1158)) 12)))
-(((-512) (-10 -8 (-15 -2320 ($)) (-15 -2601 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2071 ($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2513 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1941 ((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1257 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512))
-((-1257 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-2513 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-2071 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-2601 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-512)))) (-2320 (*1 *1) (-5 *1 (-512))))
-(-10 -8 (-15 -2320 ($)) (-15 -2601 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2071 ($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2513 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1941 ((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1257 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2352 (((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|)) 28)) (-2289 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|)) 106)) (-2357 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|)) 50)) (-2177 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|))) 85) (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|)) 105)) (-1758 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|)) 107)) (-2211 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-1350 ((|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|) 48)) (-3216 (((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|)) 27)))
-(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2352 ((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|))) (-15 -1350 (|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|)) (-15 -3216 ((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1094)) (-1003)) (T -513))
-((-2211 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1069 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-2211 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1069 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1069 *6)) (-4 *7 (-1003)))) (-1350 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1069 (-377 (-1069 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) (-2352 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1069 *3)) (-4 *7 (-1003)))) (-1758 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-377 (-1069 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-1758 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-1069 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-2289 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-2289 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1069 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-2177 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2177 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2357 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2357 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
-(-10 -7 (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2352 ((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|))) (-15 -1350 (|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|)) (-15 -3216 ((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))))) |noBranch|))
-((-3234 (((-517) (-517) (-703)) 65)) (-3799 (((-517) (-517)) 64)) (-1574 (((-517) (-517)) 63)) (-3163 (((-517) (-517)) 68)) (-3357 (((-517) (-517) (-517)) 48)) (-2283 (((-517) (-517) (-517)) 45)) (-2065 (((-377 (-517)) (-517)) 20)) (-2539 (((-517) (-517)) 21)) (-3097 (((-517) (-517)) 57)) (-3747 (((-517) (-517)) 32)) (-2369 (((-583 (-517)) (-517)) 62)) (-1659 (((-517) (-517) (-517) (-517) (-517)) 43)) (-1781 (((-377 (-517)) (-517)) 41)))
-(((-514) (-10 -7 (-15 -1781 ((-377 (-517)) (-517))) (-15 -1659 ((-517) (-517) (-517) (-517) (-517))) (-15 -2369 ((-583 (-517)) (-517))) (-15 -3747 ((-517) (-517))) (-15 -3097 ((-517) (-517))) (-15 -2539 ((-517) (-517))) (-15 -2065 ((-377 (-517)) (-517))) (-15 -2283 ((-517) (-517) (-517))) (-15 -3357 ((-517) (-517) (-517))) (-15 -3163 ((-517) (-517))) (-15 -1574 ((-517) (-517))) (-15 -3799 ((-517) (-517))) (-15 -3234 ((-517) (-517) (-703))))) (T -514))
-((-3234 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3357 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2283 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2065 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2369 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-1659 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
-(-10 -7 (-15 -1781 ((-377 (-517)) (-517))) (-15 -1659 ((-517) (-517) (-517) (-517) (-517))) (-15 -2369 ((-583 (-517)) (-517))) (-15 -3747 ((-517) (-517))) (-15 -3097 ((-517) (-517))) (-15 -2539 ((-517) (-517))) (-15 -2065 ((-377 (-517)) (-517))) (-15 -2283 ((-517) (-517) (-517))) (-15 -3357 ((-517) (-517) (-517))) (-15 -3163 ((-517) (-517))) (-15 -1574 ((-517) (-517))) (-15 -3799 ((-517) (-517))) (-15 -3234 ((-517) (-517) (-703))))
-((-1208 (((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1208 ((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515))
-((-1208 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3591 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))))
-(-10 -7 (-15 -1208 ((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|))))
-((-1208 (((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18)))
-(((-516 |#1| |#2|) (-10 -7 (-15 -1208 ((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -516))
-((-1208 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -3591 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -1208 ((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 25)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 86)) (-1213 (($ $) 87)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) 42)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) 80)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) 79)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-3621 (((-3 $ "failed") $) 83)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) 62) (($ $) 63)) (-2497 (($ $ $) 78)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) 54)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) 26)) (-1769 (((-107) $) 73)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) 34)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) 43)) (-2967 (($ $ $) 75)) (-3099 (($ $ $) 74)) (-1522 (($ $) NIL)) (-2195 (($ $) 40)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) 53)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) 31)) (-3206 (((-1021) $) NIL) (($ $) 33)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 117)) (-1401 (($ $ $) 84) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) 103)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 82)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 77)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) 32)) (-2433 (($ $) 30)) (-3645 (((-517) $) 39) (((-493) $) 51) (((-814 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1056) $) 52)) (-2256 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) 29)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) 41)) (-3710 (($ $) 61)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 27 T CONST)) (-2409 (($) 28 T CONST)) (-2482 (((-1056) $) 20) (((-1056) $ (-107)) 22) (((-1158) (-754) $) 23) (((-1158) (-754) $ (-107)) 24)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 64)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 65)) (-1654 (($ $) 66) (($ $ $) 68)) (-1642 (($ $ $) 67)) (** (($ $ (-843)) NIL) (($ $ (-703)) 72)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69)))
-(((-517) (-13 (-502) (-558 (-1056)) (-760) (-10 -8 (-15 -3209 ($ $)) (-6 -4167) (-6 -4172) (-6 -4168) (-6 -4162)))) (T -517))
-((-3209 (*1 *1 *1) (-5 *1 (-517))))
-(-13 (-502) (-558 (-1056)) (-760) (-10 -8 (-15 -3209 ($ $)) (-6 -4167) (-6 -4172) (-6 -4168) (-6 -4162)))
-((-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973)) 103) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701)) 105)) (-4151 (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073)) 168) (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056)) 167) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973)) 173) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349)) 174) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349)) 175) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349))))) 176) (((-950) (-286 (-349)) (-998 (-772 (-349)))) 163) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349)) 162) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349)) 158) (((-950) (-701)) 150) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973)) 157)))
-(((-518) (-10 -7 (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -4151 ((-950) (-701))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073))))) (T -518))
-((-4151 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1073)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1056)) (-5 *2 (-950)) (-5 *1 (-518)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))))
-(-10 -7 (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -4151 ((-950) (-701))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073))))
-((-1325 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 180)) (-3400 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 98)) (-2997 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 176)) (-2506 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073))) 185)) (-3039 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073)) 193 (|has| |#3| (-593 |#2|)))))
-(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -3400 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2997 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2506 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3039 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1094)) (-1003)) (T -519))
-((-3039 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-2506 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))) (-1325 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))) (-2997 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))) (-3400 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
-(-10 -7 (-15 -3400 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2997 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2506 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3039 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073))) |noBranch|))
-((-2880 (((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073)) 62)) (-1875 (((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|)) 160 (-12 (|has| |#2| (-1037)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))) (-2956 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)) 143 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))))
-(((-520 |#1| |#2|) (-10 -7 (-15 -2880 ((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2956 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) (-15 -1875 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) (IF (|has| |#2| (-1037)) (-15 -1875 ((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (-13 (-779) (-952 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -520))
-((-1875 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1073)) (-5 *4 (-772 *2)) (-4 *2 (-1037)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-1875 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2956 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2880 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3618 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
-(-10 -7 (-15 -2880 ((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2956 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) (-15 -1875 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) (IF (|has| |#2| (-1037)) (-15 -1875 ((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|))) |noBranch|)) |noBranch|) |noBranch|))
-((-3979 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-4151 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-2083 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-3562 (((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46)))
-(((-521 |#1| |#2|) (-10 -7 (-15 -4151 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2083 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -3562 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -3979 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -521))
-((-3979 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-3562 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -2422 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-2083 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
-(-10 -7 (-15 -4151 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2083 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -3562 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -3979 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|)))))
-((-1899 (((-3 (-517) "failed") |#1|) 14)) (-1973 (((-107) |#1|) 13)) (-3912 (((-517) |#1|) 9)))
-(((-522 |#1|) (-10 -7 (-15 -3912 ((-517) |#1|)) (-15 -1973 ((-107) |#1|)) (-15 -1899 ((-3 (-517) "failed") |#1|))) (-952 (-517))) (T -522))
-((-1899 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) (-1973 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) (-3912 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))))
-(-10 -7 (-15 -3912 ((-517) |#1|)) (-15 -1973 ((-107) |#1|)) (-15 -1899 ((-3 (-517) "failed") |#1|)))
-((-4027 (((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|)))) 43)) (-3050 (((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073)) 25)) (-1934 (((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073)) 20)) (-2307 (((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))) 32)))
-(((-523 |#1|) (-10 -7 (-15 -3050 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -1934 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073))) (-15 -4027 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|))))) (-15 -2307 ((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))))) (-13 (-509) (-952 (-517)) (-134))) (T -523))
-((-2307 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -2422 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))) (-4027 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-1934 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
-(-10 -7 (-15 -3050 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -1934 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073))) (-15 -4027 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|))))) (-15 -2307 ((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)))))
-((-2750 (((-107) $ $) 59)) (-2814 (((-107) $) 36)) (-2095 ((|#1| $) 30)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) 63)) (-1865 (($ $) 123)) (-1721 (($ $) 103)) (-1640 ((|#1| $) 28)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL)) (-1839 (($ $) 125)) (-1701 (($ $) 99)) (-1887 (($ $) 127)) (-1743 (($ $) 107)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 78)) (-3189 (((-517) $) 80)) (-3621 (((-3 $ "failed") $) 62)) (-2458 (($ |#1| |#1|) 26)) (-3556 (((-107) $) 33)) (-2645 (($) 89)) (-3848 (((-107) $) 43)) (-3824 (($ $ (-517)) NIL)) (-2475 (((-107) $) 34)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1867 (($ $) 91)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4015 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-1933 ((|#1| $) 27)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) 65) (($ (-583 $)) NIL)) (-2476 (((-3 $ "failed") $ $) 64)) (-2624 (($ $) 93)) (-1898 (($ $) 131)) (-1754 (($ $) 105)) (-1876 (($ $) 133)) (-1732 (($ $) 109)) (-1853 (($ $) 129)) (-1711 (($ $) 101)) (-2613 (((-107) $ |#1|) 31)) (-2256 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-2961 (((-703)) 87)) (-3707 (($ $) 145)) (-1788 (($ $) 115)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 143)) (-1765 (($ $) 111)) (-3731 (($ $) 141)) (-1814 (($ $) 121)) (-1492 (($ $) 139)) (-1827 (($ $) 119)) (-3719 (($ $) 137)) (-1802 (($ $) 117)) (-3695 (($ $) 135)) (-1777 (($ $) 113)) (-2207 (($ $ (-843)) 55) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 10 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 37)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 35)) (-1654 (($ $) 41) (($ $ $) 42)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-843) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48)))
-(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1094))) (T -524))
+((-2102 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1074) (-583 |#2|)) 35)) (-3403 (((-534 |#2|) |#2| (-1074)) 58)) (-3375 (((-3 |#2| "failed") |#2| (-1074)) 148)) (-3613 (((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) (-556 |#2|) (-583 (-556 |#2|))) 151)) (-2395 (((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) |#2|) 38)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -2395 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) |#2|)) (-15 -2102 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1074) (-583 |#2|))) (-15 -3375 ((-3 |#2| "failed") |#2| (-1074))) (-15 -3403 ((-534 |#2|) |#2| (-1074))) (-15 -3613 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -510))
+((-3613 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1074)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-3375 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-2102 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-2395 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
+(-10 -7 (-15 -2395 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) |#2|)) (-15 -2102 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1074) (-583 |#2|))) (-15 -3375 ((-3 |#2| "failed") |#2| (-1074))) (-15 -3403 ((-534 |#2|) |#2| (-1074))) (-15 -3613 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) (-556 |#2|) (-583 (-556 |#2|)))))
+((-3490 (((-388 |#1|) |#1|) 18)) (-3693 (((-388 |#1|) |#1|) 33)) (-3287 (((-3 |#1| "failed") |#1|) 44)) (-2374 (((-388 |#1|) |#1|) 51)))
+(((-511 |#1|) (-10 -7 (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -2374 ((-388 |#1|) |#1|)) (-15 -3287 ((-3 |#1| "failed") |#1|))) (-502)) (T -511))
+((-3287 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-2374 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3490 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -2374 ((-388 |#1|) |#1|)) (-15 -3287 ((-3 |#1| "failed") |#1|)))
+((-2451 (($) 9)) (-1918 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3799 (((-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-3816 (($ (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2018 (($ (-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1266 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-3042 (((-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-3305 (((-1159)) 12)))
+(((-512) (-10 -8 (-15 -2451 ($)) (-15 -3305 ((-1159))) (-15 -3799 ((-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2018 ($ (-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3816 ($ (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1918 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3042 ((-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1266 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512))
+((-1266 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1918 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-2018 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-3305 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-512)))) (-2451 (*1 *1) (-5 *1 (-512))))
+(-10 -8 (-15 -2451 ($)) (-15 -3305 ((-1159))) (-15 -3799 ((-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2018 ($ (-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3816 ($ (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1918 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3042 ((-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1266 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-2255 (((-1070 (-377 (-1070 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1070 |#2|)) 28)) (-3370 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1070 |#2|)) 106)) (-2756 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|)) 50)) (-1852 (((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1070 |#2|))) 85) (((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1070 |#2|)) 105)) (-2079 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) (-556 |#2|) |#2| (-377 (-1070 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) |#2| (-1070 |#2|)) 107)) (-3942 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-1352 ((|#2| (-1070 (-377 (-1070 |#2|))) (-556 |#2|) |#2|) 48)) (-2511 (((-1070 (-377 (-1070 |#2|))) (-1070 |#2|) (-556 |#2|)) 27)))
+(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2756 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|))) (-15 -2756 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -1852 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1070 |#2|))) (-15 -1852 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -3370 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1070 |#2|))) (-15 -3370 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -2079 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) |#2| (-1070 |#2|))) (-15 -2079 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -2255 ((-1070 (-377 (-1070 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1070 |#2|))) (-15 -1352 (|#2| (-1070 (-377 (-1070 |#2|))) (-556 |#2|) |#2|)) (-15 -2511 ((-1070 (-377 (-1070 |#2|))) (-1070 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -3942 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|))) (-15 -3942 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1095)) (-1003)) (T -513))
+((-3942 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1070 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-3942 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1070 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1070 (-377 (-1070 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1070 *6)) (-4 *7 (-1003)))) (-1352 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1070 (-377 (-1070 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) (-2255 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1070 (-377 (-1070 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1070 *3)) (-4 *7 (-1003)))) (-2079 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-5 *5 (-377 (-1070 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-2079 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-5 *5 (-1070 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-3370 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-3370 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1070 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-1852 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-1852 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2756 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2756 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
+(-10 -7 (-15 -2756 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|))) (-15 -2756 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -1852 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1070 |#2|))) (-15 -1852 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -3370 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1070 |#2|))) (-15 -3370 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -2079 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) |#2| (-1070 |#2|))) (-15 -2079 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -2255 ((-1070 (-377 (-1070 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1070 |#2|))) (-15 -1352 (|#2| (-1070 (-377 (-1070 |#2|))) (-556 |#2|) |#2|)) (-15 -2511 ((-1070 (-377 (-1070 |#2|))) (-1070 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -3942 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|))) (-15 -3942 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))))) |noBranch|))
+((-2236 (((-517) (-517) (-703)) 65)) (-2465 (((-517) (-517)) 64)) (-2067 (((-517) (-517)) 63)) (-2801 (((-517) (-517)) 68)) (-4032 (((-517) (-517) (-517)) 48)) (-3310 (((-517) (-517) (-517)) 45)) (-1977 (((-377 (-517)) (-517)) 20)) (-3969 (((-517) (-517)) 21)) (-3509 (((-517) (-517)) 57)) (-3237 (((-517) (-517)) 32)) (-2906 (((-583 (-517)) (-517)) 62)) (-2887 (((-517) (-517) (-517) (-517) (-517)) 43)) (-2702 (((-377 (-517)) (-517)) 41)))
+(((-514) (-10 -7 (-15 -2702 ((-377 (-517)) (-517))) (-15 -2887 ((-517) (-517) (-517) (-517) (-517))) (-15 -2906 ((-583 (-517)) (-517))) (-15 -3237 ((-517) (-517))) (-15 -3509 ((-517) (-517))) (-15 -3969 ((-517) (-517))) (-15 -1977 ((-377 (-517)) (-517))) (-15 -3310 ((-517) (-517) (-517))) (-15 -4032 ((-517) (-517) (-517))) (-15 -2801 ((-517) (-517))) (-15 -2067 ((-517) (-517))) (-15 -2465 ((-517) (-517))) (-15 -2236 ((-517) (-517) (-703))))) (T -514))
+((-2236 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2801 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-4032 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3310 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1977 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3969 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2906 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-2887 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2702 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2702 ((-377 (-517)) (-517))) (-15 -2887 ((-517) (-517) (-517) (-517) (-517))) (-15 -2906 ((-583 (-517)) (-517))) (-15 -3237 ((-517) (-517))) (-15 -3509 ((-517) (-517))) (-15 -3969 ((-517) (-517))) (-15 -1977 ((-377 (-517)) (-517))) (-15 -3310 ((-517) (-517) (-517))) (-15 -4032 ((-517) (-517) (-517))) (-15 -2801 ((-517) (-517))) (-15 -2067 ((-517) (-517))) (-15 -2465 ((-517) (-517))) (-15 -2236 ((-517) (-517) (-703))))
+((-2706 (((-2 (|:| |answer| |#4|) (|:| -2365 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-2 (|:| |answer| |#4|) (|:| -2365 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515))
+((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2365 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))))
+(-10 -7 (-15 -2706 ((-2 (|:| |answer| |#4|) (|:| -2365 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2706 (((-2 (|:| |answer| (-377 |#2|)) (|:| -2365 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18)))
+(((-516 |#1| |#2|) (-10 -7 (-15 -2706 ((-2 (|:| |answer| (-377 |#2|)) (|:| -2365 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1131 |#1|)) (T -516))
+((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -2365 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -2706 ((-2 (|:| |answer| (-377 |#2|)) (|:| -2365 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 25)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 86)) (-3209 (($ $) 87)) (-1452 (((-107) $) NIL)) (-3641 (($ $ $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2044 (($ $ $ $) 42)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL)) (-1362 (($ $ $) 80)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL)) (-3076 (((-517) $) NIL)) (-2383 (($ $ $) 79)) (-4012 (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-1568 (((-3 $ "failed") $) 83)) (-1422 (((-3 (-377 (-517)) "failed") $) NIL)) (-2712 (((-107) $) NIL)) (-4078 (((-377 (-517)) $) NIL)) (-3098 (($) 62) (($ $) 63)) (-2366 (($ $ $) 78)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2566 (($ $ $ $) NIL)) (-3837 (($ $ $) 54)) (-2099 (((-107) $) NIL)) (-1808 (($ $ $) NIL)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-2955 (((-107) $) 26)) (-2393 (((-107) $) 73)) (-3744 (((-3 $ "failed") $) NIL)) (-1624 (((-107) $) 34)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3601 (($ $ $ $) 43)) (-1575 (($ $ $) 75)) (-2986 (($ $ $) 74)) (-1520 (($ $) NIL)) (-2542 (($ $) 40)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) 53)) (-3638 (($ $ $) NIL)) (-2663 (($) NIL T CONST)) (-3143 (($ $) 31)) (-3094 (((-1021) $) NIL) (($ $) 33)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 117)) (-1396 (($ $ $) 84) (($ (-583 $)) NIL)) (-1938 (($ $) NIL)) (-3693 (((-388 $) $) 103)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL)) (-2349 (((-3 $ "failed") $ $) 82)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3994 (((-107) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 77)) (-1699 (($ $ (-703)) NIL) (($ $) NIL)) (-1347 (($ $) 32)) (-2322 (($ $) 30)) (-3582 (((-517) $) 39) (((-493) $) 51) (((-814 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1057) $) 52)) (-2182 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-1865 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-1679 (($ $ $) NIL)) (-4103 (($) 29)) (-3767 (((-107) $ $) NIL)) (-4061 (($ $ $ $) 41)) (-1221 (($ $) 61)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 27 T CONST)) (-2306 (($) 28 T CONST)) (-1693 (((-1057) $) 20) (((-1057) $ (-107)) 22) (((-1159) (-754) $) 23) (((-1159) (-754) $ (-107)) 24)) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 64)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 65)) (-1637 (($ $) 66) (($ $ $) 68)) (-1626 (($ $ $) 67)) (** (($ $ (-843)) NIL) (($ $ (-703)) 72)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69)))
+(((-517) (-13 (-502) (-558 (-1057)) (-760) (-10 -8 (-15 -3098 ($ $)) (-6 -4170) (-6 -4175) (-6 -4171) (-6 -4165)))) (T -517))
+((-3098 (*1 *1 *1) (-5 *1 (-517))))
+(-13 (-502) (-558 (-1057)) (-760) (-10 -8 (-15 -3098 ($ $)) (-6 -4170) (-6 -4175) (-6 -4171) (-6 -4165)))
+((-2831 (((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701) (-973)) 103) (((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701)) 105)) (-2863 (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1074)) 168) (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1057)) 167) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973)) 173) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349)) 174) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349)) 175) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349))))) 176) (((-950) (-286 (-349)) (-998 (-772 (-349)))) 163) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349)) 162) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349)) 158) (((-950) (-701)) 150) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973)) 157)))
+(((-518) (-10 -7 (-15 -2863 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -2863 ((-950) (-701))) (-15 -2863 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -2863 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -2863 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -2863 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -2863 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -2863 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -2863 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701) (-973))) (-15 -2863 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1057))) (-15 -2863 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1074))))) (T -518))
+((-2863 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1074)) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1057)) (-5 *2 (-950)) (-5 *1 (-518)))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) (-2863 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))))
+(-10 -7 (-15 -2863 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -2863 ((-950) (-701))) (-15 -2863 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -2863 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -2863 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -2863 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -2863 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -2863 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -2863 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701) (-973))) (-15 -2863 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1057))) (-15 -2863 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1074))))
+((-1566 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 180)) (-3109 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 98)) (-3946 (((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 176)) (-1891 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074))) 185)) (-1303 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1074)) 193 (|has| |#3| (-593 |#2|)))))
+(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -3109 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -3946 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1566 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -1891 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)))) (IF (|has| |#3| (-593 |#2|)) (-15 -1303 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1074))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1095)) (-1003)) (T -519))
+((-1303 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1074)) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-1891 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-4 *2 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))) (-1566 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))) (-3946 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))) (-3109 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
+(-10 -7 (-15 -3109 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -3946 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1566 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -1891 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)))) (IF (|has| |#3| (-593 |#2|)) (-15 -1303 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3809 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1074))) |noBranch|))
+((-2241 (((-2 (|:| -1537 |#2|) (|:| |nconst| |#2|)) |#2| (-1074)) 62)) (-1267 (((-3 |#2| "failed") |#2| (-1074) (-772 |#2|) (-772 |#2|)) 160 (-12 (|has| |#2| (-1038)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))) (-1830 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)) 143 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))))
+(((-520 |#1| |#2|) (-10 -7 (-15 -2241 ((-2 (|:| -1537 |#2|) (|:| |nconst| |#2|)) |#2| (-1074))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -1830 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074))) (-15 -1267 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)))) |noBranch|) (IF (|has| |#2| (-1038)) (-15 -1267 ((-3 |#2| "failed") |#2| (-1074) (-772 |#2|) (-772 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (-13 (-779) (-952 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -520))
+((-1267 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1074)) (-5 *4 (-772 *2)) (-4 *2 (-1038)) (-4 *2 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-1267 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1830 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-2241 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -1537 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
+(-10 -7 (-15 -2241 ((-2 (|:| -1537 |#2|) (|:| |nconst| |#2|)) |#2| (-1074))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -1830 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074))) (-15 -1267 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)))) |noBranch|) (IF (|has| |#2| (-1038)) (-15 -1267 ((-3 |#2| "failed") |#2| (-1074) (-772 |#2|) (-772 |#2|))) |noBranch|)) |noBranch|) |noBranch|))
+((-1972 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-2863 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-2118 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-2149 (((-3 (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46)))
+(((-521 |#1| |#2|) (-10 -7 (-15 -2863 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2118 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -2149 ((-3 (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -1972 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517))) (-1131 |#1|)) (T -521))
+((-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-2149 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2230 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-2118 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))) (-2863 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
+(-10 -7 (-15 -2863 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2118 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -2149 ((-3 (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -1972 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|)))))
+((-3894 (((-3 (-517) "failed") |#1|) 14)) (-3337 (((-107) |#1|) 13)) (-3910 (((-517) |#1|) 9)))
+(((-522 |#1|) (-10 -7 (-15 -3910 ((-517) |#1|)) (-15 -3337 ((-107) |#1|)) (-15 -3894 ((-3 (-517) "failed") |#1|))) (-952 (-517))) (T -522))
+((-3894 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) (-3337 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) (-3910 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))))
+(-10 -7 (-15 -3910 ((-517) |#1|)) (-15 -3337 ((-107) |#1|)) (-15 -3894 ((-3 (-517) "failed") |#1|)))
+((-1289 (((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1074) (-583 (-377 (-874 |#1|)))) 43)) (-3090 (((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1074)) 25)) (-1262 (((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1074)) 20)) (-3574 (((-3 (-2 (|:| -2230 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|))) 32)))
+(((-523 |#1|) (-10 -7 (-15 -3090 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -1262 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1074))) (-15 -1289 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1074) (-583 (-377 (-874 |#1|))))) (-15 -3574 ((-3 (-2 (|:| -2230 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|))))) (-13 (-509) (-952 (-517)) (-134))) (T -523))
+((-3574 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -2230 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))) (-1289 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-1262 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
+(-10 -7 (-15 -3090 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -1262 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1074))) (-15 -1289 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1074) (-583 (-377 (-874 |#1|))))) (-15 -3574 ((-3 (-2 (|:| -2230 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)))))
+((-2571 (((-107) $ $) 59)) (-2745 (((-107) $) 36)) (-2026 ((|#1| $) 30)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) 63)) (-1834 (($ $) 123)) (-1710 (($ $) 103)) (-1754 ((|#1| $) 28)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-1812 (($ $) 125)) (-1685 (($ $) 99)) (-1851 (($ $) 127)) (-1731 (($ $) 107)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) 78)) (-3076 (((-517) $) 80)) (-1568 (((-3 $ "failed") $) 62)) (-1471 (($ |#1| |#1|) 26)) (-2099 (((-107) $) 33)) (-2475 (($) 89)) (-2955 (((-107) $) 43)) (-2666 (($ $ (-517)) NIL)) (-1624 (((-107) $) 34)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1826 (($ $) 91)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4142 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-1253 ((|#1| $) 27)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) 65) (($ (-583 $)) NIL)) (-2349 (((-3 $ "failed") $ $) 64)) (-2459 (($ $) 93)) (-1860 (($ $) 131)) (-1741 (($ $) 105)) (-1842 (($ $) 133)) (-1722 (($ $) 109)) (-1824 (($ $) 129)) (-1698 (($ $) 101)) (-3432 (((-107) $ |#1|) 31)) (-2182 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-1865 (((-703)) 87)) (-3642 (($ $) 145)) (-1773 (($ $) 115)) (-3767 (((-107) $ $) NIL)) (-3622 (($ $) 143)) (-1751 (($ $) 111)) (-3661 (($ $) 141)) (-1794 (($ $) 121)) (-1279 (($ $) 139)) (-1803 (($ $) 119)) (-3650 (($ $) 137)) (-1784 (($ $) 117)) (-3631 (($ $) 135)) (-1762 (($ $) 113)) (-2146 (($ $ (-843)) 55) (($ $ (-703)) NIL)) (-2297 (($) 21 T CONST)) (-2306 (($) 10 T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 37)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 35)) (-1637 (($ $) 41) (($ $ $) 42)) (-1626 (($ $ $) 40)) (** (($ $ (-843)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-843) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48)))
+(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1095))) (T -524))
NIL
(-507 |#1|)
-((-3179 (((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517))) 24)))
-(((-525) (-10 -7 (-15 -3179 ((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517)))))) (T -525))
-((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 (-517)))) (-5 *3 (-1069 (-517))) (-5 *1 (-525)))))
-(-10 -7 (-15 -3179 ((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517)))))
-((-2627 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073)) 18)) (-1291 (((-583 (-556 |#2|)) (-583 |#2|) (-1073)) 23)) (-1413 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-2379 ((|#2| |#2| (-1073)) 51 (|has| |#1| (-509)))) (-2922 ((|#2| |#2| (-1073)) 76 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-1391 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073)) 25)) (-3796 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-3434 (((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) 100 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-952 (-1073))) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-808 (-517)))))))
-(((-526 |#1| |#2|) (-10 -7 (-15 -2627 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073))) (-15 -3796 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -1391 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073))) (-15 -1413 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1291 ((-583 (-556 |#2|)) (-583 |#2|) (-1073))) (IF (|has| |#1| (-509)) (-15 -2379 (|#2| |#2| (-1073))) |noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2922 (|#2| |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1073))) (-15 -3434 ((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) (-779) (-400 |#1|)) (T -526))
-((-3434 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1073))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1073))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1073)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-2922 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-2379 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-1291 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1073)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-1413 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-1391 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1073)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-2627 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1073)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
-(-10 -7 (-15 -2627 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073))) (-15 -3796 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -1391 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073))) (-15 -1413 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1291 ((-583 (-556 |#2|)) (-583 |#2|) (-1073))) (IF (|has| |#1| (-509)) (-15 -2379 (|#2| |#2| (-1073))) |noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2922 (|#2| |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1073))) (-15 -3434 ((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|))
-((-2399 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 167)) (-1650 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 143)) (-4066 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 140)) (-1260 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-1652 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-2864 (((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 170)) (-2521 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 173)) (-4149 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 81)) (-1717 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-3783 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 147)) (-3929 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 133)) (-1830 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 157)) (-2892 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 178)))
-(((-527 |#1| |#2|) (-10 -7 (-15 -1652 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1830 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2399 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -2521 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2892 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1650 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3783 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2864 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -4066 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -1260 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3929 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -4149 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1717 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -527))
-((-1717 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3929 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *1 (-527 *4 *5)))) (-1260 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1130 *4)))) (-4066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1130 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-2864 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2422 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3783 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3652 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-1650 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-2892 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2521 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2399 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1830 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1652 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(-10 -7 (-15 -1652 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1830 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2399 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -2521 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2892 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1650 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3783 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2864 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -4066 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -1260 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3929 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -4149 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1717 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-3629 (((-3 |#2| "failed") |#2| (-1073) (-1073)) 10)))
-(((-528 |#1| |#2|) (-10 -7 (-15 -3629 ((-3 |#2| "failed") |#2| (-1073) (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-1037) (-29 |#1|))) (T -528))
-((-3629 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-1037) (-29 *4))))))
-(-10 -7 (-15 -3629 ((-3 |#2| "failed") |#2| (-1073) (-1073))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) 65)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) 71)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 57)) (-3531 (($ $) 33)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) 15)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) 27)) (-3340 (((-517) $) 31)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) 21)) (-2476 (((-3 $ "failed") $ $) 58)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) 16)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 60)) (-2930 (((-1054 (-517)) $) 18)) (-1545 (($ $) 23)) (-2256 (((-787) $) 85) (($ (-517)) 51) (($ $) NIL)) (-2961 (((-703)) 14)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) 35)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 34 T CONST)) (-2409 (($) 19 T CONST)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) 50) (($ $ $) 36)) (-1642 (($ $ $) 49)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54)))
+((-2963 (((-3 (-583 (-1070 (-517))) "failed") (-583 (-1070 (-517))) (-1070 (-517))) 24)))
+(((-525) (-10 -7 (-15 -2963 ((-3 (-583 (-1070 (-517))) "failed") (-583 (-1070 (-517))) (-1070 (-517)))))) (T -525))
+((-2963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 (-517)))) (-5 *3 (-1070 (-517))) (-5 *1 (-525)))))
+(-10 -7 (-15 -2963 ((-3 (-583 (-1070 (-517))) "failed") (-583 (-1070 (-517))) (-1070 (-517)))))
+((-3572 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1074)) 18)) (-2739 (((-583 (-556 |#2|)) (-583 |#2|) (-1074)) 23)) (-1408 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-3002 ((|#2| |#2| (-1074)) 51 (|has| |#1| (-509)))) (-1527 ((|#2| |#2| (-1074)) 76 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-2870 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1074)) 25)) (-3709 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-3409 (((-534 |#2|) |#2| (-1074) (-1 (-534 |#2|) |#2| (-1074)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074))) 100 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-952 (-1074))) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-808 (-517)))))))
+(((-526 |#1| |#2|) (-10 -7 (-15 -3572 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1074))) (-15 -3709 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -2870 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1074))) (-15 -1408 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -2739 ((-583 (-556 |#2|)) (-583 |#2|) (-1074))) (IF (|has| |#1| (-509)) (-15 -3002 (|#2| |#2| (-1074))) |noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -1527 (|#2| |#2| (-1074))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1074))) (-15 -3409 ((-534 |#2|) |#2| (-1074) (-1 (-534 |#2|) |#2| (-1074)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) (-779) (-400 |#1|)) (T -526))
+((-3409 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1074))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1074))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1074)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-1527 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-3002 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1074)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-1408 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-2870 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1074)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-3572 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1074)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
+(-10 -7 (-15 -3572 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1074))) (-15 -3709 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -2870 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1074))) (-15 -1408 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -2739 ((-583 (-556 |#2|)) (-583 |#2|) (-1074))) (IF (|has| |#1| (-509)) (-15 -3002 (|#2| |#2| (-1074))) |noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -1527 (|#2| |#2| (-1074))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1074))) (-15 -3409 ((-534 |#2|) |#2| (-1074) (-1 (-534 |#2|) |#2| (-1074)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|))
+((-2055 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 167)) (-1910 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 143)) (-3398 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 140)) (-1454 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-1926 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-2131 (((-3 (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 170)) (-3791 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 173)) (-2847 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 81)) (-1608 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-3598 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 147)) (-1485 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 133)) (-3874 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 157)) (-2318 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 178)))
+(((-527 |#1| |#2|) (-10 -7 (-15 -1926 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3874 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2055 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3791 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2318 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1910 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3598 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2131 ((-3 (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -3398 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -1454 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1485 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2847 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1608 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1131 |#1|)) (T -527))
+((-1608 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-1485 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3591 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1131 *4)) (-5 *1 (-527 *4 *5)))) (-1454 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2230 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1131 *4)))) (-3398 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1131 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-2131 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2230 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3598 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3591 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1131 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-1910 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2230 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1131 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-2318 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3591 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2230 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3791 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2230 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2230 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2055 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3874 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3591 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1926 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2230 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(-10 -7 (-15 -1926 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3874 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2055 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3791 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2318 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1910 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3598 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2131 ((-3 (-2 (|:| -2230 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -3398 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -1454 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1485 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3591 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2847 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1608 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-1647 (((-3 |#2| "failed") |#2| (-1074) (-1074)) 10)))
+(((-528 |#1| |#2|) (-10 -7 (-15 -1647 ((-3 |#2| "failed") |#2| (-1074) (-1074)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-880) (-1038) (-29 |#1|))) (T -528))
+((-1647 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1095) (-880) (-1038) (-29 *4))))))
+(-10 -7 (-15 -1647 ((-3 |#2| "failed") |#2| (-1074) (-1074))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $ (-517)) 65)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1806 (($ (-1070 (-517)) (-517)) 71)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) 57)) (-3011 (($ $) 33)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-1921 (((-703) $) 15)) (-2955 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3962 (((-517)) 27)) (-3890 (((-517) $) 31)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3467 (($ $ (-517)) 21)) (-2349 (((-3 $ "failed") $ $) 58)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) 16)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 60)) (-1567 (((-1055 (-517)) $) 18)) (-2860 (($ $) 23)) (-2182 (((-787) $) 85) (($ (-517)) 51) (($ $) NIL)) (-1865 (((-703)) 14)) (-3767 (((-107) $ $) NIL)) (-3284 (((-517) $ (-517)) 35)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 34 T CONST)) (-2306 (($) 19 T CONST)) (-1539 (((-107) $ $) 38)) (-1637 (($ $) 50) (($ $ $) 36)) (-1626 (($ $ $) 49)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54)))
(((-529 |#1| |#2|) (-793 |#1|) (-517) (-107)) (T -529))
NIL
(-793 |#1|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 18)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) 47)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 $ "failed") $) 75)) (-3189 (($ $) 74)) (-1967 (($ (-1153 $)) 73)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 30)) (-3209 (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 49)) (-3391 (((-107) $) NIL)) (-2378 (($ $) NIL) (($ $ (-703)) NIL)) (-3849 (((-107) $) NIL)) (-3972 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-3848 (((-107) $) NIL)) (-2453 (($) 35 (|has| $ (-338)))) (-2434 (((-107) $) NIL (|has| $ (-338)))) (-1506 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 $) $ (-843)) NIL (|has| $ (-338))) (((-1069 $) $) 83)) (-1549 (((-843) $) 55)) (-1704 (((-1069 $) $) NIL (|has| $ (-338)))) (-2729 (((-3 (-1069 $) "failed") $ $) NIL (|has| $ (-338))) (((-1069 $) $) NIL (|has| $ (-338)))) (-3600 (($ $ (-1069 $)) NIL (|has| $ (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL T CONST)) (-3448 (($ (-843)) 48)) (-3202 (((-107) $) 67)) (-3206 (((-1021) $) NIL)) (-3220 (($) 16 (|has| $ (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 40)) (-3755 (((-388 $) $) NIL)) (-3327 (((-843)) 66) (((-765 (-843))) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-3141 (((-125)) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-3688 (((-843) $) 65) (((-765 (-843)) $) NIL)) (-2135 (((-1069 $)) 82)) (-1766 (($) 54)) (-1224 (($) 36 (|has| $ (-338)))) (-4114 (((-623 $) (-1153 $)) NIL) (((-1153 $) $) 71)) (-3645 (((-517) $) 26)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2961 (((-703)) 37)) (-1753 (((-1153 $) (-843)) 77) (((-1153 $)) 76)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 19 T CONST)) (-2409 (($) 15 T CONST)) (-4103 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 18)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-4160 (((-1083 (-843) (-703)) (-517)) 47)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 $ "failed") $) 75)) (-3076 (($ $) 74)) (-3291 (($ (-1154 $)) 73)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) 30)) (-3098 (($) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) 49)) (-1337 (((-107) $) NIL)) (-2990 (($ $) NIL) (($ $ (-703)) NIL)) (-2965 (((-107) $) NIL)) (-1921 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2955 (((-107) $) NIL)) (-1441 (($) 35 (|has| $ (-338)))) (-2327 (((-107) $) NIL (|has| $ (-338)))) (-2289 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-3744 (((-3 $ "failed") $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 $) $ (-843)) NIL (|has| $ (-338))) (((-1070 $) $) 83)) (-2903 (((-843) $) 55)) (-3740 (((-1070 $) $) NIL (|has| $ (-338)))) (-3153 (((-3 (-1070 $) "failed") $ $) NIL (|has| $ (-338))) (((-1070 $) $) NIL (|has| $ (-338)))) (-2426 (($ $ (-1070 $)) NIL (|has| $ (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL T CONST)) (-3353 (($ (-843)) 48)) (-2039 (((-107) $) 67)) (-3094 (((-1021) $) NIL)) (-3107 (($) 16 (|has| $ (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 40)) (-3693 (((-388 $) $) NIL)) (-3738 (((-843)) 66) (((-765 (-843))) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-2586 (((-125)) NIL)) (-1699 (($ $ (-703)) NIL) (($ $) NIL)) (-4007 (((-843) $) 65) (((-765 (-843)) $) NIL)) (-1457 (((-1070 $)) 82)) (-3788 (($) 54)) (-2379 (($) 36 (|has| $ (-338)))) (-2575 (((-623 $) (-1154 $)) NIL) (((-1154 $) $) 71)) (-3582 (((-517) $) 26)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-1589 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1865 (((-703)) 37)) (-3809 (((-1154 $) (-843)) 77) (((-1154 $)) 76)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 19 T CONST)) (-2306 (($) 15 T CONST)) (-2496 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
(((-530 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-843)) (T -530))
NIL
(-13 (-319) (-299 $) (-558 (-517)))
-((-1520 (((-1158) (-1056)) 10)))
-(((-531) (-10 -7 (-15 -1520 ((-1158) (-1056))))) (T -531))
-((-1520 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-531)))))
-(-10 -7 (-15 -1520 ((-1158) (-1056))))
-((-1313 (((-534 |#2|) (-534 |#2|)) 37)) (-3502 (((-583 |#2|) (-534 |#2|)) 39)) (-2029 ((|#2| (-534 |#2|)) 46)))
-(((-532 |#1| |#2|) (-10 -7 (-15 -1313 ((-534 |#2|) (-534 |#2|))) (-15 -3502 ((-583 |#2|) (-534 |#2|))) (-15 -2029 (|#2| (-534 |#2|)))) (-13 (-421) (-952 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1094))) (T -532))
-((-2029 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1094))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1094))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-1313 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1094))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))))
-(-10 -7 (-15 -1313 ((-534 |#2|) (-534 |#2|))) (-15 -3502 ((-583 |#2|) (-534 |#2|))) (-15 -2029 (|#2| (-534 |#2|))))
-((-1893 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26)))
-(((-533 |#1| |#2|) (-10 -7 (-15 -1893 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1893 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1893 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1893 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533))
-((-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2422 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2422 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))))
-(-10 -7 (-15 -1893 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1893 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1893 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1893 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 68)) (-3189 ((|#1| $) NIL)) (-2422 ((|#1| $) 24)) (-1267 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-1399 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3591 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $) 25)) (-3985 (((-1056) $) NIL)) (-2082 (($ |#1| |#1|) 32) (($ |#1| (-1073)) 43 (|has| |#1| (-952 (-1073))))) (-3206 (((-1021) $) NIL)) (-2941 (((-107) $) 28)) (-3127 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1073)) 81 (|has| |#1| (-822 (-1073))))) (-2256 (((-787) $) 95) (($ |#1|) 23)) (-2396 (($) 16 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 15) (($ $ $) NIL)) (-1642 (($ $ $) 77)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL)))
-(((-534 |#1|) (-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -1399 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2422 (|#1| $)) (-15 -3591 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $)) (-15 -1267 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2941 ((-107) $)) (-15 -2082 ($ |#1| |#1|)) (-15 -3127 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1073))) (-15 -3127 (|#1| $ (-1073))) |noBranch|) (IF (|has| |#1| (-952 (-1073))) (-15 -2082 ($ |#1| (-1073))) |noBranch|))) (-333)) (T -534))
-((-1399 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *2)) (|:| |logand| (-1069 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-2422 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *3)) (|:| |logand| (-1069 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1267 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2082 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3127 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3127 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1073)))) (-2082 (*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))))
-(-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -1399 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2422 (|#1| $)) (-15 -3591 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $)) (-15 -1267 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2941 ((-107) $)) (-15 -2082 ($ |#1| |#1|)) (-15 -3127 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1073))) (-15 -3127 (|#1| $ (-1073))) |noBranch|) (IF (|has| |#1| (-952 (-1073))) (-15 -2082 ($ |#1| (-1073))) |noBranch|)))
-((-1404 (((-107) |#1|) 16)) (-1580 (((-3 |#1| "failed") |#1|) 14)) (-1910 (((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|) 30) (((-3 |#1| "failed") |#1| (-703)) 18)) (-3417 (((-107) |#1| (-703)) 19)) (-1944 ((|#1| |#1|) 31)) (-4043 ((|#1| |#1| (-703)) 33)))
-(((-535 |#1|) (-10 -7 (-15 -3417 ((-107) |#1| (-703))) (-15 -1910 ((-3 |#1| "failed") |#1| (-703))) (-15 -1910 ((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|)) (-15 -4043 (|#1| |#1| (-703))) (-15 -1404 ((-107) |#1|)) (-15 -1580 ((-3 |#1| "failed") |#1|)) (-15 -1944 (|#1| |#1|))) (-502)) (T -535))
-((-1944 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1580 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-4043 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1910 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2372 *3) (|:| -2077 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-1910 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -3417 ((-107) |#1| (-703))) (-15 -1910 ((-3 |#1| "failed") |#1| (-703))) (-15 -1910 ((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|)) (-15 -4043 (|#1| |#1| (-703))) (-15 -1404 ((-107) |#1|)) (-15 -1580 ((-3 |#1| "failed") |#1|)) (-15 -1944 (|#1| |#1|)))
-((-3335 (((-1069 |#1|) (-843)) 26)))
-(((-536 |#1|) (-10 -7 (-15 -3335 ((-1069 |#1|) (-843)))) (-319)) (T -536))
-((-3335 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
-(-10 -7 (-15 -3335 ((-1069 |#1|) (-843))))
-((-1313 (((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|)))) 26)) (-4151 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073)) 33 (|has| |#1| (-134)))) (-3502 (((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|)))) 18)) (-2701 (((-286 |#1|) (-377 (-874 |#1|)) (-1073)) 31 (|has| |#1| (-134)))) (-2029 (((-286 |#1|) (-534 (-377 (-874 |#1|)))) 20)))
-(((-537 |#1|) (-10 -7 (-15 -1313 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3502 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2029 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -4151 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2701 ((-286 |#1|) (-377 (-874 |#1|)) (-1073)))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (T -537))
-((-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-1313 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))))
-(-10 -7 (-15 -1313 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3502 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2029 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -4151 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2701 ((-286 |#1|) (-377 (-874 |#1|)) (-1073)))) |noBranch|))
-((-3110 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517)))) 45) (((-583 (-623 (-517))) (-583 (-517))) 46) (((-623 (-517)) (-583 (-517)) (-827 (-517))) 41)) (-2717 (((-703) (-583 (-517))) 39)))
-(((-538) (-10 -7 (-15 -2717 ((-703) (-583 (-517)))) (-15 -3110 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))) (T -538))
-((-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
-(-10 -7 (-15 -2717 ((-703) (-583 (-517)))) (-15 -3110 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))
-((-4064 (((-583 |#5|) |#5| (-107)) 72)) (-1279 (((-107) |#5| (-583 |#5|)) 30)))
-(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4064 ((-583 |#5|) |#5| (-107))) (-15 -1279 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -539))
-((-1279 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4064 ((-583 |#5|) |#5| (-107))) (-15 -1279 ((-107) |#5| (-583 |#5|))))
-((-2750 (((-107) $ $) NIL (|has| (-131) (-1003)))) (-3880 (($ $) 34)) (-3132 (($ $) NIL)) (-3672 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 51)) (-1414 (((-107) $ $ (-517)) 46)) (-1313 (((-583 $) $ (-131)) 59) (((-583 $) $ (-128)) 60)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-131) (-779))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3346 (($ $ (-131)) 63) (($ $ (-128)) 64)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3610 (($ $ (-1121 (-517)) $) 44)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-2052 (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) NIL)) (-1459 (((-107) $ $) 70)) (-2607 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-1536 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 9)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 28 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3482 (((-517) $) 42 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 71)) (-2237 (((-703) $ $ (-131)) 69)) (-1433 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3006 (($ $) 37)) (-1285 (($ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3359 (($ $ (-131)) 61) (($ $ (-128)) 62)) (-3985 (((-1056) $) 38 (|has| (-131) (-1003)))) (-2620 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-517) $) 68) (((-1021) $) NIL (|has| (-131) (-1003)))) (-1647 (((-131) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2565 (($ $ (-131)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) NIL)) (-3619 (((-107) $) 12)) (-1746 (($) 10)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1121 (-517))) 21) (($ $ $) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1906 (($ $ $ (-517)) 65 (|has| $ (-6 -4181)))) (-2433 (($ $) 17)) (-3645 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) NIL)) (-2452 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 66)) (-2256 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1547 (((-107) $ $) 14 (|has| (-131) (-1003)))) (-1595 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) 15 (|has| (-131) (-779)))) (-2296 (((-703) $) 13 (|has| $ (-6 -4180)))))
-(((-540 |#1|) (-13 (-1042) (-10 -8 (-15 -3206 ((-517) $)))) (-517)) (T -540))
-((-3206 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))))
-(-13 (-1042) (-10 -8 (-15 -3206 ((-517) $))))
-((-2541 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|)) 32)))
-(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|)) (T -541))
-((-2541 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-2541 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))))
-(-10 -7 (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 63)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-2339 (($ $) 99)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2330 (((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517))) 223)) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3201 (((-107) $) NIL)) (-3972 (((-517) $) 58) (((-517) $ (-517)) 59)) (-3848 (((-107) $) NIL)) (-3430 (($ $ (-843)) 76)) (-3103 (($ (-1 |#1| (-517)) $) 73)) (-4031 (((-107) $) 25)) (-1339 (($ |#1| (-517)) 22) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 67)) (-2413 (($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-2217 (((-3 $ "failed") $ $ (-107)) 98)) (-1797 (($ $ $) 107)) (-3206 (((-1021) $) NIL)) (-2875 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-3620 (((-941 (-772 (-517))) $) 12)) (-1672 (($ $ (-517)) 45)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-1449 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3688 (((-517) $) NIL)) (-1545 (($ $) 46)) (-2256 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-2720 ((|#1| $ (-517)) 56)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 37)) (-2986 ((|#1| $) NIL)) (-4071 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-2425 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2623 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1543 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-2198 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1844 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-2153 (($ $ (-377 (-517))) 165 (|has| |#1| (-37 (-377 (-517)))))) (-1219 (($ $ |#1|) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2078 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-3936 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-1198 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-2661 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-2805 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3147 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-3749 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-1187 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-3308 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1627 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1579 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2392 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-2907 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1539 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-2447 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-3022 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-3192 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-2127 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-2387 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 29 T CONST)) (-2409 (($) 38 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1547 (((-107) $ $) 65)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 84) (($ $ $) 64)) (-1642 (($ $ $) 81)) (** (($ $ (-843)) NIL) (($ $ (-703)) 102)) (* (($ (-843) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-542 |#1|) (-13 (-1132 |#1| (-517)) (-10 -8 (-15 -2413 ($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3620 ((-941 (-772 (-517))) $)) (-15 -2875 ((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -4031 ((-107) $)) (-15 -3103 ($ (-1 |#1| (-517)) $)) (-15 -2217 ((-3 $ "failed") $ $ (-107))) (-15 -2339 ($ $)) (-15 -1797 ($ $ $)) (-15 -2330 ((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (-15 -1219 ($ $ |#1|)) (-15 -2153 ($ $ (-377 (-517)))) (-15 -3936 ($ $)) (-15 -2078 ($ $)) (-15 -1543 ($ $)) (-15 -3749 ($ $)) (-15 -2425 ($ $)) (-15 -2805 ($ $)) (-15 -1844 ($ $)) (-15 -1575 ($ $)) (-15 -1579 ($ $)) (-15 -2387 ($ $)) (-15 -3308 ($ $)) (-15 -3192 ($ $)) (-15 -2907 ($ $)) (-15 -2447 ($ $)) (-15 -2623 ($ $)) (-15 -3147 ($ $)) (-15 -4071 ($ $)) (-15 -2661 ($ $)) (-15 -2198 ($ $)) (-15 -1198 ($ $)) (-15 -1627 ($ $)) (-15 -2127 ($ $)) (-15 -1187 ($ $)) (-15 -3022 ($ $)) (-15 -2392 ($ $)) (-15 -1539 ($ $))) |noBranch|))) (-961)) (T -542))
-((-4031 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-2217 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-1797 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-2330 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1073)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1219 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2078 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1543 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3749 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2805 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1844 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1579 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3308 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3192 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2907 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2447 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3147 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-4071 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2661 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2198 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1198 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1627 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2127 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1187 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3022 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2392 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1539 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(-13 (-1132 |#1| (-517)) (-10 -8 (-15 -2413 ($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3620 ((-941 (-772 (-517))) $)) (-15 -2875 ((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -4031 ((-107) $)) (-15 -3103 ($ (-1 |#1| (-517)) $)) (-15 -2217 ((-3 $ "failed") $ $ (-107))) (-15 -2339 ($ $)) (-15 -1797 ($ $ $)) (-15 -2330 ((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (-15 -1219 ($ $ |#1|)) (-15 -2153 ($ $ (-377 (-517)))) (-15 -3936 ($ $)) (-15 -2078 ($ $)) (-15 -1543 ($ $)) (-15 -3749 ($ $)) (-15 -2425 ($ $)) (-15 -2805 ($ $)) (-15 -1844 ($ $)) (-15 -1575 ($ $)) (-15 -1579 ($ $)) (-15 -2387 ($ $)) (-15 -3308 ($ $)) (-15 -3192 ($ $)) (-15 -2907 ($ $)) (-15 -2447 ($ $)) (-15 -2623 ($ $)) (-15 -3147 ($ $)) (-15 -4071 ($ $)) (-15 -2661 ($ $)) (-15 -2198 ($ $)) (-15 -1198 ($ $)) (-15 -1627 ($ $)) (-15 -2127 ($ $)) (-15 -1187 ($ $)) (-15 -3022 ($ $)) (-15 -2392 ($ $)) (-15 -1539 ($ $))) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2925 (($ (-1054 |#1|)) 9)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 42)) (-3201 (((-107) $) 52)) (-3972 (((-703) $) 55) (((-703) $ (-703)) 54)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-1054 |#1|) $) 23)) (-2961 (((-703)) 51)) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) 22)) (-1654 (($ $) 30) (($ $ $) 16)) (-1642 (($ $ $) 25)) (** (($ $ (-843)) NIL) (($ $ (-703)) 49)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36)))
-(((-543 |#1|) (-13 (-961) (-10 -8 (-15 -1311 ((-1054 |#1|) $)) (-15 -2925 ($ (-1054 |#1|))) (-15 -3201 ((-107) $)) (-15 -3972 ((-703) $)) (-15 -3972 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |noBranch|))) (-961)) (T -543))
-((-1311 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-3972 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))))
-(-13 (-961) (-10 -8 (-15 -1311 ((-1054 |#1|) $)) (-15 -2925 ($ (-1054 |#1|))) (-15 -3201 ((-107) $)) (-15 -3972 ((-703) $)) (-15 -3972 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |noBranch|)))
-((-1893 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15)))
-(((-544 |#1| |#2|) (-10 -7 (-15 -1893 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1108) (-1108)) (T -544))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))))
-(-10 -7 (-15 -1893 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))))
-((-1893 (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|)) 20) (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18)))
-(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|)))) (-1108) (-1108) (-1108)) (T -545))
-((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))))
-(-10 -7 (-15 -1893 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|))))
-((-2716 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073))) 55)) (-4072 (((-153 |#2|) |#3|) 116)) (-2894 ((|#3| (-153 |#2|)) 43)) (-1484 ((|#2| |#3|) 19)) (-1794 ((|#3| |#2|) 32)))
-(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2894 (|#3| (-153 |#2|))) (-15 -1484 (|#2| |#3|)) (-15 -1794 (|#3| |#2|)) (-15 -4072 ((-153 |#2|) |#3|)) (-15 -2716 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-918) (-1094)) (-13 (-400 (-153 |#1|)) (-918) (-1094))) (T -546))
-((-2716 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1073))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1094))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1094))))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1094))))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *5 *2)))))
-(-10 -7 (-15 -2894 (|#3| (-153 |#2|))) (-15 -1484 (|#2| |#3|)) (-15 -1794 (|#3| |#2|)) (-15 -4072 ((-153 |#2|) |#3|)) (-15 -2716 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073)))))
-((-3536 (($ (-1 (-107) |#1|) $) 16)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ (-1 |#1| |#1|) |#1|) 9)) (-3513 (($ (-1 (-107) |#1|) $) 12)) (-3525 (($ (-1 (-107) |#1|) $) 14)) (-2276 (((-1054 |#1|) $) 17)) (-2256 (((-787) $) NIL)))
-(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)) (-15 -3536 ($ (-1 (-107) |#1|) $)) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -2276 ((-1054 |#1|) $)))) (-1108)) (T -547))
-((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1108)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)) (-15 -3536 ($ (-1 (-107) |#1|) $)) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -2276 ((-1054 |#1|) $))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-548 |#1| |#2|) (-1151 |#1|) (-1108) (-517)) (T -548))
-NIL
-(-1151 |#1|)
-((-1668 (((-1158) $ |#2| |#2|) 36)) (-3243 ((|#2| $) 23)) (-3482 ((|#2| $) 21)) (-1433 (($ (-1 |#3| |#3|) $) 32)) (-1893 (($ (-1 |#3| |#3|) $) 30)) (-1647 ((|#3| $) 26)) (-2565 (($ $ |#3|) 33)) (-4042 (((-107) |#3| $) 17)) (-1941 (((-583 |#3|) $) 15)) (-1449 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -1668 ((-1158) |#1| |#2| |#2|)) (-15 -2565 (|#1| |#1| |#3|)) (-15 -1647 (|#3| |#1|)) (-15 -3243 (|#2| |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -4042 ((-107) |#3| |#1|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1003) (-1108)) (T -549))
-NIL
-(-10 -8 (-15 -1668 ((-1158) |#1| |#2| |#2|)) (-15 -2565 (|#1| |#1| |#3|)) (-15 -1647 (|#3| |#1|)) (-15 -3243 (|#2| |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -4042 ((-107) |#3| |#1|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-1668 (((-1158) $ |#1| |#1|) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1445 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 51)) (-1536 (((-583 |#2|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 43 (|has| |#1| (-779)))) (-2560 (((-583 |#2|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 44 (|has| |#1| (-779)))) (-1433 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#2| (-1003)))) (-1857 (((-583 |#1|) $) 46)) (-4088 (((-107) |#1| $) 47)) (-3206 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1647 ((|#2| $) 42 (|has| |#1| (-779)))) (-2565 (($ $ |#2|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3217 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4180))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#2| (-1003)))) (-3675 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-550 |#1| |#2|) (-1184) (-1003) (-1108)) (T -550))
-((-1941 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *4)))) (-4088 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *3)))) (-4042 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1108)))) (-2565 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1668 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-1158)))))
-(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -1941 ((-583 |t#2|) $)) (-15 -4088 ((-107) |t#1| $)) (-15 -1857 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1003)) (IF (|has| $ (-6 -4180)) (-15 -4042 ((-107) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3482 (|t#1| $)) (-15 -3243 (|t#1| $)) (-15 -1647 (|t#2| $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2565 ($ $ |t#2|)) (-15 -1668 ((-1158) $ |t#1| |t#1|))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#2| (-1003)) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-1003) |has| |#2| (-1003)) ((-1108) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1153 (-623 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3456 (((-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1450 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2619 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2299 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3343 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2158 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2436 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2417 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4069 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2085 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2362 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1967 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1153 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2261 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-3962 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3983 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3414 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1793 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2010 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1188 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3914 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1680 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2300 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4121 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1988 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2190 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3606 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1286 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1848 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1449 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-4114 (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $) (-1153 $)) NIL (|has| |#2| (-337 |#1|))) (((-1153 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3645 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2278 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2256 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1753 (((-1153 $)) NIL (|has| |#2| (-387 |#1|)))) (-1582 (((-583 (-1153 |#1|))) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1587 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2524 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3642 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) (-156) (-677 |#1|)) (T -551))
-((-2256 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))))
-(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-3733 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) 32)) (-3422 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL) (($) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-1056) |#1|) 42)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#1| "failed") (-1056) $) 45)) (-3092 (($) NIL T CONST)) (-1723 (($ $ (-1056)) 24)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3212 (((-3 |#1| "failed") (-1056) $) 46) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (|has| $ (-6 -4180)))) (-2052 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-1457 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) 31)) (-1445 ((|#1| $ (-1056) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-1056)) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1669 (($ $) 47)) (-1513 (($ (-358)) 22) (($ (-358) (-1056)) 21)) (-1207 (((-358) $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2274 (((-583 (-1056)) $) 38)) (-2793 (((-107) (-1056) $) NIL)) (-2845 (((-1056) $) 34)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 36)) (-1449 ((|#1| $ (-1056) |#1|) NIL) ((|#1| $ (-1056)) 41)) (-3089 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL) (($) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-2256 (((-787) $) 20)) (-2463 (($ $) 25)) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-2296 (((-703) $) 40 (|has| $ (-6 -4180)))))
-(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-1085 (-1056) |#1|) (-10 -8 (-6 -4180) (-15 -1669 ($ $)))) (-1003)) (T -552))
-((-1669 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))))
-(-13 (-334 (-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-1085 (-1056) |#1|) (-10 -8 (-6 -4180) (-15 -1669 ($ $))))
-((-2787 (((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 15)) (-2274 (((-583 |#2|) $) 19)) (-2793 (((-107) |#2| $) 12)))
-(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -2274 ((-583 |#2|) |#1|)) (-15 -2793 ((-107) |#2| |#1|)) (-15 -2787 ((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|))) (-554 |#2| |#3|) (-1003) (-1003)) (T -553))
-NIL
-(-10 -8 (-15 -2274 ((-583 |#2|) |#1|)) (-15 -2793 ((-107) |#2| |#1|)) (-15 -2787 ((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)))
-((-2750 (((-107) $ $) 18 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40)) (-3206 (((-1021) $) 21 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51)) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50)) (-2256 (((-787) $) 20 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-554 |#1| |#2|) (-1184) (-1003) (-1003)) (T -554))
-((-2793 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-3212 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3254 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(-13 (-203 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))) (-10 -8 (-15 -2793 ((-107) |t#1| $)) (-15 -2274 ((-583 |t#1|) $)) (-15 -3212 ((-3 |t#2| "failed") |t#1| $)) (-15 -3254 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) ((-557 (-787)) -3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-1003) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) ((-1108) . T))
-((-4134 (((-556 |#2|) |#1|) 15)) (-3937 (((-3 |#1| "failed") (-556 |#2|)) 19)))
-(((-555 |#1| |#2|) (-10 -7 (-15 -4134 ((-556 |#2|) |#1|)) (-15 -3937 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555))
-((-3937 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-4134 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
-(-10 -7 (-15 -4134 ((-556 |#2|) |#1|)) (-15 -3937 ((-3 |#1| "failed") (-556 |#2|))))
-((-2750 (((-107) $ $) NIL)) (-3805 (((-3 (-1073) "failed") $) 36)) (-3892 (((-1158) $ (-703)) 26)) (-2607 (((-703) $) 25)) (-3072 (((-109) $) 12)) (-1207 (((-1073) $) 20)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1851 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1073)) 31)) (-1609 (((-107) $ (-109)) 18) (((-107) $ (-1073)) 16)) (-1881 (((-703) $) 22)) (-3206 (((-1021) $) NIL)) (-3645 (((-814 (-517)) $) 69 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 75 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2256 (((-787) $) 51)) (-2921 (((-583 |#1|) $) 24)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 39)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 40)))
-(((-556 |#1|) (-13 (-124) (-806 |#1|) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -3072 ((-109) $)) (-15 -2921 ((-583 |#1|) $)) (-15 -1881 ((-703) $)) (-15 -1851 ($ (-109) (-583 |#1|) (-703))) (-15 -1851 ($ (-1073))) (-15 -3805 ((-3 (-1073) "failed") $)) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) (-779)) (T -556))
-((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1851 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1851 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3805 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))))
-(-13 (-124) (-806 |#1|) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -3072 ((-109) $)) (-15 -2921 ((-583 |#1|) $)) (-15 -1881 ((-703) $)) (-15 -1851 ($ (-109) (-583 |#1|) (-703))) (-15 -1851 ($ (-1073))) (-15 -3805 ((-3 (-1073) "failed") $)) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
-((-2256 ((|#1| $) 6)))
-(((-557 |#1|) (-1184) (-1108)) (T -557))
-((-2256 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1108)))))
-(-13 (-10 -8 (-15 -2256 (|t#1| $))))
-((-3645 ((|#1| $) 6)))
-(((-558 |#1|) (-1184) (-1108)) (T -558))
-((-3645 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1108)))))
-(-13 (-10 -8 (-15 -3645 (|t#1| $))))
-((-2819 (((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -559))
-((-2819 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1069 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-2819 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-1069 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))))
-(-10 -7 (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|))))
-((-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
-(((-560 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-561 |#2|) (-961)) (T -560))
-NIL
-(-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-561 |#1|) (-1184) (-961)) (T -561))
-((-2256 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-585 |t#1|) (-10 -8 (-15 -2256 ($ |t#1|))))
+((-1305 (((-1159) (-1057)) 10)))
+(((-531) (-10 -7 (-15 -1305 ((-1159) (-1057))))) (T -531))
+((-1305 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-531)))))
+(-10 -7 (-15 -1305 ((-1159) (-1057))))
+((-2861 (((-534 |#2|) (-534 |#2|)) 37)) (-3408 (((-583 |#2|) (-534 |#2|)) 39)) (-2677 ((|#2| (-534 |#2|)) 46)))
+(((-532 |#1| |#2|) (-10 -7 (-15 -2861 ((-534 |#2|) (-534 |#2|))) (-15 -3408 ((-583 |#2|) (-534 |#2|))) (-15 -2677 (|#2| (-534 |#2|)))) (-13 (-421) (-952 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1095))) (T -532))
+((-2677 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1095))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1095))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1095))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))))
+(-10 -7 (-15 -2861 ((-534 |#2|) (-534 |#2|))) (-15 -3408 ((-583 |#2|) (-534 |#2|))) (-15 -2677 (|#2| (-534 |#2|))))
+((-1857 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26)))
+(((-533 |#1| |#2|) (-10 -7 (-15 -1857 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1857 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1857 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1857 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533))
+((-1857 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-1857 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-1857 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2230 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2230 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))))
+(-10 -7 (-15 -1857 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1857 ((-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2230 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1857 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1857 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) 68)) (-3076 ((|#1| $) NIL)) (-2230 ((|#1| $) 24)) (-1447 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-1896 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-2365 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) $) 25)) (-3865 (((-1057) $) NIL)) (-2110 (($ |#1| |#1|) 32) (($ |#1| (-1074)) 43 (|has| |#1| (-952 (-1074))))) (-3094 (((-1021) $) NIL)) (-1681 (((-107) $) 28)) (-1699 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1074)) 81 (|has| |#1| (-822 (-1074))))) (-2182 (((-787) $) 95) (($ |#1|) 23)) (-2297 (($) 16 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) 15) (($ $ $) NIL)) (-1626 (($ $ $) 77)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL)))
+(((-534 |#1|) (-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -1896 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2230 (|#1| $)) (-15 -2365 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) $)) (-15 -1447 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1681 ((-107) $)) (-15 -2110 ($ |#1| |#1|)) (-15 -1699 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1074))) (-15 -1699 (|#1| $ (-1074))) |noBranch|) (IF (|has| |#1| (-952 (-1074))) (-15 -2110 ($ |#1| (-1074))) |noBranch|))) (-333)) (T -534))
+((-1896 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 *2)) (|:| |logand| (-1070 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-2230 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 *3)) (|:| |logand| (-1070 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2110 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-1699 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1074)))) (-2110 (*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))))
+(-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -1896 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2230 (|#1| $)) (-15 -2365 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) $)) (-15 -1447 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1681 ((-107) $)) (-15 -2110 ($ |#1| |#1|)) (-15 -1699 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1074))) (-15 -1699 (|#1| $ (-1074))) |noBranch|) (IF (|has| |#1| (-952 (-1074))) (-15 -2110 ($ |#1| (-1074))) |noBranch|)))
+((-1928 (((-107) |#1|) 16)) (-2950 (((-3 |#1| "failed") |#1|) 14)) (-3995 (((-2 (|:| -4103 |#1|) (|:| -2059 (-703))) |#1|) 30) (((-3 |#1| "failed") |#1| (-703)) 18)) (-3255 (((-107) |#1| (-703)) 19)) (-3066 ((|#1| |#1|) 31)) (-3136 ((|#1| |#1| (-703)) 33)))
+(((-535 |#1|) (-10 -7 (-15 -3255 ((-107) |#1| (-703))) (-15 -3995 ((-3 |#1| "failed") |#1| (-703))) (-15 -3995 ((-2 (|:| -4103 |#1|) (|:| -2059 (-703))) |#1|)) (-15 -3136 (|#1| |#1| (-703))) (-15 -1928 ((-107) |#1|)) (-15 -2950 ((-3 |#1| "failed") |#1|)) (-15 -3066 (|#1| |#1|))) (-502)) (T -535))
+((-3066 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-2950 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1928 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-3136 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3995 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4103 *3) (|:| -2059 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-3995 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -3255 ((-107) |#1| (-703))) (-15 -3995 ((-3 |#1| "failed") |#1| (-703))) (-15 -3995 ((-2 (|:| -4103 |#1|) (|:| -2059 (-703))) |#1|)) (-15 -3136 (|#1| |#1| (-703))) (-15 -1928 ((-107) |#1|)) (-15 -2950 ((-3 |#1| "failed") |#1|)) (-15 -3066 (|#1| |#1|)))
+((-3826 (((-1070 |#1|) (-843)) 26)))
+(((-536 |#1|) (-10 -7 (-15 -3826 ((-1070 |#1|) (-843)))) (-319)) (T -536))
+((-3826 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
+(-10 -7 (-15 -3826 ((-1070 |#1|) (-843))))
+((-2861 (((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|)))) 26)) (-2863 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1074)) 33 (|has| |#1| (-134)))) (-3408 (((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|)))) 18)) (-3025 (((-286 |#1|) (-377 (-874 |#1|)) (-1074)) 31 (|has| |#1| (-134)))) (-2677 (((-286 |#1|) (-534 (-377 (-874 |#1|)))) 20)))
+(((-537 |#1|) (-10 -7 (-15 -2861 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3408 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2677 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -2863 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -3025 ((-286 |#1|) (-377 (-874 |#1|)) (-1074)))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (T -537))
+((-3025 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))))
+(-10 -7 (-15 -2861 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3408 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2677 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -2863 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -3025 ((-286 |#1|) (-377 (-874 |#1|)) (-1074)))) |noBranch|))
+((-3608 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517)))) 45) (((-583 (-623 (-517))) (-583 (-517))) 46) (((-623 (-517)) (-583 (-517)) (-827 (-517))) 41)) (-3062 (((-703) (-583 (-517))) 39)))
+(((-538) (-10 -7 (-15 -3062 ((-703) (-583 (-517)))) (-15 -3608 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3608 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3608 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))) (T -538))
+((-3608 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+(-10 -7 (-15 -3062 ((-703) (-583 (-517)))) (-15 -3608 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3608 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3608 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))
+((-3372 (((-583 |#5|) |#5| (-107)) 72)) (-3734 (((-107) |#5| (-583 |#5|)) 30)))
+(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3372 ((-583 |#5|) |#5| (-107))) (-15 -3734 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -539))
+((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3372 ((-583 |#5|) |#5| (-107))) (-15 -3734 ((-107) |#5| (-583 |#5|))))
+((-2571 (((-107) $ $) NIL (|has| (-131) (-1003)))) (-2160 (($ $) 34)) (-2517 (($ $) NIL)) (-3847 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1433 (((-107) $ $) 51)) (-1409 (((-107) $ $ (-517)) 46)) (-2861 (((-583 $) $ (-131)) 59) (((-583 $) $ (-128)) 60)) (-2866 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-2740 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-131) (-779))))) (-3056 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4184))) (((-131) $ (-1122 (-517)) (-131)) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-3246 (($ $ (-131)) 63) (($ $ (-128)) 64)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-2191 (($ $ (-1122 (-517)) $) 44)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-1971 (($ (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1226 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4184)))) (-4020 (((-131) $ (-517)) NIL)) (-1456 (((-107) $ $) 70)) (-2446 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-3037 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-3366 (($ (-703) (-131)) 9)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) 28 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| (-131) (-779)))) (-2262 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-1196 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2564 (((-517) $) 42 (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| (-131) (-779)))) (-1317 (((-107) $ $ (-131)) 71)) (-2167 (((-703) $ $ (-131)) 69)) (-1213 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-4006 (($ $) 37)) (-2676 (($ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3259 (($ $ (-131)) 61) (($ $ (-128)) 62)) (-3865 (((-1057) $) 38 (|has| (-131) (-1003)))) (-2454 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-517) $) 68) (((-1021) $) NIL (|has| (-131) (-1003)))) (-1631 (((-131) $) NIL (|has| (-517) (-779)))) (-2293 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-1254 (($ $ (-131)) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3042 (((-583 (-131)) $) NIL)) (-1546 (((-107) $) 12)) (-1326 (($) 10)) (-1986 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1122 (-517))) 21) (($ $ $) NIL)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3105 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3966 (($ $ $ (-517)) 65 (|has| $ (-6 -4184)))) (-2322 (($ $) 17)) (-3582 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2197 (($ (-583 (-131))) NIL)) (-2337 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 66)) (-2182 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-3883 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1539 (((-107) $ $) 14 (|has| (-131) (-1003)))) (-1582 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1560 (((-107) $ $) 15 (|has| (-131) (-779)))) (-2210 (((-703) $) 13 (|has| $ (-6 -4183)))))
+(((-540 |#1|) (-13 (-1043) (-10 -8 (-15 -3094 ((-517) $)))) (-517)) (T -540))
+((-3094 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))))
+(-13 (-1043) (-10 -8 (-15 -3094 ((-517) $))))
+((-2410 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|)) 32)))
+(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2410 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -2410 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|)) (T -541))
+((-2410 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-2410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))))
+(-10 -7 (-15 -2410 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -2410 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 63)) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3349 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-4040 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-2590 (($ $) 99)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2534 (((-787) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1074) |#1| (-377 (-517))) 223)) (-1534 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2029 (((-107) $) NIL)) (-1921 (((-517) $) 58) (((-517) $ (-517)) 59)) (-2955 (((-107) $) NIL)) (-3371 (($ $ (-843)) 76)) (-3558 (($ (-1 |#1| (-517)) $) 73)) (-1331 (((-107) $) 25)) (-1343 (($ |#1| (-517)) 22) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) 67)) (-2164 (($ (-941 (-772 (-517))) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-2863 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-4000 (((-3 $ "failed") $ $ (-107)) 98)) (-3234 (($ $ $) 107)) (-3094 (((-1021) $) NIL)) (-2207 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-1557 (((-941 (-772 (-517))) $) 12)) (-3467 (($ $ (-517)) 45)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1979 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-1986 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1015)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-4007 (((-517) $) NIL)) (-2860 (($ $) 46)) (-2182 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-3086 ((|#1| $ (-517)) 56)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) 37)) (-2840 ((|#1| $) NIL)) (-3454 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-2260 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-3534 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1720 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-3827 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-3990 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1616 (($ $ (-377 (-517))) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2347 (($ $ |#1|) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2068 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1552 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-3920 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-2080 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-2605 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-2658 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-2632 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-3262 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3810 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1825 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3716 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-2101 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2008 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1391 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1695 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-2427 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-4136 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1978 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1386 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1975 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3284 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 29 T CONST)) (-2306 (($) 38 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1539 (((-107) $ $) 65)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) 84) (($ $ $) 64)) (-1626 (($ $ $) 81)) (** (($ $ (-843)) NIL) (($ $ (-703)) 102)) (* (($ (-843) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-542 |#1|) (-13 (-1133 |#1| (-517)) (-10 -8 (-15 -2164 ($ (-941 (-772 (-517))) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -1557 ((-941 (-772 (-517))) $)) (-15 -2207 ((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -1534 ($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -1331 ((-107) $)) (-15 -3558 ($ (-1 |#1| (-517)) $)) (-15 -4000 ((-3 $ "failed") $ $ (-107))) (-15 -2590 ($ $)) (-15 -3234 ($ $ $)) (-15 -2534 ((-787) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1074) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $)) (-15 -2347 ($ $ |#1|)) (-15 -1616 ($ $ (-377 (-517)))) (-15 -1552 ($ $)) (-15 -2068 ($ $)) (-15 -1720 ($ $)) (-15 -3262 ($ $)) (-15 -2260 ($ $)) (-15 -2658 ($ $)) (-15 -3990 ($ $)) (-15 -2080 ($ $)) (-15 -2101 ($ $)) (-15 -1975 ($ $)) (-15 -1825 ($ $)) (-15 -1978 ($ $)) (-15 -1391 ($ $)) (-15 -2427 ($ $)) (-15 -3534 ($ $)) (-15 -2632 ($ $)) (-15 -3454 ($ $)) (-15 -2605 ($ $)) (-15 -3827 ($ $)) (-15 -3920 ($ $)) (-15 -3716 ($ $)) (-15 -1386 ($ $)) (-15 -3810 ($ $)) (-15 -4136 ($ $)) (-15 -2008 ($ $)) (-15 -1695 ($ $))) |noBranch|))) (-961)) (T -542))
+((-1331 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2164 (*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-3558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-4000 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2590 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-3234 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-2534 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1074)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-2863 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2347 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))) (-1552 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2068 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1720 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3262 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2658 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3990 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2080 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2101 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1975 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1825 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1978 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2427 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3534 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2632 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3454 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2605 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3827 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3716 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1386 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-4136 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1695 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(-13 (-1133 |#1| (-517)) (-10 -8 (-15 -2164 ($ (-941 (-772 (-517))) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -1557 ((-941 (-772 (-517))) $)) (-15 -2207 ((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -1534 ($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -1331 ((-107) $)) (-15 -3558 ($ (-1 |#1| (-517)) $)) (-15 -4000 ((-3 $ "failed") $ $ (-107))) (-15 -2590 ($ $)) (-15 -3234 ($ $ $)) (-15 -2534 ((-787) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1074) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $)) (-15 -2347 ($ $ |#1|)) (-15 -1616 ($ $ (-377 (-517)))) (-15 -1552 ($ $)) (-15 -2068 ($ $)) (-15 -1720 ($ $)) (-15 -3262 ($ $)) (-15 -2260 ($ $)) (-15 -2658 ($ $)) (-15 -3990 ($ $)) (-15 -2080 ($ $)) (-15 -2101 ($ $)) (-15 -1975 ($ $)) (-15 -1825 ($ $)) (-15 -1978 ($ $)) (-15 -1391 ($ $)) (-15 -2427 ($ $)) (-15 -3534 ($ $)) (-15 -2632 ($ $)) (-15 -3454 ($ $)) (-15 -2605 ($ $)) (-15 -3827 ($ $)) (-15 -3920 ($ $)) (-15 -3716 ($ $)) (-15 -1386 ($ $)) (-15 -3810 ($ $)) (-15 -4136 ($ $)) (-15 -2008 ($ $)) (-15 -1695 ($ $))) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-1534 (($ (-1055 |#1|)) 9)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) 42)) (-2029 (((-107) $) 52)) (-1921 (((-703) $) 55) (((-703) $ (-703)) 54)) (-2955 (((-107) $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2349 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-1055 |#1|) $) 23)) (-1865 (((-703)) 51)) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 10 T CONST)) (-2306 (($) 14 T CONST)) (-1539 (((-107) $ $) 22)) (-1637 (($ $) 30) (($ $ $) 16)) (-1626 (($ $ $) 25)) (** (($ $ (-843)) NIL) (($ $ (-703)) 49)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36)))
+(((-543 |#1|) (-13 (-961) (-10 -8 (-15 -2834 ((-1055 |#1|) $)) (-15 -1534 ($ (-1055 |#1|))) (-15 -2029 ((-107) $)) (-15 -1921 ((-703) $)) (-15 -1921 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |noBranch|))) (-961)) (T -543))
+((-2834 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-1921 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))))
+(-13 (-961) (-10 -8 (-15 -2834 ((-1055 |#1|) $)) (-15 -1534 ($ (-1055 |#1|))) (-15 -2029 ((-107) $)) (-15 -1921 ((-703) $)) (-15 -1921 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |noBranch|)))
+((-1857 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15)))
+(((-544 |#1| |#2|) (-10 -7 (-15 -1857 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1109) (-1109)) (T -544))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))))
+(-10 -7 (-15 -1857 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))))
+((-1857 (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1055 |#2|)) 20) (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18)))
+(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -1857 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1857 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-547 |#2|))) (-15 -1857 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1055 |#2|)))) (-1109) (-1109) (-1109)) (T -545))
+((-1857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))))
+(-10 -7 (-15 -1857 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1857 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-547 |#2|))) (-15 -1857 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1055 |#2|))))
+((-3053 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1074))) 55)) (-3468 (((-153 |#2|) |#3|) 116)) (-2334 ((|#3| (-153 |#2|)) 43)) (-3975 ((|#2| |#3|) 19)) (-3179 ((|#3| |#2|) 32)))
+(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2334 (|#3| (-153 |#2|))) (-15 -3975 (|#2| |#3|)) (-15 -3179 (|#3| |#2|)) (-15 -3468 ((-153 |#2|) |#3|)) (-15 -3053 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1074))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-918) (-1095)) (-13 (-400 (-153 |#1|)) (-918) (-1095))) (T -546))
+((-3053 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1074))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1095))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1095))))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1095))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1095))))) (-3179 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1095))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1095))))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1095))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1095))))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1095))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1095))) (-5 *1 (-546 *4 *5 *2)))))
+(-10 -7 (-15 -2334 (|#3| (-153 |#2|))) (-15 -3975 (|#2| |#3|)) (-15 -3179 (|#3| |#2|)) (-15 -3468 ((-153 |#2|) |#3|)) (-15 -3053 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1074)))))
+((-3451 (($ (-1 (-107) |#1|) $) 16)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-3368 (($ (-1 |#1| |#1|) |#1|) 9)) (-3422 (($ (-1 (-107) |#1|) $) 12)) (-3436 (($ (-1 (-107) |#1|) $) 14)) (-2197 (((-1055 |#1|) $) 17)) (-2182 (((-787) $) NIL)))
+(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -1857 ($ (-1 |#1| |#1|) $)) (-15 -3422 ($ (-1 (-107) |#1|) $)) (-15 -3436 ($ (-1 (-107) |#1|) $)) (-15 -3451 ($ (-1 (-107) |#1|) $)) (-15 -3368 ($ (-1 |#1| |#1|) |#1|)) (-15 -2197 ((-1055 |#1|) $)))) (-1109)) (T -547))
+((-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-3422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-3436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-3451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-3368 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1109)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -1857 ($ (-1 |#1| |#1|) $)) (-15 -3422 ($ (-1 (-107) |#1|) $)) (-15 -3436 ($ (-1 (-107) |#1|) $)) (-15 -3451 ($ (-1 (-107) |#1|) $)) (-15 -3368 ($ (-1 |#1| |#1|) |#1|)) (-15 -2197 ((-1055 |#1|) $))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3437 (($ (-703)) NIL (|has| |#1| (-23)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2446 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2544 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3366 (($ (-703) |#1|) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2751 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-2942 (((-107) $ (-703)) NIL)) (-2542 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) NIL (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-2736 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-2115 (($ $ $) NIL (|has| |#1| (-961)))) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-2337 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1637 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1626 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-548 |#1| |#2|) (-1152 |#1|) (-1109) (-517)) (T -548))
+NIL
+(-1152 |#1|)
+((-3423 (((-1159) $ |#2| |#2|) 36)) (-2305 ((|#2| $) 23)) (-2564 ((|#2| $) 21)) (-1213 (($ (-1 |#3| |#3|) $) 32)) (-1857 (($ (-1 |#3| |#3|) $) 30)) (-1631 ((|#3| $) 26)) (-1254 (($ $ |#3|) 33)) (-3127 (((-107) |#3| $) 17)) (-3042 (((-583 |#3|) $) 15)) (-1986 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -3423 ((-1159) |#1| |#2| |#2|)) (-15 -1254 (|#1| |#1| |#3|)) (-15 -1631 (|#3| |#1|)) (-15 -2305 (|#2| |#1|)) (-15 -2564 (|#2| |#1|)) (-15 -3127 ((-107) |#3| |#1|)) (-15 -3042 ((-583 |#3|) |#1|)) (-15 -1986 (|#3| |#1| |#2|)) (-15 -1986 (|#3| |#1| |#2| |#3|)) (-15 -1213 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1857 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1003) (-1109)) (T -549))
+NIL
+(-10 -8 (-15 -3423 ((-1159) |#1| |#2| |#2|)) (-15 -1254 (|#1| |#1| |#3|)) (-15 -1631 (|#3| |#1|)) (-15 -2305 (|#2| |#1|)) (-15 -2564 (|#2| |#1|)) (-15 -3127 ((-107) |#3| |#1|)) (-15 -3042 ((-583 |#3|) |#1|)) (-15 -1986 (|#3| |#1| |#2|)) (-15 -1986 (|#3| |#1| |#2| |#3|)) (-15 -1213 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1857 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-3423 (((-1159) $ |#1| |#1|) 40 (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4184)))) (-3473 (($) 7 T CONST)) (-1226 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) 51)) (-3037 (((-583 |#2|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-2305 ((|#1| $) 43 (|has| |#1| (-779)))) (-1196 (((-583 |#2|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2564 ((|#1| $) 44 (|has| |#1| (-779)))) (-1213 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#2| |#2|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#2| (-1003)))) (-4086 (((-583 |#1|) $) 46)) (-3646 (((-107) |#1| $) 47)) (-3094 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1631 ((|#2| $) 42 (|has| |#1| (-779)))) (-1254 (($ $ |#2|) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3105 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4183))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 20 (|has| |#2| (-1003)))) (-3883 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-550 |#1| |#2|) (-1185) (-1003) (-1109)) (T -550))
+((-3042 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-583 *4)))) (-3646 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-107)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-583 *3)))) (-3127 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1109)))) (-1254 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) (-3423 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-1159)))))
+(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -3042 ((-583 |t#2|) $)) (-15 -3646 ((-107) |t#1| $)) (-15 -4086 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1003)) (IF (|has| $ (-6 -4183)) (-15 -3127 ((-107) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -2564 (|t#1| $)) (-15 -2305 (|t#1| $)) (-15 -1631 (|t#2| $))) |noBranch|) (IF (|has| $ (-6 -4184)) (PROGN (-15 -1254 ($ $ |t#2|)) (-15 -3423 ((-1159) $ |t#1| |t#1|))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#2| (-1003)) ((-557 (-787)) -3763 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-1003) |has| |#2| (-1003)) ((-1109) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1697 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3029 (((-1154 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1154 (-623 |#1|)) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3624 (((-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3473 (($) NIL T CONST)) (-3072 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3672 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3495 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3488 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3922 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-1675 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2344 (((-1070 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-1246 (($ $ (-843)) NIL)) (-2030 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2193 (((-1070 |#1|) $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3440 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2134 (((-1070 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2815 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3291 (($ (-1154 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1154 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-1568 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3795 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-1837 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3092 (($ $ (-843)) NIL)) (-3419 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3841 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3229 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2054 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3004 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2507 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3823 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2386 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3526 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3503 (((-1070 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-1313 (($ $ (-843)) NIL)) (-2377 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2621 (((-1070 |#1|) $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3532 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3737 (((-1070 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-1440 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3865 (((-1057) $) NIL)) (-3156 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2688 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4022 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3094 (((-1021) $) NIL)) (-3662 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1986 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-2575 (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-387 |#1|))) (((-1154 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $) (-1154 $)) NIL (|has| |#2| (-337 |#1|))) (((-1154 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3582 (($ (-1154 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1154 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3254 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3064 (($ $ $) NIL)) (-3010 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2182 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3809 (((-1154 $)) NIL (|has| |#2| (-387 |#1|)))) (-2971 (((-583 (-1154 |#1|))) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2411 (($ $ $ $) NIL)) (-2902 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1574 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3168 (($ $ $) NIL)) (-2883 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3832 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1781 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2297 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2182 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) (-156) (-677 |#1|)) (T -551))
+((-2182 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))))
+(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2182 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-3113 (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) 32)) (-3331 (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL) (($) NIL)) (-3423 (((-1159) $ (-1057) (-1057)) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-1057) |#1|) 42)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 |#1| "failed") (-1057) $) 45)) (-3473 (($) NIL T CONST)) (-1665 (($ $ (-1057)) 24)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003))))) (-2111 (((-3 |#1| "failed") (-1057) $) 46) (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (($ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL (|has| $ (-6 -4183)))) (-1971 (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (($ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003))))) (-2521 (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003))))) (-3741 (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) 31)) (-1226 ((|#1| $ (-1057) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-1057)) NIL)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3433 (($ $) 47)) (-1511 (($ (-358)) 22) (($ (-358) (-1057)) 21)) (-1211 (((-358) $) 33)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-1057) $) NIL (|has| (-1057) (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (((-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003))))) (-2564 (((-1057) $) NIL (|has| (-1057) (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-3799 (((-583 (-1057)) $) 38)) (-2555 (((-107) (-1057) $) NIL)) (-1974 (((-1057) $) 34)) (-1835 (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL)) (-4086 (((-583 (-1057)) $) NIL)) (-3646 (((-107) (-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 ((|#1| $) NIL (|has| (-1057) (-779)))) (-2293 (((-3 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) "failed") (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (($ $ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 36)) (-1986 ((|#1| $ (-1057) |#1|) NIL) ((|#1| $ (-1057)) 41)) (-3429 (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL) (($) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (((-703) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL)) (-2182 (((-787) $) 20)) (-1505 (($ $) 25)) (-2373 (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19)) (-2210 (((-703) $) 40 (|has| $ (-6 -4183)))))
+(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) (-1086 (-1057) |#1|) (-10 -8 (-6 -4183) (-15 -3433 ($ $)))) (-1003)) (T -552))
+((-3433 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))))
+(-13 (-334 (-358) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) (-1086 (-1057) |#1|) (-10 -8 (-6 -4183) (-15 -3433 ($ $))))
+((-2502 (((-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) $) 15)) (-3799 (((-583 |#2|) $) 19)) (-2555 (((-107) |#2| $) 12)))
+(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -3799 ((-583 |#2|) |#1|)) (-15 -2555 ((-107) |#2| |#1|)) (-15 -2502 ((-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|))) (-554 |#2| |#3|) (-1003) (-1003)) (T -553))
+NIL
+(-10 -8 (-15 -3799 ((-583 |#2|) |#1|)) (-15 -2555 ((-107) |#2| |#1|)) (-15 -2502 ((-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)))
+((-2571 (((-107) $ $) 18 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 45 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 55 (|has| $ (-6 -4183)))) (-3147 (((-3 |#2| "failed") |#1| $) 61)) (-3473 (($) 7 T CONST)) (-1667 (($ $) 58 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 46 (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 62)) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 54 (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 56 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 53 (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 52 (|has| $ (-6 -4183)))) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-3799 (((-583 |#1|) $) 63)) (-2555 (((-107) |#1| $) 64)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 39)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 40)) (-3094 (((-1021) $) 21 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 51)) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 41)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) 26 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 25 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 24 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 23 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3429 (($) 49) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 48)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 31 (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 50)) (-2182 (((-787) $) 20 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 42)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-554 |#1| |#2|) (-1185) (-1003) (-1003)) (T -554))
+((-2555 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-2111 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3147 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(-13 (-203 (-2 (|:| -3342 |t#1|) (|:| -1266 |t#2|))) (-10 -8 (-15 -2555 ((-107) |t#1| $)) (-15 -3799 ((-583 |t#1|) $)) (-15 -2111 ((-3 |t#2| "failed") |t#1| $)) (-15 -3147 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-102 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-97) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) ((-557 (-787)) -3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-209 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) -12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) ((-456 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-478 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) -12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) ((-1003) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) ((-1109) . T))
+((-2738 (((-556 |#2|) |#1|) 15)) (-1563 (((-3 |#1| "failed") (-556 |#2|)) 19)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -2738 ((-556 |#2|) |#1|)) (-15 -1563 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555))
+((-1563 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-2738 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
+(-10 -7 (-15 -2738 ((-556 |#2|) |#1|)) (-15 -1563 ((-3 |#1| "failed") (-556 |#2|))))
+((-2571 (((-107) $ $) NIL)) (-2519 (((-3 (-1074) "failed") $) 36)) (-2221 (((-1159) $ (-703)) 26)) (-2446 (((-703) $) 25)) (-3270 (((-109) $) 12)) (-1211 (((-1074) $) 20)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-1822 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1074)) 31)) (-4158 (((-107) $ (-109)) 18) (((-107) $ (-1074)) 16)) (-1846 (((-703) $) 22)) (-3094 (((-1021) $) NIL)) (-3582 (((-814 (-517)) $) 69 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 75 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2182 (((-787) $) 51)) (-1516 (((-583 |#1|) $) 24)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 39)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 40)))
+(((-556 |#1|) (-13 (-124) (-806 |#1|) (-10 -8 (-15 -1211 ((-1074) $)) (-15 -3270 ((-109) $)) (-15 -1516 ((-583 |#1|) $)) (-15 -1846 ((-703) $)) (-15 -1822 ($ (-109) (-583 |#1|) (-703))) (-15 -1822 ($ (-1074))) (-15 -2519 ((-3 (-1074) "failed") $)) (-15 -4158 ((-107) $ (-109))) (-15 -4158 ((-107) $ (-1074))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) (-779)) (T -556))
+((-1211 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1846 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1822 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2519 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))))
+(-13 (-124) (-806 |#1|) (-10 -8 (-15 -1211 ((-1074) $)) (-15 -3270 ((-109) $)) (-15 -1516 ((-583 |#1|) $)) (-15 -1846 ((-703) $)) (-15 -1822 ($ (-109) (-583 |#1|) (-703))) (-15 -1822 ($ (-1074))) (-15 -2519 ((-3 (-1074) "failed") $)) (-15 -4158 ((-107) $ (-109))) (-15 -4158 ((-107) $ (-1074))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
+((-2182 ((|#1| $) 6)))
+(((-557 |#1|) (-1185) (-1109)) (T -557))
+((-2182 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1109)))))
+(-13 (-10 -8 (-15 -2182 (|t#1| $))))
+((-3582 ((|#1| $) 6)))
+(((-558 |#1|) (-1185) (-1109)) (T -558))
+((-3582 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1109)))))
+(-13 (-10 -8 (-15 -3582 (|t#1| $))))
+((-2804 (((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -2804 ((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2804 ((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|)) (T -559))
+((-2804 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1070 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-2804 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-1070 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))))
+(-10 -7 (-15 -2804 ((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2804 ((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|))))
+((-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
+(((-560 |#1| |#2|) (-10 -8 (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|))) (-561 |#2|) (-961)) (T -560))
+NIL
+(-10 -8 (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-561 |#1|) (-1185) (-961)) (T -561))
+((-2182 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-585 |t#1|) (-10 -8 (-15 -2182 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-3848 (((-107) $) NIL)) (-1787 ((|#1| $) 13)) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1800 ((|#3| $) 15)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-2961 (((-703)) 20)) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 12 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1667 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562))
-((-1667 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1667 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1800 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $))))
-((-3941 ((|#2| |#2| (-1073) (-1073)) 18)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -3941 (|#2| |#2| (-1073) (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -563))
-((-3941 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-29 *4))))))
-(-10 -7 (-15 -3941 (|#2| |#2| (-1073) (-1073))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 52)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2255 ((|#1| $) 49)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2316 (((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)) 95 (|has| |#1| (-333)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 24)) (-3621 (((-3 $ "failed") $) 74)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3972 (((-517) $) 19)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) 36)) (-1339 (($ |#1| (-517)) 21)) (-1191 ((|#1| $) 51)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 85 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) 78)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3146 (((-703) $) 97 (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 96 (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-3688 (((-517) $) 34)) (-3645 (((-377 |#2|) $) 42)) (-2256 (((-787) $) 61) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-2720 ((|#1| $ (-517)) 62)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) 17)) (-1654 (($ $) 46) (($ $ $) NIL)) (-1642 (($ $ $) 75)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44)))
-(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -4031 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -3972 ((-517) $)) (-15 -1212 ($ $)) (-15 -1191 (|#1| $)) (-15 -2255 (|#1| $)) (-15 -2720 (|#1| $ (-517))) (-15 -1339 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -2316 ((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)))) |noBranch|))) (-509) (-1130 |#1|)) (T -564))
-((-4031 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-3972 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-1212 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-1191 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-2255 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) (-2316 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1388 (-564 *4 *5)) (|:| -2544 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))))
-(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -4031 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -3972 ((-517) $)) (-15 -1212 ($ $)) (-15 -1191 (|#1| $)) (-15 -2255 (|#1| $)) (-15 -2720 (|#1| $ (-517))) (-15 -1339 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -2316 ((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)))) |noBranch|)))
-((-4029 (((-583 |#6|) (-583 |#4|) (-107)) 46)) (-2562 ((|#6| |#6|) 39)))
-(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2562 (|#6| |#6|)) (-15 -4029 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|) (-1012 |#1| |#2| |#3| |#4|)) (T -565))
-((-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) (-2562 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2562 (|#6| |#6|)) (-15 -4029 ((-583 |#6|) (-583 |#4|) (-107))))
-((-1928 (((-107) |#3| (-703) (-583 |#3|)) 22)) (-2494 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 51)))
-(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1928 ((-107) |#3| (-703) (-583 |#3|))) (-15 -2494 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-871 |#3| |#2| |#1|)) (T -566))
-((-2494 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2879 (-583 (-2 (|:| |irr| *10) (|:| -3631 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1069 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1069 *3))))) (-1928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6)))))
-(-10 -7 (-15 -1928 ((-107) |#3| (-703) (-583 |#3|))) (-15 -2494 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|))))
-((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2402 (($ $) 67)) (-1867 (((-601 |#1| |#2|) $) 52)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 70)) (-1852 (((-583 (-265 |#2|)) $ $) 33)) (-3206 (((-1021) $) NIL)) (-2624 (($ (-601 |#1| |#2|)) 48)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 58) (((-1166 |#1| |#2|) $) NIL) (((-1171 |#1| |#2|) $) 66)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 53 T CONST)) (-2321 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-2984 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-2332 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) 36)) (-1547 (((-107) $ $) 54)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44)))
-(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -2624 ($ (-601 |#1| |#2|))) (-15 -1867 ((-601 |#1| |#2|) $)) (-15 -2332 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1171 |#1| |#2|) $)) (-15 -2402 ($ $)) (-15 -3463 ((-583 |#1|) $)) (-15 -2984 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2321 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -1852 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-843)) (T -567))
-((-2624 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-1852 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
-(-13 (-442) (-10 -8 (-15 -2624 ($ (-601 |#1| |#2|))) (-15 -1867 ((-601 |#1| |#2|) $)) (-15 -2332 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1171 |#1| |#2|) $)) (-15 -2402 ($ $)) (-15 -3463 ((-583 |#1|) $)) (-15 -2984 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2321 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -1852 ((-583 (-265 |#2|)) $ $))))
-((-4029 (((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70) (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-3958 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-1281 (((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 69)) (-1420 (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 55)) (-1759 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-2066 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -3958 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2066 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1759 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1420 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1281 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1073))) (T -568))
-((-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))) (-2066 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1073))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
-(-10 -7 (-15 -3958 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2066 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1759 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1420 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1281 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))))
-((-1865 (($ $) 38)) (-1721 (($ $) 21)) (-1839 (($ $) 37)) (-1701 (($ $) 22)) (-1887 (($ $) 36)) (-1743 (($ $) 23)) (-2645 (($) 48)) (-1867 (($ $) 45)) (-3139 (($ $) 17)) (-2082 (($ $ (-996 $)) 7) (($ $ (-1073)) 6)) (-2624 (($ $) 46)) (-1655 (($ $) 15)) (-1689 (($ $) 16)) (-1898 (($ $) 35)) (-1754 (($ $) 24)) (-1876 (($ $) 34)) (-1732 (($ $) 25)) (-1853 (($ $) 33)) (-1711 (($ $) 26)) (-3707 (($ $) 44)) (-1788 (($ $) 32)) (-3683 (($ $) 43)) (-1765 (($ $) 31)) (-3731 (($ $) 42)) (-1814 (($ $) 30)) (-1492 (($ $) 41)) (-1827 (($ $) 29)) (-3719 (($ $) 40)) (-1802 (($ $) 28)) (-3695 (($ $) 39)) (-1777 (($ $) 27)) (-3362 (($ $) 19)) (-3452 (($ $) 20)) (-2037 (($ $) 18)) (** (($ $ $) 47)))
-(((-569) (-1184)) (T -569))
-((-3452 (*1 *1 *1) (-4 *1 (-569))) (-3362 (*1 *1 *1) (-4 *1 (-569))) (-2037 (*1 *1 *1) (-4 *1 (-569))) (-3139 (*1 *1 *1) (-4 *1 (-569))) (-1689 (*1 *1 *1) (-4 *1 (-569))) (-1655 (*1 *1 *1) (-4 *1 (-569))))
-(-13 (-880) (-1094) (-10 -8 (-15 -3452 ($ $)) (-15 -3362 ($ $)) (-15 -2037 ($ $)) (-15 -3139 ($ $)) (-15 -1689 ($ $)) (-15 -1655 ($ $))))
-(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-880) . T) ((-1094) . T) ((-1097) . T))
-((-3072 (((-109) (-109)) 83)) (-3139 ((|#2| |#2|) 30)) (-2082 ((|#2| |#2| (-996 |#2|)) 79) ((|#2| |#2| (-1073)) 52)) (-1655 ((|#2| |#2|) 29)) (-1689 ((|#2| |#2|) 31)) (-4074 (((-107) (-109)) 34)) (-3362 ((|#2| |#2|) 26)) (-3452 ((|#2| |#2|) 28)) (-2037 ((|#2| |#2|) 27)))
-(((-570 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3452 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2082 (|#2| |#2| (-1073))) (-15 -2082 (|#2| |#2| (-996 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918) (-1094))) (T -570))
-((-2082 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-2082 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3139 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3362 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1094))))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))))))
-(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3452 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2082 (|#2| |#2| (-1073))) (-15 -2082 (|#2| |#2| (-996 |#2|))))
-((-3611 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 52)) (-2212 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 67)) (-2040 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 68)) (-1544 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 105)) (-1465 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 82)) (-2358 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 116)) (-1499 (((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 57)) (-3871 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-3296 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-3195 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 89)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -1544 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2358 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2212 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -3871 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1499 ((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -3195 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1465 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3296 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3611 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1073)) (-421)) (T -571))
-((-3611 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-3296 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-1465 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-3195 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1073))) (-5 *1 (-571 *5 *6)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-1153 *6)) (-5 *1 (-571 *5 *6)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2040 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2358 (*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
-(-10 -7 (-15 -1544 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2358 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2212 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -3871 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1499 ((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -3195 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1465 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3296 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3611 ((-449 |#1| |#2|) (-221 |#1| |#2|))))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-51) $ (-1056) (-51)) 16) (((-51) $ (-1073) (-51)) 17)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1056) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1056) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-51) $ (-1056) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1056)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-1669 (($ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1299 (($ (-358)) 9)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1056)) $) NIL)) (-2793 (((-107) (-1056) $) NIL)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-1647 (((-51) $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1056)) 14) (((-51) $ (-1056) (-51)) NIL) (((-51) $ (-1073)) 15)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-572) (-13 (-1085 (-1056) (-51)) (-10 -8 (-15 -1299 ($ (-358))) (-15 -1669 ($ $)) (-15 -1449 ((-51) $ (-1073))) (-15 -2411 ((-51) $ (-1073) (-51)))))) (T -572))
-((-1299 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-1669 (*1 *1 *1) (-5 *1 (-572))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1073)) (-5 *1 (-572)))))
-(-13 (-1085 (-1056) (-51)) (-10 -8 (-15 -1299 ($ (-358))) (-15 -1669 ($ $)) (-15 -1449 ((-51) $ (-1073))) (-15 -2411 ((-51) $ (-1073) (-51)))))
-((-1667 (($ $ |#2|) 10)))
-(((-573 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573))
-NIL
-(-10 -8 (-15 -1667 (|#1| |#1| |#2|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2276 (($ $ $) 29)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-574 |#1|) (-1184) (-156)) (T -574))
-((-2276 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2276 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-1207 (((-517) $) NIL (|has| |#1| (-777)))) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2099 (((-107) $) NIL (|has| |#1| (-777)))) (-2955 (((-107) $) NIL)) (-1772 ((|#1| $) 13)) (-1624 (((-107) $) NIL (|has| |#1| (-777)))) (-1575 (($ $ $) NIL (|has| |#1| (-777)))) (-2986 (($ $ $) NIL (|has| |#1| (-777)))) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1783 ((|#3| $) 15)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-1865 (((-703)) 20)) (-1221 (($ $) NIL (|has| |#1| (-777)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) 12 T CONST)) (-1593 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1649 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (-15 -1649 ($ $ |#3|)) (-15 -1649 ($ |#1| |#3|)) (-15 -1772 (|#1| $)) (-15 -1783 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562))
+((-1649 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1649 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1772 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1783 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (-15 -1649 ($ $ |#3|)) (-15 -1649 ($ |#1| |#3|)) (-15 -1772 (|#1| $)) (-15 -1783 (|#3| $))))
+((-1609 ((|#2| |#2| (-1074) (-1074)) 18)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -1609 (|#2| |#2| (-1074) (-1074)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-880) (-29 |#1|))) (T -563))
+((-1609 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1095) (-880) (-29 *4))))))
+(-10 -7 (-15 -1609 (|#2| |#2| (-1074) (-1074))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 52)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3063 ((|#1| $) 49)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-3677 (((-2 (|:| -2830 $) (|:| -4004 (-377 |#2|))) (-377 |#2|)) 95 (|has| |#1| (-333)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) 24)) (-1568 (((-3 $ "failed") $) 74)) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1921 (((-517) $) 19)) (-2955 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) 36)) (-1343 (($ |#1| (-517)) 21)) (-1192 ((|#1| $) 51)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 85 (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-2349 (((-3 $ "failed") $ $) 78)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2623 (((-703) $) 97 (|has| |#1| (-333)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 96 (|has| |#1| (-333)))) (-1699 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-4007 (((-517) $) 34)) (-3582 (((-377 |#2|) $) 42)) (-2182 (((-787) $) 61) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-3086 ((|#1| $ (-517)) 62)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 9 T CONST)) (-2306 (($) 12 T CONST)) (-2553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1539 (((-107) $ $) 17)) (-1637 (($ $) 46) (($ $ $) NIL)) (-1626 (($ $ $) 75)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44)))
+(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -1331 ((-107) $)) (-15 -4007 ((-517) $)) (-15 -1921 ((-517) $)) (-15 -1217 ($ $)) (-15 -1192 (|#1| $)) (-15 -3063 (|#1| $)) (-15 -3086 (|#1| $ (-517))) (-15 -1343 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -3677 ((-2 (|:| -2830 $) (|:| -4004 (-377 |#2|))) (-377 |#2|)))) |noBranch|))) (-509) (-1131 |#1|)) (T -564))
+((-1331 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) (-4007 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) (-1921 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) (-1217 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) (-1192 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) (-3063 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1131 *2)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1131 *2)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2830 (-564 *4 *5)) (|:| -4004 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))))
+(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -1331 ((-107) $)) (-15 -4007 ((-517) $)) (-15 -1921 ((-517) $)) (-15 -1217 ($ $)) (-15 -1192 (|#1| $)) (-15 -3063 (|#1| $)) (-15 -3086 (|#1| $ (-517))) (-15 -1343 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -3677 ((-2 (|:| -2830 $) (|:| -4004 (-377 |#2|))) (-377 |#2|)))) |noBranch|)))
+((-1310 (((-583 |#6|) (-583 |#4|) (-107)) 46)) (-1220 ((|#6| |#6|) 39)))
+(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1220 (|#6| |#6|)) (-15 -1310 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|) (-1012 |#1| |#2| |#3| |#4|)) (T -565))
+((-1310 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) (-1220 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1220 (|#6| |#6|)) (-15 -1310 ((-583 |#6|) (-583 |#4|) (-107))))
+((-1204 (((-107) |#3| (-703) (-583 |#3|)) 22)) (-1800 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1070 |#3|)))) "failed") |#3| (-583 (-1070 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2232 (-583 (-2 (|:| |irr| |#4|) (|:| -1671 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 51)))
+(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1204 ((-107) |#3| (-703) (-583 |#3|))) (-15 -1800 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1070 |#3|)))) "failed") |#3| (-583 (-1070 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2232 (-583 (-2 (|:| |irr| |#4|) (|:| -1671 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-871 |#3| |#2| |#1|)) (T -566))
+((-1800 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2232 (-583 (-2 (|:| |irr| *10) (|:| -1671 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1070 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1070 *3))))) (-1204 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6)))))
+(-10 -7 (-15 -1204 ((-107) |#3| (-703) (-583 |#3|))) (-15 -1800 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1070 |#3|)))) "failed") |#3| (-583 (-1070 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2232 (-583 (-2 (|:| |irr| |#4|) (|:| -1671 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|))))
+((-2571 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-2088 (($ $) 67)) (-1826 (((-601 |#1| |#2|) $) 52)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 70)) (-4046 (((-583 (-265 |#2|)) $ $) 33)) (-3094 (((-1021) $) NIL)) (-2459 (($ (-601 |#1| |#2|)) 48)) (-2013 (($ $ $) NIL)) (-3064 (($ $ $) NIL)) (-2182 (((-787) $) 58) (((-1167 |#1| |#2|) $) NIL) (((-1172 |#1| |#2|) $) 66)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2306 (($) 53 T CONST)) (-2461 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-3858 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-2557 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) 36)) (-1539 (((-107) $ $) 54)) (-1649 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44)))
+(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -2459 ($ (-601 |#1| |#2|))) (-15 -1826 ((-601 |#1| |#2|) $)) (-15 -2557 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2182 ((-1167 |#1| |#2|) $)) (-15 -2182 ((-1172 |#1| |#2|) $)) (-15 -2088 ($ $)) (-15 -3367 ((-583 |#1|) $)) (-15 -3858 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2461 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -4046 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-843)) (T -567))
+((-2459 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2088 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-4046 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
+(-13 (-442) (-10 -8 (-15 -2459 ($ (-601 |#1| |#2|))) (-15 -1826 ((-601 |#1| |#2|) $)) (-15 -2557 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2182 ((-1167 |#1| |#2|) $)) (-15 -2182 ((-1172 |#1| |#2|) $)) (-15 -2088 ($ $)) (-15 -3367 ((-583 |#1|) $)) (-15 -3858 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2461 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -4046 ((-583 (-265 |#2|)) $ $))))
+((-1310 (((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70) (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-1797 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-3757 (((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 69)) (-1497 (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 55)) (-2089 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-1985 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -1797 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1985 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -2089 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1497 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3757 ((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1310 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1310 ((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1074))) (T -568))
+((-1310 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-1045 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-1310 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-3757 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-1045 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1074))) (-5 *1 (-568 *3 *4)))) (-1985 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1074))) (-5 *1 (-568 *3 *4)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1074))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
+(-10 -7 (-15 -1797 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1985 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -2089 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1497 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3757 ((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1310 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1310 ((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))))
+((-1834 (($ $) 38)) (-1710 (($ $) 21)) (-1812 (($ $) 37)) (-1685 (($ $) 22)) (-1851 (($ $) 36)) (-1731 (($ $) 23)) (-2475 (($) 48)) (-1826 (($ $) 45)) (-3026 (($ $) 17)) (-2110 (($ $ (-996 $)) 7) (($ $ (-1074)) 6)) (-2459 (($ $) 46)) (-1638 (($ $) 15)) (-1674 (($ $) 16)) (-1860 (($ $) 35)) (-1741 (($ $) 24)) (-1842 (($ $) 34)) (-1722 (($ $) 25)) (-1824 (($ $) 33)) (-1698 (($ $) 26)) (-3642 (($ $) 44)) (-1773 (($ $) 32)) (-3622 (($ $) 43)) (-1751 (($ $) 31)) (-3661 (($ $) 42)) (-1794 (($ $) 30)) (-1279 (($ $) 41)) (-1803 (($ $) 29)) (-3650 (($ $) 40)) (-1784 (($ $) 28)) (-3631 (($ $) 39)) (-1762 (($ $) 27)) (-4055 (($ $) 19)) (-3604 (($ $) 20)) (-2777 (($ $) 18)) (** (($ $ $) 47)))
+(((-569) (-1185)) (T -569))
+((-3604 (*1 *1 *1) (-4 *1 (-569))) (-4055 (*1 *1 *1) (-4 *1 (-569))) (-2777 (*1 *1 *1) (-4 *1 (-569))) (-3026 (*1 *1 *1) (-4 *1 (-569))) (-1674 (*1 *1 *1) (-4 *1 (-569))) (-1638 (*1 *1 *1) (-4 *1 (-569))))
+(-13 (-880) (-1095) (-10 -8 (-15 -3604 ($ $)) (-15 -4055 ($ $)) (-15 -2777 ($ $)) (-15 -3026 ($ $)) (-15 -1674 ($ $)) (-15 -1638 ($ $))))
+(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-880) . T) ((-1095) . T) ((-1098) . T))
+((-3270 (((-109) (-109)) 83)) (-3026 ((|#2| |#2|) 30)) (-2110 ((|#2| |#2| (-996 |#2|)) 79) ((|#2| |#2| (-1074)) 52)) (-1638 ((|#2| |#2|) 29)) (-1674 ((|#2| |#2|) 31)) (-3494 (((-107) (-109)) 34)) (-4055 ((|#2| |#2|) 26)) (-3604 ((|#2| |#2|) 28)) (-2777 ((|#2| |#2|) 27)))
+(((-570 |#1| |#2|) (-10 -7 (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -3604 (|#2| |#2|)) (-15 -4055 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -3026 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1074))) (-15 -2110 (|#2| |#2| (-996 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918) (-1095))) (T -570))
+((-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1095))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1095))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-3026 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-2777 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-4055 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1095))))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1095))))))
+(-10 -7 (-15 -3494 ((-107) (-109))) (-15 -3270 ((-109) (-109))) (-15 -3604 (|#2| |#2|)) (-15 -4055 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -3026 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1074))) (-15 -2110 (|#2| |#2| (-996 |#2|))))
+((-1481 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 52)) (-3950 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 67)) (-2811 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 68)) (-2843 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 105)) (-3817 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 82)) (-2772 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 116)) (-2105 (((-1154 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 57)) (-2083 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-1711 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-1994 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 89)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -2843 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2772 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -3950 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2811 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2811 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2083 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2105 ((-1154 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -1994 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3817 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1711 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1481 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1074)) (-421)) (T -571))
+((-1481 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-1711 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-3817 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-1994 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1074))) (-5 *1 (-571 *5 *6)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-1154 *6)) (-5 *1 (-571 *5 *6)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1074))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2811 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1074))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2772 (*1 *2 *3) (-12 (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
+(-10 -7 (-15 -2843 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2772 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -3950 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2811 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2811 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2083 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2105 ((-1154 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -1994 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3817 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1711 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1481 ((-449 |#1| |#2|) (-221 |#1| |#2|))))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) NIL)) (-3423 (((-1159) $ (-1057) (-1057)) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 (((-51) $ (-1057) (-51)) 16) (((-51) $ (-1074) (-51)) 17)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 (-51) "failed") (-1057) $) NIL)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003))))) (-2111 (($ (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-3 (-51) "failed") (-1057) $) NIL)) (-1971 (($ (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $ (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003)))) (((-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $ (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-1226 (((-51) $ (-1057) (-51)) NIL (|has| $ (-6 -4184)))) (-4020 (((-51) $ (-1057)) NIL)) (-3037 (((-583 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-3433 (($ $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-1057) $) NIL (|has| (-1057) (-779)))) (-1196 (((-583 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-2564 (((-1057) $) NIL (|has| (-1057) (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1311 (($ (-358)) 9)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003))))) (-3799 (((-583 (-1057)) $) NIL)) (-2555 (((-107) (-1057) $) NIL)) (-1835 (((-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) $) NIL)) (-3816 (($ (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) $) NIL)) (-4086 (((-583 (-1057)) $) NIL)) (-3646 (((-107) (-1057) $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003))))) (-1631 (((-51) $) NIL (|has| (-1057) (-779)))) (-2293 (((-3 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) "failed") (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL)) (-1254 (($ $ (-51)) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003)))) (($ $ (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3042 (((-583 (-51)) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 (((-51) $ (-1057)) 14) (((-51) $ (-1057) (-51)) NIL) (((-51) $ (-1074)) 15)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 (-51))) (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-572) (-13 (-1086 (-1057) (-51)) (-10 -8 (-15 -1311 ($ (-358))) (-15 -3433 ($ $)) (-15 -1986 ((-51) $ (-1074))) (-15 -2307 ((-51) $ (-1074) (-51)))))) (T -572))
+((-1311 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-3433 (*1 *1 *1) (-5 *1 (-572))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2307 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1074)) (-5 *1 (-572)))))
+(-13 (-1086 (-1057) (-51)) (-10 -8 (-15 -1311 ($ (-358))) (-15 -3433 ($ $)) (-15 -1986 ((-51) $ (-1074))) (-15 -2307 ((-51) $ (-1074) (-51)))))
+((-1649 (($ $ |#2|) 10)))
+(((-573 |#1| |#2|) (-10 -8 (-15 -1649 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573))
+NIL
+(-10 -8 (-15 -1649 (|#1| |#1| |#2|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2197 (($ $ $) 29)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-574 |#1|) (-1185) (-156)) (T -574))
+((-2197 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1649 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2197 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1649 ($ $ |t#1|)) |noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1153 (-623 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3456 (((-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1450 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2619 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2299 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3343 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2158 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2436 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2417 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4069 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2085 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2362 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1967 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1153 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2261 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-3962 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3983 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3414 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1793 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2010 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1188 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3914 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1680 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2300 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4121 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1988 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2190 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3606 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1286 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1848 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1449 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-4114 (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $) (-1153 $)) NIL (|has| |#2| (-337 |#1|))) (((-1153 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3645 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2278 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2256 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1753 (((-1153 $)) NIL (|has| |#2| (-387 |#1|)))) (-1582 (((-583 (-1153 |#1|))) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1587 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2524 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3642 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2396 (($) 15 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 17)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) (-156) (-677 |#1|)) (T -575))
-((-2256 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))))
-(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|)))
-((-3236 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056)) 77) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 99)) (-1586 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 104)))
-(((-576 |#1| |#2|) (-10 -7 (-15 -3236 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -1586 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -3236 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -576))
-((-3236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1056)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))))
-(-10 -7 (-15 -3236 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -1586 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -3236 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056))))
-((-3236 (((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056)) 79) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 18) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|)))) 34)) (-1586 (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 21) (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|)))) 42)))
-(((-577 |#1|) (-10 -7 (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056)))) (-421)) (T -577))
-((-3236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))))
-(-10 -7 (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056))))
-((-1412 (((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|) 57 (-2630 (|has| |#1| (-333)))) (((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-1757 (((-107) (-1153 |#2|)) 30)) (-3927 (((-3 (-1153 |#1|) "failed") (-1153 |#2|)) 33)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -1757 ((-107) (-1153 |#2|))) (-15 -3927 ((-3 (-1153 |#1|) "failed") (-1153 |#2|))) (IF (|has| |#1| (-333)) (-15 -1412 ((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|)) (-15 -1412 ((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578))
-((-1412 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-2630 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1153 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-1412 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1153 *5)) (-5 *1 (-578 *5 *4)))) (-3927 (*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1153 *4)) (-5 *1 (-578 *4 *5)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
-(-10 -7 (-15 -1757 ((-107) (-1153 |#2|))) (-15 -3927 ((-3 (-1153 |#1|) "failed") (-1153 |#2|))) (IF (|has| |#1| (-333)) (-15 -1412 ((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|)) (-15 -1412 ((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3355 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 35)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-579 |#1|) (-1184) (-961)) (T -579))
-((-3355 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1153 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 *5)))))))
-(-13 (-961) (-10 -8 (-15 -3355 ((-623 |t#1|) (-623 $))) (-15 -3355 ((-2 (|:| -2790 (-623 |t#1|)) (|:| |vec| (-1153 |t#1|))) (-623 $) (-1153 $)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1697 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3029 (((-1154 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1154 (-623 |#1|)) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3624 (((-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3473 (($) NIL T CONST)) (-3072 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3672 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3495 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3488 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3922 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-1675 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2344 (((-1070 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-1246 (($ $ (-843)) NIL)) (-2030 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2193 (((-1070 |#1|) $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3440 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2134 (((-1070 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2815 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3291 (($ (-1154 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1154 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-1568 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3795 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-1837 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3092 (($ $ (-843)) NIL)) (-3419 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3841 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3229 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2054 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3004 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2507 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3823 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2386 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3526 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3503 (((-1070 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-1313 (($ $ (-843)) NIL)) (-2377 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2621 (((-1070 |#1|) $) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3532 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3737 (((-1070 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-1440 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3865 (((-1057) $) NIL)) (-3156 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2688 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4022 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3094 (((-1021) $) NIL)) (-3662 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1986 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-2575 (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-387 |#1|))) (((-1154 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $) (-1154 $)) NIL (|has| |#2| (-337 |#1|))) (((-1154 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3582 (($ (-1154 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1154 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3254 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3064 (($ $ $) NIL)) (-3010 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2182 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3809 (((-1154 $)) NIL (|has| |#2| (-387 |#1|)))) (-2971 (((-583 (-1154 |#1|))) NIL (-3763 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2411 (($ $ $ $) NIL)) (-2902 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1574 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3168 (($ $ $) NIL)) (-2883 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3832 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1781 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2297 (($) 15 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) 17)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2182 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) (-156) (-677 |#1|)) (T -575))
+((-2182 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))))
+(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2182 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|)))
+((-2254 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1057)) 77) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 99)) (-3387 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 104)))
+(((-576 |#1| |#2|) (-10 -7 (-15 -2254 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -3387 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2254 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1057)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -576))
+((-2254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1057)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-3387 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))))
+(-10 -7 (-15 -2254 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -3387 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2254 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1057))))
+((-2254 (((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1057)) 79) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 18) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|)))) 34)) (-3387 (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 21) (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|)))) 42)))
+(((-577 |#1|) (-10 -7 (-15 -2254 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -2254 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -3387 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -3387 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2254 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1057)))) (-421)) (T -577))
+((-2254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1057)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))))
+(-10 -7 (-15 -2254 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -2254 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -3387 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -3387 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2254 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1057))))
+((-1453 (((-3 (-1154 (-377 |#1|)) "failed") (-1154 |#2|) |#2|) 57 (-2455 (|has| |#1| (-333)))) (((-3 (-1154 |#1|) "failed") (-1154 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-3176 (((-107) (-1154 |#2|)) 30)) (-1468 (((-3 (-1154 |#1|) "failed") (-1154 |#2|)) 33)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -3176 ((-107) (-1154 |#2|))) (-15 -1468 ((-3 (-1154 |#1|) "failed") (-1154 |#2|))) (IF (|has| |#1| (-333)) (-15 -1453 ((-3 (-1154 |#1|) "failed") (-1154 |#2|) |#2|)) (-15 -1453 ((-3 (-1154 (-377 |#1|)) "failed") (-1154 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578))
+((-1453 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 *5)) (-2455 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1154 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-1453 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1154 *5)) (-5 *1 (-578 *5 *4)))) (-1468 (*1 *2 *3) (|partial| -12 (-5 *3 (-1154 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1154 *4)) (-5 *1 (-578 *4 *5)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+(-10 -7 (-15 -3176 ((-107) (-1154 |#2|))) (-15 -1468 ((-3 (-1154 |#1|) "failed") (-1154 |#2|))) (IF (|has| |#1| (-333)) (-15 -1453 ((-3 (-1154 |#1|) "failed") (-1154 |#2|) |#2|)) (-15 -1453 ((-3 (-1154 (-377 |#1|)) "failed") (-1154 |#2|) |#2|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-4012 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 35)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-579 |#1|) (-1185) (-961)) (T -579))
+((-4012 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1154 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2522 (-623 *5)) (|:| |vec| (-1154 *5)))))))
+(-13 (-961) (-10 -8 (-15 -4012 ((-623 |t#1|) (-623 $))) (-15 -4012 ((-2 (|:| -2522 (-623 |t#1|)) (|:| |vec| (-1154 |t#1|))) (-623 $) (-1154 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2237 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1003) (-1108)) (T -580))
-((-2237 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-580 *5 *6)))) (-2237 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-2237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))))
-(-10 -7 (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|))))
-((-3905 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-1893 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13)))
-(((-581 |#1| |#2|) (-10 -7 (-15 -3905 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1108) (-1108)) (T -581))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-581 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))))
-(-10 -7 (-15 -3905 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))))
-((-1893 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13)))
-(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1108) (-1108) (-1108)) (T -582))
-((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))))
-(-10 -7 (-15 -1893 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-1576 (($ $ $) 31 (|has| |#1| (-1003)))) (-1562 (($ $ $) 33 (|has| |#1| (-1003)))) (-1550 (($ $ $) 36 (|has| |#1| (-1003)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $) NIL) (($ $ (-703)) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) 30 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2650 (((-107) $) 9)) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3353 (($) 7)) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 32 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) 35) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 44 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-1540 (($ |#1| $) 10)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ $) 29) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3741 (($ $ $) 11)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 25 (|has| |#1| (-760))) (((-1056) $ (-107)) 26 (|has| |#1| (-760))) (((-1158) (-754) $) 27 (|has| |#1| (-760))) (((-1158) (-754) $ (-107)) 28 (|has| |#1| (-760)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -3353 ($)) (-15 -2650 ((-107) $)) (-15 -1540 ($ |#1| $)) (-15 -3741 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1576 ($ $ $)) (-15 -1562 ($ $ $)) (-15 -1550 ($ $ $))) |noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) (-1108)) (T -583))
-((-3353 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1108)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-3741 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-1576 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))) (-1562 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))) (-1550 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))))
-(-13 (-603 |#1|) (-10 -8 (-15 -3353 ($)) (-15 -2650 ((-107) $)) (-15 -1540 ($ |#1| $)) (-15 -3741 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1576 ($ $ $)) (-15 -1562 ($ $ $)) (-15 -1550 ($ $ $))) |noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|)))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1670 (($ |#1| |#1| $) 43)) (-2953 (((-107) $ (-703)) NIL)) (-2337 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3483 (($ $) 45)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 51 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 53 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 9 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 37)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 46)) (-1710 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4006 ((|#1| $) 48)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 21)) (-1746 (($) 25)) (-2605 (((-107) $) 49)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 60)) (-3089 (($) 23) (($ (-583 |#1|)) 18)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) 57 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 19)) (-3645 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2256 (((-787) $) 14 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 22)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 62 (|has| |#1| (-1003)))) (-2296 (((-703) $) 16 (|has| $ (-6 -4180)))))
-(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4180) (-15 -2605 ((-107) $)) (-15 -1670 ($ |#1| |#1| $)))) (-1003)) (T -584))
-((-2605 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))) (-1670 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003)))))
-(-13 (-628 |#1|) (-10 -8 (-6 -4180) (-15 -2605 ((-107) $)) (-15 -1670 ($ |#1| |#1| $))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23)))
-(((-585 |#1|) (-1184) (-968)) (T -585))
+((-2167 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -2167 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2167 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2167 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2167 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2167 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2167 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1003) (-1109)) (T -580))
+((-2167 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) (-2167 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *1 (-580 *5 *6)))) (-2167 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) (-2167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-2167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))))
+(-10 -7 (-15 -2167 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2167 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2167 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2167 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2167 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2167 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|))))
+((-2325 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-2521 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-1857 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13)))
+(((-581 |#1| |#2|) (-10 -7 (-15 -2325 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1857 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1109) (-1109)) (T -581))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-581 *5 *2)))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))))
+(-10 -7 (-15 -2325 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1857 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))))
+((-1857 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13)))
+(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -1857 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1109) (-1109) (-1109)) (T -582))
+((-1857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))))
+(-10 -7 (-15 -1857 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) NIL)) (-2864 ((|#1| $) NIL)) (-2602 (($ $) NIL)) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2740 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-3056 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-4072 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3499 (($ $ $) NIL (|has| $ (-6 -4184)))) (-3573 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3043 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "rest" $) NIL (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-1564 (($ $ $) 31 (|has| |#1| (-1003)))) (-1553 (($ $ $) 33 (|has| |#1| (-1003)))) (-1543 (($ $ $) 36 (|has| |#1| (-1003)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2849 ((|#1| $) NIL)) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1644 (($ $) NIL) (($ $ (-703)) NIL)) (-2573 (($ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $) 30 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2111 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-1971 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2570 (((-107) $) NIL)) (-2446 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2478 (((-107) $) 9)) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3252 (($) 7)) (-3366 (($ (-703) |#1|) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2581 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2262 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 32 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1524 (($ |#1|) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1988 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3816 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2454 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-2660 (((-107) $) NIL)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1122 (-517))) NIL) ((|#1| $ (-517)) 35) ((|#1| $ (-517) |#1|) NIL)) (-1482 (((-517) $ $) NIL)) (-1628 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3685 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-2562 (((-107) $) NIL)) (-4084 (($ $) NIL)) (-3145 (($ $) NIL (|has| $ (-6 -4184)))) (-2943 (((-703) $) NIL)) (-2103 (($ $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) 44 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-1533 (($ |#1| $) 10)) (-1286 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2337 (($ $ $) 29) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3673 (($ $ $) 11)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1693 (((-1057) $) 25 (|has| |#1| (-760))) (((-1057) $ (-107)) 26 (|has| |#1| (-760))) (((-1159) (-754) $) 27 (|has| |#1| (-760))) (((-1159) (-754) $ (-107)) 28 (|has| |#1| (-760)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -3252 ($)) (-15 -2478 ((-107) $)) (-15 -1533 ($ |#1| $)) (-15 -3673 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1564 ($ $ $)) (-15 -1553 ($ $ $)) (-15 -1543 ($ $ $))) |noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) (-1109)) (T -583))
+((-3252 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1109)))) (-1533 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))) (-3673 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))) (-1564 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))) (-1553 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))) (-1543 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))))
+(-13 (-603 |#1|) (-10 -8 (-15 -3252 ($)) (-15 -2478 ((-107) $)) (-15 -1533 ($ |#1| $)) (-15 -3673 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1564 ($ $ $)) (-15 -1553 ($ $ $)) (-15 -1543 ($ $ $))) |noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|)))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1656 (($ |#1| |#1| $) 43)) (-1799 (((-107) $ (-703)) NIL)) (-2582 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-2573 (($ $) 45)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2111 (($ |#1| $) 51 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 53 (|has| $ (-6 -4183)))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3037 (((-583 |#1|) $) 9 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 37)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1835 ((|#1| $) 46)) (-3816 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4049 ((|#1| $) 48)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 21)) (-1326 (($) 25)) (-3338 (((-107) $) 49)) (-3972 (((-583 (-2 (|:| -1266 |#1|) (|:| -3105 (-703)))) $) 60)) (-3429 (($) 23) (($ (-583 |#1|)) 18)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) 57 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) 19)) (-3582 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-2182 (((-787) $) 14 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 22)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 62 (|has| |#1| (-1003)))) (-2210 (((-703) $) 16 (|has| $ (-6 -4183)))))
+(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4183) (-15 -3338 ((-107) $)) (-15 -1656 ($ |#1| |#1| $)))) (-1003)) (T -584))
+((-3338 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))) (-1656 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003)))))
+(-13 (-628 |#1|) (-10 -8 (-6 -4183) (-15 -3338 ((-107) $)) (-15 -1656 ($ |#1| |#1| $))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23)))
+(((-585 |#1|) (-1185) (-968)) (T -585))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) 15)) (-3953 (($ $ |#1|) 55)) (-4020 (($ $) 32)) (-3093 (($ $) 31)) (-1772 (((-3 |#1| "failed") $) 47)) (-3189 ((|#1| $) NIL)) (-2662 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-3078 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-3466 ((|#1| $ (-517)) 30)) (-3882 ((|#2| $ (-517)) 29)) (-3420 (($ (-1 |#1| |#1|) $) 34)) (-2125 (($ (-1 |#2| |#2|) $) 38)) (-2824 (($) 10)) (-1568 (($ |#1| |#2|) 22)) (-3840 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|)))) 23)) (-3539 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 13)) (-1227 (($ |#1| $) 56)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2344 (((-107) $ $) 58)) (-2256 (((-787) $) 19) (($ |#1|) 16)) (-1547 (((-107) $ $) 25)))
-(((-586 |#1| |#2| |#3|) (-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -3539 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $)) (-15 -1568 ($ |#1| |#2|)) (-15 -3840 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))))) (-15 -3882 (|#2| $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -3093 ($ $)) (-15 -4020 ($ $)) (-15 -1611 ((-703) $)) (-15 -2824 ($)) (-15 -3953 ($ $ |#1|)) (-15 -1227 ($ |#1| $)) (-15 -2662 ($ |#1| |#2| $)) (-15 -2662 ($ $ $)) (-15 -2344 ((-107) $ $)) (-15 -2125 ($ (-1 |#2| |#2|) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)))) (-1003) (-23) |#2|) (T -586))
-((-3078 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-1568 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-4020 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2824 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3953 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1227 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2662 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2344 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -3539 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $)) (-15 -1568 ($ |#1| |#2|)) (-15 -3840 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))))) (-15 -3882 (|#2| $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -3093 ($ $)) (-15 -4020 ($ $)) (-15 -1611 ((-703) $)) (-15 -2824 ($)) (-15 -3953 ($ $ |#1|)) (-15 -1227 ($ |#1| $)) (-15 -2662 ($ |#1| |#2| $)) (-15 -2662 ($ $ $)) (-15 -2344 ((-107) $ $)) (-15 -2125 ($ (-1 |#2| |#2|) $)) (-15 -3420 ($ (-1 |#1| |#1|) $))))
-((-3482 (((-517) $) 23)) (-2620 (($ |#2| $ (-517)) 21) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) 12)) (-4088 (((-107) (-517) $) 14)) (-2452 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-583 $)) NIL)))
-(((-587 |#1| |#2|) (-10 -8 (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -3482 ((-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -4088 ((-107) (-517) |#1|))) (-588 |#2|) (-1108)) (T -587))
-NIL
-(-10 -8 (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -3482 ((-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -4088 ((-107) (-517) |#1|)))
-((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-588 |#1|) (-1184) (-1108)) (T -588))
-((-3462 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2452 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2620 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2620 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1121 (-517))) (|has| *1 (-6 -4181)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))))
-(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3462 ($ (-703) |t#1|)) (-15 -2452 ($ $ |t#1|)) (-15 -2452 ($ |t#1| $)) (-15 -2452 ($ $ $)) (-15 -2452 ($ (-583 $))) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1449 ($ $ (-1121 (-517)))) (-15 -3750 ($ $ (-517))) (-15 -3750 ($ $ (-1121 (-517)))) (-15 -2620 ($ |t#1| $ (-517))) (-15 -2620 ($ $ $ (-517))) (IF (|has| $ (-6 -4181)) (-15 -2411 (|t#1| $ (-1121 (-517)) |t#1|)) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-1674 (((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073)) 43)))
-(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073))) (-15 -1674 ((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880)) (-593 |#2|)) (T -589))
-((-1674 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073))) (-15 -1674 ((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) NIL (|has| |#1| (-333)))) (-3091 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) NIL)) (-1686 (($ $ $) NIL (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) NIL)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-1598 (((-703) $) 15)) (-1745 (($ $ |#1|) 55)) (-1227 (($ $) 32)) (-2979 (($ $) 31)) (-1759 (((-3 |#1| "failed") $) 47)) (-3076 ((|#1| $) NIL)) (-2488 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-3314 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-2445 ((|#1| $ (-517)) 30)) (-2169 ((|#2| $ (-517)) 29)) (-3276 (($ (-1 |#1| |#1|) $) 34)) (-1378 (($ (-1 |#2| |#2|) $) 38)) (-2858 (($) 10)) (-2027 (($ |#1| |#2|) 22)) (-2839 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -2459 |#2|)))) 23)) (-1981 (((-583 (-2 (|:| |gen| |#1|) (|:| -2459 |#2|))) $) 13)) (-3442 (($ |#1| $) 56)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2618 (((-107) $ $) 58)) (-2182 (((-787) $) 19) (($ |#1|) 16)) (-1539 (((-107) $ $) 25)))
+(((-586 |#1| |#2| |#3|) (-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3314 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -1981 ((-583 (-2 (|:| |gen| |#1|) (|:| -2459 |#2|))) $)) (-15 -2027 ($ |#1| |#2|)) (-15 -2839 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2459 |#2|))))) (-15 -2169 (|#2| $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -2979 ($ $)) (-15 -1227 ($ $)) (-15 -1598 ((-703) $)) (-15 -2858 ($)) (-15 -1745 ($ $ |#1|)) (-15 -3442 ($ |#1| $)) (-15 -2488 ($ |#1| |#2| $)) (-15 -2488 ($ $ $)) (-15 -2618 ((-107) $ $)) (-15 -1378 ($ (-1 |#2| |#2|) $)) (-15 -3276 ($ (-1 |#1| |#1|) $)))) (-1003) (-23) |#2|) (T -586))
+((-3314 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2027 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2839 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-2169 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2979 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1227 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2858 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1745 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3442 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2488 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2488 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2618 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-1378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))) (-3276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3314 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -1981 ((-583 (-2 (|:| |gen| |#1|) (|:| -2459 |#2|))) $)) (-15 -2027 ($ |#1| |#2|)) (-15 -2839 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2459 |#2|))))) (-15 -2169 (|#2| $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -2979 ($ $)) (-15 -1227 ($ $)) (-15 -1598 ((-703) $)) (-15 -2858 ($)) (-15 -1745 ($ $ |#1|)) (-15 -3442 ($ |#1| $)) (-15 -2488 ($ |#1| |#2| $)) (-15 -2488 ($ $ $)) (-15 -2618 ((-107) $ $)) (-15 -1378 ($ (-1 |#2| |#2|) $)) (-15 -3276 ($ (-1 |#1| |#1|) $))))
+((-2564 (((-517) $) 23)) (-2454 (($ |#2| $ (-517)) 21) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) 12)) (-3646 (((-107) (-517) $) 14)) (-2337 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-583 $)) NIL)))
+(((-587 |#1| |#2|) (-10 -8 (-15 -2454 (|#1| |#1| |#1| (-517))) (-15 -2454 (|#1| |#2| |#1| (-517))) (-15 -2337 (|#1| (-583 |#1|))) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#2|)) (-15 -2564 ((-517) |#1|)) (-15 -4086 ((-583 (-517)) |#1|)) (-15 -3646 ((-107) (-517) |#1|))) (-588 |#2|) (-1109)) (T -587))
+NIL
+(-10 -8 (-15 -2454 (|#1| |#1| |#1| (-517))) (-15 -2454 (|#1| |#2| |#1| (-517))) (-15 -2337 (|#1| (-583 |#1|))) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#2|)) (-15 -2564 ((-517) |#1|)) (-15 -4086 ((-583 (-517)) |#1|)) (-15 -3646 ((-107) (-517) |#1|)))
+((-2571 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1667 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 51)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3366 (($ (-703) |#1|) 69)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 42 (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-1254 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-3685 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 70)) (-2337 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2182 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-588 |#1|) (-1185) (-1109)) (T -588))
+((-3366 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-2337 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) (-2337 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) (-2337 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-1857 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-3685 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-3685 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-2454 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1109)))) (-2454 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-2307 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1122 (-517))) (|has| *1 (-6 -4184)) (-4 *1 (-588 *2)) (-4 *2 (-1109)))))
+(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3366 ($ (-703) |t#1|)) (-15 -2337 ($ $ |t#1|)) (-15 -2337 ($ |t#1| $)) (-15 -2337 ($ $ $)) (-15 -2337 ($ (-583 $))) (-15 -1857 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1986 ($ $ (-1122 (-517)))) (-15 -3685 ($ $ (-517))) (-15 -3685 ($ $ (-1122 (-517)))) (-15 -2454 ($ |t#1| $ (-517))) (-15 -2454 ($ $ $ (-517))) (IF (|has| $ (-6 -4184)) (-15 -2307 (|t#1| $ (-1122 (-517)) |t#1|)) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-3480 (((-3 |#2| "failed") |#3| |#2| (-1074) |#2| (-583 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) "failed") |#3| |#2| (-1074)) 43)))
+(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -3480 ((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) "failed") |#3| |#2| (-1074))) (-15 -3480 ((-3 |#2| "failed") |#3| |#2| (-1074) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880)) (-593 |#2|)) (T -589))
+((-3480 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-3480 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1095) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3809 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -3480 ((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) "failed") |#3| |#2| (-1074))) (-15 -3480 ((-3 |#2| "failed") |#3| |#2| (-1074) |#2| (-583 |#2|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1879 (($ $) NIL (|has| |#1| (-333)))) (-1993 (($ $ $) NIL (|has| |#1| (-333)))) (-3456 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1844 (($ $ $) NIL (|has| |#1| (-333)))) (-2977 (($ $ $) NIL (|has| |#1| (-333)))) (-3560 (($ $ $) NIL (|has| |#1| (-333)))) (-3611 (($ $ $) NIL (|has| |#1| (-333)))) (-3918 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2064 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421)))) (-2955 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) NIL)) (-2392 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-2063 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-2672 (((-703) $) NIL)) (-3771 (($ $ $) NIL (|has| |#1| (-333)))) (-3869 (($ $ $) NIL (|has| |#1| (-333)))) (-4013 (($ $ $) NIL (|has| |#1| (-333)))) (-1508 (($ $ $) NIL (|has| |#1| (-333)))) (-3114 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3325 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1872 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1986 ((|#1| $ |#1|) NIL)) (-3592 (($ $ $) NIL (|has| |#1| (-333)))) (-4007 (((-703) $) NIL)) (-1423 ((|#1| $) NIL (|has| |#1| (-421)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-703)) NIL)) (-1865 (((-703)) NIL)) (-1574 ((|#1| $ |#1| |#1|) NIL)) (-1957 (($ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($) NIL)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-590 |#1|) (-593 |#1|) (-207)) (T -590))
NIL
(-593 |#1|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) NIL (|has| |#1| (-333)))) (-3091 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1686 (($ $ $) NIL (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) NIL)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -3127 ($ $))))) (T -591))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1879 (($ $) NIL (|has| |#1| (-333)))) (-1993 (($ $ $) NIL (|has| |#1| (-333)))) (-3456 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1844 (($ $ $) NIL (|has| |#1| (-333)))) (-2977 (($ $ $) NIL (|has| |#1| (-333)))) (-3560 (($ $ $) NIL (|has| |#1| (-333)))) (-3611 (($ $ $) NIL (|has| |#1| (-333)))) (-3918 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2064 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421)))) (-2955 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) NIL)) (-2392 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-2063 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-2672 (((-703) $) NIL)) (-3771 (($ $ $) NIL (|has| |#1| (-333)))) (-3869 (($ $ $) NIL (|has| |#1| (-333)))) (-4013 (($ $ $) NIL (|has| |#1| (-333)))) (-1508 (($ $ $) NIL (|has| |#1| (-333)))) (-3114 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3325 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1872 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1986 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3592 (($ $ $) NIL (|has| |#1| (-333)))) (-4007 (((-703) $) NIL)) (-1423 ((|#1| $) NIL (|has| |#1| (-421)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-703)) NIL)) (-1865 (((-703)) NIL)) (-1574 ((|#1| $ |#1| |#1|) NIL)) (-1957 (($ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($) NIL)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -1699 ($ $))))) (T -591))
NIL
(-13 (-593 |#1|) (-258 |#2| |#2|))
-((-1334 (($ $) 26)) (-2061 (($ $) 24)) (-2731 (($) 12)))
-(((-592 |#1| |#2|) (-10 -8 (-15 -1334 (|#1| |#1|)) (-15 -2061 (|#1| |#1|)) (-15 -2731 (|#1|))) (-593 |#2|) (-961)) (T -592))
-NIL
-(-10 -8 (-15 -1334 (|#1| |#1|)) (-15 -2061 (|#1| |#1|)) (-15 -2731 (|#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1334 (($ $) 82 (|has| |#1| (-333)))) (-3541 (($ $ $) 84 (|has| |#1| (-333)))) (-3091 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3311 (($ $ $) 45 (|has| |#1| (-333)))) (-3527 (($ $ $) 46 (|has| |#1| (-333)))) (-2626 (($ $ $) 48 (|has| |#1| (-333)))) (-3784 (($ $ $) 43 (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 42 (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 47 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3189 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1212 (($ $) 64)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 55 (|has| |#1| (-421)))) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 62)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 58 (|has| |#1| (-509)))) (-2349 (((-703) $) 66)) (-4102 (($ $ $) 52 (|has| |#1| (-333)))) (-2985 (($ $ $) 53 (|has| |#1| (-333)))) (-2218 (($ $ $) 41 (|has| |#1| (-333)))) (-1423 (($ $ $) 50 (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 49 (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 54 (|has| |#1| (-333)))) (-1191 ((|#1| $) 65)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) 87)) (-1686 (($ $ $) 81 (|has| |#1| (-333)))) (-3688 (((-703) $) 67)) (-3266 ((|#1| $) 56 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-1311 (((-583 |#1|) $) 61)) (-2720 ((|#1| $ (-703)) 63)) (-2961 (((-703)) 29)) (-1587 ((|#1| $ |#1| |#1|) 60)) (-2061 (($ $) 85)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($) 86)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-593 |#1|) (-1184) (-961)) (T -593))
-((-2731 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-2061 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-3541 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3091 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) (-1334 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1686 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -2731 ($)) (-15 -2061 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -3541 ($ $ $)) (-15 -3091 ($ $ (-703))) (-15 -1334 ($ $)) (-15 -1686 ($ $ $))) |noBranch|)))
+((-1879 (($ $) 26)) (-1957 (($ $) 24)) (-2553 (($) 12)))
+(((-592 |#1| |#2|) (-10 -8 (-15 -1879 (|#1| |#1|)) (-15 -1957 (|#1| |#1|)) (-15 -2553 (|#1|))) (-593 |#2|) (-961)) (T -592))
+NIL
+(-10 -8 (-15 -1879 (|#1| |#1|)) (-15 -1957 (|#1| |#1|)) (-15 -2553 (|#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1879 (($ $) 82 (|has| |#1| (-333)))) (-1993 (($ $ $) 84 (|has| |#1| (-333)))) (-3456 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1844 (($ $ $) 45 (|has| |#1| (-333)))) (-2977 (($ $ $) 46 (|has| |#1| (-333)))) (-3560 (($ $ $) 48 (|has| |#1| (-333)))) (-3611 (($ $ $) 43 (|has| |#1| (-333)))) (-3918 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 42 (|has| |#1| (-333)))) (-3746 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-2064 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 47 (|has| |#1| (-333)))) (-1759 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3076 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1217 (($ $) 64)) (-1568 (((-3 $ "failed") $) 34)) (-3039 (($ $) 55 (|has| |#1| (-421)))) (-2955 (((-107) $) 31)) (-1343 (($ |#1| (-703)) 62)) (-2392 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57 (|has| |#1| (-509)))) (-2063 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 58 (|has| |#1| (-509)))) (-2672 (((-703) $) 66)) (-3771 (($ $ $) 52 (|has| |#1| (-333)))) (-3869 (($ $ $) 53 (|has| |#1| (-333)))) (-4013 (($ $ $) 41 (|has| |#1| (-333)))) (-1508 (($ $ $) 50 (|has| |#1| (-333)))) (-3114 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 49 (|has| |#1| (-333)))) (-3325 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-1872 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 54 (|has| |#1| (-333)))) (-1192 ((|#1| $) 65)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-1986 ((|#1| $ |#1|) 87)) (-3592 (($ $ $) 81 (|has| |#1| (-333)))) (-4007 (((-703) $) 67)) (-1423 ((|#1| $) 56 (|has| |#1| (-421)))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-2834 (((-583 |#1|) $) 61)) (-3086 ((|#1| $ (-703)) 63)) (-1865 (((-703)) 29)) (-1574 ((|#1| $ |#1| |#1|) 60)) (-1957 (($ $) 85)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($) 86)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-593 |#1|) (-1185) (-961)) (T -593))
+((-2553 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-1957 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-1993 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3592 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -2553 ($)) (-15 -1957 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -1993 ($ $ $)) (-15 -3456 ($ $ (-703))) (-15 -1879 ($ $)) (-15 -3592 ($ $ $))) |noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-258 |#1| |#1|) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-781 |#1|) . T))
-((-1902 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27)))) (-3755 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 71 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15)))
-(((-594 |#1| |#2|) (-10 -7 (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1902 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -594))
-((-1902 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))))
-(-10 -7 (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1902 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) 28 (|has| |#1| (-333)))) (-3091 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) 24)) (-1686 (($ $ $) 33 (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) 23)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 8 T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-3927 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27)))) (-3693 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 71 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15)))
+(((-594 |#1| |#2|) (-10 -7 (-15 -3693 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3693 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -3927 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|)) (T -594))
+((-3927 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))))
+(-10 -7 (-15 -3693 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3693 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -3927 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1879 (($ $) NIL (|has| |#1| (-333)))) (-1993 (($ $ $) 28 (|has| |#1| (-333)))) (-3456 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1844 (($ $ $) NIL (|has| |#1| (-333)))) (-2977 (($ $ $) NIL (|has| |#1| (-333)))) (-3560 (($ $ $) NIL (|has| |#1| (-333)))) (-3611 (($ $ $) NIL (|has| |#1| (-333)))) (-3918 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2064 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421)))) (-2955 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) NIL)) (-2392 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-2063 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-2672 (((-703) $) NIL)) (-3771 (($ $ $) NIL (|has| |#1| (-333)))) (-3869 (($ $ $) NIL (|has| |#1| (-333)))) (-4013 (($ $ $) NIL (|has| |#1| (-333)))) (-1508 (($ $ $) NIL (|has| |#1| (-333)))) (-3114 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3325 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1872 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1986 ((|#1| $ |#1|) 24)) (-3592 (($ $ $) 33 (|has| |#1| (-333)))) (-4007 (((-703) $) NIL)) (-1423 ((|#1| $) NIL (|has| |#1| (-421)))) (-2182 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-703)) NIL)) (-1865 (((-703)) NIL)) (-1574 ((|#1| $ |#1| |#1|) 23)) (-1957 (($ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 21 T CONST)) (-2306 (($) 8 T CONST)) (-2553 (($) NIL)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-595 |#1| |#2|) (-593 |#1|) (-961) (-1 |#1| |#1|)) (T -595))
NIL
(-593 |#1|)
-((-3541 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-3091 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 42)) (-1686 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63)))
-(((-596 |#1| |#2|) (-10 -7 (-15 -3541 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3091 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -1686 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596))
-((-1686 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-3091 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-3541 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
-(-10 -7 (-15 -3541 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3091 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -1686 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2391 (($ $ $) 9)))
-(((-597 |#1|) (-10 -8 (-15 -2391 (|#1| |#1| |#1|))) (-598)) (T -597))
-NIL
-(-10 -8 (-15 -2391 (|#1| |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-1460 (($ $) 10)) (-2391 (($ $ $) 8)) (-1547 (((-107) $ $) 6)) (-2382 (($ $ $) 9)))
-(((-598) (-1184)) (T -598))
-((-1460 (*1 *1 *1) (-4 *1 (-598))) (-2382 (*1 *1 *1 *1) (-4 *1 (-598))) (-2391 (*1 *1 *1 *1) (-4 *1 (-598))))
-(-13 (-97) (-10 -8 (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $))))
+((-1993 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-3456 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 42)) (-3592 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -1993 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3456 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -3592 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596))
+((-3592 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-3456 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-1993 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
+(-10 -7 (-15 -1993 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3456 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -3592 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2291 (($ $ $) 9)))
+(((-597 |#1|) (-10 -8 (-15 -2291 (|#1| |#1| |#1|))) (-598)) (T -597))
+NIL
+(-10 -8 (-15 -2291 (|#1| |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-1458 (($ $) 10)) (-2291 (($ $ $) 8)) (-1539 (((-107) $ $) 6)) (-2283 (($ $ $) 9)))
+(((-598) (-1185)) (T -598))
+((-1458 (*1 *1 *1) (-4 *1 (-598))) (-2283 (*1 *1 *1 *1) (-4 *1 (-598))) (-2291 (*1 *1 *1 *1) (-4 *1 (-598))))
+(-13 (-97) (-10 -8 (-15 -1458 ($ $)) (-15 -2283 ($ $ $)) (-15 -2291 ($ $ $))))
(((-97) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 15)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1787 ((|#1| $) 21)) (-2967 (($ $ $) NIL (|has| |#1| (-723)))) (-3099 (($ $ $) NIL (|has| |#1| (-723)))) (-3985 (((-1056) $) 46)) (-3206 (((-1021) $) NIL)) (-1800 ((|#3| $) 22)) (-2256 (((-787) $) 42)) (-2396 (($) 10 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1572 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1667 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1654 (($ $) 17) (($ $ $) NIL)) (-1642 (($ $ $) 27)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599))
-((-1667 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1667 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1800 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))))
-(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $))))
-((-1950 (((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|)) 33)))
-(((-600 |#1|) (-10 -7 (-15 -1950 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|)))) (-831)) (T -600))
-((-1950 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *4))) (-5 *3 (-1069 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4)))))
-(-10 -7 (-15 -1950 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 82)) (-3883 (($ $ (-703)) 90)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3791 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 48)) (-1772 (((-3 (-608 |#1|) "failed") $) NIL)) (-3189 (((-608 |#1|) $) NIL)) (-1212 (($ $) 89)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-608 |#1|) |#2|) 68)) (-2402 (($ $) 86)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 47)) (-2854 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-608 |#1|) $) NIL)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-3688 (((-703) $) 88)) (-2276 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 77) (($ (-608 |#1|) $) 75) (($ $ (-608 |#1|)) 76)) (-2256 (((-787) $) NIL) (($ |#1|) 74) (((-1166 |#1| |#2|) $) 58) (((-1175 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-608 |#1|)) NIL)) (-1931 ((|#2| (-1175 |#1| |#2|) $) 43)) (-2396 (($) 23 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2908 (((-3 $ "failed") (-1166 |#1| |#2|)) 60)) (-1691 (($ (-608 |#1|)) 14)) (-1547 (((-107) $ $) 44)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) 66) (($ $ $) NIL)) (-1642 (($ $ $) 29)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL)))
-(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -2908 ((-3 $ "failed") (-1166 |#1| |#2|))) (-15 -2276 ($ (-608 |#1|) (-608 |#1|))) (-15 -2276 ($ (-608 |#1|) $)) (-15 -2276 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601))
-((-2908 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2276 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2276 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))))
-(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -2908 ((-3 $ "failed") (-1166 |#1| |#2|))) (-15 -2276 ($ (-608 |#1|) (-608 |#1|))) (-15 -2276 ($ (-608 |#1|) $)) (-15 -2276 ($ $ (-608 |#1|)))))
-((-2044 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 49)) (-2034 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-2337 (($ (-1 (-107) |#2|) $) 27)) (-4020 (($ $) 55)) (-3483 (($ $) 62)) (-3212 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 36)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-2607 (((-517) |#2| $ (-517)) 60) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 46)) (-3462 (($ (-703) |#2|) 53)) (-2797 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 29)) (-3237 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-1893 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-1529 (($ |#2|) 14)) (-1710 (($ $ $ (-517)) 35) (($ |#2| $ (-517)) 33)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 45)) (-2154 (($ $ (-1121 (-517))) 43) (($ $ (-517)) 37)) (-1906 (($ $ $ (-517)) 59)) (-2433 (($ $) 57)) (-1572 (((-107) $ $) 64)))
-(((-602 |#1| |#2|) (-10 -8 (-15 -1529 (|#1| |#2|)) (-15 -2154 (|#1| |#1| (-517))) (-15 -2154 (|#1| |#1| (-1121 (-517)))) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1710 (|#1| |#2| |#1| (-517))) (-15 -1710 (|#1| |#1| |#1| (-517))) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -4020 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3462 (|#1| (-703) |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|))) (-603 |#2|) (-1108)) (T -602))
-NIL
-(-10 -8 (-15 -1529 (|#1| |#2|)) (-15 -2154 (|#1| |#1| (-517))) (-15 -2154 (|#1| |#1| (-1121 (-517)))) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1710 (|#1| |#2| |#1| (-517))) (-15 -1710 (|#1| |#1| |#1| (-517))) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -4020 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3462 (|#1| (-703) |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|)))
-((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2044 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-2034 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4181)))) (-3166 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 129)) (-3536 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4180)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-4020 (($ $) 144 (|has| $ (-6 -4181)))) (-3093 (($ $) 134)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-3483 (($ $) 131 (|has| |#1| (-1003)))) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 130 (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 125)) (-2052 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4180))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-2607 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1003))) (((-517) |#1| $) 138 (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) 137)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2967 (($ $ $) 147 (|has| |#1| (-779)))) (-2797 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-3237 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-3099 (($ $ $) 148 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1529 (($ |#1|) 122)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-1710 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-2348 (((-107) $) 84)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-2154 (($ $ (-1121 (-517))) 124) (($ $ (-517)) 123)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 143 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61) (($ $ |#1|) 60)) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 152 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-603 |#1|) (-1184) (-1108)) (T -603))
-((-1529 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1108)))))
-(-13 (-1047 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -1529 ($ |t#1|))))
-(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-926 |#1|) . T) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1047 |#1|) . T) ((-1108) . T) ((-1142 |#1|) . T))
-((-1674 (((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)) 13)) (-2261 (((-703) (-623 |#1|) (-1153 |#1|)) 29)) (-2679 (((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|)) 23)) (-3836 (((-107) (-623 |#1|) (-1153 |#1|)) 26)))
-(((-604 |#1|) (-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|))) (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|)))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|)))) (-15 -2679 ((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|))) (-15 -3836 ((-107) (-623 |#1|) (-1153 |#1|))) (-15 -2261 ((-703) (-623 |#1|) (-1153 |#1|)))) (-333)) (T -604))
-((-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-2679 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1153 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))))
-(-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|))) (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|)))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|)))) (-15 -2679 ((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|))) (-15 -3836 ((-107) (-623 |#1|) (-1153 |#1|))) (-15 -2261 ((-703) (-623 |#1|) (-1153 |#1|))))
-((-1674 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|) 45)) (-2261 (((-703) |#4| |#3|) 17)) (-2679 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3836 (((-107) |#4| |#3|) 13)))
-(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|)) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2679 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3836 ((-107) |#4| |#3|)) (-15 -2261 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4181))) (-13 (-343 |#1|) (-10 -7 (-6 -4181))) (-621 |#1| |#2| |#3|)) (T -605))
-((-2261 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3836 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2679 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-1674 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1753 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-1674 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
-(-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|)) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2679 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3836 ((-107) |#4| |#3|)) (-15 -2261 ((-703) |#4| |#3|)))
-((-1485 (((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 44)))
-(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1485 ((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -606))
-((-1485 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 (-377 *8)) "failed")) (|:| -1753 (-583 (-1153 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1485 ((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1472 ((|#2| $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#2|))) NIL) (((-1153 (-623 |#2|)) (-1153 $)) NIL)) (-3213 (((-107) $) NIL)) (-3456 (((-1153 $)) 37)) (-2953 (((-107) $ (-703)) NIL)) (-3487 (($ |#2|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) NIL (|has| |#2| (-278)))) (-1939 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1450 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2619 (((-623 |#2|)) NIL) (((-623 |#2|) (-1153 $)) NIL)) (-2299 ((|#2| $) NIL)) (-3343 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1153 $)) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-2436 (((-1069 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#2| $) NIL)) (-2417 (((-1069 |#2|) $) NIL (|has| |#2| (-509)))) (-4069 ((|#2|) NIL) ((|#2| (-1153 $)) NIL)) (-2085 (((-1069 |#2|) $) NIL)) (-2362 (((-107)) NIL)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-1967 (($ (-1153 |#2|)) NIL) (($ (-1153 |#2|) (-1153 $)) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2261 (((-703) $) NIL (|has| |#2| (-509))) (((-843)) 38)) (-1377 ((|#2| $ (-517) (-517)) NIL)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL)) (-1948 (((-703) $) NIL (|has| |#2| (-509)))) (-3706 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-1477 (((-703) $) NIL)) (-2754 (((-107)) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#2| $) NIL (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#2|))) NIL)) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3035 (((-583 (-583 |#2|)) $) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1793 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2010 (((-623 |#2|)) NIL) (((-623 |#2|) (-1153 $)) NIL)) (-1188 ((|#2| $) NIL)) (-3914 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1153 $)) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-2300 (((-1069 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#2| $) NIL)) (-4121 (((-1069 |#2|) $) NIL (|has| |#2| (-509)))) (-1988 ((|#2|) NIL) ((|#2| (-1153 $)) NIL)) (-2190 (((-1069 |#2|) $) NIL)) (-3606 (((-107)) NIL)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL)) (-1286 (((-107)) NIL)) (-1848 (((-107)) NIL)) (-2104 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2671 ((|#2| $) NIL)) (-1879 (($ (-583 |#2|)) NIL)) (-1516 (((-107) $) NIL)) (-2803 (((-214 |#1| |#2|) $) NIL)) (-3057 ((|#2| $) NIL (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-4114 (((-623 |#2|) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $ (-1153 $)) 25)) (-3645 (($ (-1153 |#2|)) NIL) (((-1153 |#2|) $) NIL)) (-2278 (((-583 (-874 |#2|))) NIL) (((-583 (-874 |#2|)) (-1153 $)) NIL)) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL)) (-3728 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) 36)) (-1582 (((-583 (-1153 |#2|))) NIL (|has| |#2| (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL)) (-1587 (($ (-623 |#2|) $) NIL)) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL)) (-2524 (((-107)) NIL)) (-3642 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 15)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1772 ((|#1| $) 21)) (-1575 (($ $ $) NIL (|has| |#1| (-723)))) (-2986 (($ $ $) NIL (|has| |#1| (-723)))) (-3865 (((-1057) $) 46)) (-3094 (((-1021) $) NIL)) (-1783 ((|#3| $) 22)) (-2182 (((-787) $) 42)) (-2297 (($) 10 T CONST)) (-1593 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1539 (((-107) $ $) 20)) (-1582 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1560 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1649 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1637 (($ $) 17) (($ $ $) NIL)) (-1626 (($ $ $) 27)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |noBranch|) (-15 -1649 ($ $ |#3|)) (-15 -1649 ($ |#1| |#3|)) (-15 -1772 (|#1| $)) (-15 -1783 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599))
+((-1649 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1649 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1772 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1783 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))))
+(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |noBranch|) (-15 -1649 ($ $ |#3|)) (-15 -1649 ($ |#1| |#3|)) (-15 -1772 (|#1| $)) (-15 -1783 (|#3| $))))
+((-3120 (((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|)) 33)))
+(((-600 |#1|) (-10 -7 (-15 -3120 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|)))) (-831)) (T -600))
+((-3120 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *4))) (-5 *3 (-1070 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4)))))
+(-10 -7 (-15 -3120 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-3367 (((-583 |#1|) $) 82)) (-2176 (($ $ (-703)) 90)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-3660 (((-1176 |#1| |#2|) (-1176 |#1| |#2|) $) 48)) (-1759 (((-3 (-608 |#1|) "failed") $) NIL)) (-3076 (((-608 |#1|) $) NIL)) (-1217 (($ $) 89)) (-2091 (((-703) $) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-3327 (($ (-608 |#1|) |#2|) 68)) (-2088 (($ $) 86)) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-3913 (((-1176 |#1| |#2|) (-1176 |#1| |#2|) $) 47)) (-2043 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4159 (((-608 |#1|) $) NIL)) (-1192 ((|#2| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1979 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-4007 (((-703) $) 88)) (-2197 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 77) (($ (-608 |#1|) $) 75) (($ $ (-608 |#1|)) 76)) (-2182 (((-787) $) NIL) (($ |#1|) 74) (((-1167 |#1| |#2|) $) 58) (((-1176 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ (-608 |#1|)) NIL)) (-1883 ((|#2| (-1176 |#1| |#2|) $) 43)) (-2297 (($) 23 T CONST)) (-2557 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1403 (((-3 $ "failed") (-1167 |#1| |#2|)) 60)) (-3632 (($ (-608 |#1|)) 14)) (-1539 (((-107) $ $) 44)) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $) 66) (($ $ $) NIL)) (-1626 (($ $ $) 29)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL)))
+(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1403 ((-3 $ "failed") (-1167 |#1| |#2|))) (-15 -2197 ($ (-608 |#1|) (-608 |#1|))) (-15 -2197 ($ (-608 |#1|) $)) (-15 -2197 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601))
+((-1403 (*1 *1 *2) (|partial| -12 (-5 *2 (-1167 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2197 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2197 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2197 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))))
+(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1403 ((-3 $ "failed") (-1167 |#1| |#2|))) (-15 -2197 ($ (-608 |#1|) (-608 |#1|))) (-15 -2197 ($ (-608 |#1|) $)) (-15 -2197 ($ $ (-608 |#1|)))))
+((-2866 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 49)) (-2740 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-2582 (($ (-1 (-107) |#2|) $) 27)) (-1227 (($ $) 55)) (-2573 (($ $) 62)) (-2111 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 36)) (-2521 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-2446 (((-517) |#2| $ (-517)) 60) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 46)) (-3366 (($ (-703) |#2|) 53)) (-2581 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 29)) (-2262 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-1857 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-1524 (($ |#2|) 14)) (-3816 (($ $ $ (-517)) 35) (($ |#2| $ (-517)) 33)) (-2293 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 45)) (-1628 (($ $ (-1122 (-517))) 43) (($ $ (-517)) 37)) (-3966 (($ $ $ (-517)) 59)) (-2322 (($ $) 57)) (-1560 (((-107) $ $) 64)))
+(((-602 |#1| |#2|) (-10 -8 (-15 -1524 (|#1| |#2|)) (-15 -1628 (|#1| |#1| (-517))) (-15 -1628 (|#1| |#1| (-1122 (-517)))) (-15 -2111 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3816 (|#1| |#2| |#1| (-517))) (-15 -3816 (|#1| |#1| |#1| (-517))) (-15 -2581 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2111 (|#1| |#2| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2262 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2866 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2446 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2446 ((-517) |#2| |#1|)) (-15 -2446 ((-517) |#2| |#1| (-517))) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2866 ((-107) |#1|)) (-15 -3966 (|#1| |#1| |#1| (-517))) (-15 -1227 (|#1| |#1|)) (-15 -2740 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2293 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3366 (|#1| (-703) |#2|)) (-15 -1857 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2322 (|#1| |#1|))) (-603 |#2|) (-1109)) (T -602))
+NIL
+(-10 -8 (-15 -1524 (|#1| |#2|)) (-15 -1628 (|#1| |#1| (-517))) (-15 -1628 (|#1| |#1| (-1122 (-517)))) (-15 -2111 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3816 (|#1| |#2| |#1| (-517))) (-15 -3816 (|#1| |#1| |#1| (-517))) (-15 -2581 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2111 (|#1| |#2| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2262 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2866 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2446 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2446 ((-517) |#2| |#1|)) (-15 -2446 ((-517) |#2| |#1| (-517))) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2866 ((-107) |#1|)) (-15 -3966 (|#1| |#1| |#1| (-517))) (-15 -1227 (|#1| |#1|)) (-15 -2740 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2293 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3366 (|#1| (-703) |#2|)) (-15 -1857 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2322 (|#1| |#1|)))
+((-2571 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3088 ((|#1| $) 48)) (-2864 ((|#1| $) 65)) (-2602 (($ $) 67)) (-3423 (((-1159) $ (-517) (-517)) 97 (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) 52 (|has| $ (-6 -4184)))) (-2866 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-2740 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4184)))) (-3056 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-1799 (((-107) $ (-703)) 8)) (-4072 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3499 (($ $ $) 56 (|has| $ (-6 -4184)))) (-3573 ((|#1| $ |#1|) 54 (|has| $ (-6 -4184)))) (-3043 ((|#1| $ |#1|) 58 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4184))) (($ $ "rest" $) 55 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 117 (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-2582 (($ (-1 (-107) |#1|) $) 129)) (-3451 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4183)))) (-2849 ((|#1| $) 66)) (-3473 (($) 7 T CONST)) (-1227 (($ $) 144 (|has| $ (-6 -4184)))) (-2979 (($ $) 134)) (-1644 (($ $) 73) (($ $ (-703)) 71)) (-2573 (($ $) 131 (|has| |#1| (-1003)))) (-1667 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ |#1| $) 130 (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 125)) (-1971 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4183))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1226 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 87)) (-2570 (((-107) $) 83)) (-2446 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1003))) (((-517) |#1| $) 138 (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) 137)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 50)) (-1703 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3366 (($ (-703) |#1|) 108)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 95 (|has| (-517) (-779)))) (-1575 (($ $ $) 147 (|has| |#1| (-779)))) (-2581 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-2262 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 94 (|has| (-517) (-779)))) (-2986 (($ $ $) 148 (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1524 (($ |#1|) 122)) (-2942 (((-107) $ (-703)) 10)) (-3617 (((-583 |#1|) $) 45)) (-3762 (((-107) $) 49)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1988 ((|#1| $) 70) (($ $ (-703)) 68)) (-3816 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-2454 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-4086 (((-583 (-517)) $) 92)) (-3646 (((-107) (-517) $) 91)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 76) (($ $ (-703)) 74)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-1254 (($ $ |#1|) 96 (|has| $ (-6 -4184)))) (-2660 (((-107) $) 84)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 90)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1122 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-1482 (((-517) $ $) 44)) (-1628 (($ $ (-1122 (-517))) 124) (($ $ (-517)) 123)) (-3685 (($ $ (-1122 (-517))) 114) (($ $ (-517)) 113)) (-2562 (((-107) $) 46)) (-4084 (($ $) 62)) (-3145 (($ $) 59 (|has| $ (-6 -4184)))) (-2943 (((-703) $) 63)) (-2103 (($ $) 64)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3966 (($ $ $ (-517)) 143 (|has| $ (-6 -4184)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 107)) (-1286 (($ $ $) 61) (($ $ |#1|) 60)) (-2337 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2182 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3935 (((-583 $) $) 51)) (-3172 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-1582 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 152 (|has| |#1| (-779)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-603 |#1|) (-1185) (-1109)) (T -603))
+((-1524 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1109)))))
+(-13 (-1048 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -1524 ($ |t#1|))))
+(((-33) . T) ((-97) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-926 |#1|) . T) ((-1003) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1048 |#1|) . T) ((-1109) . T) ((-1143 |#1|) . T))
+((-3480 (((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|))))) (-583 (-583 |#1|)) (-583 (-1154 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|))))) (-623 |#1|) (-583 (-1154 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-583 (-583 |#1|)) (-1154 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|)) 13)) (-3795 (((-703) (-623 |#1|) (-1154 |#1|)) 29)) (-2781 (((-3 (-1154 |#1|) "failed") (-623 |#1|) (-1154 |#1|)) 23)) (-2802 (((-107) (-623 |#1|) (-1154 |#1|)) 26)))
+(((-604 |#1|) (-10 -7 (-15 -3480 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|))) (-15 -3480 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-583 (-583 |#1|)) (-1154 |#1|))) (-15 -3480 ((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|))))) (-623 |#1|) (-583 (-1154 |#1|)))) (-15 -3480 ((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|))))) (-583 (-583 |#1|)) (-583 (-1154 |#1|)))) (-15 -2781 ((-3 (-1154 |#1|) "failed") (-623 |#1|) (-1154 |#1|))) (-15 -2802 ((-107) (-623 |#1|) (-1154 |#1|))) (-15 -3795 ((-703) (-623 |#1|) (-1154 |#1|)))) (-333)) (T -604))
+((-3795 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-2781 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1154 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -3809 (-583 (-1154 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1154 *5))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -3809 (-583 (-1154 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1154 *5))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -3809 (-583 (-1154 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1154 *5)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -3809 (-583 (-1154 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1154 *5)))))
+(-10 -7 (-15 -3480 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|))) (-15 -3480 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-583 (-583 |#1|)) (-1154 |#1|))) (-15 -3480 ((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|))))) (-623 |#1|) (-583 (-1154 |#1|)))) (-15 -3480 ((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|))))) (-583 (-583 |#1|)) (-583 (-1154 |#1|)))) (-15 -2781 ((-3 (-1154 |#1|) "failed") (-623 |#1|) (-1154 |#1|))) (-15 -2802 ((-107) (-623 |#1|) (-1154 |#1|))) (-15 -3795 ((-703) (-623 |#1|) (-1154 |#1|))))
+((-3480 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|))) |#4| |#3|) 45)) (-3795 (((-703) |#4| |#3|) 17)) (-2781 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2802 (((-107) |#4| |#3|) 13)))
+(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3480 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|))) |#4| |#3|)) (-15 -3480 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2781 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2802 ((-107) |#4| |#3|)) (-15 -3795 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4184))) (-13 (-343 |#1|) (-10 -7 (-6 -4184))) (-621 |#1| |#2| |#3|)) (T -605))
+((-3795 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2802 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2781 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4184)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-3480 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3809 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-3480 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(-10 -7 (-15 -3480 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|))) |#4| |#3|)) (-15 -3480 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2781 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2802 ((-107) |#4| |#3|)) (-15 -3795 ((-703) |#4| |#3|)))
+((-2005 (((-2 (|:| |particular| (-3 (-1154 (-377 |#4|)) "failed")) (|:| -3809 (-583 (-1154 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 44)))
+(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2005 ((-2 (|:| |particular| (-3 (-1154 (-377 |#4|)) "failed")) (|:| -3809 (-583 (-1154 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -606))
+((-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 (-377 *8)) "failed")) (|:| -3809 (-583 (-1154 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2005 ((-2 (|:| |particular| (-3 (-1154 (-377 |#4|)) "failed")) (|:| -3809 (-583 (-1154 (-377 |#4|))))) (-583 |#4|) (-583 |#3|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1697 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1470 ((|#2| $) NIL)) (-2794 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3029 (((-1154 (-623 |#2|))) NIL) (((-1154 (-623 |#2|)) (-1154 $)) NIL)) (-2119 (((-107) $) NIL)) (-3624 (((-1154 $)) 37)) (-1799 (((-107) $ (-703)) NIL)) (-2609 (($ |#2|) NIL)) (-3473 (($) NIL T CONST)) (-1558 (($ $) NIL (|has| |#2| (-278)))) (-3023 (((-214 |#1| |#2|) $ (-517)) NIL)) (-3072 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-3672 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-3495 (((-623 |#2|)) NIL) (((-623 |#2|) (-1154 $)) NIL)) (-3488 ((|#2| $) NIL)) (-3922 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1154 $)) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-2344 (((-1070 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-1246 (($ $ (-843)) NIL)) (-2030 ((|#2| $) NIL)) (-2193 (((-1070 |#2|) $) NIL (|has| |#2| (-509)))) (-3440 ((|#2|) NIL) ((|#2| (-1154 $)) NIL)) (-2134 (((-1070 |#2|) $) NIL)) (-2815 (((-107)) NIL)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-3291 (($ (-1154 |#2|)) NIL) (($ (-1154 |#2|) (-1154 $)) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3795 (((-703) $) NIL (|has| |#2| (-509))) (((-843)) 38)) (-4020 ((|#2| $ (-517) (-517)) NIL)) (-1837 (((-107)) NIL)) (-3092 (($ $ (-843)) NIL)) (-3037 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2955 (((-107) $) NIL)) (-3101 (((-703) $) NIL (|has| |#2| (-509)))) (-4163 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-4122 (((-703) $) NIL)) (-3419 (((-107)) NIL)) (-1875 (((-703) $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-3464 ((|#2| $) NIL (|has| |#2| (-6 (-4185 "*"))))) (-2734 (((-517) $) NIL)) (-2397 (((-517) $) NIL)) (-1196 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3070 (((-517) $) NIL)) (-2820 (((-517) $) NIL)) (-1813 (($ (-583 (-583 |#2|))) NIL)) (-1213 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1263 (((-583 (-583 |#2|)) $) NIL)) (-3841 (((-107)) NIL)) (-3229 (((-107)) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-2054 (((-3 (-2 (|:| |particular| $) (|:| -3809 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-3004 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2507 (((-623 |#2|)) NIL) (((-623 |#2|) (-1154 $)) NIL)) (-3823 ((|#2| $) NIL)) (-2386 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1154 $)) NIL)) (-3526 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-3503 (((-1070 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-1313 (($ $ (-843)) NIL)) (-2377 ((|#2| $) NIL)) (-2621 (((-1070 |#2|) $) NIL (|has| |#2| (-509)))) (-3532 ((|#2|) NIL) ((|#2| (-1154 $)) NIL)) (-3737 (((-1070 |#2|) $) NIL)) (-1440 (((-107)) NIL)) (-3865 (((-1057) $) NIL)) (-3156 (((-107)) NIL)) (-2688 (((-107)) NIL)) (-4022 (((-107)) NIL)) (-2263 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-3094 (((-1021) $) NIL)) (-3662 (((-107)) NIL)) (-2349 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2925 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-1699 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2705 ((|#2| $) NIL)) (-3681 (($ (-583 |#2|)) NIL)) (-1274 (((-107) $) NIL)) (-2637 (((-214 |#1| |#2|) $) NIL)) (-3139 ((|#2| $) NIL (|has| |#2| (-6 (-4185 "*"))))) (-3105 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2322 (($ $) NIL)) (-2575 (((-623 |#2|) (-1154 $)) NIL) (((-1154 |#2|) $) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) NIL) (((-1154 |#2|) $ (-1154 $)) 25)) (-3582 (($ (-1154 |#2|)) NIL) (((-1154 |#2|) $) NIL)) (-3254 (((-583 (-874 |#2|))) NIL) (((-583 (-874 |#2|)) (-1154 $)) NIL)) (-3064 (($ $ $) NIL)) (-3010 (((-107)) NIL)) (-1377 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) 36)) (-2971 (((-583 (-1154 |#2|))) NIL (|has| |#2| (-509)))) (-2411 (($ $ $ $) NIL)) (-2902 (((-107)) NIL)) (-1574 (($ (-623 |#2|) $) NIL)) (-3883 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-3565 (((-107) $) NIL)) (-3168 (($ $ $) NIL)) (-2883 (((-107)) NIL)) (-3832 (((-107)) NIL)) (-1781 (((-107)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
(((-607 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) (-843) (-156)) (T -607))
NIL
(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|))
-((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) NIL)) (-3652 (($ $) 50)) (-3153 (((-107) $) NIL)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2833 (((-3 $ "failed") (-751 |#1|)) 22)) (-2247 (((-107) (-751 |#1|)) 14)) (-2714 (($ (-751 |#1|)) 23)) (-3109 (((-107) $ $) 28)) (-2195 (((-843) $) 35)) (-3639 (($ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3755 (((-583 $) (-751 |#1|)) 16)) (-2256 (((-787) $) 41) (($ |#1|) 32) (((-751 |#1|) $) 37) (((-612 |#1|) $) 42)) (-2514 (((-57 (-583 $)) (-583 |#1|) (-843)) 55)) (-2479 (((-583 $) (-583 |#1|) (-843)) 57)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 51)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 36)))
-(((-608 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 -3153 ((-107) $)) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ((-612 |#1|) $)) (-15 -3755 ((-583 $) (-751 |#1|))) (-15 -2247 ((-107) (-751 |#1|))) (-15 -2714 ($ (-751 |#1|))) (-15 -2833 ((-3 $ "failed") (-751 |#1|))) (-15 -3463 ((-583 |#1|) $)) (-15 -2514 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -2479 ((-583 $) (-583 |#1|) (-843))))) (-779)) (T -608))
-((-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3639 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3652 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-2833 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
-(-13 (-779) (-952 |#1|) (-10 -8 (-15 -3153 ((-107) $)) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ((-612 |#1|) $)) (-15 -3755 ((-583 $) (-751 |#1|))) (-15 -2247 ((-107) (-751 |#1|))) (-15 -2714 ($ (-751 |#1|))) (-15 -2833 ((-3 $ "failed") (-751 |#1|))) (-15 -3463 ((-583 |#1|) $)) (-15 -2514 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -2479 ((-583 $) (-583 |#1|) (-843)))))
-((-3199 ((|#2| $) 76)) (-2779 (($ $) 96)) (-2953 (((-107) $ (-703)) 26)) (-1660 (($ $) 85) (($ $ (-703)) 88)) (-3811 (((-107) $) 97)) (-3063 (((-583 $) $) 72)) (-1272 (((-107) $ $) 71)) (-2550 (((-107) $ (-703)) 24)) (-3243 (((-517) $) 46)) (-3482 (((-517) $) 45)) (-3847 (((-107) $ (-703)) 22)) (-1763 (((-107) $) 74)) (-2068 ((|#2| $) 89) (($ $ (-703)) 92)) (-2620 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-1857 (((-583 (-517)) $) 44)) (-4088 (((-107) (-517) $) 42)) (-1647 ((|#2| $) NIL) (($ $ (-703)) 84)) (-1672 (($ $ (-517)) 99)) (-2348 (((-107) $) 98)) (-2048 (((-107) (-1 (-107) |#2|) $) 32)) (-1941 (((-583 |#2|) $) 33)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1121 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-2459 (((-517) $ $) 70)) (-3750 (($ $ (-1121 (-517))) 57) (($ $ (-517)) 51)) (-2655 (((-107) $) 66)) (-2552 (($ $) 81)) (-2691 (((-703) $) 80)) (-1761 (($ $) 79)) (-2276 (($ (-583 |#2|)) 37)) (-1545 (($ $) 100)) (-1479 (((-583 $) $) 69)) (-2732 (((-107) $ $) 68)) (-3675 (((-107) (-1 (-107) |#2|) $) 31)) (-1547 (((-107) $ $) 18)) (-2296 (((-703) $) 29)))
-(((-609 |#1| |#2|) (-10 -8 (-15 -1545 (|#1| |#1|)) (-15 -1672 (|#1| |#1| (-517))) (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1941 ((-583 |#2|) |#1|)) (-15 -4088 ((-107) (-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -3482 ((-517) |#1|)) (-15 -3243 ((-517) |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -2459 ((-517) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703)))) (-610 |#2|) (-1108)) (T -609))
-NIL
-(-10 -8 (-15 -1545 (|#1| |#1|)) (-15 -1672 (|#1| |#1| (-517))) (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1941 ((-583 |#2|) |#1|)) (-15 -4088 ((-107) (-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -3482 ((-517) |#1|)) (-15 -3243 ((-517) |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -2459 ((-517) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 102)) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-3861 (($ $) 124)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 103)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-4097 (((-703) $) 123)) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3258 (($ $) 126)) (-2202 (((-107) $) 127)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2279 ((|#1| $) 125)) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-1672 (($ $ (-517)) 122)) (-2348 (((-107) $) 84)) (-3980 (((-107) $) 128)) (-3660 (((-107) $) 129)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-1545 (($ $) 121)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-610 |#1|) (-1184) (-1108)) (T -610))
-((-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3980 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3258 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-3861 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))))
-(-13 (-1047 |t#1|) (-10 -8 (-15 -2052 ($ (-1 (-107) |t#1|) $)) (-15 -3536 ($ (-1 (-107) |t#1|) $)) (-15 -3660 ((-107) $)) (-15 -3980 ((-107) $)) (-15 -2202 ((-107) $)) (-15 -3258 ($ $)) (-15 -2279 (|t#1| $)) (-15 -3861 ($ $)) (-15 -4097 ((-703) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1047 |#1|) . T) ((-1108) . T) ((-1142 |#1|) . T))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3486 (($ (-703) (-703) (-703)) 33 (|has| |#1| (-961)))) (-2953 (((-107) $ (-703)) NIL)) (-3724 ((|#1| $ (-703) (-703) (-703) |#1|) 27)) (-3092 (($) NIL T CONST)) (-2662 (($ $ $) 37 (|has| |#1| (-961)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3260 (((-1153 (-703)) $) 8)) (-3398 (($ (-1073) $ $) 22)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3857 (($ (-703)) 35 (|has| |#1| (-961)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-703) (-703) (-703)) 25)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2276 (($ (-583 (-583 (-583 |#1|)))) 44)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-879 (-879 (-879 |#1|)))) 15) (((-879 (-879 (-879 |#1|))) $) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -3486 ($ (-703) (-703) (-703))) (-15 -3857 ($ (-703))) (-15 -2662 ($ $ $))) |noBranch|) (-15 -2276 ($ (-583 (-583 (-583 |#1|))))) (-15 -1449 (|#1| $ (-703) (-703) (-703))) (-15 -3724 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2256 ($ (-879 (-879 (-879 |#1|))))) (-15 -2256 ((-879 (-879 (-879 |#1|))) $)) (-15 -3398 ($ (-1073) $ $)) (-15 -3260 ((-1153 (-703)) $)))) (-1003)) (T -611))
-((-3486 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-1449 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-3724 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-3398 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-1153 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
-(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -3486 ($ (-703) (-703) (-703))) (-15 -3857 ($ (-703))) (-15 -2662 ($ $ $))) |noBranch|) (-15 -2276 ($ (-583 (-583 (-583 |#1|))))) (-15 -1449 (|#1| $ (-703) (-703) (-703))) (-15 -3724 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2256 ($ (-879 (-879 (-879 |#1|))))) (-15 -2256 ((-879 (-879 (-879 |#1|))) $)) (-15 -3398 ($ (-1073) $ $)) (-15 -3260 ((-1153 (-703)) $))))
-((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 14)) (-3652 (($ $) 18)) (-3153 (((-107) $) 19)) (-1772 (((-3 |#1| "failed") $) 22)) (-3189 ((|#1| $) 20)) (-1660 (($ $) 36)) (-2402 (($ $) 24)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3109 (((-107) $ $) 41)) (-2195 (((-843) $) 38)) (-3639 (($ $) 17)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) 35)) (-2256 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 12)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 40)) (* (($ $ $) 34)))
-(((-612 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -1647 (|#1| $)) (-15 -3639 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2402 ($ $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3652 ($ $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -612))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3639 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3652 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -1647 (|#1| $)) (-15 -3639 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2402 ($ $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3652 ($ $)) (-15 -3463 ((-583 |#1|) $))))
-((-2435 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-2141 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9)))
-(((-613 |#1|) (-10 -7 (-15 -2141 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2435 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1003)) (T -613))
-((-2435 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) (-2141 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))))
-(-10 -7 (-15 -2141 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2435 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|)))
-((-2205 ((|#2| |#1| |#2|) 9)) (-2194 ((|#1| |#1| |#2|) 8)))
-(((-614 |#1| |#2|) (-10 -7 (-15 -2194 (|#1| |#1| |#2|)) (-15 -2205 (|#2| |#1| |#2|))) (-1003) (-1003)) (T -614))
-((-2205 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2194 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -2194 (|#1| |#1| |#2|)) (-15 -2205 (|#2| |#1| |#2|)))
-((-1955 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -1955 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1003) (-1003) (-1003)) (T -615))
-((-1955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2)))))
-(-10 -7 (-15 -1955 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2435 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-3644 (((-1 |#1|) |#1|) 8)) (-3402 ((|#1| |#1|) 16)) (-1366 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2256 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20)))
-(((-616 |#1|) (-10 -7 (-15 -3644 ((-1 |#1|) |#1|)) (-15 -2256 ((-1 |#1|) |#1|)) (-15 -1366 (|#1| (-1 |#1| |#1|))) (-15 -1366 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3402 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2435 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1003)) (T -616))
-((-2435 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) (-3402 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-1366 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -3644 ((-1 |#1|) |#1|)) (-15 -2256 ((-1 |#1|) |#1|)) (-15 -1366 (|#1| (-1 |#1| |#1|))) (-15 -1366 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3402 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2435 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|))))
-((-3822 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1250 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1619 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3618 (((-1 |#2| |#1|) |#2|) 11)))
-(((-617 |#1| |#2|) (-10 -7 (-15 -3618 ((-1 |#2| |#1|) |#2|)) (-15 -1250 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1619 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3822 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1003) (-1003)) (T -617))
-((-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) (-1250 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-3618 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -3618 ((-1 |#2| |#1|) |#2|)) (-15 -1250 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1619 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3822 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2498 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2423 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3319 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3626 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2530 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3319 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3626 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2530 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2498 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1003) (-1003) (-1003)) (T -618))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
-(-10 -7 (-15 -2423 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3319 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3626 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2530 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2498 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3225 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1893 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1893 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3225 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-961) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619))
-((-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))))
-(-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1893 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3225 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3526 (($ (-703) (-703)) 31)) (-1231 (($ $ $) 54)) (-2033 (($ |#3|) 50) (($ $) 51)) (-2818 (((-107) $) 26)) (-3666 (($ $ (-517) (-517)) 56)) (-2778 (($ $ (-517) (-517)) 57)) (-3671 (($ $ (-517) (-517) (-517) (-517)) 61)) (-4008 (($ $) 52)) (-3213 (((-107) $) 14)) (-3565 (($ $ (-517) (-517) $) 62)) (-2411 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 60)) (-3487 (($ (-703) |#2|) 36)) (-1840 (($ (-583 (-583 |#2|))) 34)) (-3035 (((-583 (-583 |#2|)) $) 55)) (-2520 (($ $ $) 53)) (-2476 (((-3 $ "failed") $ |#2|) 89)) (-1449 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 59)) (-1879 (($ (-583 |#2|)) 38) (($ (-583 $)) 40)) (-1516 (((-107) $) 23)) (-2256 (((-787) $) NIL) (($ |#4|) 45)) (-1683 (((-107) $) 28)) (-1667 (($ $ |#2|) 91)) (-1654 (($ $ $) 66) (($ $) 69)) (-1642 (($ $ $) 64)) (** (($ $ (-703)) 78) (($ $ (-517)) 94)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-517) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86)))
-(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#2|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3671 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -2778 (|#1| |#1| (-517) (-517))) (-15 -3666 (|#1| |#1| (-517) (-517))) (-15 -2411 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1449 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3035 ((-583 (-583 |#2|)) |#1|)) (-15 -1231 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2033 (|#1| |#3|)) (-15 -2256 (|#1| |#4|)) (-15 -1879 (|#1| (-583 |#1|))) (-15 -1879 (|#1| (-583 |#2|))) (-15 -3487 (|#1| (-703) |#2|)) (-15 -1840 (|#1| (-583 (-583 |#2|)))) (-15 -3526 (|#1| (-703) (-703))) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2256 ((-787) |#1|))) (-621 |#2| |#3| |#4|) (-961) (-343 |#2|) (-343 |#2|)) (T -620))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#2|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3671 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -2778 (|#1| |#1| (-517) (-517))) (-15 -3666 (|#1| |#1| (-517) (-517))) (-15 -2411 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1449 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3035 ((-583 (-583 |#2|)) |#1|)) (-15 -1231 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2033 (|#1| |#3|)) (-15 -2256 (|#1| |#4|)) (-15 -1879 (|#1| (-583 |#1|))) (-15 -1879 (|#1| (-583 |#2|))) (-15 -3487 (|#1| (-703) |#2|)) (-15 -1840 (|#1| (-583 (-583 |#2|)))) (-15 -3526 (|#1| (-703) (-703))) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) 97)) (-1231 (($ $ $) 87)) (-2033 (($ |#2|) 91) (($ $) 90)) (-2818 (((-107) $) 99)) (-3666 (($ $ (-517) (-517)) 83)) (-2778 (($ $ (-517) (-517)) 82)) (-3671 (($ $ (-517) (-517) (-517) (-517)) 81)) (-4008 (($ $) 89)) (-3213 (((-107) $) 101)) (-2953 (((-107) $ (-703)) 8)) (-3565 (($ $ (-517) (-517) $) 80)) (-2411 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-4087 (($ $ (-517) |#2|) 42)) (-3739 (($ $ (-517) |#3|) 41)) (-3487 (($ (-703) |#1|) 95)) (-3092 (($) 7 T CONST)) (-2468 (($ $) 67 (|has| |#1| (-278)))) (-1939 ((|#2| $ (-517)) 46)) (-2261 (((-703) $) 66 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) 43)) (-1377 ((|#1| $ (-517) (-517)) 48)) (-1536 (((-583 |#1|) $) 30)) (-1948 (((-703) $) 65 (|has| |#1| (-509)))) (-3706 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-1477 (((-703) $) 51)) (-3462 (($ (-703) (-703) |#1|) 57)) (-1486 (((-703) $) 50)) (-2550 (((-107) $ (-703)) 9)) (-2757 ((|#1| $) 62 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 55)) (-1338 (((-517) $) 53)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 54)) (-1307 (((-517) $) 52)) (-1840 (($ (-583 (-583 |#1|))) 96)) (-1433 (($ (-1 |#1| |#1|) $) 34)) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3035 (((-583 (-583 |#1|)) $) 86)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-2520 (($ $ $) 88)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) 56)) (-2476 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-1879 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-1516 (((-107) $) 100)) (-3057 ((|#1| $) 63 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3728 ((|#3| $ (-517)) 45)) (-2256 (((-787) $) 20 (|has| |#1| (-1003))) (($ |#3|) 92)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 98)) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1654 (($ $ $) 78) (($ $) 77)) (-1642 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-621 |#1| |#2| |#3|) (-1184) (-961) (-343 |t#1|) (-343 |t#1|)) (T -621))
-((-3213 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3526 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3487 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-2033 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-2033 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-4008 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1231 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-1449 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2411 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3666 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2778 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3671 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3565 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2104 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3213 ((-107) $)) (-15 -1516 ((-107) $)) (-15 -2818 ((-107) $)) (-15 -1683 ((-107) $)) (-15 -3526 ($ (-703) (-703))) (-15 -1840 ($ (-583 (-583 |t#1|)))) (-15 -3487 ($ (-703) |t#1|)) (-15 -1879 ($ (-583 |t#1|))) (-15 -1879 ($ (-583 $))) (-15 -2256 ($ |t#3|)) (-15 -2033 ($ |t#2|)) (-15 -2033 ($ $)) (-15 -4008 ($ $)) (-15 -2520 ($ $ $)) (-15 -1231 ($ $ $)) (-15 -3035 ((-583 (-583 |t#1|)) $)) (-15 -1449 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2411 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -3666 ($ $ (-517) (-517))) (-15 -2778 ($ $ (-517) (-517))) (-15 -3671 ($ $ (-517) (-517) (-517) (-517))) (-15 -3565 ($ $ (-517) (-517) $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-278)) (-15 -2468 ($ $)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2261 ((-703) $)) (-15 -1948 ((-703) $)) (-15 -3706 ((-583 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-6 (-4182 "*"))) (PROGN (-15 -3057 (|t#1| $)) (-15 -2757 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2104 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-55 |#1| |#2| |#3|) . T) ((-1108) . T))
-((-2468 ((|#4| |#4|) 69 (|has| |#1| (-278)))) (-2261 (((-703) |#4|) 93 (|has| |#1| (-509)))) (-1948 (((-703) |#4|) 73 (|has| |#1| (-509)))) (-3706 (((-583 |#3|) |#4|) 80 (|has| |#1| (-509)))) (-1352 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 105 (|has| |#1| (-278)))) (-2757 ((|#1| |#4|) 33)) (-2726 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-509)))) (-2104 (((-3 |#4| "failed") |#4|) 77 (|has| |#1| (-333)))) (-1503 ((|#4| |#4|) 65 (|has| |#1| (-509)))) (-3876 ((|#4| |#4| |#1| (-517) (-517)) 41)) (-3874 ((|#4| |#4| (-517) (-517)) 36)) (-2696 ((|#4| |#4| |#1| (-517) (-517)) 46)) (-3057 ((|#1| |#4|) 75)) (-2061 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 66 (|has| |#1| (-509)))))
-(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 (|#1| |#4|)) (-15 -2757 (|#1| |#4|)) (-15 -3874 (|#4| |#4| (-517) (-517))) (-15 -3876 (|#4| |#4| |#1| (-517) (-517))) (-15 -2696 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (-15 -3706 ((-583 |#3|) |#4|)) (-15 -1503 (|#4| |#4|)) (-15 -2726 ((-3 |#4| "failed") |#4|)) (-15 -2061 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -2468 (|#4| |#4|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 |#4| "failed") |#4|)) |noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622))
-((-2104 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1352 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2726 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2261 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2696 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3876 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3874 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-3057 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))))
-(-10 -7 (-15 -3057 (|#1| |#4|)) (-15 -2757 (|#1| |#4|)) (-15 -3874 (|#4| |#4| (-517) (-517))) (-15 -3876 (|#4| |#4| |#1| (-517) (-517))) (-15 -2696 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (-15 -3706 ((-583 |#3|) |#4|)) (-15 -1503 (|#4| |#4|)) (-15 -2726 ((-3 |#4| "failed") |#4|)) (-15 -2061 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -2468 (|#4| |#4|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 |#4| "failed") |#4|)) |noBranch|))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) 46)) (-1231 (($ $ $) NIL)) (-2033 (($ (-1153 |#1|)) NIL) (($ $) NIL)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) 12)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-1153 |#1|)) NIL)) (-3739 (($ $ (-517) (-1153 |#1|)) NIL)) (-3487 (($ (-703) |#1|) 22)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 30 (|has| |#1| (-278)))) (-1939 (((-1153 |#1|) $ (-517)) NIL)) (-2261 (((-703) $) 32 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) 51)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) 34 (|has| |#1| (-509)))) (-3706 (((-583 (-1153 |#1|)) $) 37 (|has| |#1| (-509)))) (-1477 (((-703) $) 20)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) 21)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) 28 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 9)) (-1338 (((-517) $) 10)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 11)) (-1307 (((-517) $) 47)) (-1840 (($ (-583 (-583 |#1|))) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) 59)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 44 (|has| |#1| (-333)))) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1153 |#1|)) 52)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) 26 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-3728 (((-1153 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1153 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 45 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1153 |#1|) $ (-1153 |#1|)) NIL) (((-1153 |#1|) (-1153 |#1|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-623 |#1|) (-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 -1879 ($ (-1153 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 $ "failed") $)) |noBranch|))) (-961)) (T -623))
-((-2104 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))))
-(-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 -1879 ($ (-1153 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 $ "failed") $)) |noBranch|)))
-((-3205 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-1729 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-1811 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-1705 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-3492 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-4085 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-4119 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30)))
-(((-624 |#1|) (-10 -7 (-15 -4119 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1705 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -4085 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -1729 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3205 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1811 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-961)) (T -624))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-1811 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-3205 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-1729 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-4085 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3492 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3492 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-1705 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-4119 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(-10 -7 (-15 -4119 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1705 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -4085 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -1729 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3205 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1811 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703))))
-((-3248 ((|#2| |#2| |#4|) 25)) (-1367 (((-623 |#2|) |#3| |#4|) 31)) (-3943 (((-623 |#2|) |#2| |#4|) 30)) (-1228 (((-1153 |#2|) |#2| |#4|) 16)) (-3182 ((|#2| |#3| |#4|) 24)) (-3780 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-2820 (((-623 |#2|) |#2| |#4| (-703)) 37)))
-(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1228 ((-1153 |#2|) |#2| |#4|)) (-15 -3182 (|#2| |#3| |#4|)) (-15 -3248 (|#2| |#2| |#4|)) (-15 -3943 ((-623 |#2|) |#2| |#4|)) (-15 -2820 ((-623 |#2|) |#2| |#4| (-703))) (-15 -1367 ((-623 |#2|) |#3| |#4|)) (-15 -3780 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1003) (-822 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4180)))) (T -625))
-((-3780 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))) (-1367 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-2820 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))) (-3943 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-3248 (*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4180)))))) (-3182 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-1228 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1153 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
-(-10 -7 (-15 -1228 ((-1153 |#2|) |#2| |#4|)) (-15 -3182 (|#2| |#3| |#4|)) (-15 -3248 (|#2| |#2| |#4|)) (-15 -3943 ((-623 |#2|) |#2| |#4|)) (-15 -2820 ((-623 |#2|) |#2| |#4| (-703))) (-15 -1367 ((-623 |#2|) |#3| |#4|)) (-15 -3780 ((-623 |#2|) |#3| |#4| (-703) (-703))))
-((-4112 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-3484 ((|#1| (-623 |#2|)) 9)) (-1897 (((-623 |#1|) (-623 |#2|)) 16)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -3484 (|#1| (-623 |#2|))) (-15 -1897 ((-623 |#1|) (-623 |#2|))) (-15 -4112 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-909 |#1|)) (T -626))
-((-4112 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))))
-(-10 -7 (-15 -3484 (|#1| (-623 |#2|))) (-15 -1897 ((-623 |#1|) (-623 |#2|))) (-15 -4112 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3055 (((-623 (-632))) NIL) (((-623 (-632)) (-1153 $)) NIL)) (-1472 (((-632) $) NIL)) (-1865 (($ $) NIL (|has| (-632) (-1094)))) (-1721 (($ $) NIL (|has| (-632) (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-2535 (($ $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2759 (((-388 $) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-3766 (($ $) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-1707 (((-107) $ $) NIL (|has| (-632) (-278)))) (-1611 (((-703)) NIL (|has| (-632) (-338)))) (-1839 (($ $) NIL (|has| (-632) (-1094)))) (-1701 (($ $) NIL (|has| (-632) (-1094)))) (-1887 (($ $) NIL (|has| (-632) (-1094)))) (-1743 (($ $) NIL (|has| (-632) (-1094)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-3189 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-1967 (($ (-1153 (-632))) NIL) (($ (-1153 (-632)) (-1153 $)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2518 (($ $ $) NIL (|has| (-632) (-278)))) (-2410 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1153 $)) NIL)) (-3355 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-632))) (|:| |vec| (-1153 (-632)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-3225 (((-3 $ "failed") (-377 (-1069 (-632)))) NIL (|has| (-632) (-333))) (($ (-1069 (-632))) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3775 (((-632) $) 29)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-1355 (((-107) $) NIL (|has| (-632) (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-632) (-338)))) (-2497 (($ $ $) NIL (|has| (-632) (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-3442 (($) NIL (|has| (-632) (-319)))) (-3391 (((-107) $) NIL (|has| (-632) (-319)))) (-2378 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-3849 (((-107) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2658 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-970)) (|has| (-632) (-1094))))) (-2645 (($) NIL (|has| (-632) (-1094)))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-632) (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-632) (-808 (-517))))) (-3972 (((-765 (-843)) $) NIL (|has| (-632) (-319))) (((-843) $) NIL (|has| (-632) (-319)))) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094))))) (-1506 (((-632) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-3777 (((-1069 (-632)) $) NIL (|has| (-632) (-333)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 (-632) (-632)) $) NIL)) (-1549 (((-843) $) NIL (|has| (-632) (-338)))) (-1867 (($ $) NIL (|has| (-632) (-1094)))) (-3216 (((-1069 (-632)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| (-632) (-333)))) (-2836 (($) NIL (|has| (-632) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-632) (-338)))) (-2228 (($) NIL)) (-3785 (((-632) $) 31)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-632) (-278)))) (-1401 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-632) (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-3755 (((-388 $) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-632) (-278)))) (-2476 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-2624 (($ $) NIL (|has| (-632) (-1094)))) (-2051 (($ $ (-1073) (-632)) NIL (|has| (-632) (-478 (-1073) (-632)))) (($ $ (-583 (-1073)) (-583 (-632))) NIL (|has| (-632) (-478 (-1073) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-3146 (((-703) $) NIL (|has| (-632) (-278)))) (-1449 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-632) (-278)))) (-3010 (((-632)) NIL) (((-632) (-1153 $)) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-3127 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-2970 (((-623 (-632)) (-1153 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-2135 (((-1069 (-632))) NIL)) (-1898 (($ $) NIL (|has| (-632) (-1094)))) (-1754 (($ $) NIL (|has| (-632) (-1094)))) (-1766 (($) NIL (|has| (-632) (-319)))) (-1876 (($ $) NIL (|has| (-632) (-1094)))) (-1732 (($ $) NIL (|has| (-632) (-1094)))) (-1853 (($ $) NIL (|has| (-632) (-1094)))) (-1711 (($ $) NIL (|has| (-632) (-1094)))) (-4114 (((-623 (-632)) (-1153 $)) NIL) (((-1153 (-632)) $) NIL) (((-623 (-632)) (-1153 $) (-1153 $)) NIL) (((-1153 (-632)) $ (-1153 $)) NIL)) (-3645 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-937))) (((-153 (-349)) $) NIL (|has| (-632) (-937))) (((-814 (-349)) $) NIL (|has| (-632) (-558 (-814 (-349))))) (((-814 (-517)) $) NIL (|has| (-632) (-558 (-814 (-517))))) (($ (-1069 (-632))) NIL) (((-1069 (-632)) $) NIL) (($ (-1153 (-632))) NIL) (((-1153 (-632)) $) NIL)) (-1487 (($ $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-319))))) (-3392 (($ (-632) (-632)) 12)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3807 (|has| (-632) (-952 (-377 (-517)))) (|has| (-632) (-333))))) (-1328 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-132))))) (-3669 (((-1069 (-632)) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL)) (-3707 (($ $) NIL (|has| (-632) (-1094)))) (-1788 (($ $) NIL (|has| (-632) (-1094)))) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) NIL (|has| (-632) (-1094)))) (-1765 (($ $) NIL (|has| (-632) (-1094)))) (-3731 (($ $) NIL (|has| (-632) (-1094)))) (-1814 (($ $) NIL (|has| (-632) (-1094)))) (-2921 (((-632) $) NIL (|has| (-632) (-1094)))) (-1492 (($ $) NIL (|has| (-632) (-1094)))) (-1827 (($ $) NIL (|has| (-632) (-1094)))) (-3719 (($ $) NIL (|has| (-632) (-1094)))) (-1802 (($ $) NIL (|has| (-632) (-1094)))) (-3695 (($ $) NIL (|has| (-632) (-1094)))) (-1777 (($ $) NIL (|has| (-632) (-1094)))) (-3710 (($ $) NIL (|has| (-632) (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-632) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1094))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333)))))
-(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2256 ($ (-153 (-349)))) (-15 -2256 ($ (-153 (-517)))) (-15 -2256 ($ (-153 (-632)))) (-15 -2256 ($ (-153 (-634)))) (-15 -2256 ((-153 (-349)) $))))) (T -627))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))))
-(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2256 ($ (-153 (-349)))) (-15 -2256 ($ (-153 (-517)))) (-15 -2256 ($ (-153 (-632)))) (-15 -2256 ($ (-153 (-634)))) (-15 -2256 ((-153 (-349)) $))))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-628 |#1|) (-1184) (-1003)) (T -628))
-((-1710 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1257 *3) (|:| -3217 (-703))))))))
-(-13 (-209 |t#1|) (-10 -8 (-15 -1710 ($ |t#1| $ (-703))) (-15 -3483 ($ $)) (-15 -3350 ((-583 (-2 (|:| -1257 |t#1|) (|:| -3217 (-703)))) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-3988 (((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517)) 46)) (-1196 ((|#1| |#1| (-517)) 45)) (-1401 ((|#1| |#1| |#1| (-517)) 35)) (-3755 (((-583 |#1|) |#1| (-517)) 38)) (-1458 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-1300 (((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517)) 44)))
-(((-629 |#1|) (-10 -7 (-15 -1401 (|#1| |#1| |#1| (-517))) (-15 -1196 (|#1| |#1| (-517))) (-15 -3755 ((-583 |#1|) |#1| (-517))) (-15 -1300 ((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517))) (-15 -3988 ((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517))) (-15 -1458 (|#1| |#1| (-517) |#1| (-517)))) (-1130 (-517))) (T -629))
-((-1458 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3755 *5) (|:| -3688 (-517))))) (-5 *4 (-517)) (-4 *5 (-1130 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-1300 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -3688 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) (-1196 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) (-1401 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))))
-(-10 -7 (-15 -1401 (|#1| |#1| |#1| (-517))) (-15 -1196 (|#1| |#1| (-517))) (-15 -3755 ((-583 |#1|) |#1| (-517))) (-15 -1300 ((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517))) (-15 -3988 ((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517))) (-15 -1458 (|#1| |#1| (-517) |#1| (-517))))
-((-2592 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2426 (((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 38) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 40) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 42)) (-2933 (((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236))) NIL)) (-3008 (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 43)))
-(((-630) (-10 -7 (-15 -2426 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3008 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2933 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2592 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630))
-((-2592 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-2933 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-3008 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-2426 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-2426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-2426 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
-(-10 -7 (-15 -2426 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3008 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2933 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2592 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
-((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|)) 73) (((-388 |#4|) |#4|) 215)))
-(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|)))) (-779) (-725) (-319) (-871 |#3| |#2| |#1|)) (T -631))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
-(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 84)) (-2668 (((-517) $) 30)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-3092 (($) NIL T CONST)) (-2531 (($ $) NIL)) (-1772 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3189 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2518 (($ $ $) 96)) (-3621 (((-3 $ "failed") $) 87)) (-2497 (($ $ $) 95)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 77) (((-843) (-843)) 76)) (-3556 (((-107) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3972 (((-517) $) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (($ $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3004 (((-517) (-517)) 81) (((-517)) 82)) (-2967 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3942 (((-517) (-517)) 79) (((-517)) 80)) (-3099 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 16)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 91)) (-2138 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL)) (-2597 (($ $) NIL)) (-4005 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 92)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 22)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 94)) (-2930 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2646 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) NIL)) (-2256 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-2961 (((-703)) 103)) (-2838 (($ (-517) (-517) (-843)) 44)) (-1949 (($ $) NIL)) (-1398 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2372 (((-843)) 35) (((-843) (-843)) 78)) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 32 T CONST)) (-2409 (($) 17 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 83)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 101)) (-1667 (($ $ $) 65)) (-1654 (($ $) 99) (($ $ $) 100)) (-1642 (($ $ $) 98)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-632) (-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -3554 ((-843) (-843))) (-15 -3554 ((-843))) (-15 -2372 ((-843) (-843))) (-15 -2372 ((-843))) (-15 -3942 ((-517) (-517))) (-15 -3942 ((-517))) (-15 -3004 ((-517) (-517))) (-15 -3004 ((-517))) (-15 -2256 ((-349) $)) (-15 -2256 ($ (-634))) (-15 -3371 ((-517) $)) (-15 -2077 ((-517) $)) (-15 -2838 ($ (-517) (-517) (-843)))))) (T -632))
-((-2372 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3554 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3942 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3004 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-2838 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))))
-(-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -3554 ((-843) (-843))) (-15 -3554 ((-843))) (-15 -2372 ((-843) (-843))) (-15 -2372 ((-843))) (-15 -3942 ((-517) (-517))) (-15 -3942 ((-517))) (-15 -3004 ((-517) (-517))) (-15 -3004 ((-517))) (-15 -2256 ((-349) $)) (-15 -2256 ($ (-634))) (-15 -3371 ((-517) $)) (-15 -2077 ((-517) $)) (-15 -2838 ($ (-517) (-517) (-843)))))
-((-1995 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 66)) (-2468 (((-623 |#1|) (-623 |#1|) |#1|) 49)) (-2811 (((-623 |#1|) (-623 |#1|) |#1|) 67)) (-2331 (((-623 |#1|) (-623 |#1|)) 50)) (-1352 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 65)))
-(((-633 |#1|) (-10 -7 (-15 -2331 ((-623 |#1|) (-623 |#1|))) (-15 -2468 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2811 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -1995 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) (-278)) (T -633))
-((-1352 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-1995 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2811 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2468 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(-10 -7 (-15 -2331 ((-623 |#1|) (-623 |#1|))) (-15 -2468 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2811 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -1995 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 27)) (-3189 (((-517) $) 25)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($ $) NIL) (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) NIL)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) NIL)) (-2967 (($ $ $) NIL)) (-4115 (((-843) (-843)) 10) (((-843)) 9)) (-3099 (($ $ $) NIL)) (-1522 (($ $) NIL)) (-2195 (($ $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) NIL)) (-3206 (((-1021) $) NIL) (($ $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2789 (($ $) NIL)) (-2433 (($ $) NIL)) (-3645 (((-199) $) NIL) (((-349) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) NIL)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL) (($ $ (-703)) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
-(((-634) (-13 (-357) (-502) (-10 -8 (-15 -4115 ((-843) (-843))) (-15 -4115 ((-843))) (-15 -2256 ((-286 $) (-286 (-517))))))) (T -634))
-((-4115 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-4115 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))))
-(-13 (-357) (-502) (-10 -8 (-15 -4115 ((-843) (-843))) (-15 -4115 ((-843))) (-15 -2256 ((-286 $) (-286 (-517))))))
-((-3372 (((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073)) 19)) (-3810 (((-1 |#4| |#2| |#3|) (-1073)) 12)))
-(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 ((-1 |#4| |#2| |#3|) (-1073))) (-15 -3372 ((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073)))) (-558 (-493)) (-1108) (-1108) (-1108)) (T -635))
-((-3372 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))))
-(-10 -7 (-15 -3810 ((-1 |#4| |#2| |#3|) (-1073))) (-15 -3372 ((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073))))
-((-2750 (((-107) $ $) NIL)) (-3892 (((-1158) $ (-703)) 14)) (-2607 (((-703) $) 12)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 25)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 24)))
-(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2256 ($ |#1|)))) (-1003)) (T -636))
-((-2256 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))))
-(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2256 ($ |#1|))))
-((-2345 (((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073)) 33) (((-1 (-199) (-199)) |#1| (-1073)) 38)))
-(((-637 |#1|) (-10 -7 (-15 -2345 ((-1 (-199) (-199)) |#1| (-1073))) (-15 -2345 ((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073)))) (-558 (-493))) (T -637))
-((-2345 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-2345 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -2345 ((-1 (-199) (-199)) |#1| (-1073))) (-15 -2345 ((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073))))
-((-1234 (((-1073) |#1| (-1073) (-583 (-1073))) 9) (((-1073) |#1| (-1073) (-1073) (-1073)) 12) (((-1073) |#1| (-1073) (-1073)) 11) (((-1073) |#1| (-1073)) 10)))
-(((-638 |#1|) (-10 -7 (-15 -1234 ((-1073) |#1| (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-583 (-1073))))) (-558 (-493))) (T -638))
-((-1234 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -1234 ((-1073) |#1| (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-583 (-1073)))))
-((-3594 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -3594 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1108) (-1108)) (T -639))
-((-3594 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))))
-(-10 -7 (-15 -3594 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2577 (((-1 |#3| |#2|) (-1073)) 11)) (-3372 (((-1 |#3| |#2|) |#1| (-1073)) 21)))
-(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2577 ((-1 |#3| |#2|) (-1073))) (-15 -3372 ((-1 |#3| |#2|) |#1| (-1073)))) (-558 (-493)) (-1108) (-1108)) (T -640))
-((-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))))
-(-10 -7 (-15 -2577 ((-1 |#3| |#2|) (-1073))) (-15 -3372 ((-1 |#3| |#2|) |#1| (-1073))))
-((-1608 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|) 58)) (-3053 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 71)) (-3085 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|) 32)))
-(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3085 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|)) (-15 -3053 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1608 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -641))
-((-1608 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1069 *13))) (-5 *3 (-1069 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1153 (-583 (-1069 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-3053 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1069 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1069 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1069 *12)))) (-3085 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1069 *11))) (-5 *3 (-1069 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1153 (-583 (-1069 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
-(-10 -7 (-15 -3085 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|)) (-15 -3053 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1608 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 41)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 39)) (-2349 (((-703) $) 43)) (-1191 ((|#1| $) 42)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 (((-703) $) 44)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-2720 ((|#1| $ (-703)) 40)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-642 |#1|) (-1184) (-961)) (T -642))
-((-3688 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (-15 -3688 ((-703) $)) (-15 -2349 ((-703) $)) (-15 -1191 (|t#1| $)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ (-703))) (-15 -1339 ($ |t#1| (-703)))))
+((-2571 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) NIL)) (-3591 (($ $) 50)) (-2690 (((-107) $) NIL)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-2967 (((-3 $ "failed") (-751 |#1|)) 22)) (-1278 (((-107) (-751 |#1|)) 14)) (-3036 (($ (-751 |#1|)) 23)) (-3596 (((-107) $ $) 28)) (-2542 (((-843) $) 35)) (-3577 (($ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-3693 (((-583 $) (-751 |#1|)) 16)) (-2182 (((-787) $) 41) (($ |#1|) 32) (((-751 |#1|) $) 37) (((-612 |#1|) $) 42)) (-1939 (((-57 (-583 $)) (-583 |#1|) (-843)) 55)) (-1659 (((-583 $) (-583 |#1|) (-843)) 57)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 51)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 36)))
+(((-608 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 -2690 ((-107) $)) (-15 -3577 ($ $)) (-15 -3591 ($ $)) (-15 -2542 ((-843) $)) (-15 -3596 ((-107) $ $)) (-15 -2182 ((-751 |#1|) $)) (-15 -2182 ((-612 |#1|) $)) (-15 -3693 ((-583 $) (-751 |#1|))) (-15 -1278 ((-107) (-751 |#1|))) (-15 -3036 ($ (-751 |#1|))) (-15 -2967 ((-3 $ "failed") (-751 |#1|))) (-15 -3367 ((-583 |#1|) $)) (-15 -1939 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -1659 ((-583 $) (-583 |#1|) (-843))))) (-779)) (T -608))
+((-2690 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3577 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3591 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3596 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-2967 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
+(-13 (-779) (-952 |#1|) (-10 -8 (-15 -2690 ((-107) $)) (-15 -3577 ($ $)) (-15 -3591 ($ $)) (-15 -2542 ((-843) $)) (-15 -3596 ((-107) $ $)) (-15 -2182 ((-751 |#1|) $)) (-15 -2182 ((-612 |#1|) $)) (-15 -3693 ((-583 $) (-751 |#1|))) (-15 -1278 ((-107) (-751 |#1|))) (-15 -3036 ($ (-751 |#1|))) (-15 -2967 ((-3 $ "failed") (-751 |#1|))) (-15 -3367 ((-583 |#1|) $)) (-15 -1939 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -1659 ((-583 $) (-583 |#1|) (-843)))))
+((-3088 ((|#2| $) 76)) (-2602 (($ $) 96)) (-1799 (((-107) $ (-703)) 26)) (-1644 (($ $) 85) (($ $ (-703)) 88)) (-2570 (((-107) $) 97)) (-3200 (((-583 $) $) 72)) (-1703 (((-107) $ $) 71)) (-4064 (((-107) $ (-703)) 24)) (-2305 (((-517) $) 46)) (-2564 (((-517) $) 45)) (-2942 (((-107) $ (-703)) 22)) (-3762 (((-107) $) 74)) (-1988 ((|#2| $) 89) (($ $ (-703)) 92)) (-2454 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-4086 (((-583 (-517)) $) 44)) (-3646 (((-107) (-517) $) 42)) (-1631 ((|#2| $) NIL) (($ $ (-703)) 84)) (-3467 (($ $ (-517)) 99)) (-2660 (((-107) $) 98)) (-2925 (((-107) (-1 (-107) |#2|) $) 32)) (-3042 (((-583 |#2|) $) 33)) (-1986 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1122 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-1482 (((-517) $ $) 70)) (-3685 (($ $ (-1122 (-517))) 57) (($ $ (-517)) 51)) (-2562 (((-107) $) 66)) (-4084 (($ $) 81)) (-2943 (((-703) $) 80)) (-2103 (($ $) 79)) (-2197 (($ (-583 |#2|)) 37)) (-2860 (($ $) 100)) (-3935 (((-583 $) $) 69)) (-3172 (((-107) $ $) 68)) (-3883 (((-107) (-1 (-107) |#2|) $) 31)) (-1539 (((-107) $ $) 18)) (-2210 (((-703) $) 29)))
+(((-609 |#1| |#2|) (-10 -8 (-15 -2860 (|#1| |#1|)) (-15 -3467 (|#1| |#1| (-517))) (-15 -2570 ((-107) |#1|)) (-15 -2660 ((-107) |#1|)) (-15 -1986 (|#2| |#1| (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517))) (-15 -3042 ((-583 |#2|) |#1|)) (-15 -3646 ((-107) (-517) |#1|)) (-15 -4086 ((-583 (-517)) |#1|)) (-15 -2564 ((-517) |#1|)) (-15 -2305 ((-517) |#1|)) (-15 -2197 (|#1| (-583 |#2|))) (-15 -1986 (|#1| |#1| (-1122 (-517)))) (-15 -3685 (|#1| |#1| (-517))) (-15 -3685 (|#1| |#1| (-1122 (-517)))) (-15 -2454 (|#1| |#2| |#1| (-517))) (-15 -2454 (|#1| |#1| |#1| (-517))) (-15 -4084 (|#1| |#1|)) (-15 -2943 ((-703) |#1|)) (-15 -2103 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1988 (|#1| |#1| (-703))) (-15 -1986 (|#2| |#1| "last")) (-15 -1988 (|#2| |#1|)) (-15 -1644 (|#1| |#1| (-703))) (-15 -1986 (|#1| |#1| "rest")) (-15 -1644 (|#1| |#1|)) (-15 -1631 (|#1| |#1| (-703))) (-15 -1986 (|#2| |#1| "first")) (-15 -1631 (|#2| |#1|)) (-15 -1703 ((-107) |#1| |#1|)) (-15 -3172 ((-107) |#1| |#1|)) (-15 -1482 ((-517) |#1| |#1|)) (-15 -2562 ((-107) |#1|)) (-15 -1986 (|#2| |#1| "value")) (-15 -3088 (|#2| |#1|)) (-15 -3762 ((-107) |#1|)) (-15 -3200 ((-583 |#1|) |#1|)) (-15 -3935 ((-583 |#1|) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -1799 ((-107) |#1| (-703))) (-15 -4064 ((-107) |#1| (-703))) (-15 -2942 ((-107) |#1| (-703)))) (-610 |#2|) (-1109)) (T -609))
+NIL
+(-10 -8 (-15 -2860 (|#1| |#1|)) (-15 -3467 (|#1| |#1| (-517))) (-15 -2570 ((-107) |#1|)) (-15 -2660 ((-107) |#1|)) (-15 -1986 (|#2| |#1| (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517))) (-15 -3042 ((-583 |#2|) |#1|)) (-15 -3646 ((-107) (-517) |#1|)) (-15 -4086 ((-583 (-517)) |#1|)) (-15 -2564 ((-517) |#1|)) (-15 -2305 ((-517) |#1|)) (-15 -2197 (|#1| (-583 |#2|))) (-15 -1986 (|#1| |#1| (-1122 (-517)))) (-15 -3685 (|#1| |#1| (-517))) (-15 -3685 (|#1| |#1| (-1122 (-517)))) (-15 -2454 (|#1| |#2| |#1| (-517))) (-15 -2454 (|#1| |#1| |#1| (-517))) (-15 -4084 (|#1| |#1|)) (-15 -2943 ((-703) |#1|)) (-15 -2103 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1988 (|#1| |#1| (-703))) (-15 -1986 (|#2| |#1| "last")) (-15 -1988 (|#2| |#1|)) (-15 -1644 (|#1| |#1| (-703))) (-15 -1986 (|#1| |#1| "rest")) (-15 -1644 (|#1| |#1|)) (-15 -1631 (|#1| |#1| (-703))) (-15 -1986 (|#2| |#1| "first")) (-15 -1631 (|#2| |#1|)) (-15 -1703 ((-107) |#1| |#1|)) (-15 -3172 ((-107) |#1| |#1|)) (-15 -1482 ((-517) |#1| |#1|)) (-15 -2562 ((-107) |#1|)) (-15 -1986 (|#2| |#1| "value")) (-15 -3088 (|#2| |#1|)) (-15 -3762 ((-107) |#1|)) (-15 -3200 ((-583 |#1|) |#1|)) (-15 -3935 ((-583 |#1|) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2925 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -1799 ((-107) |#1| (-703))) (-15 -4064 ((-107) |#1| (-703))) (-15 -2942 ((-107) |#1| (-703))))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3088 ((|#1| $) 48)) (-2864 ((|#1| $) 65)) (-2602 (($ $) 67)) (-3423 (((-1159) $ (-517) (-517)) 97 (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) 52 (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) 8)) (-4072 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3499 (($ $ $) 56 (|has| $ (-6 -4184)))) (-3573 ((|#1| $ |#1|) 54 (|has| $ (-6 -4184)))) (-3043 ((|#1| $ |#1|) 58 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4184))) (($ $ "rest" $) 55 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 117 (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) 102)) (-2849 ((|#1| $) 66)) (-3473 (($) 7 T CONST)) (-1987 (($ $) 124)) (-1644 (($ $) 73) (($ $ (-703)) 71)) (-1667 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 103)) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1226 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 87)) (-2570 (((-107) $) 83)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3742 (((-703) $) 123)) (-3200 (((-583 $) $) 50)) (-1703 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3366 (($ (-703) |#1|) 108)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 95 (|has| (-517) (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 94 (|has| (-517) (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2942 (((-107) $ (-703)) 10)) (-3617 (((-583 |#1|) $) 45)) (-3762 (((-107) $) 49)) (-2403 (($ $) 126)) (-3876 (((-107) $) 127)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1988 ((|#1| $) 70) (($ $ (-703)) 68)) (-2454 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-4086 (((-583 (-517)) $) 92)) (-3646 (((-107) (-517) $) 91)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3265 ((|#1| $) 125)) (-1631 ((|#1| $) 76) (($ $ (-703)) 74)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-1254 (($ $ |#1|) 96 (|has| $ (-6 -4184)))) (-3467 (($ $ (-517)) 122)) (-2660 (((-107) $) 84)) (-3800 (((-107) $) 128)) (-1915 (((-107) $) 129)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 90)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1122 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-1482 (((-517) $ $) 44)) (-3685 (($ $ (-1122 (-517))) 114) (($ $ (-517)) 113)) (-2562 (((-107) $) 46)) (-4084 (($ $) 62)) (-3145 (($ $) 59 (|has| $ (-6 -4184)))) (-2943 (((-703) $) 63)) (-2103 (($ $) 64)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 107)) (-1286 (($ $ $) 61 (|has| $ (-6 -4184))) (($ $ |#1|) 60 (|has| $ (-6 -4184)))) (-2337 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2860 (($ $) 121)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3935 (((-583 $) $) 51)) (-3172 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-610 |#1|) (-1185) (-1109)) (T -610))
+((-1971 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) (-3451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-2403 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))) (-1987 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) (-2860 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))))
+(-13 (-1048 |t#1|) (-10 -8 (-15 -1971 ($ (-1 (-107) |t#1|) $)) (-15 -3451 ($ (-1 (-107) |t#1|) $)) (-15 -1915 ((-107) $)) (-15 -3800 ((-107) $)) (-15 -3876 ((-107) $)) (-15 -2403 ($ $)) (-15 -3265 (|t#1| $)) (-15 -1987 ($ $)) (-15 -3742 ((-703) $)) (-15 -3467 ($ $ (-517))) (-15 -2860 ($ $))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1048 |#1|) . T) ((-1109) . T) ((-1143 |#1|) . T))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2599 (($ (-703) (-703) (-703)) 33 (|has| |#1| (-961)))) (-1799 (((-107) $ (-703)) NIL)) (-1344 ((|#1| $ (-703) (-703) (-703) |#1|) 27)) (-3473 (($) NIL T CONST)) (-2488 (($ $ $) 37 (|has| |#1| (-961)))) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1370 (((-1154 (-703)) $) 8)) (-3087 (($ (-1074) $ $) 22)) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3044 (($ (-703)) 35 (|has| |#1| (-961)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-703) (-703) (-703)) 25)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-2197 (($ (-583 (-583 (-583 |#1|)))) 44)) (-2182 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-879 (-879 (-879 |#1|)))) 15) (((-879 (-879 (-879 |#1|))) $) 12)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -2599 ($ (-703) (-703) (-703))) (-15 -3044 ($ (-703))) (-15 -2488 ($ $ $))) |noBranch|) (-15 -2197 ($ (-583 (-583 (-583 |#1|))))) (-15 -1986 (|#1| $ (-703) (-703) (-703))) (-15 -1344 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2182 ($ (-879 (-879 (-879 |#1|))))) (-15 -2182 ((-879 (-879 (-879 |#1|))) $)) (-15 -3087 ($ (-1074) $ $)) (-15 -1370 ((-1154 (-703)) $)))) (-1003)) (T -611))
+((-2599 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-3044 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-2488 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))) (-2197 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-1986 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-1344 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-3087 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-1154 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
+(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -2599 ($ (-703) (-703) (-703))) (-15 -3044 ($ (-703))) (-15 -2488 ($ $ $))) |noBranch|) (-15 -2197 ($ (-583 (-583 (-583 |#1|))))) (-15 -1986 (|#1| $ (-703) (-703) (-703))) (-15 -1344 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2182 ($ (-879 (-879 (-879 |#1|))))) (-15 -2182 ((-879 (-879 (-879 |#1|))) $)) (-15 -3087 ($ (-1074) $ $)) (-15 -1370 ((-1154 (-703)) $))))
+((-2571 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) 14)) (-3591 (($ $) 18)) (-2690 (((-107) $) 19)) (-1759 (((-3 |#1| "failed") $) 22)) (-3076 ((|#1| $) 20)) (-1644 (($ $) 36)) (-2088 (($ $) 24)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3596 (((-107) $ $) 41)) (-2542 (((-843) $) 38)) (-3577 (($ $) 17)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 ((|#1| $) 35)) (-2182 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 12)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 40)) (* (($ $ $) 34)))
+(((-612 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2182 ((-751 |#1|) $)) (-15 -1631 (|#1| $)) (-15 -3577 ($ $)) (-15 -2542 ((-843) $)) (-15 -3596 ((-107) $ $)) (-15 -2088 ($ $)) (-15 -1644 ($ $)) (-15 -2690 ((-107) $)) (-15 -3591 ($ $)) (-15 -3367 ((-583 |#1|) $)))) (-779)) (T -612))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1631 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3577 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3596 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2088 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-1644 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3591 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2182 ((-751 |#1|) $)) (-15 -1631 (|#1| $)) (-15 -3577 ($ $)) (-15 -2542 ((-843) $)) (-15 -3596 ((-107) $ $)) (-15 -2088 ($ $)) (-15 -1644 ($ $)) (-15 -2690 ((-107) $)) (-15 -3591 ($ $)) (-15 -3367 ((-583 |#1|) $))))
+((-2336 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-2085 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9)))
+(((-613 |#1|) (-10 -7 (-15 -2085 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2336 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1003)) (T -613))
+((-2336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) (-2085 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))))
+(-10 -7 (-15 -2085 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2336 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|)))
+((-2143 ((|#2| |#1| |#2|) 9)) (-2135 ((|#1| |#1| |#2|) 8)))
+(((-614 |#1| |#2|) (-10 -7 (-15 -2135 (|#1| |#1| |#2|)) (-15 -2143 (|#2| |#1| |#2|))) (-1003) (-1003)) (T -614))
+((-2143 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2135 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -2135 (|#1| |#1| |#2|)) (-15 -2143 (|#2| |#1| |#2|)))
+((-1903 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -1903 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1003) (-1003) (-1003)) (T -615))
+((-1903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2)))))
+(-10 -7 (-15 -1903 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2336 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-1801 (((-1 |#1|) |#1|) 8)) (-3306 ((|#1| |#1|) 16)) (-3821 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2182 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20)))
+(((-616 |#1|) (-10 -7 (-15 -1801 ((-1 |#1|) |#1|)) (-15 -2182 ((-1 |#1|) |#1|)) (-15 -3821 (|#1| (-1 |#1| |#1|))) (-15 -3821 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3306 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2336 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1003)) (T -616))
+((-2336 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) (-3306 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) (-1801 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -1801 ((-1 |#1|) |#1|)) (-15 -2182 ((-1 |#1|) |#1|)) (-15 -3821 (|#1| (-1 |#1| |#1|))) (-15 -3821 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3306 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2336 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|))))
+((-2645 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2222 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1605 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1537 (((-1 |#2| |#1|) |#2|) 11)))
+(((-617 |#1| |#2|) (-10 -7 (-15 -1537 ((-1 |#2| |#1|) |#2|)) (-15 -2222 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1605 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2645 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1003) (-1003)) (T -617))
+((-2645 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) (-2222 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-1537 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -1537 ((-1 |#2| |#1|) |#2|)) (-15 -2222 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1605 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2645 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-1831 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2242 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1900 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1620 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3884 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2242 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1900 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1620 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3884 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1831 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1003) (-1003) (-1003)) (T -618))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
+(-10 -7 (-15 -2242 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1900 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1620 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3884 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1831 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2521 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1857 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1857 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1857 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2521 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-961) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619))
+((-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-1857 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))))
+(-10 -7 (-15 -1857 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1857 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2521 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3437 (($ (-703) (-703)) 31)) (-3497 (($ $ $) 54)) (-2729 (($ |#3|) 50) (($ $) 51)) (-2794 (((-107) $) 26)) (-3758 (($ $ (-517) (-517)) 56)) (-2443 (($ $ (-517) (-517)) 57)) (-3834 (($ $ (-517) (-517) (-517) (-517)) 61)) (-4068 (($ $) 52)) (-2119 (((-107) $) 14)) (-2165 (($ $ (-517) (-517) $) 62)) (-2307 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 60)) (-2609 (($ (-703) |#2|) 36)) (-1813 (($ (-583 (-583 |#2|))) 34)) (-1263 (((-583 (-583 |#2|)) $) 55)) (-3773 (($ $ $) 53)) (-2349 (((-3 $ "failed") $ |#2|) 89)) (-1986 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 59)) (-3681 (($ (-583 |#2|)) 38) (($ (-583 $)) 40)) (-1274 (((-107) $) 23)) (-2182 (((-787) $) NIL) (($ |#4|) 45)) (-3565 (((-107) $) 28)) (-1649 (($ $ |#2|) 91)) (-1637 (($ $ $) 66) (($ $) 69)) (-1626 (($ $ $) 64)) (** (($ $ (-703)) 78) (($ $ (-517)) 94)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-517) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86)))
+(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1649 (|#1| |#1| |#2|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1626 (|#1| |#1| |#1|)) (-15 -2165 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3834 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -2443 (|#1| |#1| (-517) (-517))) (-15 -3758 (|#1| |#1| (-517) (-517))) (-15 -2307 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1986 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -1263 ((-583 (-583 |#2|)) |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3773 (|#1| |#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -2729 (|#1| |#3|)) (-15 -2182 (|#1| |#4|)) (-15 -3681 (|#1| (-583 |#1|))) (-15 -3681 (|#1| (-583 |#2|))) (-15 -2609 (|#1| (-703) |#2|)) (-15 -1813 (|#1| (-583 (-583 |#2|)))) (-15 -3437 (|#1| (-703) (-703))) (-15 -3565 ((-107) |#1|)) (-15 -2794 ((-107) |#1|)) (-15 -1274 ((-107) |#1|)) (-15 -2119 ((-107) |#1|)) (-15 -2307 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517) (-517))) (-15 -2182 ((-787) |#1|))) (-621 |#2| |#3| |#4|) (-961) (-343 |#2|) (-343 |#2|)) (T -620))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1649 (|#1| |#1| |#2|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1626 (|#1| |#1| |#1|)) (-15 -2165 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3834 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -2443 (|#1| |#1| (-517) (-517))) (-15 -3758 (|#1| |#1| (-517) (-517))) (-15 -2307 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1986 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -1263 ((-583 (-583 |#2|)) |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3773 (|#1| |#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -2729 (|#1| |#3|)) (-15 -2182 (|#1| |#4|)) (-15 -3681 (|#1| (-583 |#1|))) (-15 -3681 (|#1| (-583 |#2|))) (-15 -2609 (|#1| (-703) |#2|)) (-15 -1813 (|#1| (-583 (-583 |#2|)))) (-15 -3437 (|#1| (-703) (-703))) (-15 -3565 ((-107) |#1|)) (-15 -2794 ((-107) |#1|)) (-15 -1274 ((-107) |#1|)) (-15 -2119 ((-107) |#1|)) (-15 -2307 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517) (-517))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3437 (($ (-703) (-703)) 97)) (-3497 (($ $ $) 87)) (-2729 (($ |#2|) 91) (($ $) 90)) (-2794 (((-107) $) 99)) (-3758 (($ $ (-517) (-517)) 83)) (-2443 (($ $ (-517) (-517)) 82)) (-3834 (($ $ (-517) (-517) (-517) (-517)) 81)) (-4068 (($ $) 89)) (-2119 (((-107) $) 101)) (-1799 (((-107) $ (-703)) 8)) (-2165 (($ $ (-517) (-517) $) 80)) (-2307 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-3635 (($ $ (-517) |#2|) 42)) (-3160 (($ $ (-517) |#3|) 41)) (-2609 (($ (-703) |#1|) 95)) (-3473 (($) 7 T CONST)) (-1558 (($ $) 67 (|has| |#1| (-278)))) (-3023 ((|#2| $ (-517)) 46)) (-3795 (((-703) $) 66 (|has| |#1| (-509)))) (-1226 ((|#1| $ (-517) (-517) |#1|) 43)) (-4020 ((|#1| $ (-517) (-517)) 48)) (-3037 (((-583 |#1|) $) 30)) (-3101 (((-703) $) 65 (|has| |#1| (-509)))) (-4163 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-4122 (((-703) $) 51)) (-3366 (($ (-703) (-703) |#1|) 57)) (-1875 (((-703) $) 50)) (-4064 (((-107) $ (-703)) 9)) (-3464 ((|#1| $) 62 (|has| |#1| (-6 (-4185 "*"))))) (-2734 (((-517) $) 55)) (-2397 (((-517) $) 53)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3070 (((-517) $) 54)) (-2820 (((-517) $) 52)) (-1813 (($ (-583 (-583 |#1|))) 96)) (-1213 (($ (-1 |#1| |#1|) $) 34)) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1263 (((-583 (-583 |#1|)) $) 86)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2263 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-3773 (($ $ $) 88)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1254 (($ $ |#1|) 56)) (-2349 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-3681 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-1274 (((-107) $) 100)) (-3139 ((|#1| $) 63 (|has| |#1| (-6 (-4185 "*"))))) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-1377 ((|#3| $ (-517)) 45)) (-2182 (((-787) $) 20 (|has| |#1| (-1003))) (($ |#3|) 92)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-3565 (((-107) $) 98)) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1649 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1637 (($ $ $) 78) (($ $) 77)) (-1626 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-621 |#1| |#2| |#3|) (-1185) (-961) (-343 |t#1|) (-343 |t#1|)) (T -621))
+((-2119 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1274 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3437 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2609 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3681 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3681 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2182 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-2729 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-2729 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-4068 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3773 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3497 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1263 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-1986 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2307 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3758 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2443 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3834 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2165 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1626 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1637 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1637 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2349 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1649 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-1558 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) (-2263 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -2119 ((-107) $)) (-15 -1274 ((-107) $)) (-15 -2794 ((-107) $)) (-15 -3565 ((-107) $)) (-15 -3437 ($ (-703) (-703))) (-15 -1813 ($ (-583 (-583 |t#1|)))) (-15 -2609 ($ (-703) |t#1|)) (-15 -3681 ($ (-583 |t#1|))) (-15 -3681 ($ (-583 $))) (-15 -2182 ($ |t#3|)) (-15 -2729 ($ |t#2|)) (-15 -2729 ($ $)) (-15 -4068 ($ $)) (-15 -3773 ($ $ $)) (-15 -3497 ($ $ $)) (-15 -1263 ((-583 (-583 |t#1|)) $)) (-15 -1986 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2307 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -3758 ($ $ (-517) (-517))) (-15 -2443 ($ $ (-517) (-517))) (-15 -3834 ($ $ (-517) (-517) (-517) (-517))) (-15 -2165 ($ $ (-517) (-517) $)) (-15 -1626 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -1637 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2349 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-333)) (-15 -1649 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-278)) (-15 -1558 ($ $)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3795 ((-703) $)) (-15 -3101 ((-703) $)) (-15 -4163 ((-583 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-6 (-4185 "*"))) (PROGN (-15 -3139 (|t#1| $)) (-15 -3464 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2263 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-55 |#1| |#2| |#3|) . T) ((-1109) . T))
+((-1558 ((|#4| |#4|) 69 (|has| |#1| (-278)))) (-3795 (((-703) |#4|) 93 (|has| |#1| (-509)))) (-3101 (((-703) |#4|) 73 (|has| |#1| (-509)))) (-4163 (((-583 |#3|) |#4|) 80 (|has| |#1| (-509)))) (-2673 (((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|) 105 (|has| |#1| (-278)))) (-3464 ((|#1| |#4|) 33)) (-3124 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-509)))) (-2263 (((-3 |#4| "failed") |#4|) 77 (|has| |#1| (-333)))) (-2264 ((|#4| |#4|) 65 (|has| |#1| (-509)))) (-2129 ((|#4| |#4| |#1| (-517) (-517)) 41)) (-2113 ((|#4| |#4| (-517) (-517)) 36)) (-2984 ((|#4| |#4| |#1| (-517) (-517)) 46)) (-3139 ((|#1| |#4|) 75)) (-1957 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 66 (|has| |#1| (-509)))))
+(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3139 (|#1| |#4|)) (-15 -3464 (|#1| |#4|)) (-15 -2113 (|#4| |#4| (-517) (-517))) (-15 -2129 (|#4| |#4| |#1| (-517) (-517))) (-15 -2984 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3795 ((-703) |#4|)) (-15 -3101 ((-703) |#4|)) (-15 -4163 ((-583 |#3|) |#4|)) (-15 -2264 (|#4| |#4|)) (-15 -3124 ((-3 |#4| "failed") |#4|)) (-15 -1957 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1558 (|#4| |#4|)) (-15 -2673 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2263 ((-3 |#4| "failed") |#4|)) |noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622))
+((-2263 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2673 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3124 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-4163 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3795 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2984 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-2129 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-2113 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-3464 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-3139 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))))
+(-10 -7 (-15 -3139 (|#1| |#4|)) (-15 -3464 (|#1| |#4|)) (-15 -2113 (|#4| |#4| (-517) (-517))) (-15 -2129 (|#4| |#4| |#1| (-517) (-517))) (-15 -2984 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3795 ((-703) |#4|)) (-15 -3101 ((-703) |#4|)) (-15 -4163 ((-583 |#3|) |#4|)) (-15 -2264 (|#4| |#4|)) (-15 -3124 ((-3 |#4| "failed") |#4|)) (-15 -1957 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1558 (|#4| |#4|)) (-15 -2673 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2263 ((-3 |#4| "failed") |#4|)) |noBranch|))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3437 (($ (-703) (-703)) 46)) (-3497 (($ $ $) NIL)) (-2729 (($ (-1154 |#1|)) NIL) (($ $) NIL)) (-2794 (((-107) $) NIL)) (-3758 (($ $ (-517) (-517)) 12)) (-2443 (($ $ (-517) (-517)) NIL)) (-3834 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4068 (($ $) NIL)) (-2119 (((-107) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-2165 (($ $ (-517) (-517) $) NIL)) (-2307 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3635 (($ $ (-517) (-1154 |#1|)) NIL)) (-3160 (($ $ (-517) (-1154 |#1|)) NIL)) (-2609 (($ (-703) |#1|) 22)) (-3473 (($) NIL T CONST)) (-1558 (($ $) 30 (|has| |#1| (-278)))) (-3023 (((-1154 |#1|) $ (-517)) NIL)) (-3795 (((-703) $) 32 (|has| |#1| (-509)))) (-1226 ((|#1| $ (-517) (-517) |#1|) 51)) (-4020 ((|#1| $ (-517) (-517)) NIL)) (-3037 (((-583 |#1|) $) NIL)) (-3101 (((-703) $) 34 (|has| |#1| (-509)))) (-4163 (((-583 (-1154 |#1|)) $) 37 (|has| |#1| (-509)))) (-4122 (((-703) $) 20)) (-3366 (($ (-703) (-703) |#1|) NIL)) (-1875 (((-703) $) 21)) (-4064 (((-107) $ (-703)) NIL)) (-3464 ((|#1| $) 28 (|has| |#1| (-6 (-4185 "*"))))) (-2734 (((-517) $) 9)) (-2397 (((-517) $) 10)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3070 (((-517) $) 11)) (-2820 (((-517) $) 47)) (-1813 (($ (-583 (-583 |#1|))) NIL)) (-1213 (($ (-1 |#1| |#1|) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1263 (((-583 (-583 |#1|)) $) 59)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2263 (((-3 $ "failed") $) 44 (|has| |#1| (-333)))) (-3773 (($ $ $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1254 (($ $ |#1|) NIL)) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3681 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1154 |#1|)) 52)) (-1274 (((-107) $) NIL)) (-3139 ((|#1| $) 26 (|has| |#1| (-6 (-4185 "*"))))) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-3582 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-1377 (((-1154 |#1|) $ (-517)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1154 |#1|)) NIL)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3565 (((-107) $) NIL)) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $ $) NIL) (($ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 45 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1154 |#1|) $ (-1154 |#1|)) NIL) (((-1154 |#1|) (-1154 |#1|) $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-623 |#1|) (-13 (-621 |#1| (-1154 |#1|) (-1154 |#1|)) (-10 -8 (-15 -3681 ($ (-1154 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2263 ((-3 $ "failed") $)) |noBranch|))) (-961)) (T -623))
+((-2263 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) (-3681 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))))
+(-13 (-621 |#1| (-1154 |#1|) (-1154 |#1|)) (-10 -8 (-15 -3681 ($ (-1154 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2263 ((-3 $ "failed") $)) |noBranch|)))
+((-2069 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-2926 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-1245 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-3754 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-2648 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-3616 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-2611 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30)))
+(((-624 |#1|) (-10 -7 (-15 -2611 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3754 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2648 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2648 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3616 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -2926 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -2069 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1245 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-961)) (T -624))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-1245 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-2069 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-2926 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3616 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-2648 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-2648 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3754 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-2611 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(-10 -7 (-15 -2611 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3754 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2648 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2648 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3616 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -2926 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -2069 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1245 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703))))
+((-2338 ((|#2| |#2| |#4|) 25)) (-3835 (((-623 |#2|) |#3| |#4|) 31)) (-1629 (((-623 |#2|) |#2| |#4|) 30)) (-3458 (((-1154 |#2|) |#2| |#4|) 16)) (-2994 ((|#2| |#3| |#4|) 24)) (-3559 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-2817 (((-623 |#2|) |#2| |#4| (-703)) 37)))
+(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3458 ((-1154 |#2|) |#2| |#4|)) (-15 -2994 (|#2| |#3| |#4|)) (-15 -2338 (|#2| |#2| |#4|)) (-15 -1629 ((-623 |#2|) |#2| |#4|)) (-15 -2817 ((-623 |#2|) |#2| |#4| (-703))) (-15 -3835 ((-623 |#2|) |#3| |#4|)) (-15 -3559 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1003) (-822 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4183)))) (T -625))
+((-3559 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4183)))))) (-3835 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))) (-2817 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4183)))))) (-1629 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))) (-2338 (*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4183)))))) (-2994 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))) (-3458 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1154 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
+(-10 -7 (-15 -3458 ((-1154 |#2|) |#2| |#4|)) (-15 -2994 (|#2| |#3| |#4|)) (-15 -2338 (|#2| |#2| |#4|)) (-15 -1629 ((-623 |#2|) |#2| |#4|)) (-15 -2817 ((-623 |#2|) |#2| |#4| (-703))) (-15 -3835 ((-623 |#2|) |#3| |#4|)) (-15 -3559 ((-623 |#2|) |#3| |#4| (-703) (-703))))
+((-2558 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-2583 ((|#1| (-623 |#2|)) 9)) (-3882 (((-623 |#1|) (-623 |#2|)) 16)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -2583 (|#1| (-623 |#2|))) (-15 -3882 ((-623 |#1|) (-623 |#2|))) (-15 -2558 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-909 |#1|)) (T -626))
+((-2558 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))))
+(-10 -7 (-15 -2583 (|#1| (-623 |#2|))) (-15 -3882 ((-623 |#1|) (-623 |#2|))) (-15 -2558 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3129 (((-623 (-632))) NIL) (((-623 (-632)) (-1154 $)) NIL)) (-1470 (((-632) $) NIL)) (-1834 (($ $) NIL (|has| (-632) (-1095)))) (-1710 (($ $) NIL (|has| (-632) (-1095)))) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-3938 (($ $) NIL (-3763 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-3490 (((-388 $) $) NIL (-3763 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-3706 (($ $) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1095))))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-3765 (((-107) $ $) NIL (|has| (-632) (-278)))) (-1598 (((-703)) NIL (|has| (-632) (-338)))) (-1812 (($ $) NIL (|has| (-632) (-1095)))) (-1685 (($ $) NIL (|has| (-632) (-1095)))) (-1851 (($ $) NIL (|has| (-632) (-1095)))) (-1731 (($ $) NIL (|has| (-632) (-1095)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-3076 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-3291 (($ (-1154 (-632))) NIL) (($ (-1154 (-632)) (-1154 $)) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2383 (($ $ $) NIL (|has| (-632) (-278)))) (-2148 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1154 $)) NIL)) (-4012 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -2522 (-623 (-632))) (|:| |vec| (-1154 (-632)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-2521 (((-3 $ "failed") (-377 (-1070 (-632)))) NIL (|has| (-632) (-333))) (($ (-1070 (-632))) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3720 (((-632) $) 29)) (-1422 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-2712 (((-107) $) NIL (|has| (-632) (-502)))) (-4078 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-3795 (((-843)) NIL)) (-3098 (($) NIL (|has| (-632) (-338)))) (-2366 (($ $ $) NIL (|has| (-632) (-278)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-3493 (($) NIL (|has| (-632) (-319)))) (-1337 (((-107) $) NIL (|has| (-632) (-319)))) (-2990 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-2965 (((-107) $) NIL (-3763 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2587 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-970)) (|has| (-632) (-1095))))) (-2475 (($) NIL (|has| (-632) (-1095)))) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-632) (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-632) (-808 (-517))))) (-1921 (((-765 (-843)) $) NIL (|has| (-632) (-319))) (((-843) $) NIL (|has| (-632) (-319)))) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1095))))) (-2289 (((-632) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-3523 (((-1070 (-632)) $) NIL (|has| (-632) (-333)))) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1857 (($ (-1 (-632) (-632)) $) NIL)) (-2903 (((-843) $) NIL (|has| (-632) (-338)))) (-1826 (($ $) NIL (|has| (-632) (-1095)))) (-2511 (((-1070 (-632)) $) NIL)) (-1368 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| (-632) (-333)))) (-2663 (($) NIL (|has| (-632) (-319)) CONST)) (-3353 (($ (-843)) NIL (|has| (-632) (-338)))) (-4077 (($) NIL)) (-3732 (((-632) $) 31)) (-3094 (((-1021) $) NIL)) (-3107 (($) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| (-632) (-278)))) (-1396 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| (-632) (-319)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-3693 (((-388 $) $) NIL (-3763 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| (-632) (-278)))) (-2349 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-2459 (($ $) NIL (|has| (-632) (-1095)))) (-1979 (($ $ (-1074) (-632)) NIL (|has| (-632) (-478 (-1074) (-632)))) (($ $ (-583 (-1074)) (-583 (-632))) NIL (|has| (-632) (-478 (-1074) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-2623 (((-703) $) NIL (|has| (-632) (-278)))) (-1986 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| (-632) (-278)))) (-4042 (((-632)) NIL) (((-632) (-1154 $)) NIL)) (-3654 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-1699 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-1074)) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-3680 (((-623 (-632)) (-1154 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-1457 (((-1070 (-632))) NIL)) (-1860 (($ $) NIL (|has| (-632) (-1095)))) (-1741 (($ $) NIL (|has| (-632) (-1095)))) (-3788 (($) NIL (|has| (-632) (-319)))) (-1842 (($ $) NIL (|has| (-632) (-1095)))) (-1722 (($ $) NIL (|has| (-632) (-1095)))) (-1824 (($ $) NIL (|has| (-632) (-1095)))) (-1698 (($ $) NIL (|has| (-632) (-1095)))) (-2575 (((-623 (-632)) (-1154 $)) NIL) (((-1154 (-632)) $) NIL) (((-623 (-632)) (-1154 $) (-1154 $)) NIL) (((-1154 (-632)) $ (-1154 $)) NIL)) (-3582 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-937))) (((-153 (-349)) $) NIL (|has| (-632) (-937))) (((-814 (-349)) $) NIL (|has| (-632) (-558 (-814 (-349))))) (((-814 (-517)) $) NIL (|has| (-632) (-558 (-814 (-517))))) (($ (-1070 (-632))) NIL) (((-1070 (-632)) $) NIL) (($ (-1154 (-632))) NIL) (((-1154 (-632)) $) NIL)) (-2013 (($ $) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-319))))) (-3295 (($ (-632) (-632)) 12)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3763 (|has| (-632) (-952 (-377 (-517)))) (|has| (-632) (-333))))) (-1589 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-132))))) (-3804 (((-1070 (-632)) $) NIL)) (-1865 (((-703)) NIL)) (-3809 (((-1154 $)) NIL)) (-3642 (($ $) NIL (|has| (-632) (-1095)))) (-1773 (($ $) NIL (|has| (-632) (-1095)))) (-3767 (((-107) $ $) NIL)) (-3622 (($ $) NIL (|has| (-632) (-1095)))) (-1751 (($ $) NIL (|has| (-632) (-1095)))) (-3661 (($ $) NIL (|has| (-632) (-1095)))) (-1794 (($ $) NIL (|has| (-632) (-1095)))) (-1516 (((-632) $) NIL (|has| (-632) (-1095)))) (-1279 (($ $) NIL (|has| (-632) (-1095)))) (-1803 (($ $) NIL (|has| (-632) (-1095)))) (-3650 (($ $) NIL (|has| (-632) (-1095)))) (-1784 (($ $) NIL (|has| (-632) (-1095)))) (-3631 (($ $) NIL (|has| (-632) (-1095)))) (-1762 (($ $) NIL (|has| (-632) (-1095)))) (-1221 (($ $) NIL (|has| (-632) (-970)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-1074)) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL (|has| (-632) (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1095))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1095)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333)))))
+(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2182 ($ (-153 (-349)))) (-15 -2182 ($ (-153 (-517)))) (-15 -2182 ($ (-153 (-632)))) (-15 -2182 ($ (-153 (-634)))) (-15 -2182 ((-153 (-349)) $))))) (T -627))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))))
+(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2182 ($ (-153 (-349)))) (-15 -2182 ($ (-153 (-517)))) (-15 -2182 ($ (-153 (-632)))) (-15 -2182 ($ (-153 (-634)))) (-15 -2182 ((-153 (-349)) $))))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-2573 (($ $) 62)) (-1667 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-1971 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3972 (((-583 (-2 (|:| -1266 |#1|) (|:| -3105 (-703)))) $) 61)) (-3429 (($) 49) (($ (-583 |#1|)) 48)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 50)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-628 |#1|) (-1185) (-1003)) (T -628))
+((-3816 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-2573 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1266 *3) (|:| -3105 (-703))))))))
+(-13 (-209 |t#1|) (-10 -8 (-15 -3816 ($ |t#1| $ (-703))) (-15 -2573 ($ $)) (-15 -3972 ((-583 (-2 (|:| -1266 |t#1|) (|:| -3105 (-703)))) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-3902 (((-583 |#1|) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))) (-517)) 46)) (-3897 ((|#1| |#1| (-517)) 45)) (-1396 ((|#1| |#1| |#1| (-517)) 35)) (-3693 (((-583 |#1|) |#1| (-517)) 38)) (-3755 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-1358 (((-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))) |#1| (-517)) 44)))
+(((-629 |#1|) (-10 -7 (-15 -1396 (|#1| |#1| |#1| (-517))) (-15 -3897 (|#1| |#1| (-517))) (-15 -3693 ((-583 |#1|) |#1| (-517))) (-15 -1358 ((-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))) |#1| (-517))) (-15 -3902 ((-583 |#1|) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))) (-517))) (-15 -3755 (|#1| |#1| (-517) |#1| (-517)))) (-1131 (-517))) (T -629))
+((-3755 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3693 *5) (|:| -4007 (-517))))) (-5 *4 (-517)) (-4 *5 (-1131 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-1358 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3693 *3) (|:| -4007 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1131 *4)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1131 *4)))) (-3897 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))) (-1396 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))))
+(-10 -7 (-15 -1396 (|#1| |#1| |#1| (-517))) (-15 -3897 (|#1| |#1| (-517))) (-15 -3693 ((-583 |#1|) |#1| (-517))) (-15 -1358 ((-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))) |#1| (-517))) (-15 -3902 ((-583 |#1|) (-583 (-2 (|:| -3693 |#1|) (|:| -4007 (-517)))) (-517))) (-15 -3755 (|#1| |#1| (-517) |#1| (-517))))
+((-3202 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2268 (((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 38) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 40) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 42)) (-1599 (((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236))) NIL)) (-4027 (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 43)))
+(((-630) (-10 -7 (-15 -2268 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2268 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2268 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -4027 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -1599 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3202 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630))
+((-3202 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-1599 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-4027 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-2268 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-2268 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-2268 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
+(-10 -7 (-15 -2268 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2268 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2268 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -4027 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -1599 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3202 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
+((-3693 (((-388 (-1070 |#4|)) (-1070 |#4|)) 73) (((-388 |#4|) |#4|) 215)))
+(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 ((-388 |#4|) |#4|)) (-15 -3693 ((-388 (-1070 |#4|)) (-1070 |#4|)))) (-779) (-725) (-319) (-871 |#3| |#2| |#1|)) (T -631))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
+(-10 -7 (-15 -3693 ((-388 |#4|) |#4|)) (-15 -3693 ((-388 (-1070 |#4|)) (-1070 |#4|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 84)) (-2667 (((-517) $) 30)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3349 (($ $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3706 (($ $) NIL)) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL)) (-3473 (($) NIL T CONST)) (-3896 (($ $) NIL)) (-1759 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3076 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2383 (($ $ $) 96)) (-1568 (((-3 $ "failed") $) 87)) (-2366 (($ $ $) 95)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-3373 (((-843)) 77) (((-843) (-843)) 76)) (-2099 (((-107) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-1921 (((-517) $) NIL)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL)) (-2289 (($ $) NIL)) (-1624 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3996 (((-517) (-517)) 81) (((-517)) 82)) (-1575 (($ $ $) NIL) (($) NIL (-12 (-2455 (|has| $ (-6 -4166))) (-2455 (|has| $ (-6 -4174)))))) (-1619 (((-517) (-517)) 79) (((-517)) 80)) (-2986 (($ $ $) NIL) (($) NIL (-12 (-2455 (|has| $ (-6 -4166))) (-2455 (|has| $ (-6 -4174)))))) (-3272 (((-517) $) 16)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 91)) (-1483 (((-843) (-517)) NIL (|has| $ (-6 -4174)))) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL)) (-3263 (($ $) NIL)) (-4009 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) 92)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2059 (((-517) $) 22)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 94)) (-1567 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-2481 (((-843) (-517)) NIL (|has| $ (-6 -4174)))) (-3582 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) NIL)) (-2182 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-1865 (((-703)) 103)) (-1929 (($ (-517) (-517) (-843)) 44)) (-3112 (($ $) NIL)) (-2931 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-4103 (((-843)) 35) (((-843) (-843)) 78)) (-3767 (((-107) $ $) NIL)) (-1221 (($ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 32 T CONST)) (-2306 (($) 17 T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 83)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 101)) (-1649 (($ $ $) 65)) (-1637 (($ $) 99) (($ $ $) 100)) (-1626 (($ $ $) 98)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-632) (-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -3373 ((-843) (-843))) (-15 -3373 ((-843))) (-15 -4103 ((-843) (-843))) (-15 -4103 ((-843))) (-15 -1619 ((-517) (-517))) (-15 -1619 ((-517))) (-15 -3996 ((-517) (-517))) (-15 -3996 ((-517))) (-15 -2182 ((-349) $)) (-15 -2182 ($ (-634))) (-15 -3272 ((-517) $)) (-15 -2059 ((-517) $)) (-15 -1929 ($ (-517) (-517) (-843)))))) (T -632))
+((-4103 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3373 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-3373 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-1619 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3996 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-1929 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))))
+(-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -3373 ((-843) (-843))) (-15 -3373 ((-843))) (-15 -4103 ((-843) (-843))) (-15 -4103 ((-843))) (-15 -1619 ((-517) (-517))) (-15 -1619 ((-517))) (-15 -3996 ((-517) (-517))) (-15 -3996 ((-517))) (-15 -2182 ((-349) $)) (-15 -2182 ($ (-634))) (-15 -3272 ((-517) $)) (-15 -2059 ((-517) $)) (-15 -1929 ($ (-517) (-517) (-843)))))
+((-3618 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 66)) (-1558 (((-623 |#1|) (-623 |#1|) |#1|) 49)) (-2707 (((-623 |#1|) (-623 |#1|) |#1|) 67)) (-2546 (((-623 |#1|) (-623 |#1|)) 50)) (-2673 (((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|) 65)))
+(((-633 |#1|) (-10 -7 (-15 -2546 ((-623 |#1|) (-623 |#1|))) (-15 -1558 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2707 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3618 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -2673 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|))) (-278)) (T -633))
+((-2673 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-3618 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-1558 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(-10 -7 (-15 -2546 ((-623 |#1|) (-623 |#1|))) (-15 -1558 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2707 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3618 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -2673 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3641 (($ $ $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2044 (($ $ $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL)) (-1362 (($ $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) 27)) (-3076 (((-517) $) 25)) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-1422 (((-3 (-377 (-517)) "failed") $) NIL)) (-2712 (((-107) $) NIL)) (-4078 (((-377 (-517)) $) NIL)) (-3098 (($ $) NIL) (($) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2566 (($ $ $ $) NIL)) (-3837 (($ $ $) NIL)) (-2099 (((-107) $) NIL)) (-1808 (($ $ $) NIL)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-2955 (((-107) $) NIL)) (-2393 (((-107) $) NIL)) (-3744 (((-3 $ "failed") $) NIL)) (-1624 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3601 (($ $ $ $) NIL)) (-1575 (($ $ $) NIL)) (-2584 (((-843) (-843)) 10) (((-843)) 9)) (-2986 (($ $ $) NIL)) (-1520 (($ $) NIL)) (-2542 (($ $) NIL)) (-1368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3638 (($ $ $) NIL)) (-2663 (($) NIL T CONST)) (-3143 (($ $) NIL)) (-3094 (((-1021) $) NIL) (($ $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1938 (($ $) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3994 (((-107) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL) (($ $ (-703)) NIL)) (-1347 (($ $) NIL)) (-2322 (($ $) NIL)) (-3582 (((-199) $) NIL) (((-349) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-1865 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-1679 (($ $ $) NIL)) (-4103 (($) NIL)) (-3767 (((-107) $ $) NIL)) (-4061 (($ $ $ $) NIL)) (-1221 (($ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $) NIL) (($ $ (-703)) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-634) (-13 (-357) (-502) (-10 -8 (-15 -2584 ((-843) (-843))) (-15 -2584 ((-843))) (-15 -2182 ((-286 $) (-286 (-517))))))) (T -634))
+((-2584 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-2584 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))))
+(-13 (-357) (-502) (-10 -8 (-15 -2584 ((-843) (-843))) (-15 -2584 ((-843))) (-15 -2182 ((-286 $) (-286 (-517))))))
+((-4140 (((-1 |#4| |#2| |#3|) |#1| (-1074) (-1074)) 19)) (-2561 (((-1 |#4| |#2| |#3|) (-1074)) 12)))
+(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2561 ((-1 |#4| |#2| |#3|) (-1074))) (-15 -4140 ((-1 |#4| |#2| |#3|) |#1| (-1074) (-1074)))) (-558 (-493)) (-1109) (-1109) (-1109)) (T -635))
+((-4140 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))))
+(-10 -7 (-15 -2561 ((-1 |#4| |#2| |#3|) (-1074))) (-15 -4140 ((-1 |#4| |#2| |#3|) |#1| (-1074) (-1074))))
+((-2571 (((-107) $ $) NIL)) (-2221 (((-1159) $ (-703)) 14)) (-2446 (((-703) $) 12)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 25)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 24)))
+(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2182 ($ |#1|)))) (-1003)) (T -636))
+((-2182 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))))
+(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2182 ($ |#1|))))
+((-2627 (((-1 (-199) (-199) (-199)) |#1| (-1074) (-1074)) 33) (((-1 (-199) (-199)) |#1| (-1074)) 38)))
+(((-637 |#1|) (-10 -7 (-15 -2627 ((-1 (-199) (-199)) |#1| (-1074))) (-15 -2627 ((-1 (-199) (-199) (-199)) |#1| (-1074) (-1074)))) (-558 (-493))) (T -637))
+((-2627 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-2627 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -2627 ((-1 (-199) (-199)) |#1| (-1074))) (-15 -2627 ((-1 (-199) (-199) (-199)) |#1| (-1074) (-1074))))
+((-1243 (((-1074) |#1| (-1074) (-583 (-1074))) 9) (((-1074) |#1| (-1074) (-1074) (-1074)) 12) (((-1074) |#1| (-1074) (-1074)) 11) (((-1074) |#1| (-1074)) 10)))
+(((-638 |#1|) (-10 -7 (-15 -1243 ((-1074) |#1| (-1074))) (-15 -1243 ((-1074) |#1| (-1074) (-1074))) (-15 -1243 ((-1074) |#1| (-1074) (-1074) (-1074))) (-15 -1243 ((-1074) |#1| (-1074) (-583 (-1074))))) (-558 (-493))) (T -638))
+((-1243 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1243 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1243 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1243 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -1243 ((-1074) |#1| (-1074))) (-15 -1243 ((-1074) |#1| (-1074) (-1074))) (-15 -1243 ((-1074) |#1| (-1074) (-1074) (-1074))) (-15 -1243 ((-1074) |#1| (-1074) (-583 (-1074)))))
+((-3525 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -3525 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1109) (-1109)) (T -639))
+((-3525 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))))
+(-10 -7 (-15 -3525 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-1366 (((-1 |#3| |#2|) (-1074)) 11)) (-4140 (((-1 |#3| |#2|) |#1| (-1074)) 21)))
+(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -1366 ((-1 |#3| |#2|) (-1074))) (-15 -4140 ((-1 |#3| |#2|) |#1| (-1074)))) (-558 (-493)) (-1109) (-1109)) (T -640))
+((-4140 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)))))
+(-10 -7 (-15 -1366 ((-1 |#3| |#2|) (-1074))) (-15 -4140 ((-1 |#3| |#2|) |#1| (-1074))))
+((-4145 (((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1154 (-583 (-1070 |#3|))) |#3|) 58)) (-3121 (((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 71)) (-3389 (((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1070 |#4|)) (-1154 (-583 (-1070 |#3|))) |#3|) 32)))
+(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3389 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1070 |#4|)) (-1154 (-583 (-1070 |#3|))) |#3|)) (-15 -3121 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -4145 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1154 (-583 (-1070 |#3|))) |#3|))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -641))
+((-4145 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1070 *13))) (-5 *3 (-1070 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1154 (-583 (-1070 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-3121 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1070 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1070 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1070 *12)))) (-3389 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1070 *11))) (-5 *3 (-1070 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1154 (-583 (-1070 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3389 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1070 |#4|)) (-1154 (-583 (-1070 |#3|))) |#3|)) (-15 -3121 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -4145 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1154 (-583 (-1070 |#3|))) |#3|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1217 (($ $) 41)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-1343 (($ |#1| (-703)) 39)) (-2672 (((-703) $) 43)) (-1192 ((|#1| $) 42)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4007 (((-703) $) 44)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-3086 ((|#1| $ (-703)) 40)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-642 |#1|) (-1185) (-961)) (T -642))
+((-4007 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1192 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (-15 -4007 ((-703) $)) (-15 -2672 ((-703) $)) (-15 -1192 (|t#1| $)) (-15 -1217 ($ $)) (-15 -3086 (|t#1| $ (-703))) (-15 -1343 ($ |t#1| (-703)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1893 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1130 |#1|) (-1130 (-377 |#2|)) (-509) (-1130 |#4|) (-1130 (-377 |#5|))) (T -643))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1130 *5)) (-4 *2 (-1130 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1130 (-377 *6))) (-4 *8 (-1130 *7)))))
-(-10 -7 (-15 -1893 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3225 (($ |#1| |#2|) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 ((|#2| $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3841 (((-3 $ "failed") $ $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644))
-((-1734 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-333) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 30)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) NIL (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1611 (((-703)) 46 (|has| |#1| (-338)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-4044 ((|#2| |#2|) 43)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 33)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3225 (($ |#2|) 41)) (-3621 (((-3 $ "failed") $) 84)) (-3209 (($) 50 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) NIL (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-3631 (((-879 $)) 78)) (-1436 (($ $ |#1| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 76) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1734 ((|#2|) 44)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3216 ((|#2| $) 40)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) 28)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1664 (($ $) 77 (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 85 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) 31) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2478 (((-879 $)) 35)) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) 60) (($ (-517)) NIL) (($ |#1|) 57) (($ (-989)) NIL) (($ |#2|) 67) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) 62) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 20 T CONST)) (-3040 (((-1153 |#1|) $) 74)) (-3450 (($ (-1153 |#1|)) 49)) (-2409 (($) 8 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2191 (((-1153 |#1|) $) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 68)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 71) (($ $ $) NIL)) (-1642 (($ $ $) 32)) (** (($ $ (-843)) NIL) (($ $ (-703)) 79)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 56) (($ $ $) 73) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
-(((-645 |#1| |#2|) (-13 (-1130 |#1|) (-10 -8 (-15 -4044 (|#2| |#2|)) (-15 -1734 (|#2|)) (-15 -3225 ($ |#2|)) (-15 -3216 (|#2| $)) (-15 -2256 ($ |#2|)) (-15 -3040 ((-1153 |#1|) $)) (-15 -3450 ($ (-1153 |#1|))) (-15 -2191 ((-1153 |#1|) $)) (-15 -3631 ((-879 $))) (-15 -2478 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -1664 ($ $)) |noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |noBranch|))) (-961) (-1130 |#1|)) (T -645))
-((-4044 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-1734 (*1 *2) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-3225 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-3040 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-2191 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-3631 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-2478 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-1664 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1130 *2)))))
-(-13 (-1130 |#1|) (-10 -8 (-15 -4044 (|#2| |#2|)) (-15 -1734 (|#2|)) (-15 -3225 ($ |#2|)) (-15 -3216 (|#2| $)) (-15 -2256 ($ |#2|)) (-15 -3040 ((-1153 |#1|) $)) (-15 -3450 ($ (-1153 |#1|))) (-15 -2191 ((-1153 |#1|) $)) (-15 -3631 ((-879 $))) (-15 -2478 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -1664 ($ $)) |noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3448 ((|#1| $) 13)) (-3206 (((-1021) $) NIL)) (-2077 ((|#2| $) 12)) (-2276 (($ |#1| |#2|) 16)) (-2256 (((-787) $) NIL) (($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|))) 15) (((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $) 14)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 11)))
-(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -2077 (|#2| $)) (-15 -3448 (|#1| $)) (-15 -2256 ($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (-15 -2256 ((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $)) (-15 -2276 ($ |#1| |#2|)))) (-779) (-1003) (-1 (-107) (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (T -646))
-((-2077 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *2)) (-2 (|:| -3448 *3) (|:| -2077 *2)))))) (-3448 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) (-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))))
-(-13 (-779) (-10 -8 (-15 -2077 (|#2| $)) (-15 -3448 (|#1| $)) (-15 -2256 ($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (-15 -2256 ((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $)) (-15 -2276 ($ |#1| |#2|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 59)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3189 ((|#1| $) NIL) (((-109) $) 39)) (-3621 (((-3 $ "failed") $) 90)) (-3447 ((|#2| (-109) |#2|) 82)) (-3848 (((-107) $) NIL)) (-1261 (($ |#1| (-331 (-109))) 13)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1392 (($ $ (-1 |#2| |#2|)) 58)) (-3269 (($ $ (-1 |#2| |#2|)) 44)) (-1449 ((|#2| $ |#2|) 32)) (-3445 ((|#1| |#1|) 105 (|has| |#1| (-156)))) (-2256 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 36)) (-2061 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 20 T CONST)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 48) (($ $ $) NIL)) (-1642 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156)))))
-(((-647 |#1| |#2|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#2| |#2|))) (-15 -1392 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#2| (-109) |#2|)) (-15 -1261 ($ |#1| (-331 (-109)))))) (-961) (-585 |#1|)) (T -647))
-((-2061 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-2061 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3445 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-3447 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-1261 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))))
-(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#2| |#2|))) (-15 -1392 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#2| (-109) |#2|)) (-15 -1261 ($ |#1| (-331 (-109))))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ |#1| |#2|) 25)) (-3621 (((-3 $ "failed") $) 47)) (-3848 (((-107) $) 35)) (-1734 ((|#2| $) 12)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 48)) (-3206 (((-1021) $) NIL)) (-3841 (((-3 $ "failed") $ $) 46)) (-2256 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-2961 (((-703)) 28)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 16 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) 43) (($ $ $) 37)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20)))
-(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
-((-3621 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1734 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4118 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-961) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $))))
+((-1857 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1857 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1131 |#1|) (-1131 (-377 |#2|)) (-509) (-1131 |#4|) (-1131 (-377 |#5|))) (T -643))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1131 *5)) (-4 *2 (-1131 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1131 (-377 *6))) (-4 *8 (-1131 *7)))))
+(-10 -7 (-15 -1857 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-2521 (($ |#1| |#2|) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2955 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3962 ((|#2| $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-1865 (((-703)) NIL)) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -3962 (|#2| $)) (-15 -2182 (|#1| $)) (-15 -2521 ($ |#1| |#2|)) (-15 -2853 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644))
+((-3962 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2182 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2521 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2853 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-333) (-10 -8 (-15 -3962 (|#2| $)) (-15 -2182 (|#1| $)) (-15 -2521 ($ |#1| |#2|)) (-15 -2853 ((-3 $ "failed") $ $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 30)) (-1770 (((-1154 |#1|) $ (-703)) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-3908 (($ (-1070 |#1|)) NIL)) (-2255 (((-1070 $) $ (-989)) NIL) (((-1070 |#1|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) NIL (|has| |#1| (-509)))) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1598 (((-703)) 46 (|has| |#1| (-338)))) (-1212 (($ $ (-703)) NIL)) (-2250 (($ $ (-703)) NIL)) (-3146 ((|#2| |#2|) 43)) (-3677 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3076 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-1309 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) 33)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2521 (($ |#2|) 41)) (-1568 (((-3 $ "failed") $) 84)) (-3098 (($) 50 (|has| |#1| (-338)))) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-3051 (($ $ $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-509)))) (-1257 (((-2 (|:| -1883 |#1|) (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3039 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-1671 (((-879 $)) 78)) (-2253 (($ $ |#1| (-703) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-1921 (((-703) $ $) NIL (|has| |#1| (-509)))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-1050)))) (-1352 (($ (-1070 |#1|) (-989)) NIL) (($ (-1070 $) (-989)) NIL)) (-3371 (($ $ (-703)) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) 76) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-989)) NIL) (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3962 ((|#2|) 44)) (-2672 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-703) (-703)) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2891 (((-1070 |#1|) $) NIL)) (-1954 (((-3 (-989) "failed") $) NIL)) (-2903 (((-843) $) NIL (|has| |#1| (-338)))) (-2511 ((|#2| $) 40)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) 28)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3865 (((-1057) $) NIL)) (-3267 (((-2 (|:| -3319 $) (|:| -3169 $)) $ (-703)) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-989)) (|:| -2059 (-703))) "failed") $) NIL)) (-2863 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2663 (($) NIL (|has| |#1| (-1050)) CONST)) (-3353 (($ (-843)) NIL (|has| |#1| (-338)))) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2932 (($ $) 77 (|has| |#1| (-319)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-2759 (((-3 $ "failed") $ (-703)) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 85 (|has| |#1| (-333)))) (-4042 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-1699 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4007 (((-703) $) 31) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-1648 (((-879 $)) 35)) (-3684 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2182 (((-787) $) 60) (($ (-517)) NIL) (($ |#1|) 57) (($ (-989)) NIL) (($ |#2|) 67) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-703)) 62) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 20 T CONST)) (-3022 (((-1154 |#1|) $) 74)) (-3578 (($ (-1154 |#1|)) 49)) (-2306 (($) 8 T CONST)) (-2553 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3752 (((-1154 |#1|) $) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) 68)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) 71) (($ $ $) NIL)) (-1626 (($ $ $) 32)) (** (($ $ (-843)) NIL) (($ $ (-703)) 79)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 56) (($ $ $) 73) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
+(((-645 |#1| |#2|) (-13 (-1131 |#1|) (-10 -8 (-15 -3146 (|#2| |#2|)) (-15 -3962 (|#2|)) (-15 -2521 ($ |#2|)) (-15 -2511 (|#2| $)) (-15 -2182 ($ |#2|)) (-15 -3022 ((-1154 |#1|) $)) (-15 -3578 ($ (-1154 |#1|))) (-15 -3752 ((-1154 |#1|) $)) (-15 -1671 ((-879 $))) (-15 -1648 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -2932 ($ $)) |noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |noBranch|))) (-961) (-1131 |#1|)) (T -645))
+((-3146 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) (-3962 (*1 *2) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-2521 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) (-2511 (*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-2182 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) (-3022 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1154 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-3752 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1154 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-1671 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-1648 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-2932 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1131 *2)))))
+(-13 (-1131 |#1|) (-10 -8 (-15 -3146 (|#2| |#2|)) (-15 -3962 (|#2|)) (-15 -2521 ($ |#2|)) (-15 -2511 (|#2| $)) (-15 -2182 ($ |#2|)) (-15 -3022 ((-1154 |#1|) $)) (-15 -3578 ($ (-1154 |#1|))) (-15 -3752 ((-1154 |#1|) $)) (-15 -1671 ((-879 $))) (-15 -1648 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -2932 ($ $)) |noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3353 ((|#1| $) 13)) (-3094 (((-1021) $) NIL)) (-2059 ((|#2| $) 12)) (-2197 (($ |#1| |#2|) 16)) (-2182 (((-787) $) NIL) (($ (-2 (|:| -3353 |#1|) (|:| -2059 |#2|))) 15) (((-2 (|:| -3353 |#1|) (|:| -2059 |#2|)) $) 14)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 11)))
+(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -2059 (|#2| $)) (-15 -3353 (|#1| $)) (-15 -2182 ($ (-2 (|:| -3353 |#1|) (|:| -2059 |#2|)))) (-15 -2182 ((-2 (|:| -3353 |#1|) (|:| -2059 |#2|)) $)) (-15 -2197 ($ |#1| |#2|)))) (-779) (-1003) (-1 (-107) (-2 (|:| -3353 |#1|) (|:| -2059 |#2|)) (-2 (|:| -3353 |#1|) (|:| -2059 |#2|)))) (T -646))
+((-2059 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3353 *3) (|:| -2059 *2)) (-2 (|:| -3353 *3) (|:| -2059 *2)))))) (-3353 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3353 *2) (|:| -2059 *3)) (-2 (|:| -3353 *2) (|:| -2059 *3)))))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3353 *3) (|:| -2059 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3353 *3) (|:| -2059 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) (-2197 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3353 *2) (|:| -2059 *3)) (-2 (|:| -3353 *2) (|:| -2059 *3)))))))
+(-13 (-779) (-10 -8 (-15 -2059 (|#2| $)) (-15 -3353 (|#1| $)) (-15 -2182 ($ (-2 (|:| -3353 |#1|) (|:| -2059 |#2|)))) (-15 -2182 ((-2 (|:| -3353 |#1|) (|:| -2059 |#2|)) $)) (-15 -2197 ($ |#1| |#2|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 59)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3076 ((|#1| $) NIL) (((-109) $) 39)) (-1568 (((-3 $ "failed") $) 90)) (-3554 ((|#2| (-109) |#2|) 82)) (-2955 (((-107) $) NIL)) (-1399 (($ |#1| (-331 (-109))) 13)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2889 (($ $ (-1 |#2| |#2|)) 58)) (-1455 (($ $ (-1 |#2| |#2|)) 44)) (-1986 ((|#2| $ |#2|) 32)) (-3528 ((|#1| |#1|) 105 (|has| |#1| (-156)))) (-2182 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) 36)) (-1957 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 20 T CONST)) (-2306 (($) 9 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) 48) (($ $ $) NIL)) (-1626 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156)))))
+(((-647 |#1| |#2|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1957 ($ $)) (-15 -1957 ($ $ $)) (-15 -3528 (|#1| |#1|))) |noBranch|) (-15 -1455 ($ $ (-1 |#2| |#2|))) (-15 -2889 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3554 (|#2| (-109) |#2|)) (-15 -1399 ($ |#1| (-331 (-109)))))) (-961) (-585 |#1|)) (T -647))
+((-1957 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-1957 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3528 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-1455 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-3554 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-1399 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))))
+(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1957 ($ $)) (-15 -1957 ($ $ $)) (-15 -3528 (|#1| |#1|))) |noBranch|) (-15 -1455 ($ $ (-1 |#2| |#2|))) (-15 -2889 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3554 (|#2| (-109) |#2|)) (-15 -1399 ($ |#1| (-331 (-109))))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 33)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-2521 (($ |#1| |#2|) 25)) (-1568 (((-3 $ "failed") $) 47)) (-2955 (((-107) $) 35)) (-3962 ((|#2| $) 12)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 48)) (-3094 (((-1021) $) NIL)) (-2853 (((-3 $ "failed") $ $) 46)) (-2182 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-1865 (((-703)) 28)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 16 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 38)) (-1637 (($ $) 43) (($ $ $) 37)) (-1626 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20)))
+(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -3962 (|#2| $)) (-15 -2182 (|#1| $)) (-15 -2521 ($ |#1| |#2|)) (-15 -2853 ((-3 $ "failed") $ $)) (-15 -1568 ((-3 $ "failed") $)) (-15 -4123 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
+((-1568 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3962 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2182 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2521 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2853 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4123 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-961) (-10 -8 (-15 -3962 (|#2| $)) (-15 -2182 (|#1| $)) (-15 -2521 ($ |#1| |#2|)) (-15 -2853 ((-3 $ "failed") $ $)) (-15 -1568 ((-3 $ "failed") $)) (-15 -4123 ($ $))))
((* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
(((-649 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-650 |#2|) (-156)) (T -649))
NIL
(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-650 |#1|) (-1184) (-156)) (T -650))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-650 |#1|) (-1185) (-156)) (T -650))
NIL
(-13 (-106 |t#1| |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-1363 (($ |#1|) 17) (($ $ |#1|) 20)) (-1278 (($ |#1|) 18) (($ $ |#1|) 21)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3848 (((-107) $) NIL)) (-2990 (($ |#1| |#1| |#1| |#1|) 8)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 16)) (-3206 (((-1021) $) NIL)) (-2051 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 39)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) 44)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14)))
-(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -2990 ($ |#1| |#1| |#1| |#1|)) (-15 -1363 ($ |#1|)) (-15 -1278 ($ |#1|)) (-15 -3621 ($)) (-15 -1363 ($ $ |#1|)) (-15 -1278 ($ $ |#1|)) (-15 -3621 ($ $)) (-15 -2051 (|#1| $ |#1|)) (-15 -2051 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651))
-((-2990 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1363 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1278 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3621 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3621 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2051 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2051 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))))
-(-13 (-442) (-10 -8 (-15 -2990 ($ |#1| |#1| |#1| |#1|)) (-15 -1363 ($ |#1|)) (-15 -1278 ($ |#1|)) (-15 -3621 ($)) (-15 -1363 ($ $ |#1|)) (-15 -1278 ($ $ |#1|)) (-15 -3621 ($ $)) (-15 -2051 (|#1| $ |#1|)) (-15 -2051 ((-765 |#1|) $ (-765 |#1|)))))
-((-3380 (($ $ (-843)) 12)) (-2572 (($ $ (-843)) 13)) (** (($ $ (-843)) 10)))
-(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843)))) (-653)) (T -652))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843))))
-((-2750 (((-107) $ $) 7)) (-3380 (($ $ (-843)) 15)) (-2572 (($ $ (-843)) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 13)) (* (($ $ $) 16)))
-(((-653) (-1184)) (T -653))
-((* (*1 *1 *1 *1) (-4 *1 (-653))) (-3380 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (-2572 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))))
-(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 -3380 ($ $ (-843))) (-15 -2572 ($ $ (-843))) (-15 ** ($ $ (-843)))))
+((-2571 (((-107) $ $) NIL)) (-1362 (($ |#1|) 17) (($ $ |#1|) 20)) (-3721 (($ |#1|) 18) (($ $ |#1|) 21)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2955 (((-107) $) NIL)) (-3905 (($ |#1| |#1| |#1| |#1|) 8)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 16)) (-3094 (((-1021) $) NIL)) (-1979 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-2013 (($ $ $) NIL)) (-3064 (($ $ $) NIL)) (-2182 (((-787) $) 39)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2306 (($) 9 T CONST)) (-1539 (((-107) $ $) 44)) (-1649 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14)))
+(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -3905 ($ |#1| |#1| |#1| |#1|)) (-15 -1362 ($ |#1|)) (-15 -3721 ($ |#1|)) (-15 -1568 ($)) (-15 -1362 ($ $ |#1|)) (-15 -3721 ($ $ |#1|)) (-15 -1568 ($ $)) (-15 -1979 (|#1| $ |#1|)) (-15 -1979 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651))
+((-3905 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1362 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3721 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1568 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1362 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3721 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1568 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1979 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1979 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))))
+(-13 (-442) (-10 -8 (-15 -3905 ($ |#1| |#1| |#1| |#1|)) (-15 -1362 ($ |#1|)) (-15 -3721 ($ |#1|)) (-15 -1568 ($)) (-15 -1362 ($ $ |#1|)) (-15 -3721 ($ $ |#1|)) (-15 -1568 ($ $)) (-15 -1979 (|#1| $ |#1|)) (-15 -1979 ((-765 |#1|) $ (-765 |#1|)))))
+((-1246 (($ $ (-843)) 12)) (-1313 (($ $ (-843)) 13)) (** (($ $ (-843)) 10)))
+(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -1313 (|#1| |#1| (-843))) (-15 -1246 (|#1| |#1| (-843)))) (-653)) (T -652))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -1313 (|#1| |#1| (-843))) (-15 -1246 (|#1| |#1| (-843))))
+((-2571 (((-107) $ $) 7)) (-1246 (($ $ (-843)) 15)) (-1313 (($ $ (-843)) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)) (** (($ $ (-843)) 13)) (* (($ $ $) 16)))
+(((-653) (-1185)) (T -653))
+((* (*1 *1 *1 *1) (-4 *1 (-653))) (-1246 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (-1313 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))))
+(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 -1246 ($ $ (-843))) (-15 -1313 ($ $ (-843))) (-15 ** ($ $ (-843)))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3380 (($ $ (-843)) NIL) (($ $ (-703)) 17)) (-3848 (((-107) $) 10)) (-2572 (($ $ (-843)) NIL) (($ $ (-703)) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15)))
-(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2572 (|#1| |#1| (-703))) (-15 -3380 (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843)))) (-655)) (T -654))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2572 (|#1| |#1| (-703))) (-15 -3380 (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843))))
-((-2750 (((-107) $ $) 7)) (-2158 (((-3 $ "failed") $) 17)) (-3380 (($ $ (-843)) 15) (($ $ (-703)) 22)) (-3621 (((-3 $ "failed") $) 19)) (-3848 (((-107) $) 23)) (-1680 (((-3 $ "failed") $) 18)) (-2572 (($ $ (-843)) 14) (($ $ (-703)) 21)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16)))
-(((-655) (-1184)) (T -655))
-((-2409 (*1 *1) (-4 *1 (-655))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-3380 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-2572 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-3621 (*1 *1 *1) (|partial| -4 *1 (-655))) (-1680 (*1 *1 *1) (|partial| -4 *1 (-655))) (-2158 (*1 *1 *1) (|partial| -4 *1 (-655))))
-(-13 (-653) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3848 ((-107) $)) (-15 -3380 ($ $ (-703))) (-15 -2572 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -3621 ((-3 $ "failed") $)) (-15 -1680 ((-3 $ "failed") $)) (-15 -2158 ((-3 $ "failed") $))))
+((-1246 (($ $ (-843)) NIL) (($ $ (-703)) 17)) (-2955 (((-107) $) 10)) (-1313 (($ $ (-843)) NIL) (($ $ (-703)) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15)))
+(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -1313 (|#1| |#1| (-703))) (-15 -1246 (|#1| |#1| (-703))) (-15 -2955 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -1313 (|#1| |#1| (-843))) (-15 -1246 (|#1| |#1| (-843)))) (-655)) (T -654))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -1313 (|#1| |#1| (-703))) (-15 -1246 (|#1| |#1| (-703))) (-15 -2955 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -1313 (|#1| |#1| (-843))) (-15 -1246 (|#1| |#1| (-843))))
+((-2571 (((-107) $ $) 7)) (-1675 (((-3 $ "failed") $) 17)) (-1246 (($ $ (-843)) 15) (($ $ (-703)) 22)) (-1568 (((-3 $ "failed") $) 19)) (-2955 (((-107) $) 23)) (-3526 (((-3 $ "failed") $) 18)) (-1313 (($ $ (-843)) 14) (($ $ (-703)) 21)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2306 (($) 24 T CONST)) (-1539 (((-107) $ $) 6)) (** (($ $ (-843)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16)))
+(((-655) (-1185)) (T -655))
+((-2306 (*1 *1) (-4 *1 (-655))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-1246 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-1313 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-1568 (*1 *1 *1) (|partial| -4 *1 (-655))) (-3526 (*1 *1 *1) (|partial| -4 *1 (-655))) (-1675 (*1 *1 *1) (|partial| -4 *1 (-655))))
+(-13 (-653) (-10 -8 (-15 (-2306) ($) -1605) (-15 -2955 ((-107) $)) (-15 -1246 ($ $ (-703))) (-15 -1313 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -1568 ((-3 $ "failed") $)) (-15 -3526 ((-3 $ "failed") $)) (-15 -1675 ((-3 $ "failed") $))))
(((-97) . T) ((-557 (-787)) . T) ((-653) . T) ((-1003) . T))
-((-1611 (((-703)) 35)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-3225 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-3621 (((-3 $ "failed") $) 65)) (-3209 (($) 39)) (-1506 ((|#2| $) 20)) (-3220 (($) 17)) (-3127 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2970 (((-623 |#2|) (-1153 $) (-1 |#2| |#2|)) 60)) (-3645 (((-1153 |#2|) $) NIL) (($ (-1153 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3669 ((|#3| $) 32)) (-1753 (((-1153 $)) 29)))
-(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3209 (|#1|)) (-15 -1611 ((-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2970 ((-623 |#2|) (-1153 |#1|) (-1 |#2| |#2|))) (-15 -3225 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3645 (|#1| |#3|)) (-15 -3225 (|#1| |#3|)) (-15 -3220 (|#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 (|#3| |#1|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1753 ((-1153 |#1|))) (-15 -3669 (|#3| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1130 |#2|)) (T -656))
-((-1611 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))))
-(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3209 (|#1|)) (-15 -1611 ((-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2970 ((-623 |#2|) (-1153 |#1|) (-1 |#2| |#2|))) (-15 -3225 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3645 (|#1| |#3|)) (-15 -3225 (|#1| |#3|)) (-15 -3220 (|#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 (|#3| |#1|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1753 ((-1153 |#1|))) (-15 -3669 (|#3| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-1213 (($ $) 94 (|has| |#1| (-333)))) (-2454 (((-107) $) 96 (|has| |#1| (-333)))) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 113 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 114 (|has| |#1| (-333)))) (-1707 (((-107) $ $) 104 (|has| |#1| (-333)))) (-1611 (((-703)) 87 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3189 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2518 (($ $ $) 108 (|has| |#1| (-333)))) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-3225 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| |#1| (-338)))) (-2497 (($ $ $) 107 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-3442 (($) 149 (|has| |#1| (-319)))) (-3391 (((-107) $) 150 (|has| |#1| (-319)))) (-2378 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-3849 (((-107) $) 115 (|has| |#1| (-333)))) (-3972 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-1319 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-1549 (((-843) $) 89 (|has| |#1| (-338)))) (-3216 ((|#2| $) 156)) (-1365 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 116 (|has| |#1| (-333)))) (-2836 (($) 143 (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| |#1| (-338)))) (-3206 (((-1021) $) 10)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| |#1| (-319)))) (-3755 (((-388 $) $) 112 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-3146 (((-703) $) 105 (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| |#1| (-333)))) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-1620 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-3127 (($ $) 137 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) 133 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073))) 132 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1073) (-703)) 131 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-703))) 130 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2135 ((|#2|) 159)) (-1766 (($) 148 (|has| |#1| (-319)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-3329 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 136 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) 129 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073))) 128 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1073) (-703)) 127 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-703))) 126 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 121 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
-(((-657 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -657))
-((-3220 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1130 *2)))) (-2135 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3225 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) (-3645 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3225 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *5)))))
-(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -3220 ($)) (-15 -2135 (|t#2|)) (-15 -3225 ($ |t#2|)) (-15 -3645 ($ |t#2|)) (-15 -3216 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -3225 ((-3 $ "failed") (-377 |t#2|))) (-15 -2970 ((-623 |t#1|) (-1153 $) (-1 |t#1| |t#1|)))) |noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3807 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3807 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073)))) ((-842) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-319)) ((-1112) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))))
-((-3092 (($) 14)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 13)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) 20)))
-(((-658 |#1|) (-10 -8 (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-659)) (T -658))
-NIL
-(-10 -8 (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
-((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 19)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17)) (-2409 (($) 21 T CONST)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15)))
-(((-659) (-1184)) (T -659))
-((-2409 (*1 *1) (-4 *1 (-659))) (-3092 (*1 *1) (-4 *1 (-659))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-3621 (*1 *1 *1) (|partial| -4 *1 (-659))))
-(-13 (-1015) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3092 ($) -1619) (-15 -3848 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2207 ($ $ (-703))) (-15 -3621 ((-3 $ "failed") $))))
+((-1598 (((-703)) 35)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3076 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-2521 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-1568 (((-3 $ "failed") $) 65)) (-3098 (($) 39)) (-2289 ((|#2| $) 20)) (-3107 (($) 17)) (-1699 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3680 (((-623 |#2|) (-1154 $) (-1 |#2| |#2|)) 60)) (-3582 (((-1154 |#2|) $) NIL) (($ (-1154 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3804 ((|#3| $) 32)) (-3809 (((-1154 $)) 29)))
+(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -3098 (|#1|)) (-15 -1598 ((-703))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3680 ((-623 |#2|) (-1154 |#1|) (-1 |#2| |#2|))) (-15 -2521 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3582 (|#1| |#3|)) (-15 -2521 (|#1| |#3|)) (-15 -3107 (|#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -3582 (|#3| |#1|)) (-15 -3582 (|#1| (-1154 |#2|))) (-15 -3582 ((-1154 |#2|) |#1|)) (-15 -3809 ((-1154 |#1|))) (-15 -3804 (|#3| |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -1568 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1131 |#2|)) (T -656))
+((-1598 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))))
+(-10 -8 (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -3098 (|#1|)) (-15 -1598 ((-703))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3680 ((-623 |#2|) (-1154 |#1|) (-1 |#2| |#2|))) (-15 -2521 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3582 (|#1| |#3|)) (-15 -2521 (|#1| |#3|)) (-15 -3107 (|#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -3582 (|#3| |#1|)) (-15 -3582 (|#1| (-1154 |#2|))) (-15 -3582 ((-1154 |#2|) |#1|)) (-15 -3809 ((-1154 |#1|))) (-15 -3804 (|#3| |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -1568 ((-3 |#1| "failed") |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-3209 (($ $) 94 (|has| |#1| (-333)))) (-1452 (((-107) $) 96 (|has| |#1| (-333)))) (-3129 (((-623 |#1|) (-1154 $)) 46) (((-623 |#1|)) 61)) (-1470 ((|#1| $) 52)) (-4160 (((-1083 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 113 (|has| |#1| (-333)))) (-3490 (((-388 $) $) 114 (|has| |#1| (-333)))) (-3765 (((-107) $ $) 104 (|has| |#1| (-333)))) (-1598 (((-703)) 87 (|has| |#1| (-338)))) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3076 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-3291 (($ (-1154 |#1|) (-1154 $)) 48) (($ (-1154 |#1|)) 64)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2383 (($ $ $) 108 (|has| |#1| (-333)))) (-2148 (((-623 |#1|) $ (-1154 $)) 53) (((-623 |#1|) $) 59)) (-4012 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-2521 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-1568 (((-3 $ "failed") $) 34)) (-3795 (((-843)) 54)) (-3098 (($) 90 (|has| |#1| (-338)))) (-2366 (($ $ $) 107 (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-3493 (($) 149 (|has| |#1| (-319)))) (-1337 (((-107) $) 150 (|has| |#1| (-319)))) (-2990 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-2965 (((-107) $) 115 (|has| |#1| (-333)))) (-1921 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-2955 (((-107) $) 31)) (-2289 ((|#1| $) 51)) (-3744 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-3523 ((|#2| $) 44 (|has| |#1| (-333)))) (-2903 (((-843) $) 89 (|has| |#1| (-338)))) (-2511 ((|#2| $) 156)) (-1368 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-3865 (((-1057) $) 9)) (-4123 (($ $) 116 (|has| |#1| (-333)))) (-2663 (($) 143 (|has| |#1| (-319)) CONST)) (-3353 (($ (-843)) 88 (|has| |#1| (-338)))) (-3094 (((-1021) $) 10)) (-3107 (($) 160)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 101 (|has| |#1| (-333)))) (-1396 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) 146 (|has| |#1| (-319)))) (-3693 (((-388 $) $) 112 (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 109 (|has| |#1| (-333)))) (-2349 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-2623 (((-703) $) 105 (|has| |#1| (-333)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 106 (|has| |#1| (-333)))) (-4042 ((|#1| (-1154 $)) 47) ((|#1|) 60)) (-3654 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-1699 (($ $) 137 (-3763 (-1651 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3763 (-1651 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1074)) 133 (-1651 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-583 (-1074))) 132 (-1651 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-1074) (-703)) 131 (-1651 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 (-703))) 130 (-1651 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-3680 (((-623 |#1|) (-1154 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-1457 ((|#2|) 159)) (-3788 (($) 148 (|has| |#1| (-319)))) (-2575 (((-1154 |#1|) $ (-1154 $)) 50) (((-623 |#1|) (-1154 $) (-1154 $)) 49) (((-1154 |#1|) $) 66) (((-623 |#1|) (-1154 $)) 65)) (-3582 (((-1154 |#1|) $) 63) (($ (-1154 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3763 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1589 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3804 ((|#2| $) 45)) (-1865 (((-703)) 29)) (-3809 (((-1154 $)) 67)) (-3767 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $) 136 (-3763 (-1651 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3763 (-1651 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1074)) 129 (-1651 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-583 (-1074))) 128 (-1651 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-1074) (-703)) 127 (-1651 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 (-703))) 126 (-1651 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 121 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
+(((-657 |#1| |#2|) (-1185) (-156) (-1131 |t#1|)) (T -657))
+((-3107 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1131 *2)))) (-1457 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) (-2521 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1131 *3)))) (-3582 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1131 *3)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) (-2521 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1131 *5)) (-5 *2 (-623 *5)))))
+(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -3107 ($)) (-15 -1457 (|t#2|)) (-15 -2521 ($ |t#2|)) (-15 -3582 ($ |t#2|)) (-15 -2511 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -2521 ((-3 $ "failed") (-377 |t#2|))) (-15 -3680 ((-623 |t#1|) (-1154 $) (-1 |t#1| |t#1|)))) |noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3763 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3763 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3763 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074)))) ((-842) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-319)) ((-1113) -3763 (|has| |#1| (-319)) (|has| |#1| (-333))))
+((-3473 (($) 14)) (-1568 (((-3 $ "failed") $) 16)) (-2955 (((-107) $) 13)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) 20)))
+(((-658 |#1|) (-10 -8 (-15 -1568 ((-3 |#1| "failed") |#1|)) (-15 -2146 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2955 ((-107) |#1|)) (-15 -3473 (|#1|)) (-15 -2146 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-659)) (T -658))
+NIL
+(-10 -8 (-15 -1568 ((-3 |#1| "failed") |#1|)) (-15 -2146 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2955 ((-107) |#1|)) (-15 -3473 (|#1|)) (-15 -2146 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
+((-2571 (((-107) $ $) 7)) (-3473 (($) 20 T CONST)) (-1568 (((-3 $ "failed") $) 16)) (-2955 (((-107) $) 19)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2146 (($ $ (-843)) 13) (($ $ (-703)) 17)) (-2306 (($) 21 T CONST)) (-1539 (((-107) $ $) 6)) (** (($ $ (-843)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15)))
+(((-659) (-1185)) (T -659))
+((-2306 (*1 *1) (-4 *1 (-659))) (-3473 (*1 *1) (-4 *1 (-659))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2146 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-1568 (*1 *1 *1) (|partial| -4 *1 (-659))))
+(-13 (-1015) (-10 -8 (-15 (-2306) ($) -1605) (-15 -3473 ($) -1605) (-15 -2955 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2146 ($ $ (-703))) (-15 -1568 ((-3 $ "failed") $))))
(((-97) . T) ((-557 (-787)) . T) ((-1015) . T) ((-1003) . T))
-((-3573 (((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1313 (((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1951 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-2132 (((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47)))
-(((-660 |#1| |#2|) (-10 -7 (-15 -1313 ((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3573 ((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1951 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2132 ((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -660))
-((-2132 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2527 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))))
-(-10 -7 (-15 -1313 ((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3573 ((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1951 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2132 ((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|))))
-((-2473 ((|#7| (-583 |#5|) |#6|) NIL)) (-1893 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1893 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2473 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-961) (-961) (-871 |#4| |#2| |#1|) (-871 |#5| |#3| |#1|)) (T -661))
-((-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))))
-(-10 -7 (-15 -1893 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2473 (|#7| (-583 |#5|) |#6|)))
-((-1893 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1893 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-961) (-871 |#5| |#3| |#1|) (-871 |#5| |#4| |#2|)) (T -662))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))))
-(-10 -7 (-15 -1893 (|#7| (-1 |#2| |#1|) |#6|)))
-((-3755 (((-388 |#4|) |#4|) 39)))
-(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-278) (-871 (-874 |#3|) |#1| |#2|)) (T -663))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))))
-(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517))))))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-664 |#1| |#2|) (-871 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1073)) (-961)) (T -664))
+((-2209 (((-2 (|:| -2400 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2861 (((-2 (|:| -2400 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3130 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-1435 (((-2 (|:| |poly| |#2|) (|:| -2400 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47)))
+(((-660 |#1| |#2|) (-10 -7 (-15 -2861 ((-2 (|:| -2400 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2209 ((-2 (|:| -2400 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3130 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -1435 ((-2 (|:| |poly| |#2|) (|:| -2400 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1131 |#1|)) (T -660))
+((-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2400 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-3130 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-2209 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2400 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2400 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))))
+(-10 -7 (-15 -2861 ((-2 (|:| -2400 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2209 ((-2 (|:| -2400 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3130 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -1435 ((-2 (|:| |poly| |#2|) (|:| -2400 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|))))
+((-2357 ((|#7| (-583 |#5|) |#6|) NIL)) (-1857 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1857 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2357 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-961) (-961) (-871 |#4| |#2| |#1|) (-871 |#5| |#3| |#1|)) (T -661))
+((-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))))
+(-10 -7 (-15 -1857 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2357 (|#7| (-583 |#5|) |#6|)))
+((-1857 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1857 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-961) (-871 |#5| |#3| |#1|) (-871 |#5| |#4| |#2|)) (T -662))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))))
+(-10 -7 (-15 -1857 (|#7| (-1 |#2| |#1|) |#6|)))
+((-3693 (((-388 |#4|) |#4|) 39)))
+(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074))))) (-278) (-871 (-874 |#3|) |#1| |#2|)) (T -663))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))))
+(-10 -7 (-15 -3693 ((-388 |#4|) |#4|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-789 |#1|)) $) NIL)) (-2255 (((-1070 $) $ (-789 |#1|)) NIL) (((-1070 |#2|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3209 (($ $) NIL (|has| |#2| (-509)))) (-1452 (((-107) $) NIL (|has| |#2| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3938 (($ $) NIL (|has| |#2| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3076 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-1309 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#2| (-831)))) (-2253 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-1352 (($ (-1070 |#2|) (-789 |#1|)) NIL) (($ (-1070 $) (-789 |#1|)) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-789 |#1|)) NIL)) (-2672 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-1575 (($ $ $) NIL (|has| |#2| (-779)))) (-2986 (($ $ $) NIL (|has| |#2| (-779)))) (-3751 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-1954 (((-3 (-789 |#1|) "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#2| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3865 (((-1057) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2059 (-703))) "failed") $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#2| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2349 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-4042 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1699 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-4007 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-1423 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3763 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517))))))) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1593 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-664 |#1| |#2|) (-871 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1074)) (-961)) (T -664))
NIL
(-871 |#2| (-489 (-789 |#1|)) (-789 |#1|))
-((-3581 (((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|) 13)) (-2906 ((|#4| |#4| |#2|) 30)) (-3474 ((|#4| (-377 (-874 |#3|)) |#2|) 63)) (-1675 ((|#4| (-1069 (-874 |#3|)) |#2|) 76)) (-1725 ((|#4| (-1069 |#4|) |#2|) 49)) (-2885 ((|#4| |#4| |#2|) 52)) (-3755 (((-388 |#4|) |#4|) 38)))
-(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3581 ((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|)) (-15 -2885 (|#4| |#4| |#2|)) (-15 -1725 (|#4| (-1069 |#4|) |#2|)) (-15 -2906 (|#4| |#4| |#2|)) (-15 -1675 (|#4| (-1069 (-874 |#3|)) |#2|)) (-15 -3474 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)))) (-509) (-871 (-377 (-874 |#3|)) |#1| |#2|)) (T -665))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) (-3474 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))) (-2906 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)))) (-2885 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1640 (-874 *6)) (|:| -1933 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))))
-(-10 -7 (-15 -3581 ((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|)) (-15 -2885 (|#4| |#4| |#2|)) (-15 -1725 (|#4| (-1069 |#4|) |#2|)) (-15 -2906 (|#4| |#4| |#2|)) (-15 -1675 (|#4| (-1069 (-874 |#3|)) |#2|)) (-15 -3474 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -3755 ((-388 |#4|) |#4|)))
-((-3755 (((-388 |#4|) |#4|) 51)))
-(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-871 (-377 |#3|) |#1| |#2|)) (T -666))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))))
-(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)))
-((-1893 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18)))
-(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-961) (-961) (-659)) (T -667))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))))
-(-10 -7 (-15 -1893 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 26)) (-2223 (((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $) 27)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-3189 ((|#2| $) NIL) ((|#1| $) NIL)) (-1212 (($ $) 75 (|has| |#2| (-779)))) (-3621 (((-3 $ "failed") $) 62)) (-3209 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 53)) (-4094 (((-583 $) $) 37)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| |#2|) 16)) (-1893 (($ (-1 |#1| |#1|) $) 52)) (-1549 (((-843) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-4152 ((|#2| $) 74 (|has| |#2| (-779)))) (-1191 ((|#1| $) 73 (|has| |#2| (-779)))) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 72) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|)))) 11)) (-1311 (((-583 |#1|) $) 39)) (-2720 ((|#1| $ |#2|) 83)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 31 T CONST)) (-1547 (((-107) $ $) 76)) (-1654 (($ $) 46) (($ $ $) NIL)) (-1642 (($ $ $) 24)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-668 |#1| |#2|) (-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1339 ($ |#1| |#2|)) (-15 -2720 (|#1| $ |#2|)) (-15 -2256 ($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))))) (-15 -2223 ((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -4031 ((-107) $)) (-15 -1311 ((-583 |#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -4152 (|#2| $)) (-15 -1191 (|#1| $)) (-15 -1212 ($ $))) |noBranch|))) (-961) (-659)) (T -668))
-((-1339 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-4152 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) (-1191 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))))
-(-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1339 ($ |#1| |#2|)) (-15 -2720 (|#1| $ |#2|)) (-15 -2256 ($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))))) (-15 -2223 ((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -4031 ((-107) $)) (-15 -1311 ((-583 |#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -4152 (|#2| $)) (-15 -1191 (|#1| $)) (-15 -1212 ($ $))) |noBranch|)))
-((-2750 (((-107) $ $) 18)) (-1413 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3245 (($ $ $) 72)) (-3009 (((-107) $ $) 73)) (-2953 (((-107) $ (-703)) 8)) (-1362 (($ (-583 |#1|)) 68) (($) 67)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3170 (($ $ |#1|) 71) (($ $ $) 70)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20)) (-3167 (($ (-583 |#1|)) 66) (($) 65)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 64)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-669 |#1|) (-1184) (-1003)) (T -669))
+((-2276 (((-2 (|:| -1754 (-874 |#3|)) (|:| -1253 (-874 |#3|))) |#4|) 13)) (-1383 ((|#4| |#4| |#2|) 30)) (-2504 ((|#4| (-377 (-874 |#3|)) |#2|) 63)) (-3492 ((|#4| (-1070 (-874 |#3|)) |#2|) 76)) (-2880 ((|#4| (-1070 |#4|) |#2|) 49)) (-2275 ((|#4| |#4| |#2|) 52)) (-3693 (((-388 |#4|) |#4|) 38)))
+(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2276 ((-2 (|:| -1754 (-874 |#3|)) (|:| -1253 (-874 |#3|))) |#4|)) (-15 -2275 (|#4| |#4| |#2|)) (-15 -2880 (|#4| (-1070 |#4|) |#2|)) (-15 -1383 (|#4| |#4| |#2|)) (-15 -3492 (|#4| (-1070 (-874 |#3|)) |#2|)) (-15 -2504 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -3693 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)))) (-509) (-871 (-377 (-874 |#3|)) |#1| |#2|)) (T -665))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) (-2504 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))))) (-1383 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-2880 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *6 (-509)))) (-2275 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-2276 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1754 (-874 *6)) (|:| -1253 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))))
+(-10 -7 (-15 -2276 ((-2 (|:| -1754 (-874 |#3|)) (|:| -1253 (-874 |#3|))) |#4|)) (-15 -2275 (|#4| |#4| |#2|)) (-15 -2880 (|#4| (-1070 |#4|) |#2|)) (-15 -1383 (|#4| |#4| |#2|)) (-15 -3492 (|#4| (-1070 (-874 |#3|)) |#2|)) (-15 -2504 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -3693 ((-388 |#4|) |#4|)))
+((-3693 (((-388 |#4|) |#4|) 51)))
+(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-871 (-377 |#3|) |#1| |#2|)) (T -666))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))))
+(-10 -7 (-15 -3693 ((-388 |#4|) |#4|)))
+((-1857 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18)))
+(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -1857 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-961) (-961) (-659)) (T -667))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))))
+(-10 -7 (-15 -1857 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 26)) (-4040 (((-583 (-2 (|:| -1883 |#1|) (|:| -3327 |#2|))) $) 27)) (-1387 (((-3 $ "failed") $ $) NIL)) (-1598 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-3076 ((|#2| $) NIL) ((|#1| $) NIL)) (-1217 (($ $) 75 (|has| |#2| (-779)))) (-1568 (((-3 $ "failed") $) 62)) (-3098 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) 53)) (-3704 (((-583 $) $) 37)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| |#2|) 16)) (-1857 (($ (-1 |#1| |#1|) $) 52)) (-2903 (((-843) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-4159 ((|#2| $) 74 (|has| |#2| (-779)))) (-1192 ((|#1| $) 73 (|has| |#2| (-779)))) (-3865 (((-1057) $) NIL)) (-3353 (($ (-843)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 72) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1883 |#1|) (|:| -3327 |#2|)))) 11)) (-2834 (((-583 |#1|) $) 39)) (-3086 ((|#1| $ |#2|) 83)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 12 T CONST)) (-2306 (($) 31 T CONST)) (-1539 (((-107) $ $) 76)) (-1637 (($ $) 46) (($ $ $) NIL)) (-1626 (($ $ $) 24)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-668 |#1| |#2|) (-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1343 ($ |#1| |#2|)) (-15 -3086 (|#1| $ |#2|)) (-15 -2182 ($ (-583 (-2 (|:| -1883 |#1|) (|:| -3327 |#2|))))) (-15 -4040 ((-583 (-2 (|:| -1883 |#1|) (|:| -3327 |#2|))) $)) (-15 -1857 ($ (-1 |#1| |#1|) $)) (-15 -1331 ((-107) $)) (-15 -2834 ((-583 |#1|) $)) (-15 -3704 ((-583 $) $)) (-15 -2091 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -4159 (|#2| $)) (-15 -1192 (|#1| $)) (-15 -1217 ($ $))) |noBranch|))) (-961) (-659)) (T -668))
+((-1343 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) (-3086 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1883 *3) (|:| -3327 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1883 *3) (|:| -3327 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-4159 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) (-1192 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-1217 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))))
+(-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1343 ($ |#1| |#2|)) (-15 -3086 (|#1| $ |#2|)) (-15 -2182 ($ (-583 (-2 (|:| -1883 |#1|) (|:| -3327 |#2|))))) (-15 -4040 ((-583 (-2 (|:| -1883 |#1|) (|:| -3327 |#2|))) $)) (-15 -1857 ($ (-1 |#1| |#1|) $)) (-15 -1331 ((-107) $)) (-15 -2834 ((-583 |#1|) $)) (-15 -3704 ((-583 $) $)) (-15 -2091 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -4159 (|#2| $)) (-15 -1192 (|#1| $)) (-15 -1217 ($ $))) |noBranch|)))
+((-2571 (((-107) $ $) 18)) (-1408 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2321 (($ $ $) 72)) (-4035 (((-107) $ $) 73)) (-1799 (((-107) $ (-703)) 8)) (-1361 (($ (-583 |#1|)) 68) (($) 67)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-2573 (($ $) 62)) (-1667 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-1971 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22)) (-2551 (($ $ $) 69)) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3094 (((-1021) $) 21)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3972 (((-583 (-2 (|:| -1266 |#1|) (|:| -3105 (-703)))) $) 61)) (-2852 (($ $ |#1|) 71) (($ $ $) 70)) (-3429 (($) 49) (($ (-583 |#1|)) 48)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 50)) (-2182 (((-787) $) 20)) (-3055 (($ (-583 |#1|)) 66) (($) 65)) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19)) (-1560 (((-107) $ $) 64)) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-669 |#1|) (-1185) (-1003)) (T -669))
NIL
(-13 (-628 |t#1|) (-1001 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T))
-((-2750 (((-107) $ $) NIL)) (-1413 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-3245 (($ $ $) 80)) (-3009 (((-107) $ $) 83)) (-2953 (((-107) $ (-703)) NIL)) (-1362 (($ (-583 |#1|)) 24) (($) 15)) (-2337 (($ (-1 (-107) |#1|) $) 71 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3483 (($ $) 72)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 61 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4180))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 32 (|has| $ (-6 -4180)))) (-2625 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) 38)) (-2787 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 76)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 78)) (-3309 ((|#1| $) 54)) (-1710 (($ |#1| $) 55) (($ |#1| $ (-703)) 73)) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4006 ((|#1| $) 53)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 49)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 47)) (-3170 (($ $ |#1|) NIL) (($ $ $) 79)) (-3089 (($) 14) (($ (-583 |#1|)) 23)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 66)) (-3645 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 20)) (-2256 (((-787) $) 44)) (-3167 (($ (-583 |#1|)) 25) (($) 16)) (-1222 (($ (-583 |#1|)) 22)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 81)) (-1572 (((-107) $ $) 82)) (-2296 (((-703) $) 59 (|has| $ (-6 -4180)))))
-(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2625 ($)) (-15 -2625 ($ |#1|)) (-15 -2625 ($ (-583 |#1|))) (-15 -2560 ((-583 |#1|) $)) (-15 -2052 ($ |#1| $ (-517))) (-15 -2052 ($ (-1 (-107) |#1|) $ (-517))) (-15 -3212 ($ |#1| $ (-517))) (-15 -3212 ($ (-1 (-107) |#1|) $ (-517))))) (-1003)) (T -670))
-((-2625 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2625 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))) (-2052 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2052 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) (-3212 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-3212 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))))
-(-13 (-669 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2625 ($)) (-15 -2625 ($ |#1|)) (-15 -2625 ($ (-583 |#1|))) (-15 -2560 ((-583 |#1|) $)) (-15 -2052 ($ |#1| $ (-517))) (-15 -2052 ($ (-1 (-107) |#1|) $ (-517))) (-15 -3212 ($ |#1| $ (-517))) (-15 -3212 ($ (-1 (-107) |#1|) $ (-517)))))
-((-2503 (((-1158) (-1056)) 8)))
-(((-671) (-10 -7 (-15 -2503 ((-1158) (-1056))))) (T -671))
-((-2503 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-671)))))
-(-10 -7 (-15 -2503 ((-1158) (-1056))))
-((-2546 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10)))
-(((-672 |#1|) (-10 -7 (-15 -2546 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672))
-((-2546 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
-(-10 -7 (-15 -2546 ((-583 |#1|) (-583 |#1|) (-583 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#2|) $) 136)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-1213 (($ $) 128 (|has| |#1| (-509)))) (-2454 (((-107) $) 126 (|has| |#1| (-509)))) (-1865 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1212 (($ $) 120)) (-3621 (((-3 $ "failed") $) 34)) (-3520 (((-874 |#1|) $ (-703)) 98) (((-874 |#1|) $ (-703) (-703)) 97)) (-3201 (((-107) $) 137)) (-2645 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) 118)) (-1339 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-1893 (($ (-1 |#1| |#1|) $) 117)) (-1867 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 115)) (-1191 ((|#1| $) 114)) (-3985 (((-1056) $) 9)) (-4151 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) 10)) (-1672 (($ $ (-703)) 103)) (-2476 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-2624 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-3127 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-3688 (((-489 |#2|) $) 116)) (-1898 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 138)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2720 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-1328 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3707 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 127 (|has| |#1| (-509)))) (-3683 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
-(((-673 |#1| |#2|) (-1184) (-961) (-779)) (T -673))
-((-2720 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-3972 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3972 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-4151 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))))
-(-13 (-822 |t#2|) (-890 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -2720 ($ $ |t#2| (-703))) (-15 -2720 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -1672 ($ $ (-703))) (-15 -1339 ($ $ |t#2| (-703))) (-15 -1339 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3972 ((-703) $ |t#2|)) (-15 -3972 ((-703) $ |t#2| (-703))) (-15 -3520 ((-874 |t#1|) $ (-703))) (-15 -3520 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |t#2|)) (-6 (-918)) (-6 (-1094))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-489 |#2|)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 |#2|) . T) ((-890 |#1| (-489 |#2|) |#2|) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))))
-((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|)) 28) (((-388 |#4|) |#4|) 24)))
-(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -674))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
-(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|))))
-((-2360 (((-388 |#4|) |#4| |#2|) 116)) (-3538 (((-388 |#4|) |#4|) NIL)) (-2759 (((-388 (-1069 |#4|)) (-1069 |#4|)) 107) (((-388 |#4|) |#4|) 38)) (-1323 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 65)) (-4009 (((-1069 |#3|) (-1069 |#3|) (-517)) 133)) (-3875 (((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703)) 58)) (-3216 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 62)) (-2542 (((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-3698 (((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517)) 54)) (-2556 (((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) 130)) (-1359 ((|#4| (-517) (-388 |#4|)) 55)) (-3823 (((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) NIL)))
-(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2759 ((-388 |#4|) |#4|)) (-15 -2759 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3538 ((-388 |#4|) |#4|)) (-15 -2556 ((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -2360 ((-388 |#4|) |#4| |#2|)) (-15 -3698 ((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517))) (-15 -1323 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2542 ((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1359 (|#4| (-517) (-388 |#4|))) (-15 -3823 ((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -3216 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3875 ((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703))) (-15 -4009 ((-1069 |#3|) (-1069 |#3|) (-517)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -675))
-((-4009 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3875 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-3216 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1069 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1069 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1069 *5)))) (-3823 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-2542 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1069 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 *8)) (|:| -2077 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-1323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 *9)) (|:| -2077 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)))) (-3698 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -1913 (-1069 *9)) (|:| |polval| (-1069 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)) (-5 *4 (-1069 *8)))) (-2360 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3538 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))))
-(-10 -7 (-15 -2759 ((-388 |#4|) |#4|)) (-15 -2759 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3538 ((-388 |#4|) |#4|)) (-15 -2556 ((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -2360 ((-388 |#4|) |#4| |#2|)) (-15 -3698 ((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517))) (-15 -1323 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2542 ((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1359 (|#4| (-517) (-388 |#4|))) (-15 -3823 ((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -3216 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3875 ((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703))) (-15 -4009 ((-1069 |#3|) (-1069 |#3|) (-517))))
-((-3730 (($ $ (-843)) 12)))
-(((-676 |#1| |#2|) (-10 -8 (-15 -3730 (|#1| |#1| (-843)))) (-677 |#2|) (-156)) (T -676))
-NIL
-(-10 -8 (-15 -3730 (|#1| |#1| (-843))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3380 (($ $ (-843)) 28)) (-3730 (($ $ (-843)) 33)) (-2572 (($ $ (-843)) 29)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-677 |#1|) (-1184) (-156)) (T -677))
-((-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
-(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -3730 ($ $ (-843)))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1109) . T))
+((-2571 (((-107) $ $) NIL)) (-1408 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-2321 (($ $ $) 80)) (-4035 (((-107) $ $) 83)) (-1799 (((-107) $ (-703)) NIL)) (-1361 (($ (-583 |#1|)) 24) (($) 15)) (-2582 (($ (-1 (-107) |#1|) $) 71 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-2573 (($ $) 72)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2111 (($ |#1| $) 61 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4183))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3037 (((-583 |#1|) $) 32 (|has| $ (-6 -4183)))) (-3546 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) 38)) (-2502 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 76)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-2551 (($ $ $) 78)) (-1835 ((|#1| $) 54)) (-3816 (($ |#1| $) 55) (($ |#1| $ (-703)) 73)) (-3094 (((-1021) $) NIL)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4049 ((|#1| $) 53)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 49)) (-1326 (($) 12)) (-3972 (((-583 (-2 (|:| -1266 |#1|) (|:| -3105 (-703)))) $) 47)) (-2852 (($ $ |#1|) NIL) (($ $ $) 79)) (-3429 (($) 14) (($ (-583 |#1|)) 23)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) 66)) (-3582 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 20)) (-2182 (((-787) $) 44)) (-3055 (($ (-583 |#1|)) 25) (($) 16)) (-2373 (($ (-583 |#1|)) 22)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 81)) (-1560 (((-107) $ $) 82)) (-2210 (((-703) $) 59 (|has| $ (-6 -4183)))))
+(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3546 ($)) (-15 -3546 ($ |#1|)) (-15 -3546 ($ (-583 |#1|))) (-15 -1196 ((-583 |#1|) $)) (-15 -1971 ($ |#1| $ (-517))) (-15 -1971 ($ (-1 (-107) |#1|) $ (-517))) (-15 -2111 ($ |#1| $ (-517))) (-15 -2111 ($ (-1 (-107) |#1|) $ (-517))))) (-1003)) (T -670))
+((-3546 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-3546 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-3546 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) (-1196 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))) (-1971 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-1971 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) (-2111 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2111 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))))
+(-13 (-669 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3546 ($)) (-15 -3546 ($ |#1|)) (-15 -3546 ($ (-583 |#1|))) (-15 -1196 ((-583 |#1|) $)) (-15 -1971 ($ |#1| $ (-517))) (-15 -1971 ($ (-1 (-107) |#1|) $ (-517))) (-15 -2111 ($ |#1| $ (-517))) (-15 -2111 ($ (-1 (-107) |#1|) $ (-517)))))
+((-2380 (((-1159) (-1057)) 8)))
+(((-671) (-10 -7 (-15 -2380 ((-1159) (-1057))))) (T -671))
+((-2380 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-671)))))
+(-10 -7 (-15 -2380 ((-1159) (-1057))))
+((-4029 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10)))
+(((-672 |#1|) (-10 -7 (-15 -4029 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672))
+((-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+(-10 -7 (-15 -4029 ((-583 |#1|) (-583 |#1|) (-583 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 |#2|) $) 136)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-3209 (($ $) 128 (|has| |#1| (-509)))) (-1452 (((-107) $) 126 (|has| |#1| (-509)))) (-1834 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-1812 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1851 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) 17 T CONST)) (-1217 (($ $) 120)) (-1568 (((-3 $ "failed") $) 34)) (-1989 (((-874 |#1|) $ (-703)) 98) (((-874 |#1|) $ (-703) (-703)) 97)) (-2029 (((-107) $) 137)) (-2475 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-1331 (((-107) $) 118)) (-1343 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-1857 (($ (-1 |#1| |#1|) $) 117)) (-1826 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) 115)) (-1192 ((|#1| $) 114)) (-3865 (((-1057) $) 9)) (-2863 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) 10)) (-3467 (($ $ (-703)) 103)) (-2349 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-2459 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-1699 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-4007 (((-489 |#2|) $) 116)) (-1860 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 138)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3086 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-1589 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-3642 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) 127 (|has| |#1| (-509)))) (-3622 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-1279 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+(((-673 |#1| |#2|) (-1185) (-961) (-779)) (T -673))
+((-3086 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-3086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-1921 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1921 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) (-1989 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-1989 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-2863 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))))
+(-13 (-822 |t#2|) (-890 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -3086 ($ $ |t#2| (-703))) (-15 -3086 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3467 ($ $ (-703))) (-15 -1343 ($ $ |t#2| (-703))) (-15 -1343 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -1921 ((-703) $ |t#2|)) (-15 -1921 ((-703) $ |t#2| (-703))) (-15 -1989 ((-874 |t#1|) $ (-703))) (-15 -1989 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $ |t#2|)) (-6 (-918)) (-6 (-1095))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-489 |#2|)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 |#2|) . T) ((-890 |#1| (-489 |#2|) |#2|) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))))
+((-3693 (((-388 (-1070 |#4|)) (-1070 |#4|)) 28) (((-388 |#4|) |#4|) 24)))
+(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 ((-388 |#4|) |#4|)) (-15 -3693 ((-388 (-1070 |#4|)) (-1070 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -674))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
+(-10 -7 (-15 -3693 ((-388 |#4|) |#4|)) (-15 -3693 ((-388 (-1070 |#4|)) (-1070 |#4|))))
+((-2795 (((-388 |#4|) |#4| |#2|) 116)) (-1976 (((-388 |#4|) |#4|) NIL)) (-3490 (((-388 (-1070 |#4|)) (-1070 |#4|)) 107) (((-388 |#4|) |#4|) 38)) (-1544 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3693 (-1070 |#4|)) (|:| -2059 (-517)))))) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 65)) (-4079 (((-1070 |#3|) (-1070 |#3|) (-517)) 133)) (-2120 (((-583 (-703)) (-1070 |#4|) (-583 |#2|) (-703)) 58)) (-2511 (((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-1070 |#3|) (-1070 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 62)) (-3988 (((-2 (|:| |upol| (-1070 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517))))) (|:| |ctpol| |#3|)) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-4083 (((-2 (|:| -4026 (-1070 |#4|)) (|:| |polval| (-1070 |#3|))) (-1070 |#4|) (-1070 |#3|) (-517)) 54)) (-4127 (((-517) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517))))) 130)) (-3792 ((|#4| (-517) (-388 |#4|)) 55)) (-2655 (((-107) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517)))) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517))))) NIL)))
+(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3490 ((-388 |#4|) |#4|)) (-15 -3490 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -1976 ((-388 |#4|) |#4|)) (-15 -4127 ((-517) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517)))))) (-15 -2795 ((-388 |#4|) |#4| |#2|)) (-15 -4083 ((-2 (|:| -4026 (-1070 |#4|)) (|:| |polval| (-1070 |#3|))) (-1070 |#4|) (-1070 |#3|) (-517))) (-15 -1544 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3693 (-1070 |#4|)) (|:| -2059 (-517)))))) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -3988 ((-2 (|:| |upol| (-1070 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517))))) (|:| |ctpol| |#3|)) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -3792 (|#4| (-517) (-388 |#4|))) (-15 -2655 ((-107) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517)))) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517)))))) (-15 -2511 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-1070 |#3|) (-1070 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -2120 ((-583 (-703)) (-1070 |#4|) (-583 |#2|) (-703))) (-15 -4079 ((-1070 |#3|) (-1070 |#3|) (-517)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -675))
+((-4079 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-2120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-2511 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1070 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1070 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1070 *5)))) (-2655 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3693 (-1070 *6)) (|:| -2059 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-3988 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1070 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3693 (-1070 *8)) (|:| -2059 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-1544 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3693 (-1070 *9)) (|:| -2059 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1070 *9)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -4026 (-1070 *9)) (|:| |polval| (-1070 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1070 *9)) (-5 *4 (-1070 *8)))) (-2795 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3693 (-1070 *6)) (|:| -2059 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1976 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))))
+(-10 -7 (-15 -3490 ((-388 |#4|) |#4|)) (-15 -3490 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -1976 ((-388 |#4|) |#4|)) (-15 -4127 ((-517) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517)))))) (-15 -2795 ((-388 |#4|) |#4| |#2|)) (-15 -4083 ((-2 (|:| -4026 (-1070 |#4|)) (|:| |polval| (-1070 |#3|))) (-1070 |#4|) (-1070 |#3|) (-517))) (-15 -1544 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3693 (-1070 |#4|)) (|:| -2059 (-517)))))) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -3988 ((-2 (|:| |upol| (-1070 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517))))) (|:| |ctpol| |#3|)) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -3792 (|#4| (-517) (-388 |#4|))) (-15 -2655 ((-107) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517)))) (-583 (-2 (|:| -3693 (-1070 |#3|)) (|:| -2059 (-517)))))) (-15 -2511 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-1070 |#3|) (-1070 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -2120 ((-583 (-703)) (-1070 |#4|) (-583 |#2|) (-703))) (-15 -4079 ((-1070 |#3|) (-1070 |#3|) (-517))))
+((-3092 (($ $ (-843)) 12)))
+(((-676 |#1| |#2|) (-10 -8 (-15 -3092 (|#1| |#1| (-843)))) (-677 |#2|) (-156)) (T -676))
+NIL
+(-10 -8 (-15 -3092 (|#1| |#1| (-843))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1246 (($ $ (-843)) 28)) (-3092 (($ $ (-843)) 33)) (-1313 (($ $ (-843)) 29)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-3064 (($ $ $) 25)) (-2182 (((-787) $) 11)) (-2411 (($ $ $ $) 26)) (-3168 (($ $ $) 24)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-677 |#1|) (-1185) (-156)) (T -677))
+((-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
+(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -3092 ($ $ (-843)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-2831 (((-950) (-623 (-199)) (-517) (-107) (-517)) 24)) (-2821 (((-950) (-623 (-199)) (-517) (-107) (-517)) 23)))
-(((-678) (-10 -7 (-15 -2821 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -2831 ((-950) (-623 (-199)) (-517) (-107) (-517))))) (T -678))
-((-2831 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))) (-2821 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
-(-10 -7 (-15 -2821 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -2831 ((-950) (-623 (-199)) (-517) (-107) (-517))))
-((-2860 (((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-2851 (((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-2841 (((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 32)))
-(((-679) (-10 -7 (-15 -2841 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -2851 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2860 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679))
-((-2860 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-2851 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-2841 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-679)))))
-(-10 -7 (-15 -2841 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -2851 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2860 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))
-((-2988 (((-950) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2977 (((-950) (-517) (-517) (-623 (-199)) (-517)) 32)) (-2968 (((-950) (-517) (-623 (-199)) (-517)) 31)) (-2957 (((-950) (-517) (-623 (-199)) (-517)) 30)) (-2947 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2937 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2924 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-2911 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2900 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-2890 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-2878 (((-950) (-517) (-623 (-199)) (-517)) 21)) (-2868 (((-950) (-517) (-623 (-199)) (-517)) 20)))
-(((-680) (-10 -7 (-15 -2868 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2878 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2890 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2900 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2911 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2924 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2937 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2947 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2957 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2968 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2977 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2988 ((-950) (-517) (-517) (-623 (-199)) (-517))))) (T -680))
-((-2988 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2977 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2968 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2957 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2947 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2937 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2924 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2911 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2900 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2890 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2878 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2868 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(-10 -7 (-15 -2868 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2878 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2890 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2900 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2911 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2924 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2937 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2947 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2957 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2968 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2977 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2988 ((-950) (-517) (-517) (-623 (-199)) (-517))))
-((-1263 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1253 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-1239 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3084 (((-950) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-3075 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-3064 (((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-3054 (((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-3043 (((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-3032 (((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 38)) (-3021 (((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 37)) (-3011 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 33)) (-3000 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 32)))
-(((-681) (-10 -7 (-15 -3000 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3011 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3021 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3032 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3043 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3054 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3064 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3075 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3084 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -1239 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1253 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1263 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681))
-((-1263 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-1253 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-1239 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3084 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3075 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3064 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3054 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3043 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3032 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3021 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3011 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3000 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(-10 -7 (-15 -3000 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3011 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3021 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3032 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3043 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3054 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3064 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3075 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3084 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -1239 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1253 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1263 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))
-((-1348 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1336 (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-1326 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-1310 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-1303 (((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1294 (((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1283 (((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-1269 (((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-682) (-10 -7 (-15 -1269 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1283 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1294 ((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1303 ((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1310 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1326 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1348 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682))
-((-1348 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1336 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1336 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1326 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1310 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1303 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1294 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1283 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1269 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(-10 -7 (-15 -1269 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1283 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1294 ((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1303 ((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1310 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1326 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1348 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-1386 (((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-1375 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-1360 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23)))
-(((-683) (-10 -7 (-15 -1360 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1375 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1386 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683))
-((-1386 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))) (-1375 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))) (-1360 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
-(-10 -7 (-15 -1360 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1375 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1386 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))
-((-3338 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-1481 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-1471 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-1466 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-1453 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-1443 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-1432 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-1421 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-1406 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-1393 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20)))
-(((-684) (-10 -7 (-15 -1393 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1406 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1421 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1432 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1443 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1453 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1466 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1471 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1481 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3338 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684))
-((-3338 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1481 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1471 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1466 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1453 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1443 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1432 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1421 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1406 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1393 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(-10 -7 (-15 -1393 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1406 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1421 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1432 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1443 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1453 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1466 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1471 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1481 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3338 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))
-((-1684 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-1673 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-1661 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-1648 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-1635 (((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-1625 (((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-1612 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-1600 (((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-1589 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-1578 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-1566 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-1554 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-1541 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-1530 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-1518 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-1507 (((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-1498 (((-950) (-517) (-623 (-199)) (-199) (-517)) 24)) (-1490 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20)))
-(((-685) (-10 -7 (-15 -1490 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1498 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1507 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1518 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1530 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1541 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1554 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1566 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1578 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1589 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1600 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1612 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1625 ((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1635 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1648 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1661 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1673 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1684 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685))
-((-1684 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1661 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1648 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1635 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1625 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1612 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1600 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1589 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1578 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1566 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1554 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1541 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1530 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1518 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1507 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1498 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1490 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(-10 -7 (-15 -1490 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1498 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1507 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1518 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1530 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1541 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1554 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1566 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1578 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1589 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1600 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1612 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1625 ((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1635 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1648 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1661 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1673 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1684 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))
-((-1771 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-1760 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1749 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-1738 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-1727 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1716 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1706 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1695 (((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-686) (-10 -7 (-15 -1695 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1706 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1716 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1727 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1738 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1749 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1760 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1771 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686))
-((-1771 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1760 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1749 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1738 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1727 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1716 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1706 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1695 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(-10 -7 (-15 -1695 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1706 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1716 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1727 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1738 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1749 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1760 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1771 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))
-((-3012 (((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-3003 (((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-2991 (((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-1859 (((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-1847 (((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-1834 (((-950) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-1821 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-1809 (((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-1795 (((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-1782 (((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32)))
-(((-687) (-10 -7 (-15 -1782 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1795 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1809 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1821 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1834 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1847 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1859 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2991 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3003 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3012 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687))
-((-3012 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-3003 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-2991 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1859 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1847 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1834 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1821 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1809 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1795 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1782 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(-10 -7 (-15 -1782 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1795 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1809 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1821 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1834 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1847 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1859 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2991 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3003 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3012 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
-((-3159 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-3152 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-3142 (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-3134 (((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-3124 (((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-3114 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-3107 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-3094 (((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3086 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-3076 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-3066 (((-950) (-517) (-517) (-623 (-199)) (-517)) 24)) (-3056 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-3045 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-3034 (((-950) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-3023 (((-950) (-517) (-517) (-623 (-199)) (-517)) 20)))
-(((-688) (-10 -7 (-15 -3023 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3034 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3045 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3056 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3066 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3076 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3086 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3094 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3107 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3114 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3124 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3134 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3152 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3159 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688))
-((-3159 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3152 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3142 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3142 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3134 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3124 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3114 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3107 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3094 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3086 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3076 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3066 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3056 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3045 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3034 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3023 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(-10 -7 (-15 -3023 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3034 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3045 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3056 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3066 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3076 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3086 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3094 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3107 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3114 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3124 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3134 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3152 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3159 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
-((-3255 (((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-3246 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-3238 (((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3230 (((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-3221 (((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3211 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-3200 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-3193 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3184 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-3177 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-3168 (((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20)))
-(((-689) (-10 -7 (-15 -3168 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3177 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3184 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3193 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3200 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3211 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3221 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3230 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3238 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3246 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3255 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689))
-((-3255 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3246 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3238 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3230 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3221 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3211 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3200 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3193 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3184 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3177 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3168 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(-10 -7 (-15 -3168 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3177 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3184 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3193 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3200 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3211 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3221 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3230 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3238 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3246 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3255 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))
-((-3293 (((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-3284 (((-950) (-1056) (-517) (-517) (-623 (-199))) 27)) (-3273 (((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-3264 (((-950) (-517) (-517) (-517) (-623 (-199))) 20)))
-(((-690) (-10 -7 (-15 -3264 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3273 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3284 ((-950) (-1056) (-517) (-517) (-623 (-199)))) (-15 -3293 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690))
-((-3293 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3284 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3273 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))) (-3264 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
-(-10 -7 (-15 -3264 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3273 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3284 ((-950) (-1056) (-517) (-517) (-623 (-199)))) (-15 -3293 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))
-((-1275 (((-950) (-199) (-199) (-199) (-199) (-517)) 62)) (-1265 (((-950) (-199) (-199) (-199) (-517)) 61)) (-1255 (((-950) (-199) (-199) (-199) (-517)) 60)) (-1244 (((-950) (-199) (-199) (-517)) 59)) (-1232 (((-950) (-199) (-517)) 58)) (-1223 (((-950) (-199) (-517)) 57)) (-1214 (((-950) (-199) (-517)) 56)) (-1202 (((-950) (-199) (-517)) 55)) (-1192 (((-950) (-199) (-517)) 54)) (-4158 (((-950) (-199) (-517)) 53)) (-4143 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 52)) (-4131 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 51)) (-4120 (((-950) (-199) (-517)) 50)) (-4109 (((-950) (-199) (-517)) 49)) (-4098 (((-950) (-199) (-517)) 48)) (-3549 (((-950) (-199) (-517)) 47)) (-3540 (((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517)) 46)) (-3530 (((-950) (-1056) (-153 (-199)) (-1056) (-517)) 45)) (-3516 (((-950) (-1056) (-153 (-199)) (-1056) (-517)) 44)) (-3505 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 43)) (-3493 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 42)) (-3480 (((-950) (-199) (-517)) 39)) (-3467 (((-950) (-199) (-517)) 38)) (-3453 (((-950) (-199) (-517)) 37)) (-3439 (((-950) (-199) (-517)) 36)) (-3426 (((-950) (-199) (-517)) 35)) (-3415 (((-950) (-199) (-517)) 34)) (-3405 (((-950) (-199) (-517)) 33)) (-3396 (((-950) (-199) (-517)) 32)) (-3387 (((-950) (-199) (-517)) 31)) (-3377 (((-950) (-199) (-517)) 30)) (-3368 (((-950) (-199) (-199) (-199) (-517)) 29)) (-3358 (((-950) (-199) (-517)) 28)) (-3345 (((-950) (-199) (-517)) 27)) (-3333 (((-950) (-199) (-517)) 26)) (-3323 (((-950) (-199) (-517)) 25)) (-3314 (((-950) (-199) (-517)) 24)) (-3302 (((-950) (-153 (-199)) (-517)) 20)))
-(((-691) (-10 -7 (-15 -3302 ((-950) (-153 (-199)) (-517))) (-15 -3314 ((-950) (-199) (-517))) (-15 -3323 ((-950) (-199) (-517))) (-15 -3333 ((-950) (-199) (-517))) (-15 -3345 ((-950) (-199) (-517))) (-15 -3358 ((-950) (-199) (-517))) (-15 -3368 ((-950) (-199) (-199) (-199) (-517))) (-15 -3377 ((-950) (-199) (-517))) (-15 -3387 ((-950) (-199) (-517))) (-15 -3396 ((-950) (-199) (-517))) (-15 -3405 ((-950) (-199) (-517))) (-15 -3415 ((-950) (-199) (-517))) (-15 -3426 ((-950) (-199) (-517))) (-15 -3439 ((-950) (-199) (-517))) (-15 -3453 ((-950) (-199) (-517))) (-15 -3467 ((-950) (-199) (-517))) (-15 -3480 ((-950) (-199) (-517))) (-15 -3493 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3505 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3516 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3530 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3540 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3549 ((-950) (-199) (-517))) (-15 -4098 ((-950) (-199) (-517))) (-15 -4109 ((-950) (-199) (-517))) (-15 -4120 ((-950) (-199) (-517))) (-15 -4131 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4143 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4158 ((-950) (-199) (-517))) (-15 -1192 ((-950) (-199) (-517))) (-15 -1202 ((-950) (-199) (-517))) (-15 -1214 ((-950) (-199) (-517))) (-15 -1223 ((-950) (-199) (-517))) (-15 -1232 ((-950) (-199) (-517))) (-15 -1244 ((-950) (-199) (-199) (-517))) (-15 -1255 ((-950) (-199) (-199) (-199) (-517))) (-15 -1265 ((-950) (-199) (-199) (-199) (-517))) (-15 -1275 ((-950) (-199) (-199) (-199) (-199) (-517))))) (T -691))
-((-1275 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1265 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1255 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1244 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1223 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1214 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1202 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1192 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4143 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4131 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4109 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3540 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1056)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3530 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3516 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3505 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3493 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3368 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3314 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(-10 -7 (-15 -3302 ((-950) (-153 (-199)) (-517))) (-15 -3314 ((-950) (-199) (-517))) (-15 -3323 ((-950) (-199) (-517))) (-15 -3333 ((-950) (-199) (-517))) (-15 -3345 ((-950) (-199) (-517))) (-15 -3358 ((-950) (-199) (-517))) (-15 -3368 ((-950) (-199) (-199) (-199) (-517))) (-15 -3377 ((-950) (-199) (-517))) (-15 -3387 ((-950) (-199) (-517))) (-15 -3396 ((-950) (-199) (-517))) (-15 -3405 ((-950) (-199) (-517))) (-15 -3415 ((-950) (-199) (-517))) (-15 -3426 ((-950) (-199) (-517))) (-15 -3439 ((-950) (-199) (-517))) (-15 -3453 ((-950) (-199) (-517))) (-15 -3467 ((-950) (-199) (-517))) (-15 -3480 ((-950) (-199) (-517))) (-15 -3493 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3505 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3516 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3530 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3540 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3549 ((-950) (-199) (-517))) (-15 -4098 ((-950) (-199) (-517))) (-15 -4109 ((-950) (-199) (-517))) (-15 -4120 ((-950) (-199) (-517))) (-15 -4131 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4143 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4158 ((-950) (-199) (-517))) (-15 -1192 ((-950) (-199) (-517))) (-15 -1202 ((-950) (-199) (-517))) (-15 -1214 ((-950) (-199) (-517))) (-15 -1223 ((-950) (-199) (-517))) (-15 -1232 ((-950) (-199) (-517))) (-15 -1244 ((-950) (-199) (-199) (-517))) (-15 -1255 ((-950) (-199) (-199) (-199) (-517))) (-15 -1265 ((-950) (-199) (-199) (-199) (-517))) (-15 -1275 ((-950) (-199) (-199) (-199) (-199) (-517))))
-((-3859 (((-1158)) 18)) (-4128 (((-1056)) 22)) (-1372 (((-1056)) 21)) (-2108 (((-1007) (-1073) (-623 (-517))) 35) (((-1007) (-1073) (-623 (-199))) 31)) (-3570 (((-107)) 16)) (-1494 (((-1056) (-1056)) 25)))
-(((-692) (-10 -7 (-15 -1372 ((-1056))) (-15 -4128 ((-1056))) (-15 -1494 ((-1056) (-1056))) (-15 -2108 ((-1007) (-1073) (-623 (-199)))) (-15 -2108 ((-1007) (-1073) (-623 (-517)))) (-15 -3570 ((-107))) (-15 -3859 ((-1158))))) (T -692))
-((-3859 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-692)))) (-3570 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))) (-4128 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))) (-1372 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))))
-(-10 -7 (-15 -1372 ((-1056))) (-15 -4128 ((-1056))) (-15 -1494 ((-1056) (-1056))) (-15 -2108 ((-1007) (-1073) (-623 (-199)))) (-15 -2108 ((-1007) (-1073) (-623 (-517)))) (-15 -3570 ((-107))) (-15 -3859 ((-1158))))
-((-3394 (($ $ $) 10)) (-3917 (($ $ $ $) 9)) (-1956 (($ $ $) 12)))
-(((-693 |#1|) (-10 -8 (-15 -1956 (|#1| |#1| |#1|)) (-15 -3394 (|#1| |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1| |#1|))) (-694)) (T -693))
-NIL
-(-10 -8 (-15 -1956 (|#1| |#1| |#1|)) (-15 -3394 (|#1| |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3380 (($ $ (-843)) 28)) (-2572 (($ $ (-843)) 29)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
-(((-694) (-1184)) (T -694))
-((-3917 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-3394 (*1 *1 *1 *1) (-4 *1 (-694))) (-1956 (*1 *1 *1 *1) (-4 *1 (-694))))
-(-13 (-21) (-653) (-10 -8 (-15 -3917 ($ $ $ $)) (-15 -3394 ($ $ $)) (-15 -1956 ($ $ $))))
+((-3286 (((-950) (-623 (-199)) (-517) (-107) (-517)) 24)) (-3274 (((-950) (-623 (-199)) (-517) (-107) (-517)) 23)))
+(((-678) (-10 -7 (-15 -3274 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -3286 ((-950) (-623 (-199)) (-517) (-107) (-517))))) (T -678))
+((-3286 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))) (-3274 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
+(-10 -7 (-15 -3274 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -3286 ((-950) (-623 (-199)) (-517) (-107) (-517))))
+((-3318 (((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-3307 (((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-3297 (((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) 32)))
+(((-679) (-10 -7 (-15 -3297 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3307 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -3318 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679))
+((-3318 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-3307 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-3297 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *2 (-950)) (-5 *1 (-679)))))
+(-10 -7 (-15 -3297 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3307 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -3318 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))
+((-3477 (((-950) (-517) (-517) (-623 (-199)) (-517)) 33)) (-3463 (((-950) (-517) (-517) (-623 (-199)) (-517)) 32)) (-3449 (((-950) (-517) (-623 (-199)) (-517)) 31)) (-3434 (((-950) (-517) (-623 (-199)) (-517)) 30)) (-3421 (((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-3406 (((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-3394 (((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3381 (((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-3365 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-3354 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-3340 (((-950) (-517) (-623 (-199)) (-517)) 21)) (-3330 (((-950) (-517) (-623 (-199)) (-517)) 20)))
+(((-680) (-10 -7 (-15 -3330 ((-950) (-517) (-623 (-199)) (-517))) (-15 -3340 ((-950) (-517) (-623 (-199)) (-517))) (-15 -3354 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3365 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3381 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3394 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3406 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3421 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3434 ((-950) (-517) (-623 (-199)) (-517))) (-15 -3449 ((-950) (-517) (-623 (-199)) (-517))) (-15 -3463 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3477 ((-950) (-517) (-517) (-623 (-199)) (-517))))) (T -680))
+((-3477 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3463 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3449 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3434 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3421 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3406 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3394 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3381 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3365 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3354 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3340 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-3330 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(-10 -7 (-15 -3330 ((-950) (-517) (-623 (-199)) (-517))) (-15 -3340 ((-950) (-517) (-623 (-199)) (-517))) (-15 -3354 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3365 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3381 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3394 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3406 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3421 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3434 ((-950) (-517) (-623 (-199)) (-517))) (-15 -3449 ((-950) (-517) (-623 (-199)) (-517))) (-15 -3463 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3477 ((-950) (-517) (-517) (-623 (-199)) (-517))))
+((-1261 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1249 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-3603 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3589 (((-950) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-3575 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-3563 (((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-3551 (((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-3538 (((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-3527 (((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) 38)) (-3513 (((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) 37)) (-3504 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) 33)) (-3489 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) 32)))
+(((-681) (-10 -7 (-15 -3489 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3504 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3513 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3527 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3538 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3551 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3563 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3575 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3589 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -3603 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1249 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1261 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681))
+((-1261 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-1249 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3603 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3589 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3575 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3563 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3551 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3538 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3527 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3513 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3504 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3489 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(-10 -7 (-15 -3489 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3504 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3513 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3527 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184))))) (-15 -3538 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3551 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3563 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3575 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3589 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -3603 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1249 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1261 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))
+((-1341 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1332 (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-1321 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-1312 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-1301 (((-950) (-199) (-517) (-517) (-1057) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1290 (((-950) (-199) (-517) (-517) (-199) (-1057) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1281 (((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-1271 (((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-682) (-10 -7 (-15 -1271 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1281 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1290 ((-950) (-199) (-517) (-517) (-199) (-1057) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1301 ((-950) (-199) (-517) (-517) (-1057) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1312 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1321 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1332 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1332 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1341 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682))
+((-1341 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1332 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1332 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1321 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1312 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1301 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1290 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1281 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1271 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(-10 -7 (-15 -1271 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1281 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1290 ((-950) (-199) (-517) (-517) (-199) (-1057) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1301 ((-950) (-199) (-517) (-517) (-1057) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1312 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1321 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1332 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1332 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1341 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-1373 (((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-1359 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1057) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-1350 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23)))
+(((-683) (-10 -7 (-15 -1350 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1359 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1057) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1373 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683))
+((-1373 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))) (-1359 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))) (-1350 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
+(-10 -7 (-15 -1350 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1359 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1057) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1373 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))
+((-3864 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-1469 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-1461 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-1448 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-1438 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-1426 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-1415 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-1402 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-1389 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-1382 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20)))
+(((-684) (-10 -7 (-15 -1382 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1389 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1402 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1415 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1426 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1438 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1448 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1461 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1469 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3864 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684))
+((-3864 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1469 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1461 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1448 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1438 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1426 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1415 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1402 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1389 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1382 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(-10 -7 (-15 -1382 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1389 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1402 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1415 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1426 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1438 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1448 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1461 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1469 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3864 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))
+((-1657 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-1645 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-1632 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-1621 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-1611 (((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-1600 (((-950) (-1057) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-1588 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-1577 (((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-1565 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-1554 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-1545 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-1535 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-1525 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-1514 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-1504 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-1494 (((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-1486 (((-950) (-517) (-623 (-199)) (-199) (-517)) 24)) (-1478 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20)))
+(((-685) (-10 -7 (-15 -1478 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1486 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1494 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1504 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1514 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1525 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1535 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1545 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1554 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1565 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1577 ((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1588 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1600 ((-950) (-1057) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1611 ((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1621 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1632 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1645 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1657 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685))
+((-1657 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1645 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1632 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1621 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1611 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1600 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1588 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1577 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1565 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1554 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1545 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1535 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1525 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1514 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1504 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1494 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1486 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1478 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(-10 -7 (-15 -1478 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1486 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1494 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1504 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1514 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1525 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1535 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1545 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1554 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1565 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1577 ((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1588 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1600 ((-950) (-1057) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1611 ((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1621 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1632 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1645 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1657 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))
+((-1746 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-1736 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1727 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-1716 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-1704 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1691 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1680 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1669 (((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-686) (-10 -7 (-15 -1669 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1680 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1691 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1704 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1716 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1727 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1736 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1746 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686))
+((-1746 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1736 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1727 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1716 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1704 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1691 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1680 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1669 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
+(-10 -7 (-15 -1669 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1680 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1691 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1704 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1716 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1727 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1736 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1746 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))
+((-2862 (((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-2848 (((-950) (-1057) (-1057) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-1828 (((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-1817 (((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-1807 (((-950) (-1057) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-1798 (((-950) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-1789 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-1778 (((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-1767 (((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-1757 (((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32)))
+(((-687) (-10 -7 (-15 -1757 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1767 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1778 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1789 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1798 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1807 ((-950) (-1057) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1817 ((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1828 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2848 ((-950) (-1057) (-1057) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2862 ((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687))
+((-2862 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-2848 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1828 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1817 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1807 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1798 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1789 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1778 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1767 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1757 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687)))))
+(-10 -7 (-15 -1757 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1767 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1778 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1789 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1798 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1807 ((-950) (-1057) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1817 ((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1828 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2848 ((-950) (-1057) (-1057) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2862 ((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
+((-3041 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-3031 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-3021 (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-3013 (((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-3003 (((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2993 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-2980 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2970 (((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-2960 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2948 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-2938 (((-950) (-517) (-517) (-623 (-199)) (-517)) 24)) (-2923 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-2908 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-2892 (((-950) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-2877 (((-950) (-517) (-517) (-623 (-199)) (-517)) 20)))
+(((-688) (-10 -7 (-15 -2877 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2892 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -2908 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2923 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2938 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2948 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -2960 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2970 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2980 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2993 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3003 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3013 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3021 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3021 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3031 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3041 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688))
+((-3041 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3031 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3021 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3021 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3013 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3003 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-2993 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-2980 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-2970 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-2960 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-2948 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-2938 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-2923 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-2908 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-2892 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-2877 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(-10 -7 (-15 -2877 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2892 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -2908 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2923 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2938 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2948 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -2960 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2970 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2980 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2993 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3003 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3013 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3021 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3021 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3031 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3041 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
+((-3137 (((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-3128 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-3119 (((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3110 (((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-3099 (((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3089 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-3080 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-3073 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3065 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-3057 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-3047 (((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20)))
+(((-689) (-10 -7 (-15 -3047 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3057 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3065 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3073 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3080 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3089 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3099 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3110 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3119 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3128 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3137 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689))
+((-3137 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3128 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3119 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3110 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3099 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3089 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3080 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3073 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3065 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3057 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3047 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(-10 -7 (-15 -3047 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3057 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3065 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3073 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3080 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3089 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3099 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3110 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3119 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3128 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3137 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))
+((-3178 (((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-3166 (((-950) (-1057) (-517) (-517) (-623 (-199))) 27)) (-3157 (((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-3148 (((-950) (-517) (-517) (-517) (-623 (-199))) 20)))
+(((-690) (-10 -7 (-15 -3148 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3157 ((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3166 ((-950) (-1057) (-517) (-517) (-623 (-199)))) (-15 -3178 ((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690))
+((-3178 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3166 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3157 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))) (-3148 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
+(-10 -7 (-15 -3148 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3157 ((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3166 ((-950) (-1057) (-517) (-517) (-623 (-199)))) (-15 -3178 ((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))
+((-1864 (((-950) (-199) (-199) (-199) (-199) (-517)) 62)) (-1859 (((-950) (-199) (-199) (-199) (-517)) 61)) (-1850 (((-950) (-199) (-199) (-199) (-517)) 60)) (-1841 (((-950) (-199) (-199) (-517)) 59)) (-1832 (((-950) (-199) (-517)) 58)) (-1821 (((-950) (-199) (-517)) 57)) (-1811 (((-950) (-199) (-517)) 56)) (-1802 (((-950) (-199) (-517)) 55)) (-1793 (((-950) (-199) (-517)) 54)) (-1782 (((-950) (-199) (-517)) 53)) (-1768 (((-950) (-199) (-153 (-199)) (-517) (-1057) (-517)) 52)) (-1758 (((-950) (-199) (-153 (-199)) (-517) (-1057) (-517)) 51)) (-1749 (((-950) (-199) (-517)) 50)) (-1739 (((-950) (-199) (-517)) 49)) (-3469 (((-950) (-199) (-517)) 48)) (-3455 (((-950) (-199) (-517)) 47)) (-3441 (((-950) (-517) (-199) (-153 (-199)) (-517) (-1057) (-517)) 46)) (-3426 (((-950) (-1057) (-153 (-199)) (-1057) (-517)) 45)) (-3412 (((-950) (-1057) (-153 (-199)) (-1057) (-517)) 44)) (-3399 (((-950) (-199) (-153 (-199)) (-517) (-1057) (-517)) 43)) (-3386 (((-950) (-199) (-153 (-199)) (-517) (-1057) (-517)) 42)) (-3374 (((-950) (-199) (-517)) 39)) (-3358 (((-950) (-199) (-517)) 38)) (-3347 (((-950) (-199) (-517)) 37)) (-3335 (((-950) (-199) (-517)) 36)) (-3322 (((-950) (-199) (-517)) 35)) (-3312 (((-950) (-199) (-517)) 34)) (-3301 (((-950) (-199) (-517)) 33)) (-3290 (((-950) (-199) (-517)) 32)) (-3279 (((-950) (-199) (-517)) 31)) (-3268 (((-950) (-199) (-517)) 30)) (-3258 (((-950) (-199) (-199) (-199) (-517)) 29)) (-3245 (((-950) (-199) (-517)) 28)) (-3232 (((-950) (-199) (-517)) 27)) (-3222 (((-950) (-199) (-517)) 26)) (-3210 (((-950) (-199) (-517)) 25)) (-3198 (((-950) (-199) (-517)) 24)) (-3188 (((-950) (-153 (-199)) (-517)) 20)))
+(((-691) (-10 -7 (-15 -3188 ((-950) (-153 (-199)) (-517))) (-15 -3198 ((-950) (-199) (-517))) (-15 -3210 ((-950) (-199) (-517))) (-15 -3222 ((-950) (-199) (-517))) (-15 -3232 ((-950) (-199) (-517))) (-15 -3245 ((-950) (-199) (-517))) (-15 -3258 ((-950) (-199) (-199) (-199) (-517))) (-15 -3268 ((-950) (-199) (-517))) (-15 -3279 ((-950) (-199) (-517))) (-15 -3290 ((-950) (-199) (-517))) (-15 -3301 ((-950) (-199) (-517))) (-15 -3312 ((-950) (-199) (-517))) (-15 -3322 ((-950) (-199) (-517))) (-15 -3335 ((-950) (-199) (-517))) (-15 -3347 ((-950) (-199) (-517))) (-15 -3358 ((-950) (-199) (-517))) (-15 -3374 ((-950) (-199) (-517))) (-15 -3386 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3399 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3412 ((-950) (-1057) (-153 (-199)) (-1057) (-517))) (-15 -3426 ((-950) (-1057) (-153 (-199)) (-1057) (-517))) (-15 -3441 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3455 ((-950) (-199) (-517))) (-15 -3469 ((-950) (-199) (-517))) (-15 -1739 ((-950) (-199) (-517))) (-15 -1749 ((-950) (-199) (-517))) (-15 -1758 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -1768 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -1782 ((-950) (-199) (-517))) (-15 -1793 ((-950) (-199) (-517))) (-15 -1802 ((-950) (-199) (-517))) (-15 -1811 ((-950) (-199) (-517))) (-15 -1821 ((-950) (-199) (-517))) (-15 -1832 ((-950) (-199) (-517))) (-15 -1841 ((-950) (-199) (-199) (-517))) (-15 -1850 ((-950) (-199) (-199) (-199) (-517))) (-15 -1859 ((-950) (-199) (-199) (-199) (-517))) (-15 -1864 ((-950) (-199) (-199) (-199) (-199) (-517))))) (T -691))
+((-1864 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1859 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1850 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1841 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1832 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1811 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1782 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1768 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1758 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3441 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1057)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3426 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3412 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3399 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3386 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3290 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3258 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(-10 -7 (-15 -3188 ((-950) (-153 (-199)) (-517))) (-15 -3198 ((-950) (-199) (-517))) (-15 -3210 ((-950) (-199) (-517))) (-15 -3222 ((-950) (-199) (-517))) (-15 -3232 ((-950) (-199) (-517))) (-15 -3245 ((-950) (-199) (-517))) (-15 -3258 ((-950) (-199) (-199) (-199) (-517))) (-15 -3268 ((-950) (-199) (-517))) (-15 -3279 ((-950) (-199) (-517))) (-15 -3290 ((-950) (-199) (-517))) (-15 -3301 ((-950) (-199) (-517))) (-15 -3312 ((-950) (-199) (-517))) (-15 -3322 ((-950) (-199) (-517))) (-15 -3335 ((-950) (-199) (-517))) (-15 -3347 ((-950) (-199) (-517))) (-15 -3358 ((-950) (-199) (-517))) (-15 -3374 ((-950) (-199) (-517))) (-15 -3386 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3399 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3412 ((-950) (-1057) (-153 (-199)) (-1057) (-517))) (-15 -3426 ((-950) (-1057) (-153 (-199)) (-1057) (-517))) (-15 -3441 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3455 ((-950) (-199) (-517))) (-15 -3469 ((-950) (-199) (-517))) (-15 -1739 ((-950) (-199) (-517))) (-15 -1749 ((-950) (-199) (-517))) (-15 -1758 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -1768 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -1782 ((-950) (-199) (-517))) (-15 -1793 ((-950) (-199) (-517))) (-15 -1802 ((-950) (-199) (-517))) (-15 -1811 ((-950) (-199) (-517))) (-15 -1821 ((-950) (-199) (-517))) (-15 -1832 ((-950) (-199) (-517))) (-15 -1841 ((-950) (-199) (-199) (-517))) (-15 -1850 ((-950) (-199) (-199) (-199) (-517))) (-15 -1859 ((-950) (-199) (-199) (-199) (-517))) (-15 -1864 ((-950) (-199) (-199) (-199) (-199) (-517))))
+((-3061 (((-1159)) 18)) (-2674 (((-1057)) 22)) (-2669 (((-1057)) 21)) (-2287 (((-1007) (-1074) (-623 (-517))) 35) (((-1007) (-1074) (-623 (-199))) 31)) (-3500 (((-107)) 16)) (-2061 (((-1057) (-1057)) 25)))
+(((-692) (-10 -7 (-15 -2669 ((-1057))) (-15 -2674 ((-1057))) (-15 -2061 ((-1057) (-1057))) (-15 -2287 ((-1007) (-1074) (-623 (-199)))) (-15 -2287 ((-1007) (-1074) (-623 (-517)))) (-15 -3500 ((-107))) (-15 -3061 ((-1159))))) (T -692))
+((-3061 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-692)))) (-3500 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-2287 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-2287 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-2061 (*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))) (-2674 (*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))) (-2669 (*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))))
+(-10 -7 (-15 -2669 ((-1057))) (-15 -2674 ((-1057))) (-15 -2061 ((-1057) (-1057))) (-15 -2287 ((-1007) (-1074) (-623 (-199)))) (-15 -2287 ((-1007) (-1074) (-623 (-517)))) (-15 -3500 ((-107))) (-15 -3061 ((-1159))))
+((-3064 (($ $ $) 10)) (-2411 (($ $ $ $) 9)) (-3168 (($ $ $) 12)))
+(((-693 |#1|) (-10 -8 (-15 -3168 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1| |#1|))) (-694)) (T -693))
+NIL
+(-10 -8 (-15 -3168 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1246 (($ $ (-843)) 28)) (-1313 (($ $ (-843)) 29)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-3064 (($ $ $) 25)) (-2182 (((-787) $) 11)) (-2411 (($ $ $ $) 26)) (-3168 (($ $ $) 24)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
+(((-694) (-1185)) (T -694))
+((-2411 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-3064 (*1 *1 *1 *1) (-4 *1 (-694))) (-3168 (*1 *1 *1 *1) (-4 *1 (-694))))
+(-13 (-21) (-653) (-10 -8 (-15 -2411 ($ $ $ $)) (-15 -3064 ($ $ $)) (-15 -3168 ($ $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-1003) . T))
-((-2256 (((-787) $) NIL) (($ (-517)) 10)))
-(((-695 |#1|) (-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-696)) (T -695))
-NIL
-(-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-2158 (((-3 $ "failed") $) 40)) (-3380 (($ $ (-843)) 28) (($ $ (-703)) 35)) (-3621 (((-3 $ "failed") $) 38)) (-3848 (((-107) $) 34)) (-1680 (((-3 $ "failed") $) 39)) (-2572 (($ $ (-843)) 29) (($ $ (-703)) 36)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11) (($ (-517)) 31)) (-2961 (((-703)) 32)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-2409 (($) 33 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30) (($ $ (-703)) 37)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
-(((-696) (-1184)) (T -696))
-((-2961 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))))
-(-13 (-694) (-655) (-10 -8 (-15 -2961 ((-703))) (-15 -2256 ($ (-517)))))
+((-2182 (((-787) $) NIL) (($ (-517)) 10)))
+(((-695 |#1|) (-10 -8 (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|))) (-696)) (T -695))
+NIL
+(-10 -8 (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1675 (((-3 $ "failed") $) 40)) (-1246 (($ $ (-843)) 28) (($ $ (-703)) 35)) (-1568 (((-3 $ "failed") $) 38)) (-2955 (((-107) $) 34)) (-3526 (((-3 $ "failed") $) 39)) (-1313 (($ $ (-843)) 29) (($ $ (-703)) 36)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-3064 (($ $ $) 25)) (-2182 (((-787) $) 11) (($ (-517)) 31)) (-1865 (((-703)) 32)) (-2411 (($ $ $ $) 26)) (-3168 (($ $ $) 24)) (-2297 (($) 18 T CONST)) (-2306 (($) 33 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 30) (($ $ (-703)) 37)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
+(((-696) (-1185)) (T -696))
+((-1865 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))))
+(-13 (-694) (-655) (-10 -8 (-15 -1865 ((-703))) (-15 -2182 ($ (-517)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-655) . T) ((-694) . T) ((-1003) . T))
-((-2536 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-4153 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-3669 (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073)) 16) (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15)))
-(((-697 |#1|) (-10 -7 (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073))) (-15 -4153 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2536 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1073)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073))) (-15 -4153 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2536 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|)))
-((-2005 (((-157 (-517)) |#1|) 25)))
-(((-698 |#1|) (-10 -7 (-15 -2005 ((-157 (-517)) |#1|))) (-374)) (T -698))
-((-2005 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))))
-(-10 -7 (-15 -2005 ((-157 (-517)) |#1|)))
-((-4102 ((|#1| |#1| |#1|) 24)) (-2985 ((|#1| |#1| |#1|) 23)) (-2218 ((|#1| |#1| |#1|) 31)) (-1423 ((|#1| |#1| |#1|) 27)) (-1971 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2962 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 22)))
-(((-699 |#1| |#2|) (-10 -7 (-15 -2962 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699))
-((-2218 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1423 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1971 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-4102 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2985 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2962 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))))
-(-10 -7 (-15 -2962 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1|)))
-((-4140 (((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-2216 (((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-3010 (((-517)) 68)))
-(((-700 |#1| |#2|) (-10 -7 (-15 -3010 ((-517))) (-15 -2216 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -4140 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1130 (-517)) (-379 (-517) |#1|)) (T -700))
-((-4140 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2216 (*1 *2) (-12 (-4 *3 (-1130 (-517))) (-5 *2 (-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-3010 (*1 *2) (-12 (-4 *3 (-1130 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))))
-(-10 -7 (-15 -3010 ((-517))) (-15 -2216 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -4140 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517))))
-((-2750 (((-107) $ $) NIL)) (-3189 (((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 14) (($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1547 (((-107) $ $) NIL)))
-(((-701) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))
-((-2032 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 14) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073))) 13)) (-1674 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 16) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073))) 15)))
-(((-702 |#1|) (-10 -7 (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))))) (-509)) (T -702))
-((-1674 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))))
-(-10 -7 (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) 6)) (-4038 (((-3 $ "failed") $ $) 9)) (-1363 (($ $ (-517)) 7)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1401 (($ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ $) NIL)))
-(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -1401 ($ $ $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2476 ((-3 $ "failed") $ $)) (-15 -1363 ($ $ (-517))) (-15 -3209 ($ $)) (-6 (-4182 "*"))))) (T -703))
-((-2497 (*1 *1 *1 *1) (-5 *1 (-703))) (-2518 (*1 *1 *1 *1) (-5 *1 (-703))) (-1401 (*1 *1 *1 *1) (-5 *1 (-703))) (-1306 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 (-703)) (|:| -3060 (-703)))) (-5 *1 (-703)))) (-2476 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-3209 (*1 *1 *1) (-5 *1 (-703))))
-(-13 (-725) (-659) (-10 -8 (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -1401 ($ $ $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2476 ((-3 $ "failed") $ $)) (-15 -1363 ($ $ (-517))) (-15 -3209 ($ $)) (-6 (-4182 "*"))))
-((-1674 (((-3 |#2| "failed") |#2| |#2| (-109) (-1073)) 35)))
-(((-704 |#1| |#2|) (-10 -7 (-15 -1674 ((-3 |#2| "failed") |#2| |#2| (-109) (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -704))
-((-1674 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1094) (-880))))))
-(-10 -7 (-15 -1674 ((-3 |#2| "failed") |#2| |#2| (-109) (-1073))))
-((-2256 (((-706) |#1|) 8)))
-(((-705 |#1|) (-10 -7 (-15 -2256 ((-706) |#1|))) (-1108)) (T -705))
-((-2256 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1108)))))
-(-10 -7 (-15 -2256 ((-706) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) 9)))
+((-3949 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-2878 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-3804 (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1074)) 16) (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15)))
+(((-697 |#1|) (-10 -7 (-15 -3804 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3804 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1074))) (-15 -2878 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -3949 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697))
+((-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-2878 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1074)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3804 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3804 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1074))) (-15 -2878 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -3949 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|)))
+((-2463 (((-157 (-517)) |#1|) 25)))
+(((-698 |#1|) (-10 -7 (-15 -2463 ((-157 (-517)) |#1|))) (-374)) (T -698))
+((-2463 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))))
+(-10 -7 (-15 -2463 ((-157 (-517)) |#1|)))
+((-3771 ((|#1| |#1| |#1|) 24)) (-3869 ((|#1| |#1| |#1|) 23)) (-4013 ((|#1| |#1| |#1|) 31)) (-1508 ((|#1| |#1| |#1|) 27)) (-3325 (((-3 |#1| "failed") |#1| |#1|) 26)) (-1872 (((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|) 22)))
+(((-699 |#1| |#2|) (-10 -7 (-15 -1872 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -3869 (|#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3325 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1508 (|#1| |#1| |#1|)) (-15 -4013 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699))
+((-4013 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1508 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-3325 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-3771 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-3869 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1872 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))))
+(-10 -7 (-15 -1872 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -3869 (|#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3325 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1508 (|#1| |#1| |#1|)) (-15 -4013 (|#1| |#1| |#1|)))
+((-2786 (((-2 (|:| -3809 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-3993 (((-2 (|:| -3809 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-4042 (((-517)) 68)))
+(((-700 |#1| |#2|) (-10 -7 (-15 -4042 ((-517))) (-15 -3993 ((-2 (|:| -3809 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -2786 ((-2 (|:| -3809 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1131 (-517)) (-379 (-517) |#1|)) (T -700))
+((-2786 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3993 (*1 *2) (-12 (-4 *3 (-1131 (-517))) (-5 *2 (-2 (|:| -3809 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-4042 (*1 *2) (-12 (-4 *3 (-1131 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))))
+(-10 -7 (-15 -4042 ((-517))) (-15 -3993 ((-2 (|:| -3809 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -2786 ((-2 (|:| -3809 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517))))
+((-2571 (((-107) $ $) NIL)) (-3076 (((-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 14) (($ (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1539 (((-107) $ $) NIL)))
+(((-701) (-13 (-1003) (-10 -8 (-15 -2182 ($ (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2182 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2182 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2182 ((-787) $)) (-15 -3076 ((-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ($ (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2182 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2182 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2182 ((-787) $)) (-15 -3076 ((-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))
+((-2714 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 14) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074))) 13)) (-3480 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 16) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074))) 15)))
+(((-702 |#1|) (-10 -7 (-15 -2714 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -2714 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))))) (-509)) (T -702))
+((-3480 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))))
+(-10 -7 (-15 -2714 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -2714 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1754 (($ $ $) 6)) (-1387 (((-3 $ "failed") $ $) 9)) (-1362 (($ $ (-517)) 7)) (-3473 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($ $) NIL)) (-2366 (($ $ $) NIL)) (-2955 (((-107) $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1396 (($ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-2182 (((-787) $) NIL)) (-2146 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ $) NIL)))
+(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2366 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1412 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -2349 ((-3 $ "failed") $ $)) (-15 -1362 ($ $ (-517))) (-15 -3098 ($ $)) (-6 (-4185 "*"))))) (T -703))
+((-2366 (*1 *1 *1 *1) (-5 *1 (-703))) (-2383 (*1 *1 *1 *1) (-5 *1 (-703))) (-1396 (*1 *1 *1 *1) (-5 *1 (-703))) (-1412 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3319 (-703)) (|:| -3169 (-703)))) (-5 *1 (-703)))) (-2349 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-1362 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-3098 (*1 *1 *1) (-5 *1 (-703))))
+(-13 (-725) (-659) (-10 -8 (-15 -2366 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1412 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -2349 ((-3 $ "failed") $ $)) (-15 -1362 ($ $ (-517))) (-15 -3098 ($ $)) (-6 (-4185 "*"))))
+((-3480 (((-3 |#2| "failed") |#2| |#2| (-109) (-1074)) 35)))
+(((-704 |#1| |#2|) (-10 -7 (-15 -3480 ((-3 |#2| "failed") |#2| |#2| (-109) (-1074)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880))) (T -704))
+((-3480 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1095) (-880))))))
+(-10 -7 (-15 -3480 ((-3 |#2| "failed") |#2| |#2| (-109) (-1074))))
+((-2182 (((-706) |#1|) 8)))
+(((-705 |#1|) (-10 -7 (-15 -2182 ((-706) |#1|))) (-1109)) (T -705))
+((-2182 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1109)))))
+(-10 -7 (-15 -2182 ((-706) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 7)) (-1539 (((-107) $ $) 9)))
(((-706) (-1003)) (T -706))
NIL
(-1003)
-((-1506 ((|#2| |#4|) 35)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1506 (|#2| |#4|))) (-421) (-1130 |#1|) (-657 |#1| |#2|) (-1130 |#3|)) (T -707))
-((-1506 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1130 *5)))))
-(-10 -7 (-15 -1506 (|#2| |#4|)))
-((-3621 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-4032 (((-1158) (-1056) (-1056) |#4| |#5|) 33)) (-3925 ((|#4| |#4| |#5|) 72)) (-2485 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 76)) (-2621 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 15)))
-(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3621 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3925 (|#4| |#4| |#5|)) (-15 -2485 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -4032 ((-1158) (-1056) (-1056) |#4| |#5|)) (-15 -2621 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -708))
-((-2621 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-4032 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1056)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1158)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))) (-2485 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3925 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))) (-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3621 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3925 (|#4| |#4| |#5|)) (-15 -2485 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -4032 ((-1158) (-1056) (-1056) |#4| |#5|)) (-15 -2621 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)))
-((-1772 (((-3 (-1069 (-1069 |#1|)) "failed") |#4|) 43)) (-2786 (((-583 |#4|) |#4|) 15)) (-4103 ((|#4| |#4|) 11)))
-(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2786 ((-583 |#4|) |#4|)) (-15 -1772 ((-3 (-1069 (-1069 |#1|)) "failed") |#4|)) (-15 -4103 (|#4| |#4|))) (-319) (-299 |#1|) (-1130 |#2|) (-1130 |#3|) (-843)) (T -709))
-((-4103 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1130 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1130 *5)) (-14 *6 (-843)))) (-1772 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))) (-2786 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))))
-(-10 -7 (-15 -2786 ((-583 |#4|) |#4|)) (-15 -1772 ((-3 (-1069 (-1069 |#1|)) "failed") |#4|)) (-15 -4103 (|#4| |#4|)))
-((-4041 (((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|)) 51)) (-3944 (((-583 (-703)) |#1|) 12)))
-(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4041 ((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3944 ((-583 (-703)) |#1|))) (-1130 |#4|) (-725) (-779) (-278) (-871 |#4| |#2| |#3|)) (T -710))
-((-3944 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *6)) (-4 *7 (-871 *6 *4 *5)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1130 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1069 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1069 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
-(-10 -7 (-15 -4041 ((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3944 ((-583 (-703)) |#1|)))
-((-2155 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-3609 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-3669 (((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073)) 16) (((-874 (-377 (-517))) (-623 (-377 (-517)))) 15)))
-(((-711 |#1|) (-10 -7 (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073))) (-15 -3609 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2155 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711))
-((-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1073)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073))) (-15 -3609 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2155 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 34)) (-1364 (((-583 |#2|) $) NIL)) (-2352 (((-1069 $) $ |#2|) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-2779 (($ $) 28)) (-2421 (((-107) $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) 92 (|has| |#1| (-509)))) (-2788 (((-583 $) $ $) 105 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (((-3 $ "failed") (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (((-3 $ "failed") (-874 |#1|)) NIL (-3807 (-12 (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-909 (-517))))))) (((-3 (-1026 |#1| |#2|) "failed") $) 18)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (($ (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (($ (-874 |#1|)) NIL (-3807 (-12 (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-909 (-517))))))) (((-1026 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-509)))) (-1212 (($ $) NIL) (($ $ |#2|) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3283 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1869 (((-107) $) NIL)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 69)) (-4083 (($ $) 118 (|has| |#1| (-421)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-2557 (($ $) NIL (|has| |#1| (-509)))) (-1454 (($ $) NIL (|has| |#1| (-509)))) (-1440 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-2489 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-1436 (($ $ |#1| (-489 |#2|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1497 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3239 (($ $ $ $ $) 89 (|has| |#1| (-509)))) (-1976 ((|#2| $) 19)) (-1350 (($ (-1069 |#1|) |#2|) NIL) (($ (-1069 $) |#2|) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1439 (($ $ $) 60)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-4156 (((-107) $) NIL)) (-2349 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2401 (((-703) $) 20)) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1409 (((-3 |#2| "failed") $) NIL)) (-3074 (($ $) NIL (|has| |#1| (-421)))) (-1923 (($ $) NIL (|has| |#1| (-421)))) (-1726 (((-583 $) $) NIL)) (-2070 (($ $) 37)) (-3622 (($ $) NIL (|has| |#1| (-421)))) (-2235 (((-583 $) $) 41)) (-3839 (($ $) 39)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 81)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 66) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) NIL) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#2|) NIL)) (-3692 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-2928 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3985 (((-1056) $) NIL)) (-1855 (($ $ $) 107 (|has| |#1| (-509)))) (-1628 (((-583 $) $) 30)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-703))) "failed") $) NIL)) (-3852 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3522 (($ $ $) NIL)) (-2836 (($ $) 21)) (-3411 (((-107) $ $) NIL)) (-1959 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3183 (($ $ $) NIL)) (-3059 (($ $) 23)) (-3206 (((-1021) $) NIL)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-509)))) (-4127 (((-107) $) 52)) (-4141 ((|#1| $) 55)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 ((|#1| |#1| $) 115 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-3716 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3068 (($ $ |#1|) 110 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-3010 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-2451 (($ $) NIL)) (-3443 (($ $) 33)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (($ (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (($ (-874 |#1|)) NIL (|has| |#2| (-558 (-1073)))) (((-1056) $) NIL (-12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1073))))) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1073))))) (-3266 ((|#1| $) 114 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1073)))) (((-1026 |#1| |#2|) $) 15) (($ (-1026 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 13 T CONST)) (-2791 (((-3 (-107) "failed") $ $) NIL)) (-2409 (($) 35 T CONST)) (-3872 (($ $ $ $ (-703)) 87 (|has| |#1| (-509)))) (-3051 (($ $ $ (-703)) 86 (|has| |#1| (-509)))) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 54)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 63)) (-1642 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) 61)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+((-2289 ((|#2| |#4|) 35)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2289 (|#2| |#4|))) (-421) (-1131 |#1|) (-657 |#1| |#2|) (-1131 |#3|)) (T -707))
+((-2289 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1131 *5)))))
+(-10 -7 (-15 -2289 (|#2| |#4|)))
+((-1568 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1340 (((-1159) (-1057) (-1057) |#4| |#5|) 33)) (-1446 ((|#4| |#4| |#5|) 72)) (-1730 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|) 76)) (-3512 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|) 15)))
+(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1568 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1446 (|#4| |#4| |#5|)) (-15 -1730 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -1340 ((-1159) (-1057) (-1057) |#4| |#5|)) (-15 -3512 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -708))
+((-3512 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1340 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1057)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1159)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))) (-1730 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1446 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))) (-1568 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(-10 -7 (-15 -1568 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1446 (|#4| |#4| |#5|)) (-15 -1730 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -1340 ((-1159) (-1057) (-1057) |#4| |#5|)) (-15 -3512 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)))
+((-1759 (((-3 (-1070 (-1070 |#1|)) "failed") |#4|) 43)) (-2493 (((-583 |#4|) |#4|) 15)) (-2496 ((|#4| |#4|) 11)))
+(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2493 ((-583 |#4|) |#4|)) (-15 -1759 ((-3 (-1070 (-1070 |#1|)) "failed") |#4|)) (-15 -2496 (|#4| |#4|))) (-319) (-299 |#1|) (-1131 |#2|) (-1131 |#3|) (-843)) (T -709))
+((-2496 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1131 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1131 *5)) (-14 *6 (-843)))) (-1759 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1131 *5)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1131 *6)) (-14 *7 (-843)))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1131 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1131 *6)) (-14 *7 (-843)))))
+(-10 -7 (-15 -2493 ((-583 |#4|) |#4|)) (-15 -1759 ((-3 (-1070 (-1070 |#1|)) "failed") |#4|)) (-15 -2496 (|#4| |#4|)))
+((-3118 (((-2 (|:| |deter| (-583 (-1070 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1070 |#5|) (-583 |#1|) (-583 |#5|)) 51)) (-1643 (((-583 (-703)) |#1|) 12)))
+(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3118 ((-2 (|:| |deter| (-583 (-1070 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1070 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -1643 ((-583 (-703)) |#1|))) (-1131 |#4|) (-725) (-779) (-278) (-871 |#4| |#2| |#3|)) (T -710))
+((-1643 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *6)) (-4 *7 (-871 *6 *4 *5)))) (-3118 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1131 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1070 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1070 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
+(-10 -7 (-15 -3118 ((-2 (|:| |deter| (-583 (-1070 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1070 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -1643 ((-583 (-703)) |#1|)))
+((-1641 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-1473 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-3804 (((-874 (-377 (-517))) (-623 (-377 (-517))) (-1074)) 16) (((-874 (-377 (-517))) (-623 (-377 (-517)))) 15)))
+(((-711 |#1|) (-10 -7 (-15 -3804 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3804 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1074))) (-15 -1473 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -1641 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711))
+((-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1074)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3804 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3804 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1074))) (-15 -1473 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -1641 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 34)) (-1363 (((-583 |#2|) $) NIL)) (-2255 (((-1070 $) $ |#2|) NIL) (((-1070 |#1|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-2602 (($ $) 28)) (-2224 (((-107) $ $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) 92 (|has| |#1| (-509)))) (-2512 (((-583 $) $ $) 105 (|has| |#1| (-509)))) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))))) (((-3 $ "failed") (-874 (-517))) NIL (-3763 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074)))))) (((-3 $ "failed") (-874 |#1|)) NIL (-3763 (-12 (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-37 (-377 (-517))))) (-2455 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-37 (-377 (-517))))) (-2455 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-909 (-517))))))) (((-3 (-1026 |#1| |#2|) "failed") $) 18)) (-3076 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))))) (($ (-874 (-517))) NIL (-3763 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074)))))) (($ (-874 |#1|)) NIL (-3763 (-12 (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-37 (-377 (-517))))) (-2455 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-37 (-377 (-517))))) (-2455 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-909 (-517))))))) (((-1026 |#1| |#2|) $) NIL)) (-1309 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-509)))) (-1217 (($ $) NIL) (($ $ |#2|) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1584 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-1197 (((-107) $) NIL)) (-1257 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 69)) (-3594 (($ $) 118 (|has| |#1| (-421)))) (-3039 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-4138 (($ $) NIL (|has| |#1| (-509)))) (-3717 (($ $) NIL (|has| |#1| (-509)))) (-2278 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-1761 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-2253 (($ $ |#1| (-489 |#2|) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-2096 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-2271 (($ $ $ $ $) 89 (|has| |#1| (-509)))) (-3377 ((|#2| $) 19)) (-1352 (($ (-1070 |#1|) |#2|) NIL) (($ (-1070 $) |#2|) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2269 (($ $ $) 60)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ |#2|) NIL)) (-2909 (((-107) $) NIL)) (-2672 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2077 (((-703) $) 20)) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1954 (((-3 |#2| "failed") $) NIL)) (-3292 (($ $) NIL (|has| |#1| (-421)))) (-4125 (($ $) NIL (|has| |#1| (-421)))) (-2895 (((-583 $) $) NIL)) (-2011 (($ $) 37)) (-1581 (($ $) NIL (|has| |#1| (-421)))) (-4131 (((-583 $) $) 41)) (-2828 (($ $) 39)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1707 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2651 (-703))) $ $) 81)) (-2679 (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $) 66) (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $ |#2|) NIL)) (-1463 (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3169 $)) $ $) NIL) (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3169 $)) $ $ |#2|) NIL)) (-4036 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-1547 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3865 (((-1057) $) NIL)) (-4065 (($ $ $) 107 (|has| |#1| (-509)))) (-3730 (((-583 $) $) 30)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| |#2|) (|:| -2059 (-703))) "failed") $) NIL)) (-2998 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-2946 (($ $ $) NIL)) (-2663 (($ $) 21)) (-3196 (((-107) $ $) NIL)) (-3201 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3006 (($ $ $) NIL)) (-3159 (($ $) 23)) (-3094 (((-1021) $) NIL)) (-4137 (((-2 (|:| -1396 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-509)))) (-2175 (((-2 (|:| -1396 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-509)))) (-4134 (((-107) $) 52)) (-4144 ((|#1| $) 55)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1396 ((|#1| |#1| $) 115 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-831)))) (-3925 (((-2 (|:| -1396 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-509)))) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-1275 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3236 (($ $ |#1|) 110 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-4042 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-1699 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-4007 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-1430 (($ $) NIL)) (-3506 (($ $) 33)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))))) (($ (-874 (-517))) NIL (-3763 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2455 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074)))))) (($ (-874 |#1|)) NIL (|has| |#2| (-558 (-1074)))) (((-1057) $) NIL (-12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1074))))) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1074))))) (-1423 ((|#1| $) 114 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1074)))) (((-1026 |#1| |#2|) $) 15) (($ (-1026 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 13 T CONST)) (-2533 (((-3 (-107) "failed") $ $) NIL)) (-2306 (($) 35 T CONST)) (-2095 (($ $ $ $ (-703)) 87 (|has| |#1| (-509)))) (-3102 (($ $ $ (-703)) 86 (|has| |#1| (-509)))) (-2553 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) 54)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) 63)) (-1626 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) 61)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
(((-712 |#1| |#2|) (-13 (-975 |#1| (-489 |#2|) |#2|) (-557 (-1026 |#1| |#2|)) (-952 (-1026 |#1| |#2|))) (-961) (-779)) (T -712))
NIL
(-13 (-975 |#1| (-489 |#2|) |#2|) (-557 (-1026 |#1| |#2|)) (-952 (-1026 |#1| |#2|)))
-((-1893 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13)))
-(((-713 |#1| |#2|) (-10 -7 (-15 -1893 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-961) (-961)) (T -713))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))))
-(-10 -7 (-15 -1893 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 12)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2674 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-3081 (($ $ $) 35 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL) (((-3 (-1069 |#1|) "failed") $) 10)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL) (((-1069 |#1|) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) 71 (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) 70 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1439 (($ $ $) 20)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $) 26)) (-2641 (($ $ $) 29)) (-3037 (($ $ $) 32)) (-2669 (((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 31)) (-3985 (((-1056) $) NIL)) (-1855 (($ $ $) 41 (|has| |#1| (-509)))) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-3087 (((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-2610 (((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-4127 (((-107) $) 13)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1953 (($ $ (-703) |#1| $) 19)) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-1332 (((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-989)) NIL) (((-1069 |#1|) $) 7) (($ (-1069 |#1|)) 8) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 24 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 28) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-714 |#1|) (-13 (-1130 |#1|) (-557 (-1069 |#1|)) (-952 (-1069 |#1|)) (-10 -8 (-15 -1953 ($ $ (-703) |#1| $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $)) (-15 -2641 ($ $ $)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3037 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2674 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -1332 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2610 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -3087 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (-961)) (T -714))
-((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-1439 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-3634 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1349 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-2641 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-2669 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1931 *3) (|:| |gap| (-703)) (|:| -3425 (-714 *3)) (|:| -3060 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-3037 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-2674 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-1855 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) (-1478 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3224 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3704 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-1332 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-2610 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3087 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(-13 (-1130 |#1|) (-557 (-1069 |#1|)) (-952 (-1069 |#1|)) (-10 -8 (-15 -1953 ($ $ (-703) |#1| $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $)) (-15 -2641 ($ $ $)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3037 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2674 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -1332 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2610 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -3087 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |noBranch|)))
-((-2151 ((|#1| (-703) |#1|) 32 (|has| |#1| (-37 (-377 (-517)))))) (-2765 ((|#1| (-703) |#1|) 22)) (-2969 ((|#1| (-703) |#1|) 34 (|has| |#1| (-37 (-377 (-517)))))))
-(((-715 |#1|) (-10 -7 (-15 -2765 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2969 (|#1| (-703) |#1|)) (-15 -2151 (|#1| (-703) |#1|))) |noBranch|)) (-156)) (T -715))
-((-2151 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2969 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2765 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))))
-(-10 -7 (-15 -2765 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2969 (|#1| (-703) |#1|)) (-15 -2151 (|#1| (-703) |#1|))) |noBranch|))
-((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
-(((-716 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -716))
+((-1857 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13)))
+(((-713 |#1| |#2|) (-10 -7 (-15 -1857 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-961) (-961)) (T -713))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))))
+(-10 -7 (-15 -1857 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 12)) (-1770 (((-1154 |#1|) $ (-703)) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-3908 (($ (-1070 |#1|)) NIL)) (-2255 (((-1070 $) $ (-989)) NIL) (((-1070 |#1|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2742 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-3348 (($ $ $) 35 (|has| |#1| (-509)))) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $ (-703)) NIL)) (-2250 (($ $ (-703)) NIL)) (-3677 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL) (((-3 (-1070 |#1|) "failed") $) 10)) (-3076 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL) (((-1070 |#1|) $) NIL)) (-1309 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-3051 (($ $ $) NIL)) (-3555 (($ $ $) 71 (|has| |#1| (-509)))) (-1257 (((-2 (|:| -1883 |#1|) (|:| -3319 $) (|:| -3169 $)) $ $) 70 (|has| |#1| (-509)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3039 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-2253 (($ $ |#1| (-703) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-1921 (((-703) $ $) NIL (|has| |#1| (-509)))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-1050)))) (-1352 (($ (-1070 |#1|) (-989)) NIL) (($ (-1070 $) (-989)) NIL)) (-3371 (($ $ (-703)) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2269 (($ $ $) 20)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-989)) NIL) (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-2672 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-703) (-703)) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2891 (((-1070 |#1|) $) NIL)) (-1954 (((-3 (-989) "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1707 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2651 (-703))) $ $) 26)) (-3710 (($ $ $) 29)) (-1283 (($ $ $) 32)) (-2679 (((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $) 31)) (-3865 (((-1057) $) NIL)) (-4065 (($ $ $) 41 (|has| |#1| (-509)))) (-3267 (((-2 (|:| -3319 $) (|:| -3169 $)) $ (-703)) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-989)) (|:| -2059 (-703))) "failed") $) NIL)) (-2863 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2663 (($) NIL (|has| |#1| (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4137 (((-2 (|:| -1396 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-2175 (((-2 (|:| -1396 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-3401 (((-2 (|:| -1309 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-3390 (((-2 (|:| -1309 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-4134 (((-107) $) 13)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3150 (($ $ (-703) |#1| $) 19)) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-831)))) (-3925 (((-2 (|:| -1396 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-1622 (((-2 (|:| -1309 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-2759 (((-3 $ "failed") $ (-703)) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-4042 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-1699 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4007 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-3684 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-989)) NIL) (((-1070 |#1|) $) 7) (($ (-1070 |#1|)) 8) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 21 T CONST)) (-2306 (($) 24 T CONST)) (-2553 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) 28) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-714 |#1|) (-13 (-1131 |#1|) (-557 (-1070 |#1|)) (-952 (-1070 |#1|)) (-10 -8 (-15 -3150 ($ $ (-703) |#1| $)) (-15 -2269 ($ $ $)) (-15 -1707 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2651 (-703))) $ $)) (-15 -3710 ($ $ $)) (-15 -2679 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -1283 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2742 ((-583 $) $ $)) (-15 -4065 ($ $ $)) (-15 -3925 ((-2 (|:| -1396 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2175 ((-2 (|:| -1396 $) (|:| |coef1| $)) $ $)) (-15 -4137 ((-2 (|:| -1396 $) (|:| |coef2| $)) $ $)) (-15 -1622 ((-2 (|:| -1309 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3390 ((-2 (|:| -1309 |#1|) (|:| |coef1| $)) $ $)) (-15 -3401 ((-2 (|:| -1309 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (-961)) (T -714))
+((-3150 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-2269 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-1707 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -2651 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-3710 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-2679 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1883 *3) (|:| |gap| (-703)) (|:| -3319 (-714 *3)) (|:| -3169 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-1283 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-2742 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-4065 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) (-3925 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1396 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-2175 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1396 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-4137 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1396 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-1622 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1309 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3390 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1309 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3401 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1309 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(-13 (-1131 |#1|) (-557 (-1070 |#1|)) (-952 (-1070 |#1|)) (-10 -8 (-15 -3150 ($ $ (-703) |#1| $)) (-15 -2269 ($ $ $)) (-15 -1707 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2651 (-703))) $ $)) (-15 -3710 ($ $ $)) (-15 -2679 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -1283 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2742 ((-583 $) $ $)) (-15 -4065 ($ $ $)) (-15 -3925 ((-2 (|:| -1396 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2175 ((-2 (|:| -1396 $) (|:| |coef1| $)) $ $)) (-15 -4137 ((-2 (|:| -1396 $) (|:| |coef2| $)) $ $)) (-15 -1622 ((-2 (|:| -1309 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3390 ((-2 (|:| -1309 |#1|) (|:| |coef1| $)) $ $)) (-15 -3401 ((-2 (|:| -1309 |#1|) (|:| |coef2| $)) $ $))) |noBranch|)))
+((-1595 ((|#1| (-703) |#1|) 32 (|has| |#1| (-37 (-377 (-517)))))) (-3564 ((|#1| (-703) |#1|) 22)) (-3668 ((|#1| (-703) |#1|) 34 (|has| |#1| (-37 (-377 (-517)))))))
+(((-715 |#1|) (-10 -7 (-15 -3564 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3668 (|#1| (-703) |#1|)) (-15 -1595 (|#1| (-703) |#1|))) |noBranch|)) (-156)) (T -715))
+((-1595 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-3668 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-3564 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))))
+(-10 -7 (-15 -3564 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3668 (|#1| (-703) |#1|)) (-15 -1595 (|#1| (-703) |#1|))) |noBranch|))
+((-2571 (((-107) $ $) 7)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) 85)) (-1310 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1363 (((-583 |#3|) $) 33)) (-3521 (((-107) $) 26)) (-2320 (((-107) $) 17 (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) 101) (((-107) $) 97)) (-2356 ((|#4| |#4| $) 92)) (-3938 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| $) 126)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) 27)) (-1799 (((-107) $ (-703)) 44)) (-3451 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-3473 (($) 45 T CONST)) (-1216 (((-107) $) 22 (|has| |#1| (-509)))) (-1930 (((-107) $ $) 24 (|has| |#1| (-509)))) (-1660 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3045 (((-107) $) 25 (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3515 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) 36)) (-3076 (($ (-583 |#4|)) 35)) (-1644 (((-3 $ "failed") $) 82)) (-1907 ((|#4| |#4| $) 89)) (-1667 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3197 ((|#4| |#4| $) 87)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) 105)) (-3357 (((-107) |#4| $) 136)) (-3862 (((-107) |#4| $) 133)) (-1442 (((-107) |#4| $) 137) (((-107) $) 134)) (-3037 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) 104) (((-107) $) 103)) (-3377 ((|#3| $) 34)) (-4064 (((-107) $ (-703)) 43)) (-1196 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 47)) (-2434 (((-583 |#3|) $) 32)) (-2995 (((-107) |#3| $) 31)) (-2942 (((-107) $ (-703)) 42)) (-3865 (((-1057) $) 9)) (-1765 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-4065 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| |#4| $) 127)) (-1988 (((-3 |#4| "failed") $) 83)) (-2368 (((-583 $) |#4| $) 129)) (-1905 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2491 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2551 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-1615 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2425 (((-583 |#4|) $) 107)) (-2998 (((-107) |#4| $) 99) (((-107) $) 95)) (-2946 ((|#4| |#4| $) 90)) (-3196 (((-107) $ $) 110)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) 100) (((-107) $) 96)) (-3006 ((|#4| |#4| $) 91)) (-3094 (((-1021) $) 10)) (-1631 (((-3 |#4| "failed") $) 84)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3886 (((-3 $ "failed") $ |#4|) 78)) (-3467 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2925 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) 38)) (-1546 (((-107) $) 41)) (-1326 (($) 40)) (-4007 (((-703) $) 106)) (-3105 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2322 (($ $) 39)) (-3582 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 60)) (-2399 (($ $ |#3|) 28)) (-3339 (($ $ |#3|) 30)) (-3529 (($ $) 88)) (-4011 (($ $ |#3|) 29)) (-2182 (((-787) $) 11) (((-583 |#4|) $) 37)) (-4124 (((-703) $) 76 (|has| |#3| (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2401 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3883 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) 81)) (-2385 (((-107) |#4| $) 135)) (-1223 (((-107) |#3| $) 80)) (-1539 (((-107) $ $) 6)) (-2210 (((-703) $) 46 (|has| $ (-6 -4183)))))
+(((-716 |#1| |#2| |#3| |#4|) (-1185) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -716))
NIL
(-13 (-980 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T))
-((-3806 (((-3 (-349) "failed") (-286 |#1|) (-843)) 62 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 54 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-874 |#1|)) (-843)) 41 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-874 |#1|))) 40 (|has| |#1| (-509))) (((-3 (-349) "failed") (-874 |#1|) (-843)) 31 (|has| |#1| (-961))) (((-3 (-349) "failed") (-874 |#1|)) 30 (|has| |#1| (-961)))) (-3690 (((-349) (-286 |#1|) (-843)) 99 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-874 |#1|)) (-843)) 91 (|has| |#1| (-509))) (((-349) (-377 (-874 |#1|))) 90 (|has| |#1| (-509))) (((-349) (-874 |#1|) (-843)) 86 (|has| |#1| (-961))) (((-349) (-874 |#1|)) 85 (|has| |#1| (-961))) (((-349) |#1| (-843)) 76) (((-349) |#1|) 22)) (-4116 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)) 71 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 70 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-843)) 63 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843)) 46 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|)))) 45 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843)) 39 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|))) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)) 28 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 |#1|)) 26 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-2319 (((-153 (-349)) (-286 (-153 |#1|)) (-843)) 102 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 101 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-843)) 100 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 98 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843)) 93 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 (-153 |#1|)))) 92 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|)) (-843)) 89 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|))) 88 (|has| |#1| (-509))) (((-153 (-349)) (-874 |#1|) (-843)) 84 (|has| |#1| (-961))) (((-153 (-349)) (-874 |#1|)) 83 (|has| |#1| (-961))) (((-153 (-349)) (-874 (-153 |#1|)) (-843)) 78 (|has| |#1| (-156))) (((-153 (-349)) (-874 (-153 |#1|))) 77 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-843)) 80 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 79 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-843)) 27) (((-153 (-349)) |#1|) 25)))
-(((-717 |#1|) (-10 -7 (-15 -3690 ((-349) |#1|)) (-15 -3690 ((-349) |#1| (-843))) (-15 -2319 ((-153 (-349)) |#1|)) (-15 -2319 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2319 ((-153 (-349)) (-153 |#1|))) (-15 -2319 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3690 ((-349) (-874 |#1|))) (-15 -3690 ((-349) (-874 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 |#1|))) (-15 -2319 ((-153 (-349)) (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3690 ((-349) (-377 (-874 |#1|)))) (-15 -3690 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3690 ((-349) (-286 |#1|))) (-15 -3690 ((-349) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 |#1|))) (-15 -2319 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-874 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|)) (-558 (-349))) (T -717))
-((-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-2319 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-3690 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-3690 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))))
-(-10 -7 (-15 -3690 ((-349) |#1|)) (-15 -3690 ((-349) |#1| (-843))) (-15 -2319 ((-153 (-349)) |#1|)) (-15 -2319 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2319 ((-153 (-349)) (-153 |#1|))) (-15 -2319 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3690 ((-349) (-874 |#1|))) (-15 -3690 ((-349) (-874 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 |#1|))) (-15 -2319 ((-153 (-349)) (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3690 ((-349) (-377 (-874 |#1|)))) (-15 -3690 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3690 ((-349) (-286 |#1|))) (-15 -3690 ((-349) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 |#1|))) (-15 -2319 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-874 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|))
-((-2084 (((-843) (-1056)) 63)) (-1885 (((-3 (-349) "failed") (-1056)) 32)) (-3321 (((-349) (-1056)) 30)) (-1712 (((-843) (-1056)) 53)) (-3835 (((-1056) (-843)) 54)) (-1774 (((-1056) (-843)) 52)))
-(((-718) (-10 -7 (-15 -1774 ((-1056) (-843))) (-15 -1712 ((-843) (-1056))) (-15 -3835 ((-1056) (-843))) (-15 -2084 ((-843) (-1056))) (-15 -3321 ((-349) (-1056))) (-15 -1885 ((-3 (-349) "failed") (-1056))))) (T -718))
-((-1885 (*1 *2 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))))
-(-10 -7 (-15 -1774 ((-1056) (-843))) (-15 -1712 ((-843) (-1056))) (-15 -3835 ((-1056) (-843))) (-15 -2084 ((-843) (-1056))) (-15 -3321 ((-349) (-1056))) (-15 -1885 ((-3 (-349) "failed") (-1056))))
-((-2750 (((-107) $ $) 7)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 15) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 13)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
-(((-719) (-1184)) (T -719))
-((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) (-2118 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) (-2118 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2118 ((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2118 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)))))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1109) . T))
+((-2531 (((-3 (-349) "failed") (-286 |#1|) (-843)) 62 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 54 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-874 |#1|)) (-843)) 41 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-874 |#1|))) 40 (|has| |#1| (-509))) (((-3 (-349) "failed") (-874 |#1|) (-843)) 31 (|has| |#1| (-961))) (((-3 (-349) "failed") (-874 |#1|)) 30 (|has| |#1| (-961)))) (-4060 (((-349) (-286 |#1|) (-843)) 99 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-874 |#1|)) (-843)) 91 (|has| |#1| (-509))) (((-349) (-377 (-874 |#1|))) 90 (|has| |#1| (-509))) (((-349) (-874 |#1|) (-843)) 86 (|has| |#1| (-961))) (((-349) (-874 |#1|)) 85 (|has| |#1| (-961))) (((-349) |#1| (-843)) 76) (((-349) |#1|) 22)) (-2592 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)) 71 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 70 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-843)) 63 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843)) 46 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|)))) 45 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843)) 39 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|))) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)) 28 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 |#1|)) 26 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-2226 (((-153 (-349)) (-286 (-153 |#1|)) (-843)) 102 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 101 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-843)) 100 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 98 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843)) 93 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 (-153 |#1|)))) 92 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|)) (-843)) 89 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|))) 88 (|has| |#1| (-509))) (((-153 (-349)) (-874 |#1|) (-843)) 84 (|has| |#1| (-961))) (((-153 (-349)) (-874 |#1|)) 83 (|has| |#1| (-961))) (((-153 (-349)) (-874 (-153 |#1|)) (-843)) 78 (|has| |#1| (-156))) (((-153 (-349)) (-874 (-153 |#1|))) 77 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-843)) 80 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 79 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-843)) 27) (((-153 (-349)) |#1|) 25)))
+(((-717 |#1|) (-10 -7 (-15 -4060 ((-349) |#1|)) (-15 -4060 ((-349) |#1| (-843))) (-15 -2226 ((-153 (-349)) |#1|)) (-15 -2226 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2226 ((-153 (-349)) (-153 |#1|))) (-15 -2226 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2226 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2226 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -4060 ((-349) (-874 |#1|))) (-15 -4060 ((-349) (-874 |#1|) (-843))) (-15 -2226 ((-153 (-349)) (-874 |#1|))) (-15 -2226 ((-153 (-349)) (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -4060 ((-349) (-377 (-874 |#1|)))) (-15 -4060 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2226 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2226 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2226 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2226 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -4060 ((-349) (-286 |#1|))) (-15 -4060 ((-349) (-286 |#1|) (-843))) (-15 -2226 ((-153 (-349)) (-286 |#1|))) (-15 -2226 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2226 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2226 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -2592 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2531 ((-3 (-349) "failed") (-874 |#1|))) (-15 -2531 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -2531 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -2531 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -2531 ((-3 (-349) "failed") (-286 |#1|))) (-15 -2531 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|)) (-558 (-349))) (T -717))
+((-2592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2592 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2592 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2531 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-2531 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2592 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2592 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2531 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-2531 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2592 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2531 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-2531 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2592 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-2226 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-4060 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))))
+(-10 -7 (-15 -4060 ((-349) |#1|)) (-15 -4060 ((-349) |#1| (-843))) (-15 -2226 ((-153 (-349)) |#1|)) (-15 -2226 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2226 ((-153 (-349)) (-153 |#1|))) (-15 -2226 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2226 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2226 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -4060 ((-349) (-874 |#1|))) (-15 -4060 ((-349) (-874 |#1|) (-843))) (-15 -2226 ((-153 (-349)) (-874 |#1|))) (-15 -2226 ((-153 (-349)) (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -4060 ((-349) (-377 (-874 |#1|)))) (-15 -4060 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2226 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2226 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2226 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2226 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -4060 ((-349) (-286 |#1|))) (-15 -4060 ((-349) (-286 |#1|) (-843))) (-15 -2226 ((-153 (-349)) (-286 |#1|))) (-15 -2226 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2226 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2226 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -2592 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2531 ((-3 (-349) "failed") (-874 |#1|))) (-15 -2531 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -2531 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -2531 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -2531 ((-3 (-349) "failed") (-286 |#1|))) (-15 -2531 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -2592 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|))
+((-2126 (((-843) (-1057)) 63)) (-3745 (((-3 (-349) "failed") (-1057)) 32)) (-1909 (((-349) (-1057)) 30)) (-3829 (((-843) (-1057)) 53)) (-2792 (((-1057) (-843)) 54)) (-2576 (((-1057) (-843)) 52)))
+(((-718) (-10 -7 (-15 -2576 ((-1057) (-843))) (-15 -3829 ((-843) (-1057))) (-15 -2792 ((-1057) (-843))) (-15 -2126 ((-843) (-1057))) (-15 -1909 ((-349) (-1057))) (-15 -3745 ((-3 (-349) "failed") (-1057))))) (T -718))
+((-3745 (*1 *2 *3) (|partial| -12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-718)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-718)))) (-2126 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-843)) (-5 *1 (-718)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1057)) (-5 *1 (-718)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-843)) (-5 *1 (-718)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1057)) (-5 *1 (-718)))))
+(-10 -7 (-15 -2576 ((-1057) (-843))) (-15 -3829 ((-843) (-1057))) (-15 -2792 ((-1057) (-843))) (-15 -2126 ((-843) (-1057))) (-15 -1909 ((-349) (-1057))) (-15 -3745 ((-3 (-349) "failed") (-1057))))
+((-2571 (((-107) $ $) 7)) (-2375 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 15) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 13)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)))
+(((-719) (-1185)) (T -719))
+((-2831 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950)))))) (-2375 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-2831 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950)))))) (-2375 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(-13 (-1003) (-10 -7 (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2375 ((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2375 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2099 (((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349))) 44) (((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 43)) (-2579 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 50)) (-3623 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 41)) (-2574 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349))) 52) (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 51)))
-(((-720) (-10 -7 (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -3623 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -2579 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))))) (T -720))
-((-2579 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2099 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2099 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-3623 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2574 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2574 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
-(-10 -7 (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -3623 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -2579 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))))
-((-2740 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-2688 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-2091 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-2314 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-1904 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-1322 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-3946 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-1984 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-3203 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27)))
-(((-721) (-10 -7 (-15 -3203 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1984 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3946 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1322 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2314 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2688 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1904 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2091 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2740 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721))
-((-2740 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2091 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1904 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2688 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2314 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1322 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3946 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1984 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3203 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(-10 -7 (-15 -3203 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1984 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3946 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1322 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2314 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2688 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1904 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2091 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2740 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))
-((-2018 (((-1104 |#1|) |#1| (-199) (-517)) 45)))
-(((-722 |#1|) (-10 -7 (-15 -2018 ((-1104 |#1|) |#1| (-199) (-517)))) (-891)) (T -722))
-((-2018 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1104 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))))
-(-10 -7 (-15 -2018 ((-1104 |#1|) |#1| (-199) (-517))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1654 (($ $ $) 28) (($ $) 27)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29)))
-(((-723) (-1184)) (T -723))
+((-2227 (((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349))) 44) (((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349))) 43)) (-3084 (((-1159) (-1154 (-349)) (-517) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349))) 50)) (-1591 (((-1159) (-1154 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349))) 41)) (-1336 (((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349))) 52) (((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349))) 51)))
+(((-720) (-10 -7 (-15 -1336 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -1336 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)))) (-15 -1591 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -2227 ((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -2227 ((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)))) (-15 -3084 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))))) (T -720))
+((-3084 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-2227 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349)))) (-5 *7 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-2227 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349)))) (-5 *7 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-1591 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-1336 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-1336 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
+(-10 -7 (-15 -1336 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -1336 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)))) (-15 -1591 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -2227 ((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -2227 ((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)))) (-15 -3084 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))))
+((-3264 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-2898 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-2174 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-3652 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-3947 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-3774 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-1666 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-3483 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-2050 (((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27)))
+(((-721) (-10 -7 (-15 -2050 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3483 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1666 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3774 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3652 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2898 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3947 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2174 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3264 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721))
+((-3264 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2174 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3947 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2898 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3652 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3774 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1666 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3483 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2050 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(-10 -7 (-15 -2050 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3483 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1666 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3774 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3652 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2898 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3947 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2174 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3264 ((-2 (|:| -3088 (-349)) (|:| -2033 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))
+((-2578 (((-1105 |#1|) |#1| (-199) (-517)) 45)))
+(((-722 |#1|) (-10 -7 (-15 -2578 ((-1105 |#1|) |#1| (-199) (-517)))) (-891)) (T -722))
+((-2578 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1105 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))))
+(-10 -7 (-15 -2578 ((-1105 |#1|) |#1| (-199) (-517))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 24)) (-1387 (((-3 $ "failed") $ $) 26)) (-3473 (($) 23 T CONST)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 22 T CONST)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (-1637 (($ $ $) 28) (($ $) 27)) (-1626 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29)))
+(((-723) (-1185)) (T -723))
NIL
(-13 (-727) (-21))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1003) . T))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
-(((-724) (-1184)) (T -724))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 24)) (-3473 (($) 23 T CONST)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 22 T CONST)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (-1626 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
+(((-724) (-1185)) (T -724))
NIL
(-13 (-726) (-23))
(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-726) . T) ((-779) . T) ((-1003) . T))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-1640 (($ $ $) 27)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
-(((-725) (-1184)) (T -725))
-((-1640 (*1 *1 *1 *1) (-4 *1 (-725))))
-(-13 (-727) (-10 -8 (-15 -1640 ($ $ $))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 24)) (-1754 (($ $ $) 27)) (-1387 (((-3 $ "failed") $ $) 26)) (-3473 (($) 23 T CONST)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 22 T CONST)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (-1626 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
+(((-725) (-1185)) (T -725))
+((-1754 (*1 *1 *1 *1) (-4 *1 (-725))))
+(-13 (-727) (-10 -8 (-15 -1754 ($ $ $))))
(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1003) . T))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
-(((-726) (-1184)) (T -726))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 24)) (-3473 (($) 23 T CONST)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 22 T CONST)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (-1626 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
+(((-726) (-1185)) (T -726))
NIL
(-13 (-779) (-23))
(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1003) . T))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
-(((-727) (-1184)) (T -727))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 24)) (-1387 (((-3 $ "failed") $ $) 26)) (-3473 (($) 23 T CONST)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 22 T CONST)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (-1626 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
+(((-727) (-1185)) (T -727))
NIL
(-13 (-724) (-123))
(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-779) . T) ((-1003) . T))
-((-2814 (((-107) $) 41)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-1256 (((-3 (-377 (-517)) "failed") $) 78)) (-1355 (((-107) $) 72)) (-3364 (((-377 (-517)) $) 76)) (-1506 ((|#2| $) 26)) (-1893 (($ (-1 |#2| |#2|) $) 23)) (-4118 (($ $) 61)) (-3645 (((-493) $) 67)) (-1487 (($ $) 21)) (-2256 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 10)) (-3710 ((|#2| $) 71)) (-1547 (((-107) $ $) 29)) (-1572 (((-107) $ $) 69)) (-1654 (($ $) 31) (($ $ $) NIL)) (-1642 (($ $ $) 30)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-728 |#1| |#2|) (-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728))
-((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))))
-(-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-1611 (((-703)) 53 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 94 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3189 (((-517) $) 95 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 89)) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 79)) (-1256 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-1355 (((-107) $) 68 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-3209 (($) 56 (|has| |#1| (-338)))) (-3848 (((-107) $) 31)) (-3997 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-1506 ((|#1| $) 71)) (-2967 (($ $ $) 62 (|has| |#1| (-779)))) (-3099 (($ $ $) 61 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 81)) (-1549 (((-843) $) 55 (|has| |#1| (-338)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 65 (|has| |#1| (-333)))) (-3448 (($ (-843)) 54 (|has| |#1| (-338)))) (-4142 ((|#1| $) 76)) (-1287 ((|#1| $) 77)) (-3181 ((|#1| $) 78)) (-2976 ((|#1| $) 72)) (-2999 ((|#1| $) 73)) (-1467 ((|#1| $) 74)) (-3490 ((|#1| $) 75)) (-3206 (((-1021) $) 10)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 82 (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3645 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 80)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-952 (-377 (-517)))))) (-1328 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3710 ((|#1| $) 69 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-729 |#1|) (-1184) (-156)) (T -729))
-((-1487 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1287 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1467 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3997 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-4118 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -1487 ($ $)) (-15 -3775 (|t#1| $)) (-15 -3181 (|t#1| $)) (-15 -1287 (|t#1| $)) (-15 -4142 (|t#1| $)) (-15 -3490 (|t#1| $)) (-15 -1467 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2976 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -3997 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-333)) (-15 -4118 ($ $)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))))
-(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-915 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 ((|#1| $) NIL) (((-915 |#1|) $) 33) (((-517) $) NIL (-3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-377 (-517)) $) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 16)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3209 (($) NIL (|has| |#1| (-338)))) (-3848 (((-107) $) NIL)) (-3997 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-915 |#1|) (-915 |#1|)) 29)) (-1506 ((|#1| $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-4142 ((|#1| $) 22)) (-1287 ((|#1| $) 20)) (-3181 ((|#1| $) 18)) (-2976 ((|#1| $) 26)) (-2999 ((|#1| $) 25)) (-1467 ((|#1| $) 24)) (-3490 ((|#1| $) 23)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-915 |#1|)) 30) (($ (-377 (-517))) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3710 ((|#1| $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 8 T CONST)) (-2409 (($) 12 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-731 |#1|) (-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -3997 ($ (-915 |#1|) (-915 |#1|))))) (-156)) (T -731))
-((-3997 (*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
-(-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -3997 ($ (-915 |#1|) (-915 |#1|)))))
-((-2750 (((-107) $ $) 7)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1547 (((-107) $ $) 6)))
-(((-732) (-1184)) (T -732))
-((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-3232 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950)))))
-(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3232 ((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+((-2745 (((-107) $) 41)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3076 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-1422 (((-3 (-377 (-517)) "failed") $) 78)) (-2712 (((-107) $) 72)) (-4078 (((-377 (-517)) $) 76)) (-2289 ((|#2| $) 26)) (-1857 (($ (-1 |#2| |#2|) $) 23)) (-4123 (($ $) 61)) (-3582 (((-493) $) 67)) (-2013 (($ $) 21)) (-2182 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-1865 (((-703)) 10)) (-1221 ((|#2| $) 71)) (-1539 (((-107) $ $) 29)) (-1560 (((-107) $ $) 69)) (-1637 (($ $) 31) (($ $ $) NIL)) (-1626 (($ $ $) 30)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-728 |#1| |#2|) (-10 -8 (-15 -1560 ((-107) |#1| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -4123 (|#1| |#1|)) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -1221 (|#2| |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -2182 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2745 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1626 (|#1| |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728))
+((-1865 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))))
+(-10 -8 (-15 -1560 ((-107) |#1| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -4123 (|#1| |#1|)) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -1221 (|#2| |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -2182 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2745 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1626 (|#1| |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-1598 (((-703)) 53 (|has| |#1| (-338)))) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 94 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3076 (((-517) $) 95 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 89)) (-1568 (((-3 $ "failed") $) 34)) (-3720 ((|#1| $) 79)) (-1422 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-2712 (((-107) $) 68 (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-3098 (($) 56 (|has| |#1| (-338)))) (-2955 (((-107) $) 31)) (-3984 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2289 ((|#1| $) 71)) (-1575 (($ $ $) 62 (|has| |#1| (-779)))) (-2986 (($ $ $) 61 (|has| |#1| (-779)))) (-1857 (($ (-1 |#1| |#1|) $) 81)) (-2903 (((-843) $) 55 (|has| |#1| (-338)))) (-3865 (((-1057) $) 9)) (-4123 (($ $) 65 (|has| |#1| (-333)))) (-3353 (($ (-843)) 54 (|has| |#1| (-338)))) (-2797 ((|#1| $) 76)) (-2701 ((|#1| $) 77)) (-2983 ((|#1| $) 78)) (-3759 ((|#1| $) 72)) (-3967 ((|#1| $) 73)) (-3830 ((|#1| $) 74)) (-2628 ((|#1| $) 75)) (-3094 (((-1021) $) 10)) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) 82 (|has| |#1| (-478 (-1074) |#1|)))) (-1986 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3582 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-2013 (($ $) 80)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-952 (-377 (-517)))))) (-1589 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-1221 ((|#1| $) 69 (|has| |#1| (-970)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1593 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-729 |#1|) (-1185) (-156)) (T -729))
+((-2013 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3984 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1221 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1422 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-4123 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -2013 ($ $)) (-15 -3720 (|t#1| $)) (-15 -2983 (|t#1| $)) (-15 -2701 (|t#1| $)) (-15 -2797 (|t#1| $)) (-15 -2628 (|t#1| $)) (-15 -3830 (|t#1| $)) (-15 -3967 (|t#1| $)) (-15 -3759 (|t#1| $)) (-15 -2289 (|t#1| $)) (-15 -3984 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -1221 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-333)) (-15 -4123 ($ $)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1857 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))))
+(-10 -7 (-15 -1857 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-1598 (((-703)) NIL (|has| |#1| (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-915 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3763 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3763 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3076 ((|#1| $) NIL) (((-915 |#1|) $) 33) (((-517) $) NIL (-3763 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-377 (-517)) $) NIL (-3763 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1568 (((-3 $ "failed") $) NIL)) (-3720 ((|#1| $) 16)) (-1422 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-2712 (((-107) $) NIL (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3098 (($) NIL (|has| |#1| (-338)))) (-2955 (((-107) $) NIL)) (-3984 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-915 |#1|) (-915 |#1|)) 29)) (-2289 ((|#1| $) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2903 (((-843) $) NIL (|has| |#1| (-338)))) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-3353 (($ (-843)) NIL (|has| |#1| (-338)))) (-2797 ((|#1| $) 22)) (-2701 ((|#1| $) 20)) (-2983 ((|#1| $) 18)) (-3759 ((|#1| $) 26)) (-3967 ((|#1| $) 25)) (-3830 ((|#1| $) 24)) (-2628 ((|#1| $) 23)) (-3094 (((-1021) $) NIL)) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|)))) (-1986 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2013 (($ $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-915 |#1|)) 30) (($ (-377 (-517))) NIL (-3763 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-1221 ((|#1| $) NIL (|has| |#1| (-970)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 8 T CONST)) (-2306 (($) 12 T CONST)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-731 |#1|) (-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -3984 ($ (-915 |#1|) (-915 |#1|))))) (-156)) (T -731))
+((-3984 (*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
+(-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -3984 ($ (-915 |#1|) (-915 |#1|)))))
+((-2571 (((-107) $ $) 7)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2219 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1539 (((-107) $ $) 6)))
+(((-732) (-1185)) (T -732))
+((-2831 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)))))) (-2219 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950)))))
+(-13 (-1003) (-10 -7 (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2219 ((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3655 (((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073)) 19)))
-(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -3655 ((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880)) (-593 |#2|)) (T -733))
-((-3655 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -3655 ((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073))))
-((-1674 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073)) 17) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073)) 22) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073)) 24) (((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073)) 36) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073)) 34)))
-(((-734 |#1| |#2|) (-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073))) (-15 -1674 ((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073))) (-15 -1674 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1674 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -734))
-((-1674 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-1674 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) (-1674 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1753 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1094) (-880))))) (-1674 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1753 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1073)) (-4 *6 (-13 (-29 *5) (-1094) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1153 *6))) (-5 *1 (-734 *5 *6)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1153 *7)))))
-(-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073))) (-15 -1674 ((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073))) (-15 -1674 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1674 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|))))
-((-1245 (($) 9)) (-2883 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-2274 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-1710 (($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-2245 (($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-2258 (((-1158)) 12)))
-(((-735) (-10 -8 (-15 -1245 ($)) (-15 -2258 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2245 ($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2883 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735))
-((-2883 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-2258 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-735)))) (-1245 (*1 *1) (-5 *1 (-735))))
-(-10 -8 (-15 -1245 ($)) (-15 -2258 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2245 ($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2883 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2612 ((|#2| |#2| (-1073)) 15)) (-2575 ((|#2| |#2| (-1073)) 47)) (-2252 (((-1 |#2| |#2|) (-1073)) 11)))
-(((-736 |#1| |#2|) (-10 -7 (-15 -2612 (|#2| |#2| (-1073))) (-15 -2575 (|#2| |#2| (-1073))) (-15 -2252 ((-1 |#2| |#2|) (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -736))
-((-2252 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1094) (-880))))) (-2575 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))) (-2612 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))))
-(-10 -7 (-15 -2612 (|#2| |#2| (-1073))) (-15 -2575 (|#2| |#2| (-1073))) (-15 -2252 ((-1 |#2| |#2|) (-1073))))
-((-1674 (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-950) (-740) (-973)) 105) (((-950) (-740)) 106)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973)) 71) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740)) 73)))
-(((-737) (-10 -7 (-15 -1674 ((-950) (-740))) (-15 -1674 ((-950) (-740) (-973))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973))))) (T -737))
-((-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))))
-(-10 -7 (-15 -1674 ((-950) (-740))) (-15 -1674 ((-950) (-740) (-973))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973))))
-((-3532 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|) 32)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738))
-((-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3532 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|)))
-((-4112 (((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 51)) (-4013 (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|) 59) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|) 58) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|) 21)) (-3457 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-1998 ((|#2| |#3| (-583 (-377 |#2|))) 93) (((-3 |#2| "failed") |#3| (-377 |#2|)) 90)))
-(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1998 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -1998 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|)) (-15 -3457 (|#2| |#3| |#1|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|)) (-15 -3457 (|#2| |#4| |#1|)) (-15 -4112 ((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1130 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739))
-((-4112 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2131 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-3457 (*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-3457 (*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-1998 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-1998 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))))
-(-10 -7 (-15 -1998 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -1998 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|)) (-15 -3457 (|#2| |#3| |#1|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|)) (-15 -3457 (|#2| |#4| |#1|)) (-15 -4112 ((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|)))))
-((-2750 (((-107) $ $) NIL)) (-3189 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1547 (((-107) $ $) NIL)))
-(((-740) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))
-((-2846 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|)) 118)) (-2199 (((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-1981 (((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|) 95)) (-2470 ((|#2| |#3|) 37)) (-2156 (((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 82)) (-2109 ((|#3| |#3| (-377 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2470 (|#2| |#3|)) (-15 -1981 ((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|)) (-15 -2156 ((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2109 (|#3| |#3| |#2|)) (-15 -2109 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1130 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741))
-((-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1130 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-2846 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1069 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2131 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2156 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1619 *5) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-1981 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2131 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-2470 (*1 *2 *3) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
-(-10 -7 (-15 -2470 (|#2| |#3|)) (-15 -1981 ((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|)) (-15 -2156 ((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2109 (|#3| |#3| |#2|)) (-15 -2109 (|#3| |#3| (-377 |#2|))))
-((-1983 (((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 117) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 116) (((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 111) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 109)) (-2171 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81)))
-(((-742 |#1| |#2|) (-10 -7 (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2171 (|#2| (-590 (-377 |#2|)))) (-15 -2171 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -742))
-((-2171 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))))
-(-10 -7 (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2171 (|#2| (-590 (-377 |#2|)))) (-15 -2171 (|#2| (-591 |#2| (-377 |#2|)))))
-((-2187 (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|) 47)))
-(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2187 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1130 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743))
-((-2187 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1130 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -2187 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|)))
-((-2846 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-1461 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 138 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-2199 (((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 80)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -744))
-((-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-2846 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
-(-10 -7 (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |noBranch|))
-((-1776 (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|)) 86) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|)) 14)) (-2032 (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|)) 92)) (-1674 (((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|)) 45)))
-(((-745 |#1| |#2|) (-10 -7 (-15 -1776 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|))) (-15 -1776 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -2032 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745))
-((-2032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1753 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *6) "failed")) (|:| -1753 (-583 (-1153 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1153 *6)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1753 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1153 *6)) (|:| -1753 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5)) (|:| -2131 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *6 (-593 *5)))))
-(-10 -7 (-15 -1776 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|))) (-15 -1776 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -2032 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|))))
-((-1537 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-2306 (((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-2679 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -1537 ((-623 |#1|) (-583 |#1|))) (-15 -1537 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -2306 ((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2679 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746))
-((-2679 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-2306 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1153 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))))
-(-10 -7 (-15 -1537 ((-623 |#1|) (-583 |#1|))) (-15 -1537 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -2306 ((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2679 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|))))
-((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) NIL (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) NIL)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) NIL (|has| |#2| (-123)) CONST)) (-2409 (($) NIL (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 11 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1153 |#2|) (-1153 |#2|))) (T -747))
+((-1874 (((-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#3| |#2| (-1074)) 19)))
+(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -1874 ((-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#3| |#2| (-1074)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880)) (-593 |#2|)) (T -733))
+((-1874 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1095) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3809 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -1874 ((-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#3| |#2| (-1074))))
+((-3480 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1074)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1074)) 17) (((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1074)) 22) (((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1074)) 24) (((-3 (-583 (-1154 |#2|)) "failed") (-623 |#2|) (-1074)) 36) (((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-623 |#2|) (-1154 |#2|) (-1074)) 34)))
+(((-734 |#1| |#2|) (-10 -7 (-15 -3480 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-623 |#2|) (-1154 |#2|) (-1074))) (-15 -3480 ((-3 (-583 (-1154 |#2|)) "failed") (-623 |#2|) (-1074))) (-15 -3480 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1074))) (-15 -3480 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1074))) (-15 -3480 ((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1074))) (-15 -3480 ((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1074))) (-15 -3480 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3480 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880))) (T -734))
+((-3480 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-3480 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) (-3480 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3809 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1095) (-880))))) (-3480 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3809 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-3480 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -3809 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)))) (-3480 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -3809 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)))) (-3480 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1074)) (-4 *6 (-13 (-29 *5) (-1095) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1154 *6))) (-5 *1 (-734 *5 *6)))) (-3480 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -3809 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1154 *7)))))
+(-10 -7 (-15 -3480 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-623 |#2|) (-1154 |#2|) (-1074))) (-15 -3480 ((-3 (-583 (-1154 |#2|)) "failed") (-623 |#2|) (-1074))) (-15 -3480 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1074))) (-15 -3480 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -3809 (-583 (-1154 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1074))) (-15 -3480 ((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1074))) (-15 -3480 ((-3 (-2 (|:| |particular| |#2|) (|:| -3809 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1074))) (-15 -3480 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3480 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|))))
+((-2130 (($) 9)) (-2258 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-3799 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-3816 (($ (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-1259 (($ (-583 (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-3079 (((-1159)) 12)))
+(((-735) (-10 -8 (-15 -2130 ($)) (-15 -3079 ((-1159))) (-15 -3799 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1259 ($ (-583 (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3816 ($ (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2258 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735))
+((-2258 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-1259 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-3079 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-735)))) (-2130 (*1 *1) (-5 *1 (-735))))
+(-10 -8 (-15 -2130 ($)) (-15 -3079 ((-1159))) (-15 -3799 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1259 ($ (-583 (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3816 ($ (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2258 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-3417 ((|#2| |#2| (-1074)) 15)) (-1346 ((|#2| |#2| (-1074)) 47)) (-1328 (((-1 |#2| |#2|) (-1074)) 11)))
+(((-736 |#1| |#2|) (-10 -7 (-15 -3417 (|#2| |#2| (-1074))) (-15 -1346 (|#2| |#2| (-1074))) (-15 -1328 ((-1 |#2| |#2|) (-1074)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880))) (T -736))
+((-1328 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1095) (-880))))) (-1346 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1095) (-880))))) (-3417 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1095) (-880))))))
+(-10 -7 (-15 -3417 (|#2| |#2| (-1074))) (-15 -1346 (|#2| |#2| (-1074))) (-15 -1328 ((-1 |#2| |#2|) (-1074))))
+((-3480 (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-950) (-740) (-973)) 105) (((-950) (-740)) 106)) (-2831 (((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740) (-973)) 71) (((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740)) 73)))
+(((-737) (-10 -7 (-15 -3480 ((-950) (-740))) (-15 -3480 ((-950) (-740) (-973))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740) (-973))))) (T -737))
+((-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-737)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-737)))) (-3480 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-3480 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-3480 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-3480 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-3480 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-3480 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))))
+(-10 -7 (-15 -3480 ((-950) (-740))) (-15 -3480 ((-950) (-740) (-973))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -3480 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740) (-973))))
+((-3018 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3809 (-583 |#4|))) (-590 |#4|) |#4|) 32)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3809 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738))
+((-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3809 (-583 |#4|))) (-590 |#4|) |#4|)))
+((-2558 (((-2 (|:| -2075 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 51)) (-4121 (((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#4| |#2|) 59) (((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#4|) 58) (((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#3|) 21)) (-3633 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-2415 ((|#2| |#3| (-583 (-377 |#2|))) 93) (((-3 |#2| "failed") |#3| (-377 |#2|)) 90)))
+(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -2415 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -4121 ((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#3|)) (-15 -4121 ((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#3| |#2|)) (-15 -3633 (|#2| |#3| |#1|)) (-15 -4121 ((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#4|)) (-15 -4121 ((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#4| |#2|)) (-15 -3633 (|#2| |#4| |#1|)) (-15 -2558 ((-2 (|:| -2075 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1131 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739))
+((-2558 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-2 (|:| -2075 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-3633 (*1 *2 *3 *4) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-4121 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2840 *4) (|:| -2070 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| -2840 *5) (|:| -2070 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-3633 (*1 *2 *3 *4) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-4121 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2840 *4) (|:| -2070 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| -2840 *5) (|:| -2070 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1131 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-2415 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))))
+(-10 -7 (-15 -2415 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -2415 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -4121 ((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#3|)) (-15 -4121 ((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#3| |#2|)) (-15 -3633 (|#2| |#3| |#1|)) (-15 -4121 ((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#4|)) (-15 -4121 ((-583 (-2 (|:| -2840 |#2|) (|:| -2070 |#2|))) |#4| |#2|)) (-15 -3633 (|#2| |#4| |#1|)) (-15 -2558 ((-2 (|:| -2075 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|)))))
+((-2571 (((-107) $ $) NIL)) (-3076 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1539 (((-107) $ $) NIL)))
+(((-740) (-13 (-1003) (-10 -8 (-15 -2182 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2182 ((-787) $)) (-15 -3076 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2182 ((-787) $)) (-15 -3076 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))
+((-1980 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2075 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1070 |#2|)) (-1 (-388 |#2|) |#2|)) 118)) (-3839 (((-583 (-2 (|:| |poly| |#2|) (|:| -2075 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-3444 (((-583 (-2 (|:| |deg| (-703)) (|:| -2075 |#2|))) |#3|) 95)) (-1580 ((|#2| |#3|) 37)) (-1652 (((-583 (-2 (|:| -1605 |#1|) (|:| -2075 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 82)) (-2299 ((|#3| |#3| (-377 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1580 (|#2| |#3|)) (-15 -3444 ((-583 (-2 (|:| |deg| (-703)) (|:| -2075 |#2|))) |#3|)) (-15 -1652 ((-583 (-2 (|:| -1605 |#1|) (|:| -2075 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -3839 ((-583 (-2 (|:| |poly| |#2|) (|:| -2075 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1980 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2075 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1070 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2299 (|#3| |#3| |#2|)) (-15 -2299 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1131 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741))
+((-2299 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-2299 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1131 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-1980 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1070 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2075 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2075 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -1605 *5) (|:| -2075 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2075 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-1580 (*1 *2 *3) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
+(-10 -7 (-15 -1580 (|#2| |#3|)) (-15 -3444 ((-583 (-2 (|:| |deg| (-703)) (|:| -2075 |#2|))) |#3|)) (-15 -1652 ((-583 (-2 (|:| -1605 |#1|) (|:| -2075 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -3839 ((-583 (-2 (|:| |poly| |#2|) (|:| -2075 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1980 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2075 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1070 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2299 (|#3| |#3| |#2|)) (-15 -2299 (|#3| |#3| (-377 |#2|))))
+((-3472 (((-2 (|:| -3809 (-583 (-377 |#2|))) (|:| -2522 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 117) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3809 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 116) (((-2 (|:| -3809 (-583 (-377 |#2|))) (|:| -2522 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 111) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3809 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 109)) (-1804 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81)))
+(((-742 |#1| |#2|) (-10 -7 (-15 -3472 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3809 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -3472 ((-2 (|:| -3809 (-583 (-377 |#2|))) (|:| -2522 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3472 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3809 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -3472 ((-2 (|:| -3809 (-583 (-377 |#2|))) (|:| -2522 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1804 (|#2| (-590 (-377 |#2|)))) (-15 -1804 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|)) (T -742))
+((-1804 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -3809 (-583 (-377 *6))) (|:| -2522 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -3809 (-583 (-377 *6))) (|:| -2522 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-742 *5 *6)))))
+(-10 -7 (-15 -3472 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3809 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -3472 ((-2 (|:| -3809 (-583 (-377 |#2|))) (|:| -2522 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3472 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3809 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -3472 ((-2 (|:| -3809 (-583 (-377 |#2|))) (|:| -2522 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1804 (|#2| (-590 (-377 |#2|)))) (-15 -1804 (|#2| (-591 |#2| (-377 |#2|)))))
+((-3699 (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) |#5| |#4|) 47)))
+(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3699 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1131 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743))
+((-3699 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1131 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2522 (-623 *6)) (|:| |vec| (-1154 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -3699 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) |#5| |#4|)))
+((-1980 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2075 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-3772 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 138 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-3839 (((-583 (-2 (|:| |poly| |#2|) (|:| -2075 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 80)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -3772 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -3772 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -3772 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -3772 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1980 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2075 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3839 ((-583 (-2 (|:| |poly| |#2|) (|:| -2075 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3772 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -3772 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3772 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -3772 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|)) (T -744))
+((-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1131 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1131 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2075 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1980 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2075 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-3772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1131 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-3772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1131 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(-10 -7 (-15 -3772 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -3772 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -3772 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -3772 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1980 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2075 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3839 ((-583 (-2 (|:| |poly| |#2|) (|:| -2075 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3772 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -3772 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3772 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -3772 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |noBranch|))
+((-2613 (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) (-623 |#2|) (-1154 |#1|)) 86) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)) (|:| -2075 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1154 |#1|)) 14)) (-2714 (((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-623 |#2|) (-1154 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3809 (-583 |#1|))) |#2| |#1|)) 92)) (-3480 (((-3 (-2 (|:| |particular| (-1154 |#1|)) (|:| -3809 (-623 |#1|))) "failed") (-623 |#1|) (-1154 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3809 (-583 |#1|))) "failed") |#2| |#1|)) 45)))
+(((-745 |#1| |#2|) (-10 -7 (-15 -2613 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)) (|:| -2075 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1154 |#1|))) (-15 -2613 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) (-623 |#2|) (-1154 |#1|))) (-15 -3480 ((-3 (-2 (|:| |particular| (-1154 |#1|)) (|:| -3809 (-623 |#1|))) "failed") (-623 |#1|) (-1154 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3809 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -2714 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-623 |#2|) (-1154 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3809 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745))
+((-2714 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3809 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *6) "failed")) (|:| -3809 (-583 (-1154 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1154 *6)))) (-3480 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3809 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1154 *6)) (|:| -3809 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1154 *6)))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2522 (-623 *6)) (|:| |vec| (-1154 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1154 *5)))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1154 *5)) (|:| -2075 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *6 (-593 *5)))))
+(-10 -7 (-15 -2613 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)) (|:| -2075 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1154 |#1|))) (-15 -2613 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) (-623 |#2|) (-1154 |#1|))) (-15 -3480 ((-3 (-2 (|:| |particular| (-1154 |#1|)) (|:| -3809 (-623 |#1|))) "failed") (-623 |#1|) (-1154 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3809 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -2714 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -3809 (-583 (-1154 |#1|)))) (-623 |#2|) (-1154 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3809 (-583 |#1|))) |#2| |#1|))))
+((-1431 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-3566 (((-3 (-1154 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-2781 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42)))
+(((-746 |#1| |#2|) (-10 -7 (-15 -1431 ((-623 |#1|) (-583 |#1|))) (-15 -1431 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3566 ((-3 (-1154 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2781 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746))
+((-2781 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-3566 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1154 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))))
+(-10 -7 (-15 -1431 ((-623 |#1|) (-583 |#1|))) (-15 -1431 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3566 ((-3 (-1154 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2781 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|))))
+((-2571 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2745 (((-107) $) NIL (|has| |#2| (-123)))) (-1991 (($ (-843)) NIL (|has| |#2| (-961)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1754 (($ $ $) NIL (|has| |#2| (-725)))) (-1387 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-1799 (((-107) $ (-703)) NIL)) (-1598 (((-703)) NIL (|has| |#2| (-338)))) (-1207 (((-517) $) NIL (|has| |#2| (-777)))) (-2307 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3076 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-4012 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-1568 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-3098 (($) NIL (|has| |#2| (-338)))) (-1226 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ (-517)) NIL)) (-2099 (((-107) $) NIL (|has| |#2| (-777)))) (-3037 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2955 (((-107) $) NIL (|has| |#2| (-961)))) (-1624 (((-107) $) NIL (|has| |#2| (-777)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1196 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1213 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-2903 (((-843) $) NIL (|has| |#2| (-338)))) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#2| (-1003)))) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3353 (($ (-843)) NIL (|has| |#2| (-338)))) (-3094 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1631 ((|#2| $) NIL (|has| (-517) (-779)))) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-2736 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3739 (($ (-1154 |#2|)) NIL)) (-2586 (((-125)) NIL (|has| |#2| (-333)))) (-1699 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3105 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-1154 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3763 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-1865 (((-703)) NIL (|has| |#2| (-961)))) (-3883 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1221 (($ $) NIL (|has| |#2| (-777)))) (-2146 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2297 (($) NIL (|has| |#2| (-123)) CONST)) (-2306 (($) NIL (|has| |#2| (-961)) CONST)) (-2553 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1593 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1570 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1539 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1582 (((-107) $ $) NIL (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1560 (((-107) $ $) 11 (-3763 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1626 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1154 |#2|) (-1154 |#2|))) (T -747))
NIL
(-212 |#1| |#2|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1073)) NIL)) (-2932 (((-703) $) NIL) (((-703) $ (-1073)) NIL)) (-1364 (((-583 (-750 (-1073))) $) NIL)) (-2352 (((-1069 $) $ (-750 (-1073))) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1073)))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-750 (-1073)) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL) (((-3 (-1026 |#1| (-1073)) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-750 (-1073)) $) NIL) (((-1073) $) NIL) (((-1026 |#1| (-1073)) $) NIL)) (-3388 (($ $ $ (-750 (-1073))) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1073))) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-750 (-1073))) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-750 (-1073)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-750 (-1073)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-750 (-1073))) NIL) (($ (-1069 $) (-750 (-1073))) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-750 (-1073))) NIL)) (-2349 (((-489 (-750 (-1073))) $) NIL) (((-703) $ (-750 (-1073))) NIL) (((-583 (-703)) $ (-583 (-750 (-1073)))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-750 (-1073))) (-489 (-750 (-1073)))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) (-1073)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 (-750 (-1073)) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 (((-750 (-1073)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-750 (-1073))) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1073)) |#1|) NIL) (($ $ (-583 (-750 (-1073))) (-583 |#1|)) NIL) (($ $ (-750 (-1073)) $) NIL) (($ $ (-583 (-750 (-1073))) (-583 $)) NIL) (($ $ (-1073) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ (-750 (-1073))) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-750 (-1073))) NIL) (($ $ (-583 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 (-1073)) $) NIL)) (-3688 (((-489 (-750 (-1073))) $) NIL) (((-703) $ (-750 (-1073))) NIL) (((-583 (-703)) $ (-583 (-750 (-1073)))) NIL) (((-703) $ (-1073)) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1073))) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1073))) NIL) (($ (-1073)) NIL) (($ (-1026 |#1| (-1073))) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-750 (-1073))) NIL) (($ $ (-583 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-748 |#1|) (-13 (-226 |#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) (-952 (-1026 |#1| (-1073)))) (-961)) (T -748))
-NIL
-(-13 (-226 |#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) (-952 (-1026 |#1| (-1073))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-1213 (($ $) NIL (|has| |#2| (-333)))) (-2454 (((-107) $) NIL (|has| |#2| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#2| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-333)))) (-1707 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#2| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#2| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-3849 (((-107) $) NIL (|has| |#2| (-333)))) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-1365 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 20 (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3146 (((-703) $) NIL (|has| |#2| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-3127 (($ $ (-703)) NIL) (($ $) 13)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) 15 (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333)))))
-(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |noBranch|) (-15 -2256 ($ |#2|)) (-15 -2256 (|#2| $)))) (-1003) (-822 |#1|) |#1|) (T -749))
-((-2256 (*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))))
-(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |noBranch|) (-15 -2256 ($ |#2|)) (-15 -2256 (|#2| $))))
-((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) NIL)) (-1638 ((|#1| $) 10)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3972 (((-703) $) 11)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2656 (($ |#1| (-703)) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2460 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1074)) NIL)) (-1587 (((-703) $) NIL) (((-703) $ (-1074)) NIL)) (-1363 (((-583 (-750 (-1074))) $) NIL)) (-2255 (((-1070 $) $ (-750 (-1074))) NIL) (((-1070 |#1|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1074)))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1816 (($ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-750 (-1074)) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL) (((-3 (-1026 |#1| (-1074)) "failed") $) NIL)) (-3076 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-750 (-1074)) $) NIL) (((-1074) $) NIL) (((-1026 |#1| (-1074)) $) NIL)) (-1309 (($ $ $ (-750 (-1074))) NIL (|has| |#1| (-156)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1074))) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-2253 (($ $ |#1| (-489 (-750 (-1074))) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-750 (-1074)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-750 (-1074)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-1921 (((-703) $ (-1074)) NIL) (((-703) $) NIL)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-1352 (($ (-1070 |#1|) (-750 (-1074))) NIL) (($ (-1070 $) (-750 (-1074))) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-489 (-750 (-1074)))) NIL) (($ $ (-750 (-1074)) (-703)) NIL) (($ $ (-583 (-750 (-1074))) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-750 (-1074))) NIL)) (-2672 (((-489 (-750 (-1074))) $) NIL) (((-703) $ (-750 (-1074))) NIL) (((-583 (-703)) $ (-583 (-750 (-1074)))) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-489 (-750 (-1074))) (-489 (-750 (-1074)))) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2569 (((-1 $ (-703)) (-1074)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1954 (((-3 (-750 (-1074)) "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-2076 (((-750 (-1074)) $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3865 (((-1057) $) NIL)) (-3831 (((-107) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-750 (-1074))) (|:| -2059 (-703))) "failed") $) NIL)) (-2442 (($ $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1074)) |#1|) NIL) (($ $ (-583 (-750 (-1074))) (-583 |#1|)) NIL) (($ $ (-750 (-1074)) $) NIL) (($ $ (-583 (-750 (-1074))) (-583 $)) NIL) (($ $ (-1074) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1074)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-4042 (($ $ (-750 (-1074))) NIL (|has| |#1| (-156)))) (-1699 (($ $ (-750 (-1074))) NIL) (($ $ (-583 (-750 (-1074)))) NIL) (($ $ (-750 (-1074)) (-703)) NIL) (($ $ (-583 (-750 (-1074))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3803 (((-583 (-1074)) $) NIL)) (-4007 (((-489 (-750 (-1074))) $) NIL) (((-703) $ (-750 (-1074))) NIL) (((-583 (-703)) $ (-583 (-750 (-1074)))) NIL) (((-703) $ (-1074)) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-750 (-1074)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-750 (-1074)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1074)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1074))) NIL (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1074))) NIL) (($ (-1074)) NIL) (($ (-1026 |#1| (-1074))) NIL) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-489 (-750 (-1074)))) NIL) (($ $ (-750 (-1074)) (-703)) NIL) (($ $ (-583 (-750 (-1074))) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-750 (-1074))) NIL) (($ $ (-583 (-750 (-1074)))) NIL) (($ $ (-750 (-1074)) (-703)) NIL) (($ $ (-583 (-750 (-1074))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-748 |#1|) (-13 (-226 |#1| (-1074) (-750 (-1074)) (-489 (-750 (-1074)))) (-952 (-1026 |#1| (-1074)))) (-961)) (T -748))
+NIL
+(-13 (-226 |#1| (-1074) (-750 (-1074)) (-489 (-750 (-1074)))) (-952 (-1026 |#1| (-1074))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-3209 (($ $) NIL (|has| |#2| (-333)))) (-1452 (((-107) $) NIL (|has| |#2| (-333)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| |#2| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#2| (-333)))) (-3765 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3473 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#2| (-333)))) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL (|has| |#2| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-2965 (((-107) $) NIL (|has| |#2| (-333)))) (-2955 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-1368 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 20 (|has| |#2| (-333)))) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3693 (((-388 $) $) NIL (|has| |#2| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#2| (-333)))) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2623 (((-703) $) NIL (|has| |#2| (-333)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#2| (-333)))) (-1699 (($ $ (-703)) NIL) (($ $) 13)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-1865 (((-703)) NIL)) (-3767 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2146 (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) 15 (|has| |#2| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333)))))
+(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |noBranch|) (-15 -2182 ($ |#2|)) (-15 -2182 (|#2| $)))) (-1003) (-822 |#1|) |#1|) (T -749))
+((-2182 (*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) (-2182 (*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))))
+(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |noBranch|) (-15 -2182 ($ |#2|)) (-15 -2182 (|#2| $))))
+((-2571 (((-107) $ $) NIL)) (-1587 (((-703) $) NIL)) (-1625 ((|#1| $) 10)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-1921 (((-703) $) 11)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-2569 (($ |#1| (-703)) 9)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1699 (($ $) NIL) (($ $ (-703)) NIL)) (-2182 (((-787) $) NIL) (($ |#1|) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)))
(((-750 |#1|) (-239 |#1|) (-779)) (T -750))
NIL
(-239 |#1|)
-((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 29)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-3791 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1660 (($ $) 31)) (-3621 (((-3 $ "failed") $) NIL)) (-1337 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3848 (((-107) $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-703) $ (-517)) NIL)) (-2402 (($ $) 35)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-3109 (((-107) $ $) 33)) (-2195 (((-703) $) 25)) (-3985 (((-1056) $) NIL)) (-2611 (($ $ $) NIL)) (-2301 (($ $ $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) 30)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) NIL)) (-2486 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2409 (($) 14 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 34)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-751 |#1|) (-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1647 (|#1| $)) (-15 -1660 ($ $)) (-15 -2402 ($ $)) (-15 -3109 ((-107) $ $)) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -2208 ((-3 $ "failed") $ |#1|)) (-15 -3791 ((-3 $ "failed") $ |#1|)) (-15 -2486 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -2195 ((-703) $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -751))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2611 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2208 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3791 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2208 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3791 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2486 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1647 (|#1| $)) (-15 -1660 ($ $)) (-15 -2402 ($ $)) (-15 -3109 ((-107) $ $)) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -2208 ((-3 $ "failed") $ |#1|)) (-15 -3791 ((-3 $ "failed") $ |#1|)) (-15 -2486 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -2195 ((-703) $)) (-15 -3463 ((-583 |#1|) $))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3709 (((-517) $) 53)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3556 (((-107) $) 51)) (-3848 (((-107) $) 31)) (-2475 (((-107) $) 52)) (-2967 (($ $ $) 50)) (-3099 (($ $ $) 49)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 54)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 47)) (-1583 (((-107) $ $) 46)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 48)) (-1572 (((-107) $ $) 45)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-752) (-1184)) (T -752))
+((-2571 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) 29)) (-1598 (((-703) $) NIL)) (-3473 (($) NIL T CONST)) (-3660 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-1644 (($ $) 31)) (-1568 (((-3 $ "failed") $) NIL)) (-2387 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2955 (((-107) $) NIL)) (-2445 ((|#1| $ (-517)) NIL)) (-2169 (((-703) $ (-517)) NIL)) (-2088 (($ $) 35)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3913 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-3596 (((-107) $ $) 33)) (-2542 (((-703) $) 25)) (-3865 (((-1057) $) NIL)) (-3404 (($ $ $) NIL)) (-3516 (($ $ $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 ((|#1| $) 30)) (-2232 (((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-703)))) $) NIL)) (-2358 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2182 (((-787) $) NIL) (($ |#1|) NIL)) (-2146 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2306 (($) 14 T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 34)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-751 |#1|) (-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1631 (|#1| $)) (-15 -1644 ($ $)) (-15 -2088 ($ $)) (-15 -3596 ((-107) $ $)) (-15 -3516 ($ $ $)) (-15 -3404 ($ $ $)) (-15 -3913 ((-3 $ "failed") $ $)) (-15 -3660 ((-3 $ "failed") $ $)) (-15 -3913 ((-3 $ "failed") $ |#1|)) (-15 -3660 ((-3 $ "failed") $ |#1|)) (-15 -2358 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2387 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1598 ((-703) $)) (-15 -2169 ((-703) $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -2232 ((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-703)))) $)) (-15 -2542 ((-703) $)) (-15 -3367 ((-583 |#1|) $)))) (-779)) (T -751))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1631 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1644 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2088 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3596 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3516 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3404 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3913 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3660 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3913 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3660 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2358 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2387 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2169 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1631 (|#1| $)) (-15 -1644 ($ $)) (-15 -2088 ($ $)) (-15 -3596 ((-107) $ $)) (-15 -3516 ($ $ $)) (-15 -3404 ($ $ $)) (-15 -3913 ((-3 $ "failed") $ $)) (-15 -3660 ((-3 $ "failed") $ $)) (-15 -3913 ((-3 $ "failed") $ |#1|)) (-15 -3660 ((-3 $ "failed") $ |#1|)) (-15 -2358 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2387 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1598 ((-703) $)) (-15 -2169 ((-703) $ (-517))) (-15 -2445 (|#1| $ (-517))) (-15 -2232 ((-583 (-2 (|:| |gen| |#1|) (|:| -2459 (-703)))) $)) (-15 -2542 ((-703) $)) (-15 -3367 ((-583 |#1|) $))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-1207 (((-517) $) 53)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2099 (((-107) $) 51)) (-2955 (((-107) $) 31)) (-1624 (((-107) $) 52)) (-1575 (($ $ $) 50)) (-2986 (($ $ $) 49)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ $) 42)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-1221 (($ $) 54)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1593 (((-107) $ $) 47)) (-1570 (((-107) $ $) 46)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 48)) (-1560 (((-107) $ $) 45)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-752) (-1185)) (T -752))
NIL
(-13 (-509) (-777))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2105 (($ (-1021)) 7)) (-2230 (((-107) $ (-1056) (-1021)) 15)) (-2030 (((-754) $) 12)) (-1822 (((-754) $) 11)) (-2021 (((-1158) $) 9)) (-3261 (((-107) $ (-1021)) 16)))
-(((-753) (-10 -8 (-15 -2105 ($ (-1021))) (-15 -2021 ((-1158) $)) (-15 -1822 ((-754) $)) (-15 -2030 ((-754) $)) (-15 -2230 ((-107) $ (-1056) (-1021))) (-15 -3261 ((-107) $ (-1021))))) (T -753))
-((-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2230 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-753)))) (-2105 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753)))))
-(-10 -8 (-15 -2105 ($ (-1021))) (-15 -2021 ((-1158) $)) (-15 -1822 ((-754) $)) (-15 -2030 ((-754) $)) (-15 -2230 ((-107) $ (-1056) (-1021))) (-15 -3261 ((-107) $ (-1021))))
-((-2733 (((-1158) $ (-755)) 12)) (-1493 (((-1158) $ (-1073)) 32)) (-3303 (((-1158) $ (-1056) (-1056)) 34)) (-3231 (((-1158) $ (-1056)) 33)) (-3025 (((-1158) $) 19)) (-3945 (((-1158) $ (-517)) 28)) (-2415 (((-1158) $ (-199)) 30)) (-1417 (((-1158) $) 18)) (-1947 (((-1158) $) 26)) (-2698 (((-1158) $) 25)) (-2755 (((-1158) $) 23)) (-2429 (((-1158) $) 24)) (-2700 (((-1158) $) 22)) (-2998 (((-1158) $) 21)) (-3270 (((-1158) $) 20)) (-2581 (((-1158) $) 16)) (-3956 (((-1158) $) 17)) (-1896 (((-1158) $) 15)) (-3658 (((-1158) $) 14)) (-2642 (((-1158) $) 13)) (-4157 (($ (-1056) (-755)) 9)) (-3013 (($ (-1056) (-1056) (-755)) 8)) (-3508 (((-1073) $) 51)) (-3263 (((-1073) $) 55)) (-2654 (((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $) 54)) (-4110 (((-1056) $) 52)) (-2157 (((-1158) $) 41)) (-3356 (((-517) $) 49)) (-2166 (((-199) $) 50)) (-2282 (((-1158) $) 40)) (-3687 (((-1158) $) 48)) (-3119 (((-1158) $) 47)) (-2884 (((-1158) $) 45)) (-3656 (((-1158) $) 46)) (-2727 (((-1158) $) 44)) (-2855 (((-1158) $) 43)) (-3778 (((-1158) $) 42)) (-1960 (((-1158) $) 38)) (-3378 (((-1158) $) 39)) (-3102 (((-1158) $) 37)) (-2771 (((-1158) $) 36)) (-3571 (((-1158) $) 35)) (-3019 (((-1158) $) 11)))
-(((-754) (-10 -8 (-15 -3013 ($ (-1056) (-1056) (-755))) (-15 -4157 ($ (-1056) (-755))) (-15 -3019 ((-1158) $)) (-15 -2733 ((-1158) $ (-755))) (-15 -2642 ((-1158) $)) (-15 -3658 ((-1158) $)) (-15 -1896 ((-1158) $)) (-15 -2581 ((-1158) $)) (-15 -3956 ((-1158) $)) (-15 -1417 ((-1158) $)) (-15 -3025 ((-1158) $)) (-15 -3270 ((-1158) $)) (-15 -2998 ((-1158) $)) (-15 -2700 ((-1158) $)) (-15 -2755 ((-1158) $)) (-15 -2429 ((-1158) $)) (-15 -2698 ((-1158) $)) (-15 -1947 ((-1158) $)) (-15 -3945 ((-1158) $ (-517))) (-15 -2415 ((-1158) $ (-199))) (-15 -1493 ((-1158) $ (-1073))) (-15 -3231 ((-1158) $ (-1056))) (-15 -3303 ((-1158) $ (-1056) (-1056))) (-15 -3571 ((-1158) $)) (-15 -2771 ((-1158) $)) (-15 -3102 ((-1158) $)) (-15 -1960 ((-1158) $)) (-15 -3378 ((-1158) $)) (-15 -2282 ((-1158) $)) (-15 -2157 ((-1158) $)) (-15 -3778 ((-1158) $)) (-15 -2855 ((-1158) $)) (-15 -2727 ((-1158) $)) (-15 -2884 ((-1158) $)) (-15 -3656 ((-1158) $)) (-15 -3119 ((-1158) $)) (-15 -3687 ((-1158) $)) (-15 -3356 ((-517) $)) (-15 -2166 ((-199) $)) (-15 -3508 ((-1073) $)) (-15 -4110 ((-1056) $)) (-15 -2654 ((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $)) (-15 -3263 ((-1073) $)))) (T -754))
-((-3263 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1056)) (|:| -1207 (-1056)))) (-5 *1 (-754)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-754)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3303 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3231 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-1493 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3945 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2733 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))) (-3013 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))))
-(-10 -8 (-15 -3013 ($ (-1056) (-1056) (-755))) (-15 -4157 ($ (-1056) (-755))) (-15 -3019 ((-1158) $)) (-15 -2733 ((-1158) $ (-755))) (-15 -2642 ((-1158) $)) (-15 -3658 ((-1158) $)) (-15 -1896 ((-1158) $)) (-15 -2581 ((-1158) $)) (-15 -3956 ((-1158) $)) (-15 -1417 ((-1158) $)) (-15 -3025 ((-1158) $)) (-15 -3270 ((-1158) $)) (-15 -2998 ((-1158) $)) (-15 -2700 ((-1158) $)) (-15 -2755 ((-1158) $)) (-15 -2429 ((-1158) $)) (-15 -2698 ((-1158) $)) (-15 -1947 ((-1158) $)) (-15 -3945 ((-1158) $ (-517))) (-15 -2415 ((-1158) $ (-199))) (-15 -1493 ((-1158) $ (-1073))) (-15 -3231 ((-1158) $ (-1056))) (-15 -3303 ((-1158) $ (-1056) (-1056))) (-15 -3571 ((-1158) $)) (-15 -2771 ((-1158) $)) (-15 -3102 ((-1158) $)) (-15 -1960 ((-1158) $)) (-15 -3378 ((-1158) $)) (-15 -2282 ((-1158) $)) (-15 -2157 ((-1158) $)) (-15 -3778 ((-1158) $)) (-15 -2855 ((-1158) $)) (-15 -2727 ((-1158) $)) (-15 -2884 ((-1158) $)) (-15 -3656 ((-1158) $)) (-15 -3119 ((-1158) $)) (-15 -3687 ((-1158) $)) (-15 -3356 ((-517) $)) (-15 -2166 ((-199) $)) (-15 -3508 ((-1073) $)) (-15 -4110 ((-1056) $)) (-15 -2654 ((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $)) (-15 -3263 ((-1073) $)))
-((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 12)) (-3999 (($) 15)) (-2394 (($) 13)) (-3851 (($) 16)) (-3322 (($) 14)) (-1547 (((-107) $ $) 8)))
-(((-755) (-13 (-1003) (-10 -8 (-15 -2394 ($)) (-15 -3999 ($)) (-15 -3851 ($)) (-15 -3322 ($))))) (T -755))
-((-2394 (*1 *1) (-5 *1 (-755))) (-3999 (*1 *1) (-5 *1 (-755))) (-3851 (*1 *1) (-5 *1 (-755))) (-3322 (*1 *1) (-5 *1 (-755))))
-(-13 (-1003) (-10 -8 (-15 -2394 ($)) (-15 -3999 ($)) (-15 -3851 ($)) (-15 -3322 ($))))
-((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 21) (($ (-1073)) 17)) (-2663 (((-107) $) 10)) (-1546 (((-107) $) 9)) (-2763 (((-107) $) 11)) (-1965 (((-107) $) 8)) (-1547 (((-107) $ $) 19)))
-(((-756) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -1965 ((-107) $)) (-15 -1546 ((-107) $)) (-15 -2663 ((-107) $)) (-15 -2763 ((-107) $))))) (T -756))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-756)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -1965 ((-107) $)) (-15 -1546 ((-107) $)) (-15 -2663 ((-107) $)) (-15 -2763 ((-107) $))))
-((-2750 (((-107) $ $) NIL)) (-3136 (($ (-756) (-583 (-1073))) 24)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1504 (((-756) $) 25)) (-2509 (((-583 (-1073)) $) 26)) (-2256 (((-787) $) 23)) (-1547 (((-107) $ $) NIL)))
-(((-757) (-13 (-1003) (-10 -8 (-15 -1504 ((-756) $)) (-15 -2509 ((-583 (-1073)) $)) (-15 -3136 ($ (-756) (-583 (-1073))))))) (T -757))
-((-1504 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-757)))) (-3136 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1073))) (-5 *1 (-757)))))
-(-13 (-1003) (-10 -8 (-15 -1504 ((-756) $)) (-15 -2509 ((-583 (-1073)) $)) (-15 -3136 ($ (-756) (-583 (-1073))))))
-((-2482 (((-1158) (-754) (-286 |#1|) (-107)) 22) (((-1158) (-754) (-286 |#1|)) 76) (((-1056) (-286 |#1|) (-107)) 75) (((-1056) (-286 |#1|)) 74)))
-(((-758 |#1|) (-10 -7 (-15 -2482 ((-1056) (-286 |#1|))) (-15 -2482 ((-1056) (-286 |#1|) (-107))) (-15 -2482 ((-1158) (-754) (-286 |#1|))) (-15 -2482 ((-1158) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-961))) (T -758))
-((-2482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *6)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *5)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *5)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *4)))))
-(-10 -7 (-15 -2482 ((-1056) (-286 |#1|))) (-15 -2482 ((-1056) (-286 |#1|) (-107))) (-15 -2482 ((-1158) (-754) (-286 |#1|))) (-15 -2482 ((-1158) (-754) (-286 |#1|) (-107))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2837 ((|#1| $) 10)) (-3837 (($ |#1|) 9)) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) NIL)) (-2349 (((-703) $) NIL)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3688 (((-703) $) NIL)) (-2256 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-2720 ((|#2| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |noBranch|) (-15 -3837 ($ |#1|)) (-15 -2837 (|#1| $)))) (-642 |#2|) (-961)) (T -759))
-((-3837 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-2837 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961)))))
-(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |noBranch|) (-15 -3837 ($ |#1|)) (-15 -2837 (|#1| $))))
-((-2482 (((-1158) (-754) $ (-107)) 9) (((-1158) (-754) $) 8) (((-1056) $ (-107)) 7) (((-1056) $) 6)))
-(((-760) (-1184)) (T -760))
-((-2482 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1158)))) (-2482 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1158)))) (-2482 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1056)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1056)))))
-(-13 (-10 -8 (-15 -2482 ((-1056) $)) (-15 -2482 ((-1056) $ (-107))) (-15 -2482 ((-1158) (-754) $)) (-15 -2482 ((-1158) (-754) $ (-107)))))
-((-1280 (((-282) (-1056) (-1056)) 12)) (-2972 (((-107) (-1056) (-1056)) 33)) (-2038 (((-107) (-1056)) 32)) (-1808 (((-51) (-1056)) 25)) (-1993 (((-51) (-1056)) 23)) (-2226 (((-51) (-754)) 17)) (-4122 (((-583 (-1056)) (-1056)) 28)) (-2250 (((-583 (-1056))) 27)))
-(((-761) (-10 -7 (-15 -2226 ((-51) (-754))) (-15 -1993 ((-51) (-1056))) (-15 -1808 ((-51) (-1056))) (-15 -2250 ((-583 (-1056)))) (-15 -4122 ((-583 (-1056)) (-1056))) (-15 -2038 ((-107) (-1056))) (-15 -2972 ((-107) (-1056) (-1056))) (-15 -1280 ((-282) (-1056) (-1056))))) (T -761))
-((-1280 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-761)))) (-2972 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))) (-4122 (*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)) (-5 *3 (-1056)))) (-2250 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(-10 -7 (-15 -2226 ((-51) (-754))) (-15 -1993 ((-51) (-1056))) (-15 -1808 ((-51) (-1056))) (-15 -2250 ((-583 (-1056)))) (-15 -4122 ((-583 (-1056)) (-1056))) (-15 -2038 ((-107) (-1056))) (-15 -2972 ((-107) (-1056) (-1056))) (-15 -1280 ((-282) (-1056) (-1056))))
-((-2750 (((-107) $ $) 18)) (-1413 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3245 (($ $ $) 72)) (-3009 (((-107) $ $) 73)) (-2953 (((-107) $ (-703)) 8)) (-1362 (($ (-583 |#1|)) 68) (($) 67)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2967 ((|#1| $) 78)) (-2797 (($ $ $) 81)) (-3237 (($ $ $) 80)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 79)) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3170 (($ $ |#1|) 71) (($ $ $) 70)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20)) (-3167 (($ (-583 |#1|)) 66) (($) 65)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 64)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-762 |#1|) (-1184) (-779)) (T -762))
-((-2967 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))))
-(-13 (-669 |t#1|) (-886 |t#1|) (-10 -8 (-15 -2967 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-886 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T))
-((-1346 (((-1158) (-1021) (-1021)) 47)) (-3178 (((-1158) (-753) (-51)) 44)) (-1532 (((-51) (-753)) 16)))
-(((-763) (-10 -7 (-15 -1532 ((-51) (-753))) (-15 -3178 ((-1158) (-753) (-51))) (-15 -1346 ((-1158) (-1021) (-1021))))) (T -763))
-((-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1158)) (-5 *1 (-763)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1158)) (-5 *1 (-763)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
-(-10 -7 (-15 -1532 ((-51) (-753))) (-15 -3178 ((-1158) (-753) (-51))) (-15 -1346 ((-1158) (-1021) (-1021))))
-((-1893 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13)))
-(((-764 |#1| |#2|) (-10 -7 (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1003) (-1003)) (T -764))
-((-1893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))))
-(-10 -7 (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL (|has| |#1| (-21)) CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-3621 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-1256 (((-3 (-377 (-517)) "failed") $) 49 (|has| |#1| (-502)))) (-1355 (((-107) $) 43 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 46 (|has| |#1| (-502)))) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-3848 (((-107) $) NIL (|has| |#1| (-777)))) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-2676 (($) 13)) (-2169 (((-107) $) 12)) (-3206 (((-1021) $) NIL)) (-1515 (((-107) $) 11)) (-2256 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3807 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-2961 (((-703)) 34 (|has| |#1| (-777)))) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2396 (($) 22 (|has| |#1| (-21)) CONST)) (-2409 (($) 31 (|has| |#1| (-777)) CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1654 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1642 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21)))))
-(((-765 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2676 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) (-1003)) (T -765))
-((-2676 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))))
-(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2676 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-109) $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3447 ((|#1| (-109) |#1|) NIL)) (-3848 (((-107) $) NIL)) (-1261 (($ |#1| (-331 (-109))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1392 (($ $ (-1 |#1| |#1|)) NIL)) (-3269 (($ $ (-1 |#1| |#1|)) NIL)) (-1449 ((|#1| $ |#1|) NIL)) (-3445 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2061 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-766 |#1|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#1| |#1|))) (-15 -1392 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#1| (-109) |#1|)) (-15 -1261 ($ |#1| (-331 (-109)))))) (-961)) (T -766))
-((-2061 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-2061 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3445 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) (-3447 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))) (-1261 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#1| |#1|))) (-15 -1392 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#1| (-109) |#1|)) (-15 -1261 ($ |#1| (-331 (-109))))))
-((-3818 (((-189 (-467)) (-1056)) 8)))
-(((-767) (-10 -7 (-15 -3818 ((-189 (-467)) (-1056))))) (T -767))
-((-3818 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
-(-10 -7 (-15 -3818 ((-189 (-467)) (-1056))))
-((-2750 (((-107) $ $) 7)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 14) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 15)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
-(((-768) (-1184)) (T -768))
-((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-3826 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-950)))) (-3826 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))))
-(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3826 ((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3826 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))))))
+((-2270 (($ (-1021)) 7)) (-4098 (((-107) $ (-1057) (-1021)) 15)) (-2689 (((-754) $) 12)) (-3780 (((-754) $) 11)) (-2603 (((-1159) $) 9)) (-1379 (((-107) $ (-1021)) 16)))
+(((-753) (-10 -8 (-15 -2270 ($ (-1021))) (-15 -2603 ((-1159) $)) (-15 -3780 ((-754) $)) (-15 -2689 ((-754) $)) (-15 -4098 ((-107) $ (-1057) (-1021))) (-15 -1379 ((-107) $ (-1021))))) (T -753))
+((-1379 (*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-4098 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-753)))) (-2270 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753)))))
+(-10 -8 (-15 -2270 ($ (-1021))) (-15 -2603 ((-1159) $)) (-15 -3780 ((-754) $)) (-15 -2689 ((-754) $)) (-15 -4098 ((-107) $ (-1057) (-1021))) (-15 -1379 ((-107) $ (-1021))))
+((-3184 (((-1159) $ (-755)) 12)) (-2052 (((-1159) $ (-1074)) 32)) (-1775 (((-1159) $ (-1057) (-1057)) 34)) (-2212 (((-1159) $ (-1057)) 33)) (-4161 (((-1159) $) 19)) (-1654 (((-1159) $ (-517)) 28)) (-2178 (((-1159) $ (-199)) 30)) (-1474 (((-1159) $) 18)) (-3091 (((-1159) $) 26)) (-3008 (((-1159) $) 25)) (-3435 (((-1159) $) 23)) (-2295 (((-1159) $) 24)) (-3016 (((-1159) $) 22)) (-3957 (((-1159) $) 21)) (-1466 (((-1159) $) 20)) (-3100 (((-1159) $) 16)) (-1777 (((-1159) $) 17)) (-3868 (((-1159) $) 15)) (-1897 (((-1159) $) 14)) (-3723 (((-1159) $) 13)) (-2924 (($ (-1057) (-755)) 9)) (-4051 (($ (-1057) (-1057) (-755)) 8)) (-2796 (((-1074) $) 51)) (-1397 (((-1074) $) 55)) (-2552 (((-2 (|:| |cd| (-1057)) (|:| -1211 (-1057))) $) 54)) (-2547 (((-1057) $) 52)) (-1664 (((-1159) $) 41)) (-4023 (((-517) $) 49)) (-1763 (((-199) $) 50)) (-3298 (((-1159) $) 40)) (-3998 (((-1159) $) 48)) (-2433 (((-1159) $) 47)) (-2266 (((-1159) $) 45)) (-1881 (((-1159) $) 46)) (-3133 (((-1159) $) 44)) (-2053 (((-1159) $) 43)) (-3535 (((-1159) $) 42)) (-3213 (((-1159) $) 38)) (-1225 (((-1159) $) 39)) (-3544 (((-1159) $) 37)) (-2406 (((-1159) $) 36)) (-2194 (((-1159) $) 35)) (-4114 (((-1159) $) 11)))
+(((-754) (-10 -8 (-15 -4051 ($ (-1057) (-1057) (-755))) (-15 -2924 ($ (-1057) (-755))) (-15 -4114 ((-1159) $)) (-15 -3184 ((-1159) $ (-755))) (-15 -3723 ((-1159) $)) (-15 -1897 ((-1159) $)) (-15 -3868 ((-1159) $)) (-15 -3100 ((-1159) $)) (-15 -1777 ((-1159) $)) (-15 -1474 ((-1159) $)) (-15 -4161 ((-1159) $)) (-15 -1466 ((-1159) $)) (-15 -3957 ((-1159) $)) (-15 -3016 ((-1159) $)) (-15 -3435 ((-1159) $)) (-15 -2295 ((-1159) $)) (-15 -3008 ((-1159) $)) (-15 -3091 ((-1159) $)) (-15 -1654 ((-1159) $ (-517))) (-15 -2178 ((-1159) $ (-199))) (-15 -2052 ((-1159) $ (-1074))) (-15 -2212 ((-1159) $ (-1057))) (-15 -1775 ((-1159) $ (-1057) (-1057))) (-15 -2194 ((-1159) $)) (-15 -2406 ((-1159) $)) (-15 -3544 ((-1159) $)) (-15 -3213 ((-1159) $)) (-15 -1225 ((-1159) $)) (-15 -3298 ((-1159) $)) (-15 -1664 ((-1159) $)) (-15 -3535 ((-1159) $)) (-15 -2053 ((-1159) $)) (-15 -3133 ((-1159) $)) (-15 -2266 ((-1159) $)) (-15 -1881 ((-1159) $)) (-15 -2433 ((-1159) $)) (-15 -3998 ((-1159) $)) (-15 -4023 ((-517) $)) (-15 -1763 ((-199) $)) (-15 -2796 ((-1074) $)) (-15 -2547 ((-1057) $)) (-15 -2552 ((-2 (|:| |cd| (-1057)) (|:| -1211 (-1057))) $)) (-15 -1397 ((-1074) $)))) (T -754))
+((-1397 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-754)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1057)) (|:| -1211 (-1057)))) (-5 *1 (-754)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-754)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-754)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1225 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1775 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-2052 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3723 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3184 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2924 (*1 *1 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-755)) (-5 *1 (-754)))) (-4051 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(-10 -8 (-15 -4051 ($ (-1057) (-1057) (-755))) (-15 -2924 ($ (-1057) (-755))) (-15 -4114 ((-1159) $)) (-15 -3184 ((-1159) $ (-755))) (-15 -3723 ((-1159) $)) (-15 -1897 ((-1159) $)) (-15 -3868 ((-1159) $)) (-15 -3100 ((-1159) $)) (-15 -1777 ((-1159) $)) (-15 -1474 ((-1159) $)) (-15 -4161 ((-1159) $)) (-15 -1466 ((-1159) $)) (-15 -3957 ((-1159) $)) (-15 -3016 ((-1159) $)) (-15 -3435 ((-1159) $)) (-15 -2295 ((-1159) $)) (-15 -3008 ((-1159) $)) (-15 -3091 ((-1159) $)) (-15 -1654 ((-1159) $ (-517))) (-15 -2178 ((-1159) $ (-199))) (-15 -2052 ((-1159) $ (-1074))) (-15 -2212 ((-1159) $ (-1057))) (-15 -1775 ((-1159) $ (-1057) (-1057))) (-15 -2194 ((-1159) $)) (-15 -2406 ((-1159) $)) (-15 -3544 ((-1159) $)) (-15 -3213 ((-1159) $)) (-15 -1225 ((-1159) $)) (-15 -3298 ((-1159) $)) (-15 -1664 ((-1159) $)) (-15 -3535 ((-1159) $)) (-15 -2053 ((-1159) $)) (-15 -3133 ((-1159) $)) (-15 -2266 ((-1159) $)) (-15 -1881 ((-1159) $)) (-15 -2433 ((-1159) $)) (-15 -3998 ((-1159) $)) (-15 -4023 ((-517) $)) (-15 -1763 ((-199) $)) (-15 -2796 ((-1074) $)) (-15 -2547 ((-1057) $)) (-15 -2552 ((-2 (|:| |cd| (-1057)) (|:| -1211 (-1057))) $)) (-15 -1397 ((-1074) $)))
+((-2571 (((-107) $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 12)) (-4003 (($) 15)) (-2025 (($) 13)) (-2985 (($) 16)) (-1919 (($) 14)) (-1539 (((-107) $ $) 8)))
+(((-755) (-13 (-1003) (-10 -8 (-15 -2025 ($)) (-15 -4003 ($)) (-15 -2985 ($)) (-15 -1919 ($))))) (T -755))
+((-2025 (*1 *1) (-5 *1 (-755))) (-4003 (*1 *1) (-5 *1 (-755))) (-2985 (*1 *1) (-5 *1 (-755))) (-1919 (*1 *1) (-5 *1 (-755))))
+(-13 (-1003) (-10 -8 (-15 -2025 ($)) (-15 -4003 ($)) (-15 -2985 ($)) (-15 -1919 ($))))
+((-2571 (((-107) $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 21) (($ (-1074)) 17)) (-2615 (((-107) $) 10)) (-2874 (((-107) $) 9)) (-3539 (((-107) $) 11)) (-3271 (((-107) $) 8)) (-1539 (((-107) $ $) 19)))
+(((-756) (-13 (-1003) (-10 -8 (-15 -2182 ($ (-1074))) (-15 -3271 ((-107) $)) (-15 -2874 ((-107) $)) (-15 -2615 ((-107) $)) (-15 -3539 ((-107) $))))) (T -756))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-756)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ($ (-1074))) (-15 -3271 ((-107) $)) (-15 -2874 ((-107) $)) (-15 -2615 ((-107) $)) (-15 -3539 ((-107) $))))
+((-2571 (((-107) $ $) NIL)) (-2549 (($ (-756) (-583 (-1074))) 24)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2273 (((-756) $) 25)) (-1906 (((-583 (-1074)) $) 26)) (-2182 (((-787) $) 23)) (-1539 (((-107) $ $) NIL)))
+(((-757) (-13 (-1003) (-10 -8 (-15 -2273 ((-756) $)) (-15 -1906 ((-583 (-1074)) $)) (-15 -2549 ($ (-756) (-583 (-1074))))))) (T -757))
+((-2273 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-757)))) (-2549 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1074))) (-5 *1 (-757)))))
+(-13 (-1003) (-10 -8 (-15 -2273 ((-756) $)) (-15 -1906 ((-583 (-1074)) $)) (-15 -2549 ($ (-756) (-583 (-1074))))))
+((-1693 (((-1159) (-754) (-286 |#1|) (-107)) 22) (((-1159) (-754) (-286 |#1|)) 76) (((-1057) (-286 |#1|) (-107)) 75) (((-1057) (-286 |#1|)) 74)))
+(((-758 |#1|) (-10 -7 (-15 -1693 ((-1057) (-286 |#1|))) (-15 -1693 ((-1057) (-286 |#1|) (-107))) (-15 -1693 ((-1159) (-754) (-286 |#1|))) (-15 -1693 ((-1159) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-961))) (T -758))
+((-1693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1159)) (-5 *1 (-758 *6)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1159)) (-5 *1 (-758 *5)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1057)) (-5 *1 (-758 *5)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1057)) (-5 *1 (-758 *4)))))
+(-10 -7 (-15 -1693 ((-1057) (-286 |#1|))) (-15 -1693 ((-1057) (-286 |#1|) (-107))) (-15 -1693 ((-1159) (-754) (-286 |#1|))) (-15 -1693 ((-1159) (-754) (-286 |#1|) (-107))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-1923 ((|#1| $) 10)) (-3812 (($ |#1|) 9)) (-2955 (((-107) $) NIL)) (-1343 (($ |#2| (-703)) NIL)) (-2672 (((-703) $) NIL)) (-1192 ((|#2| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1699 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-4007 (((-703) $) NIL)) (-2182 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-3086 ((|#2| $ (-703)) NIL)) (-1865 (((-703)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |noBranch|) (-15 -3812 ($ |#1|)) (-15 -1923 (|#1| $)))) (-642 |#2|) (-961)) (T -759))
+((-3812 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-1923 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961)))))
+(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |noBranch|) (-15 -3812 ($ |#1|)) (-15 -1923 (|#1| $))))
+((-1693 (((-1159) (-754) $ (-107)) 9) (((-1159) (-754) $) 8) (((-1057) $ (-107)) 7) (((-1057) $) 6)))
+(((-760) (-1185)) (T -760))
+((-1693 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1159)))) (-1693 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1159)))) (-1693 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1057)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1057)))))
+(-13 (-10 -8 (-15 -1693 ((-1057) $)) (-15 -1693 ((-1057) $ (-107))) (-15 -1693 ((-1159) (-754) $)) (-15 -1693 ((-1159) (-754) $ (-107)))))
+((-3748 (((-282) (-1057) (-1057)) 12)) (-3705 (((-107) (-1057) (-1057)) 33)) (-2790 (((-107) (-1057)) 32)) (-1222 (((-51) (-1057)) 25)) (-3597 (((-51) (-1057)) 23)) (-4056 (((-51) (-754)) 17)) (-2629 (((-583 (-1057)) (-1057)) 28)) (-1308 (((-583 (-1057))) 27)))
+(((-761) (-10 -7 (-15 -4056 ((-51) (-754))) (-15 -3597 ((-51) (-1057))) (-15 -1222 ((-51) (-1057))) (-15 -1308 ((-583 (-1057)))) (-15 -2629 ((-583 (-1057)) (-1057))) (-15 -2790 ((-107) (-1057))) (-15 -3705 ((-107) (-1057) (-1057))) (-15 -3748 ((-282) (-1057) (-1057))))) (T -761))
+((-3748 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-761)))) (-3705 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-761)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-761)))) (-2629 (*1 *2 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-761)) (-5 *3 (-1057)))) (-1308 (*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-761)))) (-1222 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-761)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-761)))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(-10 -7 (-15 -4056 ((-51) (-754))) (-15 -3597 ((-51) (-1057))) (-15 -1222 ((-51) (-1057))) (-15 -1308 ((-583 (-1057)))) (-15 -2629 ((-583 (-1057)) (-1057))) (-15 -2790 ((-107) (-1057))) (-15 -3705 ((-107) (-1057) (-1057))) (-15 -3748 ((-282) (-1057) (-1057))))
+((-2571 (((-107) $ $) 18)) (-1408 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2321 (($ $ $) 72)) (-4035 (((-107) $ $) 73)) (-1799 (((-107) $ (-703)) 8)) (-1361 (($ (-583 |#1|)) 68) (($) 67)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-2573 (($ $) 62)) (-1667 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-1971 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1575 ((|#1| $) 78)) (-2581 (($ $ $) 81)) (-2262 (($ $ $) 80)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2986 ((|#1| $) 79)) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22)) (-2551 (($ $ $) 69)) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3094 (((-1021) $) 21)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3972 (((-583 (-2 (|:| -1266 |#1|) (|:| -3105 (-703)))) $) 61)) (-2852 (($ $ |#1|) 71) (($ $ $) 70)) (-3429 (($) 49) (($ (-583 |#1|)) 48)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 50)) (-2182 (((-787) $) 20)) (-3055 (($ (-583 |#1|)) 66) (($) 65)) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19)) (-1560 (((-107) $ $) 64)) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-762 |#1|) (-1185) (-779)) (T -762))
+((-1575 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))))
+(-13 (-669 |t#1|) (-886 |t#1|) (-10 -8 (-15 -1575 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-886 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1109) . T))
+((-2822 (((-1159) (-1021) (-1021)) 47)) (-2952 (((-1159) (-753) (-51)) 44)) (-1384 (((-51) (-753)) 16)))
+(((-763) (-10 -7 (-15 -1384 ((-51) (-753))) (-15 -2952 ((-1159) (-753) (-51))) (-15 -2822 ((-1159) (-1021) (-1021))))) (T -763))
+((-2822 (*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1159)) (-5 *1 (-763)))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1159)) (-5 *1 (-763)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+(-10 -7 (-15 -1384 ((-51) (-753))) (-15 -2952 ((-1159) (-753) (-51))) (-15 -2822 ((-1159) (-1021) (-1021))))
+((-1857 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13)))
+(((-764 |#1| |#2|) (-10 -7 (-15 -1857 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1857 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1003) (-1003)) (T -764))
+((-1857 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))))
+(-10 -7 (-15 -1857 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1857 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL (|has| |#1| (-21)))) (-1387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1207 (((-517) $) NIL (|has| |#1| (-777)))) (-3473 (($) NIL (|has| |#1| (-21)) CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-1568 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-1422 (((-3 (-377 (-517)) "failed") $) 49 (|has| |#1| (-502)))) (-2712 (((-107) $) 43 (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) 46 (|has| |#1| (-502)))) (-2099 (((-107) $) NIL (|has| |#1| (-777)))) (-2955 (((-107) $) NIL (|has| |#1| (-777)))) (-1624 (((-107) $) NIL (|has| |#1| (-777)))) (-1575 (($ $ $) NIL (|has| |#1| (-777)))) (-2986 (($ $ $) NIL (|has| |#1| (-777)))) (-3865 (((-1057) $) NIL)) (-2501 (($) 13)) (-1785 (((-107) $) 12)) (-3094 (((-1021) $) NIL)) (-2341 (((-107) $) 11)) (-2182 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3763 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-1865 (((-703)) 34 (|has| |#1| (-777)))) (-1221 (($ $) NIL (|has| |#1| (-777)))) (-2146 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2297 (($) 22 (|has| |#1| (-21)) CONST)) (-2306 (($) 31 (|has| |#1| (-777)) CONST)) (-1593 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1539 (((-107) $ $) 20)) (-1582 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1560 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1637 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1626 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21)))))
+(((-765 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2501 ($)) (-15 -2341 ((-107) $)) (-15 -1785 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) (-1003)) (T -765))
+((-2501 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-1422 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))))
+(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2501 ($)) (-15 -2341 ((-107) $)) (-15 -1785 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3076 ((|#1| $) NIL) (((-109) $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3554 ((|#1| (-109) |#1|) NIL)) (-2955 (((-107) $) NIL)) (-1399 (($ |#1| (-331 (-109))) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2889 (($ $ (-1 |#1| |#1|)) NIL)) (-1455 (($ $ (-1 |#1| |#1|)) NIL)) (-1986 ((|#1| $ |#1|) NIL)) (-3528 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-1957 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-766 |#1|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1957 ($ $)) (-15 -1957 ($ $ $)) (-15 -3528 (|#1| |#1|))) |noBranch|) (-15 -1455 ($ $ (-1 |#1| |#1|))) (-15 -2889 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3554 (|#1| (-109) |#1|)) (-15 -1399 ($ |#1| (-331 (-109)))))) (-961)) (T -766))
+((-1957 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-1957 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3528 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-1455 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) (-3554 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))) (-1399 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1957 ($ $)) (-15 -1957 ($ $ $)) (-15 -3528 (|#1| |#1|))) |noBranch|) (-15 -1455 ($ $ (-1 |#1| |#1|))) (-15 -2889 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3554 (|#1| (-109) |#1|)) (-15 -1399 ($ |#1| (-331 (-109))))))
+((-2616 (((-189 (-467)) (-1057)) 8)))
+(((-767) (-10 -7 (-15 -2616 ((-189 (-467)) (-1057))))) (T -767))
+((-2616 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
+(-10 -7 (-15 -2616 ((-189 (-467)) (-1057))))
+((-2571 (((-107) $ $) 7)) (-2691 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 14) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 15)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)))
+(((-768) (-1185)) (T -768))
+((-2831 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)))))) (-2831 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)))))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *2 (-950)))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))))
+(-13 (-1003) (-10 -7 (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) (-15 -2691 ((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) (-15 -2691 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2507 (((-950) (-583 (-286 (-349))) (-583 (-349))) 143) (((-950) (-286 (-349)) (-583 (-349))) 141) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-950) (-770)) 112) (((-950) (-770) (-973)) 111)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973)) 76) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770)) 78)) (-2744 (((-950) (-583 (-286 (-349))) (-583 (-349))) 144) (((-950) (-770)) 128)))
-(((-769) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973))) (-15 -2507 ((-950) (-770) (-973))) (-15 -2507 ((-950) (-770))) (-15 -2744 ((-950) (-770))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2507 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2744 ((-950) (-583 (-286 (-349))) (-583 (-349)))))) (T -769))
-((-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))))
-(-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973))) (-15 -2507 ((-950) (-770) (-973))) (-15 -2507 ((-950) (-770))) (-15 -2744 ((-950) (-770))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2507 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2744 ((-950) (-583 (-286 (-349))) (-583 (-349)))))
-((-2750 (((-107) $ $) NIL)) (-3189 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) 12)) (-1547 (((-107) $ $) NIL)))
-(((-770) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2256 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -2256 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $))))) (T -770))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2256 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -2256 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $))))
-((-1893 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14)))
-(((-771 |#1| |#2|) (-10 -7 (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1003) (-1003)) (T -771))
-((-1893 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))))
-(-10 -7 (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-3893 (((-1021) $) 24)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL (|has| |#1| (-21)) CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-3621 (((-3 $ "failed") $) 46 (|has| |#1| (-777)))) (-1256 (((-3 (-377 (-517)) "failed") $) 53 (|has| |#1| (-502)))) (-1355 (((-107) $) 48 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 51 (|has| |#1| (-502)))) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-2699 (($) 13)) (-3848 (((-107) $) NIL (|has| |#1| (-777)))) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2722 (($) 14)) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-2169 (((-107) $) 12)) (-3206 (((-1021) $) NIL)) (-1515 (((-107) $) 11)) (-2256 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3807 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-2961 (((-703)) 40 (|has| |#1| (-777)))) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2396 (($) 28 (|has| |#1| (-21)) CONST)) (-2409 (($) 37 (|has| |#1| (-777)) CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 47 (|has| |#1| (-777)))) (-1654 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-1642 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 43 (|has| |#1| (-777))) (($ (-517) $) 31 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21)))))
-(((-772 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2699 ($)) (-15 -2722 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (-15 -3893 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) (-1003)) (T -772))
-((-2699 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-2722 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-3893 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))))
-(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2699 ($)) (-15 -2722 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (-15 -3893 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
-((-2750 (((-107) $ $) 7)) (-1611 (((-703)) 20)) (-3209 (($) 23)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1549 (((-843) $) 22)) (-3985 (((-1056) $) 9)) (-3448 (($ (-843)) 21)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
-(((-773) (-1184)) (T -773))
+((-2382 (((-950) (-583 (-286 (-349))) (-583 (-349))) 143) (((-950) (-286 (-349)) (-583 (-349))) 141) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-950) (-770)) 112) (((-950) (-770) (-973)) 111)) (-2831 (((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770) (-973)) 76) (((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770)) 78)) (-3308 (((-950) (-583 (-286 (-349))) (-583 (-349))) 144) (((-950) (-770)) 128)))
+(((-769) (-10 -7 (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770) (-973))) (-15 -2382 ((-950) (-770) (-973))) (-15 -2382 ((-950) (-770))) (-15 -3308 ((-950) (-770))) (-15 -2382 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2382 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2382 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2382 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -3308 ((-950) (-583 (-286 (-349))) (-583 (-349)))))) (T -769))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2382 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2382 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-769)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-769)))))
+(-10 -7 (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770) (-973))) (-15 -2382 ((-950) (-770) (-973))) (-15 -2382 ((-950) (-770))) (-15 -3308 ((-950) (-770))) (-15 -2382 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2382 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2382 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2382 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -3308 ((-950) (-583 (-286 (-349))) (-583 (-349)))))
+((-2571 (((-107) $ $) NIL)) (-3076 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) $) 15)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))))) 12)) (-1539 (((-107) $ $) NIL)))
+(((-770) (-13 (-1003) (-10 -8 (-15 -2182 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2182 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) (-15 -2182 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))))) (-15 -2182 ((-787) $)) (-15 -3076 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) $))))) (T -770))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *1 (-770)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))))) (-5 *1 (-770)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))))) (-5 *1 (-770)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2182 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) (-15 -2182 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))))) (-15 -2182 ((-787) $)) (-15 -3076 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199)))))) $))))
+((-1857 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14)))
+(((-771 |#1| |#2|) (-10 -7 (-15 -1857 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1857 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1003) (-1003)) (T -771))
+((-1857 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))))
+(-10 -7 (-15 -1857 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1857 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL (|has| |#1| (-21)))) (-2229 (((-1021) $) 24)) (-1387 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1207 (((-517) $) NIL (|has| |#1| (-777)))) (-3473 (($) NIL (|has| |#1| (-21)) CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-1568 (((-3 $ "failed") $) 46 (|has| |#1| (-777)))) (-1422 (((-3 (-377 (-517)) "failed") $) 53 (|has| |#1| (-502)))) (-2712 (((-107) $) 48 (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) 51 (|has| |#1| (-502)))) (-2099 (((-107) $) NIL (|has| |#1| (-777)))) (-2523 (($) 13)) (-2955 (((-107) $) NIL (|has| |#1| (-777)))) (-1624 (((-107) $) NIL (|has| |#1| (-777)))) (-2543 (($) 14)) (-1575 (($ $ $) NIL (|has| |#1| (-777)))) (-2986 (($ $ $) NIL (|has| |#1| (-777)))) (-3865 (((-1057) $) NIL)) (-1785 (((-107) $) 12)) (-3094 (((-1021) $) NIL)) (-2341 (((-107) $) 11)) (-2182 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3763 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-1865 (((-703)) 40 (|has| |#1| (-777)))) (-1221 (($ $) NIL (|has| |#1| (-777)))) (-2146 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2297 (($) 28 (|has| |#1| (-21)) CONST)) (-2306 (($) 37 (|has| |#1| (-777)) CONST)) (-1593 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1539 (((-107) $ $) 26)) (-1582 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1560 (((-107) $ $) 47 (|has| |#1| (-777)))) (-1637 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-1626 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 43 (|has| |#1| (-777))) (($ (-517) $) 31 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21)))))
+(((-772 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2523 ($)) (-15 -2543 ($)) (-15 -2341 ((-107) $)) (-15 -1785 ((-107) $)) (-15 -2229 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) (-1003)) (T -772))
+((-2523 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-2543 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-1422 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))))
+(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2523 ($)) (-15 -2543 ($)) (-15 -2341 ((-107) $)) (-15 -1785 ((-107) $)) (-15 -2229 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
+((-2571 (((-107) $ $) 7)) (-1598 (((-703)) 20)) (-3098 (($) 23)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-2903 (((-843) $) 22)) (-3865 (((-1057) $) 9)) (-3353 (($ (-843)) 21)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)))
+(((-773) (-1185)) (T -773))
NIL
(-13 (-779) (-338))
(((-97) . T) ((-557 (-787)) . T) ((-338) . T) ((-779) . T) ((-1003) . T))
-((-2835 (((-107) (-1153 |#2|) (-1153 |#2|)) 17)) (-3155 (((-107) (-1153 |#2|) (-1153 |#2|)) 18)) (-4154 (((-107) (-1153 |#2|) (-1153 |#2|)) 14)))
-(((-774 |#1| |#2|) (-10 -7 (-15 -4154 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -2835 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -3155 ((-107) (-1153 |#2|) (-1153 |#2|)))) (-703) (-724)) (T -774))
-((-3155 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-4154 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(-10 -7 (-15 -4154 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -2835 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -3155 ((-107) (-1153 |#2|) (-1153 |#2|))))
-((-2750 (((-107) $ $) 7)) (-3092 (($) 24 T CONST)) (-3621 (((-3 $ "failed") $) 28)) (-3848 (((-107) $) 25)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-703)) 27) (($ $ (-843)) 22)) (-2409 (($) 23 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-843)) 21)) (* (($ $ $) 20)))
-(((-775) (-1184)) (T -775))
+((-1914 (((-107) (-1154 |#2|) (-1154 |#2|)) 17)) (-2715 (((-107) (-1154 |#2|) (-1154 |#2|)) 18)) (-2893 (((-107) (-1154 |#2|) (-1154 |#2|)) 14)))
+(((-774 |#1| |#2|) (-10 -7 (-15 -2893 ((-107) (-1154 |#2|) (-1154 |#2|))) (-15 -1914 ((-107) (-1154 |#2|) (-1154 |#2|))) (-15 -2715 ((-107) (-1154 |#2|) (-1154 |#2|)))) (-703) (-724)) (T -774))
+((-2715 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-1914 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-2893 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(-10 -7 (-15 -2893 ((-107) (-1154 |#2|) (-1154 |#2|))) (-15 -1914 ((-107) (-1154 |#2|) (-1154 |#2|))) (-15 -2715 ((-107) (-1154 |#2|) (-1154 |#2|))))
+((-2571 (((-107) $ $) 7)) (-3473 (($) 24 T CONST)) (-1568 (((-3 $ "failed") $) 28)) (-2955 (((-107) $) 25)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2146 (($ $ (-703)) 27) (($ $ (-843)) 22)) (-2306 (($) 23 T CONST)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-843)) 21)) (* (($ $ $) 20)))
+(((-775) (-1185)) (T -775))
NIL
(-13 (-779) (-659))
(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-779) . T) ((-1015) . T) ((-1003) . T))
-((-3709 (((-517) $) 17)) (-3556 (((-107) $) 10)) (-2475 (((-107) $) 11)) (-3710 (($ $) 19)))
-(((-776 |#1|) (-10 -8 (-15 -3710 (|#1| |#1|)) (-15 -3709 ((-517) |#1|)) (-15 -2475 ((-107) |#1|)) (-15 -3556 ((-107) |#1|))) (-777)) (T -776))
-NIL
-(-10 -8 (-15 -3710 (|#1| |#1|)) (-15 -3709 ((-517) |#1|)) (-15 -2475 ((-107) |#1|)) (-15 -3556 ((-107) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3709 (((-517) $) 33)) (-3092 (($) 23 T CONST)) (-3621 (((-3 $ "failed") $) 39)) (-3556 (((-107) $) 35)) (-3848 (((-107) $) 42)) (-2475 (((-107) $) 34)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 45)) (-2961 (((-703)) 44)) (-3710 (($ $) 32)) (-2207 (($ $ (-703)) 40) (($ $ (-843)) 36)) (-2396 (($) 22 T CONST)) (-2409 (($) 43 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1654 (($ $ $) 28) (($ $) 27)) (-1642 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-843)) 37)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29) (($ $ $) 38)))
-(((-777) (-1184)) (T -777))
-((-3556 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-3710 (*1 *1 *1) (-4 *1 (-777))))
-(-13 (-723) (-961) (-659) (-10 -8 (-15 -3556 ((-107) $)) (-15 -2475 ((-107) $)) (-15 -3709 ((-517) $)) (-15 -3710 ($ $))))
+((-1207 (((-517) $) 17)) (-2099 (((-107) $) 10)) (-1624 (((-107) $) 11)) (-1221 (($ $) 19)))
+(((-776 |#1|) (-10 -8 (-15 -1221 (|#1| |#1|)) (-15 -1207 ((-517) |#1|)) (-15 -1624 ((-107) |#1|)) (-15 -2099 ((-107) |#1|))) (-777)) (T -776))
+NIL
+(-10 -8 (-15 -1221 (|#1| |#1|)) (-15 -1207 ((-517) |#1|)) (-15 -1624 ((-107) |#1|)) (-15 -2099 ((-107) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 24)) (-1387 (((-3 $ "failed") $ $) 26)) (-1207 (((-517) $) 33)) (-3473 (($) 23 T CONST)) (-1568 (((-3 $ "failed") $) 39)) (-2099 (((-107) $) 35)) (-2955 (((-107) $) 42)) (-1624 (((-107) $) 34)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 45)) (-1865 (((-703)) 44)) (-1221 (($ $) 32)) (-2146 (($ $ (-703)) 40) (($ $ (-843)) 36)) (-2297 (($) 22 T CONST)) (-2306 (($) 43 T CONST)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)) (-1637 (($ $ $) 28) (($ $) 27)) (-1626 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-843)) 37)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29) (($ $ $) 38)))
+(((-777) (-1185)) (T -777))
+((-2099 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-1221 (*1 *1 *1) (-4 *1 (-777))))
+(-13 (-723) (-961) (-659) (-10 -8 (-15 -2099 ((-107) $)) (-15 -1624 ((-107) $)) (-15 -1207 ((-517) $)) (-15 -1221 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2967 (($ $ $) 10)) (-3099 (($ $ $) 9)) (-1606 (((-107) $ $) 12)) (-1583 (((-107) $ $) 11)) (-1595 (((-107) $ $) 13)))
-(((-778 |#1|) (-10 -8 (-15 -2967 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -1595 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-779)) (T -778))
-NIL
-(-10 -8 (-15 -2967 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -1595 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|)) (-15 -1583 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
-(((-779) (-1184)) (T -779))
-((-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1583 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1595 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-3099 (*1 *1 *1 *1) (-4 *1 (-779))) (-2967 (*1 *1 *1 *1) (-4 *1 (-779))))
-(-13 (-1003) (-10 -8 (-15 -1572 ((-107) $ $)) (-15 -1583 ((-107) $ $)) (-15 -1606 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3099 ($ $ $)) (-15 -2967 ($ $ $))))
+((-1575 (($ $ $) 10)) (-2986 (($ $ $) 9)) (-1593 (((-107) $ $) 12)) (-1570 (((-107) $ $) 11)) (-1582 (((-107) $ $) 13)))
+(((-778 |#1|) (-10 -8 (-15 -1575 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1| |#1|)) (-15 -1582 ((-107) |#1| |#1|)) (-15 -1593 ((-107) |#1| |#1|)) (-15 -1570 ((-107) |#1| |#1|))) (-779)) (T -778))
+NIL
+(-10 -8 (-15 -1575 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1| |#1|)) (-15 -1582 ((-107) |#1| |#1|)) (-15 -1593 ((-107) |#1| |#1|)) (-15 -1570 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-1575 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1593 (((-107) $ $) 16)) (-1570 (((-107) $ $) 17)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 15)) (-1560 (((-107) $ $) 18)))
+(((-779) (-1185)) (T -779))
+((-1560 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1570 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1593 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1582 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-2986 (*1 *1 *1 *1) (-4 *1 (-779))) (-1575 (*1 *1 *1 *1) (-4 *1 (-779))))
+(-13 (-1003) (-10 -8 (-15 -1560 ((-107) $ $)) (-15 -1570 ((-107) $ $)) (-15 -1593 ((-107) $ $)) (-15 -1582 ((-107) $ $)) (-15 -2986 ($ $ $)) (-15 -1575 ($ $ $))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3311 (($ $ $) 45)) (-3527 (($ $ $) 44)) (-2626 (($ $ $) 42)) (-3784 (($ $ $) 51)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 46)) (-2975 (((-3 $ "failed") $ $) 49)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3534 (($ $) 35)) (-4102 (($ $ $) 39)) (-2985 (($ $ $) 38)) (-2218 (($ $ $) 47)) (-1423 (($ $ $) 53)) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 41)) (-1971 (((-3 $ "failed") $ $) 48)) (-2476 (((-3 $ "failed") $ |#2|) 28)) (-3266 ((|#2| $) 32)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-1311 (((-583 |#2|) $) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-780 |#1| |#2|) (-10 -8 (-15 -2218 (|#1| |#1| |#1|)) (-15 -3678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -2975 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3311 (|#1| |#1| |#1|)) (-15 -3527 (|#1| |#1| |#1|)) (-15 -2626 (|#1| |#1| |#1|)) (-15 -2582 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2256 ((-787) |#1|))) (-781 |#2|) (-961)) (T -780))
-NIL
-(-10 -8 (-15 -2218 (|#1| |#1| |#1|)) (-15 -3678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -2975 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3311 (|#1| |#1| |#1|)) (-15 -3527 (|#1| |#1| |#1|)) (-15 -2626 (|#1| |#1| |#1|)) (-15 -2582 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3311 (($ $ $) 45 (|has| |#1| (-333)))) (-3527 (($ $ $) 46 (|has| |#1| (-333)))) (-2626 (($ $ $) 48 (|has| |#1| (-333)))) (-3784 (($ $ $) 43 (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 42 (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 47 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3189 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1212 (($ $) 64)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 55 (|has| |#1| (-421)))) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 62)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 58 (|has| |#1| (-509)))) (-2349 (((-703) $) 66)) (-4102 (($ $ $) 52 (|has| |#1| (-333)))) (-2985 (($ $ $) 53 (|has| |#1| (-333)))) (-2218 (($ $ $) 41 (|has| |#1| (-333)))) (-1423 (($ $ $) 50 (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 49 (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 54 (|has| |#1| (-333)))) (-1191 ((|#1| $) 65)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-3688 (((-703) $) 67)) (-3266 ((|#1| $) 56 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-1311 (((-583 |#1|) $) 61)) (-2720 ((|#1| $ (-703)) 63)) (-2961 (((-703)) 29)) (-1587 ((|#1| $ |#1| |#1|) 60)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-781 |#1|) (-1184) (-961)) (T -781))
-((-3688 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-1587 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-2856 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-2441 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-2985 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4102 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1971 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1423 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2582 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))) (-2626 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3551 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-3527 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3311 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2975 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3784 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3678 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(-13 (-961) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -3688 ((-703) $)) (-15 -2349 ((-703) $)) (-15 -1191 (|t#1| $)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ (-703))) (-15 -1339 ($ |t#1| (-703))) (-15 -1311 ((-583 |t#1|) $)) (-15 -1587 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2476 ((-3 $ "failed") $ |t#1|)) (-15 -2856 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2441 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -3266 (|t#1| $)) (-15 -3534 ($ $))) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2985 ($ $ $)) (-15 -4102 ($ $ $)) (-15 -1971 ((-3 $ "failed") $ $)) (-15 -1423 ($ $ $)) (-15 -2582 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2626 ($ $ $)) (-15 -3551 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3527 ($ $ $)) (-15 -3311 ($ $ $)) (-15 -2975 ((-3 $ "failed") $ $)) (-15 -3784 ($ $ $)) (-15 -3678 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2218 ($ $ $))) |noBranch|)))
+((-1844 (($ $ $) 45)) (-2977 (($ $ $) 44)) (-3560 (($ $ $) 42)) (-3611 (($ $ $) 51)) (-3918 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 46)) (-3746 (((-3 $ "failed") $ $) 49)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3039 (($ $) 35)) (-3771 (($ $ $) 39)) (-3869 (($ $ $) 38)) (-4013 (($ $ $) 47)) (-1508 (($ $ $) 53)) (-3114 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 41)) (-3325 (((-3 $ "failed") $ $) 48)) (-2349 (((-3 $ "failed") $ |#2|) 28)) (-1423 ((|#2| $) 32)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-2834 (((-583 |#2|) $) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-780 |#1| |#2|) (-10 -8 (-15 -4013 (|#1| |#1| |#1|)) (-15 -3918 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3107 |#1|)) |#1| |#1|)) (-15 -3611 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1844 (|#1| |#1| |#1|)) (-15 -2977 (|#1| |#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -3114 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3107 |#1|)) |#1| |#1|)) (-15 -1508 (|#1| |#1| |#1|)) (-15 -3325 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3869 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2834 ((-583 |#2|) |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2182 ((-787) |#1|))) (-781 |#2|) (-961)) (T -780))
+NIL
+(-10 -8 (-15 -4013 (|#1| |#1| |#1|)) (-15 -3918 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3107 |#1|)) |#1| |#1|)) (-15 -3611 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1844 (|#1| |#1| |#1|)) (-15 -2977 (|#1| |#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -3114 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3107 |#1|)) |#1| |#1|)) (-15 -1508 (|#1| |#1| |#1|)) (-15 -3325 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3869 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -2349 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2834 ((-583 |#2|) |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1844 (($ $ $) 45 (|has| |#1| (-333)))) (-2977 (($ $ $) 46 (|has| |#1| (-333)))) (-3560 (($ $ $) 48 (|has| |#1| (-333)))) (-3611 (($ $ $) 43 (|has| |#1| (-333)))) (-3918 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 42 (|has| |#1| (-333)))) (-3746 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-2064 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 47 (|has| |#1| (-333)))) (-1759 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3076 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1217 (($ $) 64)) (-1568 (((-3 $ "failed") $) 34)) (-3039 (($ $) 55 (|has| |#1| (-421)))) (-2955 (((-107) $) 31)) (-1343 (($ |#1| (-703)) 62)) (-2392 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57 (|has| |#1| (-509)))) (-2063 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 58 (|has| |#1| (-509)))) (-2672 (((-703) $) 66)) (-3771 (($ $ $) 52 (|has| |#1| (-333)))) (-3869 (($ $ $) 53 (|has| |#1| (-333)))) (-4013 (($ $ $) 41 (|has| |#1| (-333)))) (-1508 (($ $ $) 50 (|has| |#1| (-333)))) (-3114 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 49 (|has| |#1| (-333)))) (-3325 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-1872 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 54 (|has| |#1| (-333)))) (-1192 ((|#1| $) 65)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-4007 (((-703) $) 67)) (-1423 ((|#1| $) 56 (|has| |#1| (-421)))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-2834 (((-583 |#1|) $) 61)) (-3086 ((|#1| $ (-703)) 63)) (-1865 (((-703)) 29)) (-1574 ((|#1| $ |#1| |#1|) 60)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-781 |#1|) (-1185) (-961)) (T -781))
+((-4007 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1192 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-1574 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2349 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-2063 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-781 *3)))) (-2392 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-781 *3)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3039 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-1872 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-781 *3)))) (-3869 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3771 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3325 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1508 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3114 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3107 *1))) (-4 *1 (-781 *3)))) (-3560 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2064 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-781 *3)))) (-2977 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1844 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3746 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3611 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3918 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3107 *1))) (-4 *1 (-781 *3)))) (-4013 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(-13 (-961) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -4007 ((-703) $)) (-15 -2672 ((-703) $)) (-15 -1192 (|t#1| $)) (-15 -1217 ($ $)) (-15 -3086 (|t#1| $ (-703))) (-15 -1343 ($ |t#1| (-703))) (-15 -2834 ((-583 |t#1|) $)) (-15 -1574 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2349 ((-3 $ "failed") $ |t#1|)) (-15 -2063 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -2392 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -1423 (|t#1| $)) (-15 -3039 ($ $))) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -1872 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -3869 ($ $ $)) (-15 -3771 ($ $ $)) (-15 -3325 ((-3 $ "failed") $ $)) (-15 -1508 ($ $ $)) (-15 -3114 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $)) (-15 -3560 ($ $ $)) (-15 -2064 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -2977 ($ $ $)) (-15 -1844 ($ $ $)) (-15 -3746 ((-3 $ "failed") $ $)) (-15 -3611 ($ $ $)) (-15 -3918 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $)) (-15 -4013 ($ $ $))) |noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2707 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-3551 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-2441 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-509)))) (-2962 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-333)))) (-1587 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
-(((-782 |#1| |#2|) (-10 -7 (-15 -2707 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1587 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2856 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2441 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3551 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|)) (-961) (-781 |#1|)) (T -782))
-((-3551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2962 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2441 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2856 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1587 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2707 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
-(-10 -7 (-15 -2707 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1587 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2856 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2441 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3551 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 25 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3078 (((-787) $ (-787)) NIL)) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 21 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 19 (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 23 (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) 15)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))))) (-961) (-94 |#1|) (-1 |#1| |#1|)) (T -783))
-((-3078 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-781 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#2| (-333)))) (-3527 (($ $ $) NIL (|has| |#2| (-333)))) (-2626 (($ $ $) NIL (|has| |#2| (-333)))) (-3784 (($ $ $) NIL (|has| |#2| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) 16)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#2| (-333)))) (-2985 (($ $ $) NIL (|has| |#2| (-333)))) (-2218 (($ $ $) NIL (|has| |#2| (-333)))) (-1423 (($ $ $) NIL (|has| |#2| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3688 (((-703) $) NIL)) (-3266 ((|#2| $) NIL (|has| |#2| (-421)))) (-2256 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (($ (-1149 |#1|)) 18)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#2| $ |#2| |#2|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 13 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))))) (-1073) (-961) (-94 |#2|) (-1 |#2| |#2|)) (T -784))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-781 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|)))))
-((-2388 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-1394 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-1475 ((|#1| (-703) |#1|) 31)) (-2598 ((|#1| (-703) |#1|) 29)) (-1342 ((|#1| (-703) |#1|) 28)))
-(((-785 |#1|) (-10 -7 (-15 -1342 (|#1| (-703) |#1|)) (-15 -2598 (|#1| (-703) |#1|)) (-15 -1475 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2388 (|#1| (-703) |#1|)) |noBranch|)) (-156)) (T -785))
-((-2388 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-1394 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1394 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1475 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2598 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1342 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
-(-10 -7 (-15 -1342 (|#1| (-703) |#1|)) (-15 -2598 (|#1| (-703) |#1|)) (-15 -1475 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2388 (|#1| (-703) |#1|)) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-3199 (((-517) $) 12)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 18) (($ (-517)) 11)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 8)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 9)))
-(((-786) (-13 (-779) (-10 -8 (-15 -2256 ($ (-517))) (-15 -3199 ((-517) $))))) (T -786))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))))
-(-13 (-779) (-10 -8 (-15 -2256 ($ (-517))) (-15 -3199 ((-517) $))))
-((-2750 (((-107) $ $) NIL)) (-1919 (($ $ $) 115)) (-2095 (((-517) $) 30) (((-517)) 35)) (-2098 (($ (-517)) 44)) (-3831 (($ $ $) 45) (($ (-583 $)) 76)) (-1755 (($ $ (-583 $)) 74)) (-3265 (((-517) $) 33)) (-3301 (($ $ $) 63)) (-2541 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3846 (((-517) $) 32)) (-3083 (($ $ $) 62)) (-3890 (($ $) 105)) (-1534 (($ $ $) 119)) (-3989 (($ (-583 $)) 52)) (-2206 (($ $ (-583 $)) 69)) (-2939 (($ (-517) (-517)) 46)) (-3959 (($ $) 116) (($ $ $) 117)) (-3652 (($ $ (-517)) 40) (($ $) 43)) (-2518 (($ $ $) 89)) (-4125 (($ $ $) 122)) (-3774 (($ $) 106)) (-2497 (($ $ $) 90)) (-3229 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2808 (((-1158) $) 8)) (-2508 (($ $) 109) (($ $ (-703)) 112)) (-2346 (($ $ $) 65)) (-1709 (($ $ $) 64)) (-1623 (($ $ (-583 $)) 100)) (-3773 (($ $ $) 104)) (-4023 (($ (-583 $)) 50)) (-3374 (($ $) 60) (($ (-583 $)) 61)) (-1804 (($ $ $) 113)) (-2323 (($ $) 107)) (-1361 (($ $ $) 118)) (-3078 (($ (-517)) 20) (($ (-1073)) 22) (($ (-1056)) 29) (($ (-199)) 24)) (-4025 (($ $ $) 93)) (-2630 (($ $) 94)) (-1903 (((-1158) (-1056)) 14)) (-2222 (($ (-1056)) 13)) (-1840 (($ (-583 (-583 $))) 48)) (-3639 (($ $ (-517)) 39) (($ $) 42)) (-3985 (((-1056) $) NIL)) (-1243 (($ $ $) 121)) (-2612 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1511 (((-107) $) 98)) (-1621 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-2756 (($ (-517)) 36)) (-1881 (((-517) $) 31) (((-517)) 34)) (-3940 (($ $ $) 37) (($ (-583 $)) 75)) (-3206 (((-1021) $) NIL)) (-2476 (($ $ $) 91)) (-1746 (($) 12)) (-1449 (($ $ (-583 $)) 99)) (-3501 (($ $) 108) (($ $ (-703)) 111)) (-2486 (($ $ $) 88)) (-3127 (($ $ (-703)) 127)) (-3517 (($ (-583 $)) 51)) (-2256 (((-787) $) 18)) (-2986 (($ $ (-517)) 38) (($ $) 41)) (-2221 (($ $) 58) (($ (-583 $)) 59)) (-3167 (($ $) 56) (($ (-583 $)) 57)) (-4148 (($ $) 114)) (-3472 (($ (-583 $)) 55)) (-1270 (($ $ $) 97)) (-1946 (($ $ $) 120)) (-4035 (($ $ $) 92)) (-2457 (($ $ $) 77)) (-2881 (($ $ $) 95) (($ $) 96)) (-1606 (($ $ $) 81)) (-1583 (($ $ $) 79)) (-1547 (((-107) $ $) 15) (($ $ $) 16)) (-1595 (($ $ $) 80)) (-1572 (($ $ $) 78)) (-1667 (($ $ $) 86)) (-1654 (($ $ $) 83) (($ $) 84)) (-1642 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-787) (-13 (-1003) (-10 -8 (-15 -2808 ((-1158) $)) (-15 -2222 ($ (-1056))) (-15 -1903 ((-1158) (-1056))) (-15 -3078 ($ (-517))) (-15 -3078 ($ (-1073))) (-15 -3078 ($ (-1056))) (-15 -3078 ($ (-199))) (-15 -1746 ($)) (-15 -2095 ((-517) $)) (-15 -1881 ((-517) $)) (-15 -2095 ((-517))) (-15 -1881 ((-517))) (-15 -3846 ((-517) $)) (-15 -3265 ((-517) $)) (-15 -2756 ($ (-517))) (-15 -2098 ($ (-517))) (-15 -2939 ($ (-517) (-517))) (-15 -3639 ($ $ (-517))) (-15 -3652 ($ $ (-517))) (-15 -2986 ($ $ (-517))) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2986 ($ $)) (-15 -3940 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3940 ($ (-583 $))) (-15 -3831 ($ (-583 $))) (-15 -1623 ($ $ (-583 $))) (-15 -1621 ($ $ (-583 $))) (-15 -1621 ($ $ $ $)) (-15 -3773 ($ $ $)) (-15 -1511 ((-107) $)) (-15 -1449 ($ $ (-583 $))) (-15 -3890 ($ $)) (-15 -1243 ($ $ $)) (-15 -4148 ($ $)) (-15 -1840 ($ (-583 (-583 $)))) (-15 -1919 ($ $ $)) (-15 -3959 ($ $)) (-15 -3959 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1534 ($ $ $)) (-15 -1946 ($ $ $)) (-15 -4125 ($ $ $)) (-15 -3127 ($ $ (-703))) (-15 -1270 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3301 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2206 ($ $ (-583 $))) (-15 -1755 ($ $ (-583 $))) (-15 -3774 ($ $)) (-15 -3501 ($ $)) (-15 -3501 ($ $ (-703))) (-15 -2508 ($ $)) (-15 -2508 ($ $ (-703))) (-15 -2323 ($ $)) (-15 -1804 ($ $ $)) (-15 -2541 ($ $)) (-15 -2541 ($ $ $)) (-15 -2541 ($ $ $ $)) (-15 -3229 ($ $)) (-15 -3229 ($ $ $)) (-15 -3229 ($ $ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2612 ($ $ $ $)) (-15 -3167 ($ $)) (-15 -3167 ($ (-583 $))) (-15 -2221 ($ $)) (-15 -2221 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -4023 ($ (-583 $))) (-15 -3517 ($ (-583 $))) (-15 -3989 ($ (-583 $))) (-15 -3472 ($ (-583 $))) (-15 -1547 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -1572 ($ $ $)) (-15 -1583 ($ $ $)) (-15 -1595 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ $)) (-15 -2486 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2497 ($ $ $)) (-15 -2476 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2630 ($ $)) (-15 -2881 ($ $ $)) (-15 -2881 ($ $))))) (T -787))
-((-2808 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-787)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-1746 (*1 *1) (-5 *1 (-787))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2095 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1881 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2756 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2939 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2986 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3639 (*1 *1 *1) (-5 *1 (-787))) (-3652 (*1 *1 *1) (-5 *1 (-787))) (-2986 (*1 *1 *1) (-5 *1 (-787))) (-3940 (*1 *1 *1 *1) (-5 *1 (-787))) (-3831 (*1 *1 *1 *1) (-5 *1 (-787))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3831 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1623 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1621 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3773 (*1 *1 *1 *1) (-5 *1 (-787))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3890 (*1 *1 *1) (-5 *1 (-787))) (-1243 (*1 *1 *1 *1) (-5 *1 (-787))) (-4148 (*1 *1 *1) (-5 *1 (-787))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-1919 (*1 *1 *1 *1) (-5 *1 (-787))) (-3959 (*1 *1 *1) (-5 *1 (-787))) (-3959 (*1 *1 *1 *1) (-5 *1 (-787))) (-1361 (*1 *1 *1 *1) (-5 *1 (-787))) (-1534 (*1 *1 *1 *1) (-5 *1 (-787))) (-1946 (*1 *1 *1 *1) (-5 *1 (-787))) (-4125 (*1 *1 *1 *1) (-5 *1 (-787))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1270 (*1 *1 *1 *1) (-5 *1 (-787))) (-3083 (*1 *1 *1 *1) (-5 *1 (-787))) (-3301 (*1 *1 *1 *1) (-5 *1 (-787))) (-1709 (*1 *1 *1 *1) (-5 *1 (-787))) (-2346 (*1 *1 *1 *1) (-5 *1 (-787))) (-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1755 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3774 (*1 *1 *1) (-5 *1 (-787))) (-3501 (*1 *1 *1) (-5 *1 (-787))) (-3501 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2508 (*1 *1 *1) (-5 *1 (-787))) (-2508 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2323 (*1 *1 *1) (-5 *1 (-787))) (-1804 (*1 *1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3167 (*1 *1 *1) (-5 *1 (-787))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2221 (*1 *1 *1) (-5 *1 (-787))) (-2221 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3374 (*1 *1 *1) (-5 *1 (-787))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3989 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1547 (*1 *1 *1 *1) (-5 *1 (-787))) (-2457 (*1 *1 *1 *1) (-5 *1 (-787))) (-1572 (*1 *1 *1 *1) (-5 *1 (-787))) (-1583 (*1 *1 *1 *1) (-5 *1 (-787))) (-1595 (*1 *1 *1 *1) (-5 *1 (-787))) (-1606 (*1 *1 *1 *1) (-5 *1 (-787))) (-1642 (*1 *1 *1 *1) (-5 *1 (-787))) (-1654 (*1 *1 *1 *1) (-5 *1 (-787))) (-1654 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1667 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2486 (*1 *1 *1 *1) (-5 *1 (-787))) (-2518 (*1 *1 *1 *1) (-5 *1 (-787))) (-2497 (*1 *1 *1 *1) (-5 *1 (-787))) (-2476 (*1 *1 *1 *1) (-5 *1 (-787))) (-4035 (*1 *1 *1 *1) (-5 *1 (-787))) (-4025 (*1 *1 *1 *1) (-5 *1 (-787))) (-2630 (*1 *1 *1) (-5 *1 (-787))) (-2881 (*1 *1 *1 *1) (-5 *1 (-787))) (-2881 (*1 *1 *1) (-5 *1 (-787))))
-(-13 (-1003) (-10 -8 (-15 -2808 ((-1158) $)) (-15 -2222 ($ (-1056))) (-15 -1903 ((-1158) (-1056))) (-15 -3078 ($ (-517))) (-15 -3078 ($ (-1073))) (-15 -3078 ($ (-1056))) (-15 -3078 ($ (-199))) (-15 -1746 ($)) (-15 -2095 ((-517) $)) (-15 -1881 ((-517) $)) (-15 -2095 ((-517))) (-15 -1881 ((-517))) (-15 -3846 ((-517) $)) (-15 -3265 ((-517) $)) (-15 -2756 ($ (-517))) (-15 -2098 ($ (-517))) (-15 -2939 ($ (-517) (-517))) (-15 -3639 ($ $ (-517))) (-15 -3652 ($ $ (-517))) (-15 -2986 ($ $ (-517))) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2986 ($ $)) (-15 -3940 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3940 ($ (-583 $))) (-15 -3831 ($ (-583 $))) (-15 -1623 ($ $ (-583 $))) (-15 -1621 ($ $ (-583 $))) (-15 -1621 ($ $ $ $)) (-15 -3773 ($ $ $)) (-15 -1511 ((-107) $)) (-15 -1449 ($ $ (-583 $))) (-15 -3890 ($ $)) (-15 -1243 ($ $ $)) (-15 -4148 ($ $)) (-15 -1840 ($ (-583 (-583 $)))) (-15 -1919 ($ $ $)) (-15 -3959 ($ $)) (-15 -3959 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1534 ($ $ $)) (-15 -1946 ($ $ $)) (-15 -4125 ($ $ $)) (-15 -3127 ($ $ (-703))) (-15 -1270 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3301 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2206 ($ $ (-583 $))) (-15 -1755 ($ $ (-583 $))) (-15 -3774 ($ $)) (-15 -3501 ($ $)) (-15 -3501 ($ $ (-703))) (-15 -2508 ($ $)) (-15 -2508 ($ $ (-703))) (-15 -2323 ($ $)) (-15 -1804 ($ $ $)) (-15 -2541 ($ $)) (-15 -2541 ($ $ $)) (-15 -2541 ($ $ $ $)) (-15 -3229 ($ $)) (-15 -3229 ($ $ $)) (-15 -3229 ($ $ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2612 ($ $ $ $)) (-15 -3167 ($ $)) (-15 -3167 ($ (-583 $))) (-15 -2221 ($ $)) (-15 -2221 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -4023 ($ (-583 $))) (-15 -3517 ($ (-583 $))) (-15 -3989 ($ (-583 $))) (-15 -3472 ($ (-583 $))) (-15 -1547 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -1572 ($ $ $)) (-15 -1583 ($ $ $)) (-15 -1595 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ $)) (-15 -2486 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2497 ($ $ $)) (-15 -2476 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2630 ($ $)) (-15 -2881 ($ $ $)) (-15 -2881 ($ $))))
-((-1462 (((-1158) (-583 (-51))) 24)) (-2088 (((-1158) (-1056) (-787)) 14) (((-1158) (-787)) 9) (((-1158) (-1056)) 11)))
-(((-788) (-10 -7 (-15 -2088 ((-1158) (-1056))) (-15 -2088 ((-1158) (-787))) (-15 -2088 ((-1158) (-1056) (-787))) (-15 -1462 ((-1158) (-583 (-51)))))) (T -788))
-((-1462 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-788)))))
-(-10 -7 (-15 -2088 ((-1158) (-1056))) (-15 -2088 ((-1158) (-787))) (-15 -2088 ((-1158) (-1056) (-787))) (-15 -1462 ((-1158) (-583 (-51)))))
-((-2750 (((-107) $ $) NIL)) (-1638 (((-3 $ "failed") (-1073)) 32)) (-1611 (((-703)) 30)) (-3209 (($) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1549 (((-843) $) 28)) (-3985 (((-1056) $) 38)) (-3448 (($ (-843)) 27)) (-3206 (((-1021) $) NIL)) (-3645 (((-1073) $) 13) (((-493) $) 19) (((-814 (-349)) $) 25) (((-814 (-517)) $) 22)) (-2256 (((-787) $) 16)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 35)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 34)))
-(((-789 |#1|) (-13 (-773) (-558 (-1073)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -1638 ((-3 $ "failed") (-1073))))) (-583 (-1073))) (T -789))
-((-1638 (*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))))
-(-13 (-773) (-558 (-1073)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -1638 ((-3 $ "failed") (-1073)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (((-874 |#1|) $) NIL) (($ (-874 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-2961 (((-703)) NIL)) (-2273 (((-1158) (-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-790 |#1| |#2| |#3| |#4|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 ((-874 |#1|) $)) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2273 ((-1158) (-703))))) (-961) (-583 (-1073)) (-583 (-703)) (-703)) (T -790))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1667 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 *3)) (-14 *7 *3))))
-(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 ((-874 |#1|) $)) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2273 ((-1158) (-703)))))
-((-3418 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-1883 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24)))
-(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -1883 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3418 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1145 |#1|) (-1130 |#1|)) (T -791))
-((-3418 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))) (-1883 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))))
-(-10 -7 (-15 -1883 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3418 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|)))
-((-1883 (((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) 26)))
-(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|)))) (-333) (-1073) |#1|) (T -792))
-((-1883 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-1883 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
-(-10 -7 (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $ (-517)) 62)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-3959 (($ (-1069 (-517)) (-517)) 61)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3531 (($ $) 64)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3972 (((-703) $) 69)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1734 (((-517)) 66)) (-3340 (((-517) $) 65)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1672 (($ $ (-517)) 68)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2930 (((-1054 (-517)) $) 70)) (-1545 (($ $) 67)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-3383 (((-517) $ (-517)) 63)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-793 |#1|) (-1184) (-517)) (T -793))
-((-2930 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1054 (-517))))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1545 (*1 *1 *1) (-4 *1 (-793 *2))) (-1734 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3531 (*1 *1 *1) (-4 *1 (-793 *2))) (-3383 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
-(-13 (-278) (-134) (-10 -8 (-15 -2930 ((-1054 (-517)) $)) (-15 -3972 ((-703) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $)) (-15 -1734 ((-517))) (-15 -3340 ((-517) $)) (-15 -3531 ($ $)) (-15 -3383 ((-517) $ (-517))) (-15 -3766 ($ $ (-517))) (-15 -3959 ($ (-1069 (-517)) (-517)))))
+((-2532 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-2064 (((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-2392 (((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-2063 (((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-509)))) (-1872 (((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-333)))) (-1574 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -2532 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1574 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2063 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2392 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1872 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2064 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|)) (-961) (-781 |#1|)) (T -782))
+((-2064 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1872 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2392 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2063 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1574 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2532 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
+(-10 -7 (-15 -2532 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1574 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2063 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2392 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1872 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2064 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1844 (($ $ $) NIL (|has| |#1| (-333)))) (-2977 (($ $ $) NIL (|has| |#1| (-333)))) (-3560 (($ $ $) NIL (|has| |#1| (-333)))) (-3611 (($ $ $) NIL (|has| |#1| (-333)))) (-3918 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2064 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 25 (|has| |#1| (-333)))) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421)))) (-3314 (((-787) $ (-787)) NIL)) (-2955 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) NIL)) (-2392 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 21 (|has| |#1| (-509)))) (-2063 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 19 (|has| |#1| (-509)))) (-2672 (((-703) $) NIL)) (-3771 (($ $ $) NIL (|has| |#1| (-333)))) (-3869 (($ $ $) NIL (|has| |#1| (-333)))) (-4013 (($ $ $) NIL (|has| |#1| (-333)))) (-1508 (($ $ $) NIL (|has| |#1| (-333)))) (-3114 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3325 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1872 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 23 (|has| |#1| (-333)))) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-4007 (((-703) $) NIL)) (-1423 ((|#1| $) NIL (|has| |#1| (-421)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-703)) NIL)) (-1865 (((-703)) NIL)) (-1574 ((|#1| $ |#1| |#1|) 15)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -3314 ((-787) $ (-787))))) (-961) (-94 |#1|) (-1 |#1| |#1|)) (T -783))
+((-3314 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-781 |#1|) (-10 -8 (-15 -3314 ((-787) $ (-787)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1844 (($ $ $) NIL (|has| |#2| (-333)))) (-2977 (($ $ $) NIL (|has| |#2| (-333)))) (-3560 (($ $ $) NIL (|has| |#2| (-333)))) (-3611 (($ $ $) NIL (|has| |#2| (-333)))) (-3918 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#2| (-333)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2064 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#2| (-333)))) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#2| (-421)))) (-2955 (((-107) $) NIL)) (-1343 (($ |#2| (-703)) 16)) (-2392 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#2| (-509)))) (-2063 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#2| (-509)))) (-2672 (((-703) $) NIL)) (-3771 (($ $ $) NIL (|has| |#2| (-333)))) (-3869 (($ $ $) NIL (|has| |#2| (-333)))) (-4013 (($ $ $) NIL (|has| |#2| (-333)))) (-1508 (($ $ $) NIL (|has| |#2| (-333)))) (-3114 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#2| (-333)))) (-3325 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-1872 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#2| (-333)))) (-1192 ((|#2| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2349 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-4007 (((-703) $) NIL)) (-1423 ((|#2| $) NIL (|has| |#2| (-421)))) (-2182 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (($ (-1150 |#1|)) 18)) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ (-703)) NIL)) (-1865 (((-703)) NIL)) (-1574 ((|#2| $ |#2| |#2|) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) 13 T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2182 ($ (-1150 |#1|))))) (-1074) (-961) (-94 |#2|) (-1 |#2| |#2|)) (T -784))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-14 *3 (-1074)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-781 |#2|) (-10 -8 (-15 -2182 ($ (-1150 |#1|)))))
+((-1982 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-2904 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-3903 ((|#1| (-703) |#1|) 31)) (-3273 ((|#1| (-703) |#1|) 29)) (-2775 ((|#1| (-703) |#1|) 28)))
+(((-785 |#1|) (-10 -7 (-15 -2775 (|#1| (-703) |#1|)) (-15 -3273 (|#1| (-703) |#1|)) (-15 -3903 (|#1| (-703) |#1|)) (-15 -2904 (|#1| (-703) |#1|)) (-15 -2904 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1982 (|#1| (-703) |#1|)) |noBranch|)) (-156)) (T -785))
+((-1982 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2904 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2904 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3903 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3273 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2775 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(-10 -7 (-15 -2775 (|#1| (-703) |#1|)) (-15 -3273 (|#1| (-703) |#1|)) (-15 -3903 (|#1| (-703) |#1|)) (-15 -2904 (|#1| (-703) |#1|)) (-15 -2904 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1982 (|#1| (-703) |#1|)) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-3088 (((-517) $) 12)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 18) (($ (-517)) 11)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 8)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 9)))
+(((-786) (-13 (-779) (-10 -8 (-15 -2182 ($ (-517))) (-15 -3088 ((-517) $))))) (T -786))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))))
+(-13 (-779) (-10 -8 (-15 -2182 ($ (-517))) (-15 -3088 ((-517) $))))
+((-2571 (((-107) $ $) NIL)) (-4082 (($ $ $) 115)) (-2026 (((-517) $) 30) (((-517)) 35)) (-2220 (($ (-517)) 44)) (-2743 (($ $ $) 45) (($ (-583 $)) 76)) (-3824 (($ $ (-583 $)) 74)) (-1411 (((-517) $) 33)) (-1764 (($ $ $) 63)) (-2410 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2928 (((-517) $) 32)) (-3376 (($ $ $) 62)) (-3887 (($ $) 105)) (-1406 (($ $ $) 119)) (-3914 (($ (-583 $)) 52)) (-2554 (($ $ (-583 $)) 69)) (-1658 (($ (-517) (-517)) 46)) (-1806 (($ $) 116) (($ $ $) 117)) (-3591 (($ $ (-517)) 40) (($ $) 43)) (-2383 (($ $ $) 89)) (-2650 (($ $ $) 122)) (-3501 (($ $) 106)) (-2366 (($ $ $) 90)) (-2204 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2634 (((-1159) $) 8)) (-1898 (($ $) 109) (($ $ (-703)) 112)) (-2638 (($ $ $) 65)) (-3801 (($ $ $) 64)) (-1610 (($ $ (-583 $)) 100)) (-3487 (($ $ $) 104)) (-1260 (($ (-583 $)) 50)) (-1187 (($ $) 60) (($ (-583 $)) 61)) (-2905 (($ $ $) 113)) (-2476 (($ $) 107)) (-3808 (($ $ $) 118)) (-3314 (($ (-517)) 20) (($ (-1074)) 22) (($ (-1057)) 29) (($ (-199)) 24)) (-1639 (($ $ $) 93)) (-2455 (($ $) 94)) (-3937 (((-1159) (-1057)) 14)) (-1429 (($ (-1057)) 13)) (-1813 (($ (-583 (-583 $))) 48)) (-3577 (($ $ (-517)) 39) (($ $) 42)) (-3865 (((-1057) $) NIL)) (-1256 (($ $ $) 121)) (-3417 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1510 (((-107) $) 98)) (-3663 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-3450 (($ (-517)) 36)) (-1846 (((-517) $) 31) (((-517)) 34)) (-1597 (($ $ $) 37) (($ (-583 $)) 75)) (-3094 (((-1021) $) NIL)) (-2349 (($ $ $) 91)) (-1326 (($) 12)) (-1986 (($ $ (-583 $)) 99)) (-2736 (($ $) 108) (($ $ (-703)) 111)) (-2358 (($ $ $) 88)) (-1699 (($ $ (-703)) 127)) (-2888 (($ (-583 $)) 51)) (-2182 (((-787) $) 18)) (-2840 (($ $ (-517)) 38) (($ $) 41)) (-4031 (($ $) 58) (($ (-583 $)) 59)) (-3055 (($ $) 56) (($ (-583 $)) 57)) (-3549 (($ $) 114)) (-2485 (($ (-583 $)) 55)) (-1679 (($ $ $) 97)) (-3082 (($ $ $) 120)) (-1651 (($ $ $) 92)) (-2339 (($ $ $) 77)) (-2725 (($ $ $) 95) (($ $) 96)) (-1593 (($ $ $) 81)) (-1570 (($ $ $) 79)) (-1539 (((-107) $ $) 15) (($ $ $) 16)) (-1582 (($ $ $) 80)) (-1560 (($ $ $) 78)) (-1649 (($ $ $) 86)) (-1637 (($ $ $) 83) (($ $) 84)) (-1626 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-787) (-13 (-1003) (-10 -8 (-15 -2634 ((-1159) $)) (-15 -1429 ($ (-1057))) (-15 -3937 ((-1159) (-1057))) (-15 -3314 ($ (-517))) (-15 -3314 ($ (-1074))) (-15 -3314 ($ (-1057))) (-15 -3314 ($ (-199))) (-15 -1326 ($)) (-15 -2026 ((-517) $)) (-15 -1846 ((-517) $)) (-15 -2026 ((-517))) (-15 -1846 ((-517))) (-15 -2928 ((-517) $)) (-15 -1411 ((-517) $)) (-15 -3450 ($ (-517))) (-15 -2220 ($ (-517))) (-15 -1658 ($ (-517) (-517))) (-15 -3577 ($ $ (-517))) (-15 -3591 ($ $ (-517))) (-15 -2840 ($ $ (-517))) (-15 -3577 ($ $)) (-15 -3591 ($ $)) (-15 -2840 ($ $)) (-15 -1597 ($ $ $)) (-15 -2743 ($ $ $)) (-15 -1597 ($ (-583 $))) (-15 -2743 ($ (-583 $))) (-15 -1610 ($ $ (-583 $))) (-15 -3663 ($ $ (-583 $))) (-15 -3663 ($ $ $ $)) (-15 -3487 ($ $ $)) (-15 -1510 ((-107) $)) (-15 -1986 ($ $ (-583 $))) (-15 -3887 ($ $)) (-15 -1256 ($ $ $)) (-15 -3549 ($ $)) (-15 -1813 ($ (-583 (-583 $)))) (-15 -4082 ($ $ $)) (-15 -1806 ($ $)) (-15 -1806 ($ $ $)) (-15 -3808 ($ $ $)) (-15 -1406 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -2650 ($ $ $)) (-15 -1699 ($ $ (-703))) (-15 -1679 ($ $ $)) (-15 -3376 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3801 ($ $ $)) (-15 -2638 ($ $ $)) (-15 -2554 ($ $ (-583 $))) (-15 -3824 ($ $ (-583 $))) (-15 -3501 ($ $)) (-15 -2736 ($ $)) (-15 -2736 ($ $ (-703))) (-15 -1898 ($ $)) (-15 -1898 ($ $ (-703))) (-15 -2476 ($ $)) (-15 -2905 ($ $ $)) (-15 -2410 ($ $)) (-15 -2410 ($ $ $)) (-15 -2410 ($ $ $ $)) (-15 -2204 ($ $)) (-15 -2204 ($ $ $)) (-15 -2204 ($ $ $ $)) (-15 -3417 ($ $)) (-15 -3417 ($ $ $)) (-15 -3417 ($ $ $ $)) (-15 -3055 ($ $)) (-15 -3055 ($ (-583 $))) (-15 -4031 ($ $)) (-15 -4031 ($ (-583 $))) (-15 -1187 ($ $)) (-15 -1187 ($ (-583 $))) (-15 -1260 ($ (-583 $))) (-15 -2888 ($ (-583 $))) (-15 -3914 ($ (-583 $))) (-15 -2485 ($ (-583 $))) (-15 -1539 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -1560 ($ $ $)) (-15 -1570 ($ $ $)) (-15 -1582 ($ $ $)) (-15 -1593 ($ $ $)) (-15 -1626 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -1637 ($ $)) (-15 * ($ $ $)) (-15 -1649 ($ $ $)) (-15 ** ($ $ $)) (-15 -2358 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2366 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -1651 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -2455 ($ $)) (-15 -2725 ($ $ $)) (-15 -2725 ($ $))))) (T -787))
+((-2634 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-787)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-787)))) (-3937 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-787)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-787)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-787)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-1326 (*1 *1) (-5 *1 (-787))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1846 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2026 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1846 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1658 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3577 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3577 (*1 *1 *1) (-5 *1 (-787))) (-3591 (*1 *1 *1) (-5 *1 (-787))) (-2840 (*1 *1 *1) (-5 *1 (-787))) (-1597 (*1 *1 *1 *1) (-5 *1 (-787))) (-2743 (*1 *1 *1 *1) (-5 *1 (-787))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2743 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1610 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3663 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3487 (*1 *1 *1 *1) (-5 *1 (-787))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3887 (*1 *1 *1) (-5 *1 (-787))) (-1256 (*1 *1 *1 *1) (-5 *1 (-787))) (-3549 (*1 *1 *1) (-5 *1 (-787))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-4082 (*1 *1 *1 *1) (-5 *1 (-787))) (-1806 (*1 *1 *1) (-5 *1 (-787))) (-1806 (*1 *1 *1 *1) (-5 *1 (-787))) (-3808 (*1 *1 *1 *1) (-5 *1 (-787))) (-1406 (*1 *1 *1 *1) (-5 *1 (-787))) (-3082 (*1 *1 *1 *1) (-5 *1 (-787))) (-2650 (*1 *1 *1 *1) (-5 *1 (-787))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1679 (*1 *1 *1 *1) (-5 *1 (-787))) (-3376 (*1 *1 *1 *1) (-5 *1 (-787))) (-1764 (*1 *1 *1 *1) (-5 *1 (-787))) (-3801 (*1 *1 *1 *1) (-5 *1 (-787))) (-2638 (*1 *1 *1 *1) (-5 *1 (-787))) (-2554 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3824 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3501 (*1 *1 *1) (-5 *1 (-787))) (-2736 (*1 *1 *1) (-5 *1 (-787))) (-2736 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1898 (*1 *1 *1) (-5 *1 (-787))) (-1898 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2476 (*1 *1 *1) (-5 *1 (-787))) (-2905 (*1 *1 *1 *1) (-5 *1 (-787))) (-2410 (*1 *1 *1) (-5 *1 (-787))) (-2410 (*1 *1 *1 *1) (-5 *1 (-787))) (-2410 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-2204 (*1 *1 *1) (-5 *1 (-787))) (-2204 (*1 *1 *1 *1) (-5 *1 (-787))) (-2204 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3417 (*1 *1 *1) (-5 *1 (-787))) (-3417 (*1 *1 *1 *1) (-5 *1 (-787))) (-3417 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3055 (*1 *1 *1) (-5 *1 (-787))) (-3055 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4031 (*1 *1 *1) (-5 *1 (-787))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1187 (*1 *1 *1) (-5 *1 (-787))) (-1187 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1260 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2888 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2485 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1539 (*1 *1 *1 *1) (-5 *1 (-787))) (-2339 (*1 *1 *1 *1) (-5 *1 (-787))) (-1560 (*1 *1 *1 *1) (-5 *1 (-787))) (-1570 (*1 *1 *1 *1) (-5 *1 (-787))) (-1582 (*1 *1 *1 *1) (-5 *1 (-787))) (-1593 (*1 *1 *1 *1) (-5 *1 (-787))) (-1626 (*1 *1 *1 *1) (-5 *1 (-787))) (-1637 (*1 *1 *1 *1) (-5 *1 (-787))) (-1637 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1649 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2358 (*1 *1 *1 *1) (-5 *1 (-787))) (-2383 (*1 *1 *1 *1) (-5 *1 (-787))) (-2366 (*1 *1 *1 *1) (-5 *1 (-787))) (-2349 (*1 *1 *1 *1) (-5 *1 (-787))) (-1651 (*1 *1 *1 *1) (-5 *1 (-787))) (-1639 (*1 *1 *1 *1) (-5 *1 (-787))) (-2455 (*1 *1 *1) (-5 *1 (-787))) (-2725 (*1 *1 *1 *1) (-5 *1 (-787))) (-2725 (*1 *1 *1) (-5 *1 (-787))))
+(-13 (-1003) (-10 -8 (-15 -2634 ((-1159) $)) (-15 -1429 ($ (-1057))) (-15 -3937 ((-1159) (-1057))) (-15 -3314 ($ (-517))) (-15 -3314 ($ (-1074))) (-15 -3314 ($ (-1057))) (-15 -3314 ($ (-199))) (-15 -1326 ($)) (-15 -2026 ((-517) $)) (-15 -1846 ((-517) $)) (-15 -2026 ((-517))) (-15 -1846 ((-517))) (-15 -2928 ((-517) $)) (-15 -1411 ((-517) $)) (-15 -3450 ($ (-517))) (-15 -2220 ($ (-517))) (-15 -1658 ($ (-517) (-517))) (-15 -3577 ($ $ (-517))) (-15 -3591 ($ $ (-517))) (-15 -2840 ($ $ (-517))) (-15 -3577 ($ $)) (-15 -3591 ($ $)) (-15 -2840 ($ $)) (-15 -1597 ($ $ $)) (-15 -2743 ($ $ $)) (-15 -1597 ($ (-583 $))) (-15 -2743 ($ (-583 $))) (-15 -1610 ($ $ (-583 $))) (-15 -3663 ($ $ (-583 $))) (-15 -3663 ($ $ $ $)) (-15 -3487 ($ $ $)) (-15 -1510 ((-107) $)) (-15 -1986 ($ $ (-583 $))) (-15 -3887 ($ $)) (-15 -1256 ($ $ $)) (-15 -3549 ($ $)) (-15 -1813 ($ (-583 (-583 $)))) (-15 -4082 ($ $ $)) (-15 -1806 ($ $)) (-15 -1806 ($ $ $)) (-15 -3808 ($ $ $)) (-15 -1406 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -2650 ($ $ $)) (-15 -1699 ($ $ (-703))) (-15 -1679 ($ $ $)) (-15 -3376 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3801 ($ $ $)) (-15 -2638 ($ $ $)) (-15 -2554 ($ $ (-583 $))) (-15 -3824 ($ $ (-583 $))) (-15 -3501 ($ $)) (-15 -2736 ($ $)) (-15 -2736 ($ $ (-703))) (-15 -1898 ($ $)) (-15 -1898 ($ $ (-703))) (-15 -2476 ($ $)) (-15 -2905 ($ $ $)) (-15 -2410 ($ $)) (-15 -2410 ($ $ $)) (-15 -2410 ($ $ $ $)) (-15 -2204 ($ $)) (-15 -2204 ($ $ $)) (-15 -2204 ($ $ $ $)) (-15 -3417 ($ $)) (-15 -3417 ($ $ $)) (-15 -3417 ($ $ $ $)) (-15 -3055 ($ $)) (-15 -3055 ($ (-583 $))) (-15 -4031 ($ $)) (-15 -4031 ($ (-583 $))) (-15 -1187 ($ $)) (-15 -1187 ($ (-583 $))) (-15 -1260 ($ (-583 $))) (-15 -2888 ($ (-583 $))) (-15 -3914 ($ (-583 $))) (-15 -2485 ($ (-583 $))) (-15 -1539 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -1560 ($ $ $)) (-15 -1570 ($ $ $)) (-15 -1582 ($ $ $)) (-15 -1593 ($ $ $)) (-15 -1626 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -1637 ($ $)) (-15 * ($ $ $)) (-15 -1649 ($ $ $)) (-15 ** ($ $ $)) (-15 -2358 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2366 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -1651 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -2455 ($ $)) (-15 -2725 ($ $ $)) (-15 -2725 ($ $))))
+((-1459 (((-1159) (-583 (-51))) 24)) (-2020 (((-1159) (-1057) (-787)) 14) (((-1159) (-787)) 9) (((-1159) (-1057)) 11)))
+(((-788) (-10 -7 (-15 -2020 ((-1159) (-1057))) (-15 -2020 ((-1159) (-787))) (-15 -2020 ((-1159) (-1057) (-787))) (-15 -1459 ((-1159) (-583 (-51)))))) (T -788))
+((-1459 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1159)) (-5 *1 (-788)))) (-2020 (*1 *2 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-787)) (-5 *2 (-1159)) (-5 *1 (-788)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-788)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-788)))))
+(-10 -7 (-15 -2020 ((-1159) (-1057))) (-15 -2020 ((-1159) (-787))) (-15 -2020 ((-1159) (-1057) (-787))) (-15 -1459 ((-1159) (-583 (-51)))))
+((-2571 (((-107) $ $) NIL)) (-1625 (((-3 $ "failed") (-1074)) 32)) (-1598 (((-703)) 30)) (-3098 (($) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-2903 (((-843) $) 28)) (-3865 (((-1057) $) 38)) (-3353 (($ (-843)) 27)) (-3094 (((-1021) $) NIL)) (-3582 (((-1074) $) 13) (((-493) $) 19) (((-814 (-349)) $) 25) (((-814 (-517)) $) 22)) (-2182 (((-787) $) 16)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 35)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 34)))
+(((-789 |#1|) (-13 (-773) (-558 (-1074)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -1625 ((-3 $ "failed") (-1074))))) (-583 (-1074))) (T -789))
+((-1625 (*1 *1 *2) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))))
+(-13 (-773) (-558 (-1074)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -1625 ((-3 $ "failed") (-1074)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (((-874 |#1|) $) NIL) (($ (-874 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-1865 (((-703)) NIL)) (-3219 (((-1159) (-703)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1649 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-790 |#1| |#2| |#3| |#4|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2182 ((-874 |#1|) $)) (-15 -2182 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1649 ((-3 $ "failed") $ $)) |noBranch|) (-15 -3219 ((-1159) (-703))))) (-961) (-583 (-1074)) (-583 (-703)) (-703)) (T -790))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1074))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1649 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 *3)) (-14 *7 *3))))
+(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2182 ((-874 |#1|) $)) (-15 -2182 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1649 ((-3 $ "failed") $ $)) |noBranch|) (-15 -3219 ((-1159) (-703)))))
+((-3266 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-3719 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24)))
+(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -3719 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3266 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1146 |#1|) (-1131 |#1|)) (T -791))
+((-3266 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1146 *5)) (-4 *6 (-1131 *5)))) (-3719 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1146 *5)) (-4 *6 (-1131 *5)))))
+(-10 -7 (-15 -3719 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3266 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|)))
+((-3719 (((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) 26)))
+(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -3719 ((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (-15 -3719 ((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|)))) (-333) (-1074) |#1|) (T -792))
+((-3719 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1147 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1074)) (-14 *7 *5) (-5 *2 (-377 (-1128 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-3719 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1147 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1074)) (-14 *7 *5) (-5 *2 (-377 (-1128 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
+(-10 -7 (-15 -3719 ((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (-15 -3719 ((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3706 (($ $ (-517)) 62)) (-3765 (((-107) $ $) 59)) (-3473 (($) 17 T CONST)) (-1806 (($ (-1070 (-517)) (-517)) 61)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-3011 (($ $) 64)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-1921 (((-703) $) 69)) (-2955 (((-107) $) 31)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3962 (((-517)) 66)) (-3890 (((-517) $) 65)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3467 (($ $ (-517)) 68)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-1567 (((-1055 (-517)) $) 70)) (-2860 (($ $) 67)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-3284 (((-517) $ (-517)) 63)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-793 |#1|) (-1185) (-517)) (T -793))
+((-1567 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1055 (-517))))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-3467 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-2860 (*1 *1 *1) (-4 *1 (-793 *2))) (-3962 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3011 (*1 *1 *1) (-4 *1 (-793 *2))) (-3284 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3706 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1806 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
+(-13 (-278) (-134) (-10 -8 (-15 -1567 ((-1055 (-517)) $)) (-15 -1921 ((-703) $)) (-15 -3467 ($ $ (-517))) (-15 -2860 ($ $)) (-15 -3962 ((-517))) (-15 -3890 ((-517) $)) (-15 -3011 ($ $)) (-15 -3284 ((-517) $ (-517))) (-15 -3706 ($ $ (-517))) (-15 -1806 ($ (-1070 (-517)) (-517)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3531 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) NIL)) (-3340 (((-517) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-1054 (-517)) $) NIL)) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $ (-517)) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1806 (($ (-1070 (-517)) (-517)) NIL)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3011 (($ $) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-1921 (((-703) $) NIL)) (-2955 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3962 (((-517)) NIL)) (-3890 (((-517) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3467 (($ $ (-517)) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1567 (((-1055 (-517)) $) NIL)) (-2860 (($ $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-1865 (((-703)) NIL)) (-3767 (((-107) $ $) NIL)) (-3284 (((-517) $ (-517)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
(((-794 |#1|) (-793 |#1|) (-517)) (T -794))
NIL
(-793 |#1|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-794 |#1|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-3189 (((-794 |#1|) $) NIL) (((-1073) $) NIL (|has| (-794 |#1|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-794 |#1|))) (|:| |vec| (-1153 (-794 |#1|)))) (-623 $) (-1153 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-794 |#1|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-794 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-794 |#1|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-794 |#1|) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-3099 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-1893 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-794 |#1|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-2597 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1073)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1073) (-794 |#1|)))) (($ $ (-1073) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1073) (-794 |#1|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-794 |#1|) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-937))) (((-199) $) NIL (|has| (-794 |#1|) (-937)))) (-2005 (((-157 (-377 (-517))) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1073)) NIL (|has| (-794 |#1|) (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))) (|has| (-794 |#1|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) NIL)) (-3710 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1667 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL)))
-(((-795 |#1|) (-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517)) (T -795))
-((-3383 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))))
-(-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#2| $) NIL (|has| |#2| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#2| (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| |#2| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517))))) (-3189 ((|#2| $) NIL) (((-1073) $) NIL (|has| |#2| (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-517)))) (((-517) $) NIL (|has| |#2| (-952 (-517))))) (-2869 (($ $) 31) (($ (-517) $) 32)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 53)) (-3209 (($) NIL (|has| |#2| (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| |#2| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#2| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#2| (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 ((|#2| $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#2| (-1049)))) (-2475 (((-107) $) NIL (|has| |#2| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 49)) (-2836 (($) NIL (|has| |#2| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| |#2| (-278)))) (-2597 ((|#2| $) NIL (|has| |#2| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1073)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1073) |#2|))) (($ $ (-1073) |#2|) NIL (|has| |#2| (-478 (-1073) |#2|)))) (-3146 (((-703) $) NIL)) (-1449 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2971 (($ $) NIL)) (-1800 ((|#2| $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#2| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-937))) (((-199) $) NIL (|has| |#2| (-937)))) (-2005 (((-157 (-377 (-517))) $) 68)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) 85) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1073)) NIL (|has| |#2| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-1949 ((|#2| $) NIL (|has| |#2| (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) 60)) (-3710 (($ $) NIL (|has| |#2| (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 14 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) 35)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1654 (($ $) 39) (($ $ $) 41)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-796 |#1| |#2|) (-13 (-909 |#2|) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796))
-((-3383 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-2005 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-2869 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
-(-13 (-909 |#2|) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $))))
-((-2750 (((-107) $ $) NIL)) (-2239 (((-517) $) 15)) (-2280 (($ (-142)) 11)) (-3725 (($ (-142)) 12)) (-3985 (((-1056) $) NIL)) (-3512 (((-142) $) 13)) (-3206 (((-1021) $) NIL)) (-2806 (($ (-142)) 9)) (-2140 (($ (-142)) 8)) (-2256 (((-787) $) 23) (($ (-142)) 16)) (-2012 (($ (-142)) 10)) (-1547 (((-107) $ $) NIL)))
-(((-797) (-13 (-1003) (-10 -8 (-15 -2140 ($ (-142))) (-15 -2806 ($ (-142))) (-15 -2012 ($ (-142))) (-15 -2280 ($ (-142))) (-15 -3725 ($ (-142))) (-15 -3512 ((-142) $)) (-15 -2239 ((-517) $)) (-15 -2256 ($ (-142)))))) (T -797))
-((-2140 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2806 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(-13 (-1003) (-10 -8 (-15 -2140 ($ (-142))) (-15 -2806 ($ (-142))) (-15 -2012 ($ (-142))) (-15 -2280 ($ (-142))) (-15 -3725 ($ (-142))) (-15 -3512 ((-142) $)) (-15 -2239 ((-517) $)) (-15 -2256 ($ (-142)))))
-((-2256 (((-286 (-517)) (-377 (-874 (-47)))) 21) (((-286 (-517)) (-874 (-47))) 16)))
-(((-798) (-10 -7 (-15 -2256 ((-286 (-517)) (-874 (-47)))) (-15 -2256 ((-286 (-517)) (-377 (-874 (-47))))))) (T -798))
-((-2256 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))))
-(-10 -7 (-15 -2256 ((-286 (-517)) (-874 (-47)))) (-15 -2256 ((-286 (-517)) (-377 (-874 (-47))))))
-((-1893 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14)))
-(((-799 |#1| |#2|) (-10 -7 (-15 -1893 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1108) (-1108)) (T -799))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))))
-(-10 -7 (-15 -1893 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))))
-((-2689 (($ |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10)))
-(((-800 |#1|) (-10 -8 (-15 -2689 ($ |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -800))
-((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1108)))) (-2689 (*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1108)))))
-(-10 -8 (-15 -2689 ($ |#1| |#1|)) (-15 -1526 (|#1| $ (-703))))
-((-1893 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -1893 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1108) (-1108)) (T -801))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))))
-(-10 -7 (-15 -1893 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|))))
-((-2689 (($ |#1| |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10)))
-(((-802 |#1|) (-10 -8 (-15 -2689 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -802))
-((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1108)))) (-2689 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1108)))))
-(-10 -8 (-15 -2689 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703))))
-((-1893 (((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)) 14)))
-(((-803 |#1| |#2|) (-10 -7 (-15 -1893 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) (-1108) (-1108)) (T -803))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))))
-(-10 -7 (-15 -1893 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|))))
-((-1860 (($ |#1| |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10)))
-(((-804 |#1|) (-10 -8 (-15 -1860 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -804))
-((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1108)))) (-1860 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1108)))))
-(-10 -8 (-15 -1860 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703))))
-((-2816 (((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517)))) 30)) (-1751 (((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517))) 26)) (-1938 (((-1054 (-583 (-517))) (-583 (-517))) 39) (((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517))) 38)) (-1500 (((-1054 (-583 (-517))) (-517)) 40)) (-3587 (((-1054 (-583 (-517))) (-517) (-517)) 22) (((-1054 (-583 (-517))) (-517)) 16) (((-1054 (-583 (-517))) (-517) (-517) (-517)) 12)) (-1622 (((-1054 (-583 (-517))) (-1054 (-583 (-517)))) 24)) (-1487 (((-583 (-517)) (-583 (-517))) 23)))
-(((-805) (-10 -7 (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517))) (-15 -1487 ((-583 (-517)) (-583 (-517)))) (-15 -1622 ((-1054 (-583 (-517))) (-1054 (-583 (-517))))) (-15 -1751 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -2816 ((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517))))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)))) (-15 -1500 ((-1054 (-583 (-517))) (-517))))) (T -805))
-((-1500 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-1938 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1938 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-2816 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))) (-1751 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-3587 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-3587 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
-(-10 -7 (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517))) (-15 -1487 ((-583 (-517)) (-583 (-517)))) (-15 -1622 ((-1054 (-583 (-517))) (-1054 (-583 (-517))))) (-15 -1751 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -2816 ((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517))))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)))) (-15 -1500 ((-1054 (-583 (-517))) (-517))))
-((-3645 (((-814 (-349)) $) 9 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 8 (|has| |#1| (-558 (-814 (-517)))))))
-(((-806 |#1|) (-1184) (-1108)) (T -806))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-794 |#1|) (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-794 |#1|) (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-794 |#1|) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-3076 (((-794 |#1|) $) NIL) (((-1074) $) NIL (|has| (-794 |#1|) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-2163 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-794 |#1|))) (|:| |vec| (-1154 (-794 |#1|)))) (-623 $) (-1154 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-794 |#1|) (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-794 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-794 |#1|) (-808 (-349))))) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL)) (-1772 (((-794 |#1|) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1050)))) (-1624 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-2986 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-1857 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-794 |#1|) (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-3263 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-794 |#1|) (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-794 |#1|) (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1074)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1074) (-794 |#1|)))) (($ $ (-1074) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1074) (-794 |#1|))))) (-2623 (((-703) $) NIL)) (-1986 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1074)) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-3691 (($ $) NIL)) (-1783 (((-794 |#1|) $) NIL)) (-3582 (((-814 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-937))) (((-199) $) NIL (|has| (-794 |#1|) (-937)))) (-2463 (((-157 (-377 (-517))) $) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1074)) NIL (|has| (-794 |#1|) (-952 (-1074))))) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))) (|has| (-794 |#1|) (-132))))) (-1865 (((-703)) NIL)) (-3112 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-3767 (((-107) $ $) NIL)) (-3284 (((-377 (-517)) $ (-517)) NIL)) (-1221 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1074)) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1593 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1560 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1649 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL)))
+(((-795 |#1|) (-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3284 ((-377 (-517)) $ (-517))) (-15 -2463 ((-157 (-377 (-517))) $)) (-15 -2163 ($ $)) (-15 -2163 ($ (-517) $)))) (-517)) (T -795))
+((-3284 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-2163 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))))
+(-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3284 ((-377 (-517)) $ (-517))) (-15 -2463 ((-157 (-377 (-517))) $)) (-15 -2163 ($ $)) (-15 -2163 ($ (-517) $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 ((|#2| $) NIL (|has| |#2| (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| |#2| (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| |#2| (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517))))) (-3076 ((|#2| $) NIL) (((-1074) $) NIL (|has| |#2| (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-517)))) (((-517) $) NIL (|has| |#2| (-952 (-517))))) (-2163 (($ $) 31) (($ (-517) $) 32)) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) 53)) (-3098 (($) NIL (|has| |#2| (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) NIL (|has| |#2| (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#2| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#2| (-808 (-349))))) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL)) (-1772 ((|#2| $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| |#2| (-1050)))) (-1624 (((-107) $) NIL (|has| |#2| (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| |#2| (-779)))) (-2986 (($ $ $) NIL (|has| |#2| (-779)))) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 49)) (-2663 (($) NIL (|has| |#2| (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| |#2| (-278)))) (-3263 ((|#2| $) NIL (|has| |#2| (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1074)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1074) |#2|))) (($ $ (-1074) |#2|) NIL (|has| |#2| (-478 (-1074) |#2|)))) (-2623 (((-703) $) NIL)) (-1986 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3691 (($ $) NIL)) (-1783 ((|#2| $) NIL)) (-3582 (((-814 (-517)) $) NIL (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#2| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-937))) (((-199) $) NIL (|has| |#2| (-937)))) (-2463 (((-157 (-377 (-517))) $) 68)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2182 (((-787) $) 85) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1074)) NIL (|has| |#2| (-952 (-1074))))) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1865 (((-703)) NIL)) (-3112 ((|#2| $) NIL (|has| |#2| (-502)))) (-3767 (((-107) $ $) NIL)) (-3284 (((-377 (-517)) $ (-517)) 60)) (-1221 (($ $) NIL (|has| |#2| (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 14 T CONST)) (-2306 (($) 16 T CONST)) (-2553 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1539 (((-107) $ $) 35)) (-1582 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1649 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1637 (($ $) 39) (($ $ $) 41)) (-1626 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-796 |#1| |#2|) (-13 (-909 |#2|) (-10 -8 (-15 -3284 ((-377 (-517)) $ (-517))) (-15 -2463 ((-157 (-377 (-517))) $)) (-15 -2163 ($ $)) (-15 -2163 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796))
+((-3284 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-2463 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-2163 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-2163 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+(-13 (-909 |#2|) (-10 -8 (-15 -3284 ((-377 (-517)) $ (-517))) (-15 -2463 ((-157 (-377 (-517))) $)) (-15 -2163 ($ $)) (-15 -2163 ($ (-517) $))))
+((-2571 (((-107) $ $) NIL)) (-1188 (((-517) $) 15)) (-3277 (($ (-142)) 11)) (-1355 (($ (-142)) 12)) (-3865 (((-1057) $) NIL)) (-2845 (((-142) $) 13)) (-3094 (((-1021) $) NIL)) (-2630 (($ (-142)) 9)) (-1499 (($ (-142)) 8)) (-2182 (((-787) $) 23) (($ (-142)) 16)) (-1943 (($ (-142)) 10)) (-1539 (((-107) $ $) NIL)))
+(((-797) (-13 (-1003) (-10 -8 (-15 -1499 ($ (-142))) (-15 -2630 ($ (-142))) (-15 -1943 ($ (-142))) (-15 -3277 ($ (-142))) (-15 -1355 ($ (-142))) (-15 -2845 ((-142) $)) (-15 -1188 ((-517) $)) (-15 -2182 ($ (-142)))))) (T -797))
+((-1499 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2630 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3277 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1355 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1188 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(-13 (-1003) (-10 -8 (-15 -1499 ($ (-142))) (-15 -2630 ($ (-142))) (-15 -1943 ($ (-142))) (-15 -3277 ($ (-142))) (-15 -1355 ($ (-142))) (-15 -2845 ((-142) $)) (-15 -1188 ((-517) $)) (-15 -2182 ($ (-142)))))
+((-2182 (((-286 (-517)) (-377 (-874 (-47)))) 21) (((-286 (-517)) (-874 (-47))) 16)))
+(((-798) (-10 -7 (-15 -2182 ((-286 (-517)) (-874 (-47)))) (-15 -2182 ((-286 (-517)) (-377 (-874 (-47))))))) (T -798))
+((-2182 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))))
+(-10 -7 (-15 -2182 ((-286 (-517)) (-874 (-47)))) (-15 -2182 ((-286 (-517)) (-377 (-874 (-47))))))
+((-1857 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14)))
+(((-799 |#1| |#2|) (-10 -7 (-15 -1857 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1109) (-1109)) (T -799))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))))
+(-10 -7 (-15 -1857 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))))
+((-2914 (($ |#1| |#1|) 8)) (-1345 ((|#1| $ (-703)) 10)))
+(((-800 |#1|) (-10 -8 (-15 -2914 ($ |#1| |#1|)) (-15 -1345 (|#1| $ (-703)))) (-1109)) (T -800))
+((-1345 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1109)))) (-2914 (*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1109)))))
+(-10 -8 (-15 -2914 ($ |#1| |#1|)) (-15 -1345 (|#1| $ (-703))))
+((-1857 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14)))
+(((-801 |#1| |#2|) (-10 -7 (-15 -1857 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1109) (-1109)) (T -801))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))))
+(-10 -7 (-15 -1857 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|))))
+((-2914 (($ |#1| |#1| |#1|) 8)) (-1345 ((|#1| $ (-703)) 10)))
+(((-802 |#1|) (-10 -8 (-15 -2914 ($ |#1| |#1| |#1|)) (-15 -1345 (|#1| $ (-703)))) (-1109)) (T -802))
+((-1345 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1109)))) (-2914 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1109)))))
+(-10 -8 (-15 -2914 ($ |#1| |#1| |#1|)) (-15 -1345 (|#1| $ (-703))))
+((-1857 (((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)) 14)))
+(((-803 |#1| |#2|) (-10 -7 (-15 -1857 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) (-1109) (-1109)) (T -803))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))))
+(-10 -7 (-15 -1857 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|))))
+((-4107 (($ |#1| |#1| |#1|) 8)) (-1345 ((|#1| $ (-703)) 10)))
+(((-804 |#1|) (-10 -8 (-15 -4107 ($ |#1| |#1| |#1|)) (-15 -1345 (|#1| $ (-703)))) (-1109)) (T -804))
+((-1345 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1109)))) (-4107 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1109)))))
+(-10 -8 (-15 -4107 ($ |#1| |#1| |#1|)) (-15 -1345 (|#1| $ (-703))))
+((-2770 (((-1055 (-583 (-517))) (-583 (-517)) (-1055 (-583 (-517)))) 30)) (-1721 (((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517))) 26)) (-1304 (((-1055 (-583 (-517))) (-583 (-517))) 39) (((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517))) 38)) (-2114 (((-1055 (-583 (-517))) (-517)) 40)) (-2328 (((-1055 (-583 (-517))) (-517) (-517)) 22) (((-1055 (-583 (-517))) (-517)) 16) (((-1055 (-583 (-517))) (-517) (-517) (-517)) 12)) (-3678 (((-1055 (-583 (-517))) (-1055 (-583 (-517)))) 24)) (-2013 (((-583 (-517)) (-583 (-517))) 23)))
+(((-805) (-10 -7 (-15 -2328 ((-1055 (-583 (-517))) (-517) (-517) (-517))) (-15 -2328 ((-1055 (-583 (-517))) (-517))) (-15 -2328 ((-1055 (-583 (-517))) (-517) (-517))) (-15 -2013 ((-583 (-517)) (-583 (-517)))) (-15 -3678 ((-1055 (-583 (-517))) (-1055 (-583 (-517))))) (-15 -1721 ((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -2770 ((-1055 (-583 (-517))) (-583 (-517)) (-1055 (-583 (-517))))) (-15 -1304 ((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1304 ((-1055 (-583 (-517))) (-583 (-517)))) (-15 -2114 ((-1055 (-583 (-517))) (-517))))) (T -805))
+((-2114 (*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-1304 (*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1304 (*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-2770 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))) (-1721 (*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-3678 (*1 *2 *2) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-2328 (*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-2328 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2328 ((-1055 (-583 (-517))) (-517) (-517) (-517))) (-15 -2328 ((-1055 (-583 (-517))) (-517))) (-15 -2328 ((-1055 (-583 (-517))) (-517) (-517))) (-15 -2013 ((-583 (-517)) (-583 (-517)))) (-15 -3678 ((-1055 (-583 (-517))) (-1055 (-583 (-517))))) (-15 -1721 ((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -2770 ((-1055 (-583 (-517))) (-583 (-517)) (-1055 (-583 (-517))))) (-15 -1304 ((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1304 ((-1055 (-583 (-517))) (-583 (-517)))) (-15 -2114 ((-1055 (-583 (-517))) (-517))))
+((-3582 (((-814 (-349)) $) 9 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 8 (|has| |#1| (-558 (-814 (-517)))))))
+(((-806 |#1|) (-1185) (-1109)) (T -806))
NIL
(-13 (-10 -7 (IF (|has| |t#1| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |noBranch|)))
(((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
-((-2750 (((-107) $ $) NIL)) (-3462 (($) 14)) (-3441 (($ (-811 |#1| |#2|) (-811 |#1| |#3|)) 27)) (-2336 (((-811 |#1| |#3|) $) 16)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2945 (((-107) $) 22)) (-3713 (($) 19)) (-2256 (((-787) $) 30)) (-3735 (((-811 |#1| |#2|) $) 15)) (-1547 (((-107) $ $) 25)))
-(((-807 |#1| |#2| |#3|) (-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -3441 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3735 ((-811 |#1| |#2|) $)) (-15 -2336 ((-811 |#1| |#3|) $)))) (-1003) (-1003) (-603 |#2|)) (T -807))
-((-2945 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-3713 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3462 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3441 (*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))) (-3735 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-2336 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
-(-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -3441 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3735 ((-811 |#1| |#2|) $)) (-15 -2336 ((-811 |#1| |#3|) $))))
-((-2750 (((-107) $ $) 7)) (-4057 (((-811 |#1| $) $ (-814 |#1|) (-811 |#1| $)) 13)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
-(((-808 |#1|) (-1184) (-1003)) (T -808))
-((-4057 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -4057 ((-811 |t#1| $) $ (-814 |t#1|) (-811 |t#1| $)))))
+((-2571 (((-107) $ $) NIL)) (-3366 (($) 14)) (-3481 (($ (-811 |#1| |#2|) (-811 |#1| |#3|)) 27)) (-3885 (((-811 |#1| |#3|) $) 16)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1728 (((-107) $) 22)) (-3637 (($) 19)) (-2182 (((-787) $) 30)) (-3131 (((-811 |#1| |#2|) $) 15)) (-1539 (((-107) $ $) 25)))
+(((-807 |#1| |#2| |#3|) (-13 (-1003) (-10 -8 (-15 -1728 ((-107) $)) (-15 -3637 ($)) (-15 -3366 ($)) (-15 -3481 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3131 ((-811 |#1| |#2|) $)) (-15 -3885 ((-811 |#1| |#3|) $)))) (-1003) (-1003) (-603 |#2|)) (T -807))
+((-1728 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-3637 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3366 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3481 (*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))) (-3131 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-3885 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
+(-13 (-1003) (-10 -8 (-15 -1728 ((-107) $)) (-15 -3637 ($)) (-15 -3366 ($)) (-15 -3481 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3131 ((-811 |#1| |#2|) $)) (-15 -3885 ((-811 |#1| |#3|) $))))
+((-2571 (((-107) $ $) 7)) (-3289 (((-811 |#1| $) $ (-814 |#1|) (-811 |#1| $)) 13)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)))
+(((-808 |#1|) (-1185) (-1003)) (T -808))
+((-3289 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -3289 ((-811 |t#1| $) $ (-814 |t#1|) (-811 |t#1| $)))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1609 (((-107) (-583 |#2|) |#3|) 22) (((-107) |#2| |#3|) 17)) (-1571 (((-811 |#1| |#2|) |#2| |#3|) 42 (-12 (-2630 (|has| |#2| (-952 (-1073)))) (-2630 (|has| |#2| (-961))))) (((-583 (-265 (-874 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-961)) (-2630 (|has| |#2| (-952 (-1073)))))) (((-583 (-265 |#2|)) |#2| |#3|) 34 (|has| |#2| (-952 (-1073)))) (((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 20)))
-(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -1609 ((-107) |#2| |#3|)) (-15 -1609 ((-107) (-583 |#2|) |#3|)) (-15 -1571 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1073))) (-15 -1571 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -1571 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -1571 ((-811 |#1| |#2|) |#2| |#3|))))) (-1003) (-808 |#1|) (-558 (-814 |#1|))) (T -809))
-((-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2630 (-4 *3 (-952 (-1073)))) (-2630 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2630 (-4 *3 (-952 (-1073)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1073))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) (-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))) (-1609 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))))
-(-10 -7 (-15 -1609 ((-107) |#2| |#3|)) (-15 -1609 ((-107) (-583 |#2|) |#3|)) (-15 -1571 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1073))) (-15 -1571 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -1571 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -1571 ((-811 |#1| |#2|) |#2| |#3|)))))
-((-1893 (((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)) 21)))
-(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)))) (-1003) (-1003) (-1003)) (T -810))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))))
-(-10 -7 (-15 -1893 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|))))
-((-2750 (((-107) $ $) NIL)) (-1413 (($ $ $) 37)) (-2843 (((-3 (-107) "failed") $ (-814 |#1|)) 34)) (-3462 (($) 11)) (-3985 (((-1056) $) NIL)) (-1914 (($ (-814 |#1|) |#2| $) 20)) (-3206 (((-1021) $) NIL)) (-2764 (((-3 |#2| "failed") (-814 |#1|) $) 48)) (-2945 (((-107) $) 14)) (-3713 (($) 12)) (-3814 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $) 25)) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|)))) 23)) (-2256 (((-787) $) 42)) (-2246 (($ (-814 |#1|) |#2| $ |#2|) 46)) (-1598 (($ (-814 |#1|) |#2| $) 45)) (-1547 (((-107) $ $) 39)))
-(((-811 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -1413 ($ $ $)) (-15 -2764 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -1598 ($ (-814 |#1|) |#2| $)) (-15 -1914 ($ (-814 |#1|) |#2| $)) (-15 -2246 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -3814 ((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))))) (-15 -2843 ((-3 (-107) "failed") $ (-814 |#1|))))) (-1003) (-1003)) (T -811))
-((-2945 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3713 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3462 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1413 (*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-2764 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))) (-1598 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-1914 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-2246 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) (-2843 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -1413 ($ $ $)) (-15 -2764 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -1598 ($ (-814 |#1|) |#2| $)) (-15 -1914 ($ (-814 |#1|) |#2| $)) (-15 -2246 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -3814 ((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))))) (-15 -2843 ((-3 (-107) "failed") $ (-814 |#1|)))))
-((-3820 (((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|))) 30) (((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|)) 33)) (-2843 (((-107) (-583 |#2|) (-814 |#1|)) 39) (((-107) |#2| (-814 |#1|)) 35)) (-2286 (((-1 (-107) |#2|) (-814 |#1|)) 14)) (-2935 (((-583 |#2|) (-814 |#1|)) 23)) (-1374 (((-814 |#1|) (-814 |#1|) |#2|) 19)))
-(((-812 |#1| |#2|) (-10 -7 (-15 -3820 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|)))) (-15 -2286 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -2843 ((-107) |#2| (-814 |#1|))) (-15 -2843 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -1374 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -2935 ((-583 |#2|) (-814 |#1|)))) (-1003) (-1108)) (T -812))
-((-2935 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1108)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1108)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))) (-3820 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1073))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-812 *5 *6)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))))
-(-10 -7 (-15 -3820 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|)))) (-15 -2286 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -2843 ((-107) |#2| (-814 |#1|))) (-15 -2843 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -1374 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -2935 ((-583 |#2|) (-814 |#1|))))
-((-1893 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 17)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -1893 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1003) (-1003)) (T -813))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))))
-(-10 -7 (-15 -1893 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))))
-((-2750 (((-107) $ $) NIL)) (-1469 (($ $ (-583 (-51))) 62)) (-1364 (((-583 $) $) 116)) (-3187 (((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $) 22)) (-2710 (((-107) $) 29)) (-1752 (($ $ (-583 (-1073)) (-51)) 24)) (-2664 (($ $ (-583 (-51))) 61)) (-1772 (((-3 |#1| "failed") $) 59) (((-3 (-1073) "failed") $) 138)) (-3189 ((|#1| $) 55) (((-1073) $) NIL)) (-2269 (($ $) 106)) (-2554 (((-107) $) 45)) (-3218 (((-583 (-51)) $) 43)) (-1512 (($ (-1073) (-107) (-107) (-107)) 63)) (-2288 (((-3 (-583 $) "failed") (-583 $)) 70)) (-1685 (((-107) $) 48)) (-3095 (((-107) $) 47)) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) 34)) (-2966 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $) 81)) (-3401 (((-3 (-583 $) "failed") $) 31)) (-2800 (((-3 (-583 $) "failed") $ (-109)) 105) (((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $) 93)) (-1624 (((-3 (-583 $) "failed") $) 35)) (-3174 (((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $) 38)) (-2580 (((-107) $) 28)) (-3206 (((-1021) $) NIL)) (-2958 (((-107) $) 20)) (-2608 (((-107) $) 44)) (-2057 (((-583 (-51)) $) 109)) (-3519 (((-107) $) 46)) (-1449 (($ (-109) (-583 $)) 90)) (-1694 (((-703) $) 27)) (-2433 (($ $) 60)) (-3645 (($ (-583 $)) 57)) (-3819 (((-107) $) 25)) (-2256 (((-787) $) 50) (($ |#1|) 18) (($ (-1073)) 64)) (-1374 (($ $ (-51)) 108)) (-2396 (($) 89 T CONST)) (-2409 (($) 71 T CONST)) (-1547 (((-107) $ $) 77)) (-1667 (($ $ $) 98)) (-1642 (($ $ $) 102)) (** (($ $ (-703)) 97) (($ $ $) 51)) (* (($ $ $) 103)))
-(((-814 |#1|) (-13 (-1003) (-952 |#1|) (-952 (-1073)) (-10 -8 (-15 0 ($) -1619) (-15 1 ($) -1619) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -2800 ((-3 (-583 $) "failed") $ (-109))) (-15 -2800 ((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $)) (-15 -2966 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1624 ((-3 (-583 $) "failed") $)) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1694 ((-703) $)) (-15 -3645 ($ (-583 $))) (-15 -2433 ($ $)) (-15 -2580 ((-107) $)) (-15 -2554 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -3819 ((-107) $)) (-15 -3519 ((-107) $)) (-15 -3095 ((-107) $)) (-15 -1685 ((-107) $)) (-15 -2608 ((-107) $)) (-15 -3218 ((-583 (-51)) $)) (-15 -2664 ($ $ (-583 (-51)))) (-15 -1469 ($ $ (-583 (-51)))) (-15 -1512 ($ (-1073) (-107) (-107) (-107))) (-15 -1752 ($ $ (-583 (-1073)) (-51))) (-15 -3187 ((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $)) (-15 -2958 ((-107) $)) (-15 -2269 ($ $)) (-15 -1374 ($ $ (-51))) (-15 -2057 ((-583 (-51)) $)) (-15 -1364 ((-583 $) $)) (-15 -2288 ((-3 (-583 $) "failed") (-583 $))))) (-1003)) (T -814))
-((-2396 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2409 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-3401 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3703 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2800 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-2800 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3174 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2966 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1735 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1449 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1642 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1667 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2433 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2664 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1512 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2288 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(-13 (-1003) (-952 |#1|) (-952 (-1073)) (-10 -8 (-15 (-2396) ($) -1619) (-15 (-2409) ($) -1619) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -2800 ((-3 (-583 $) "failed") $ (-109))) (-15 -2800 ((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $)) (-15 -2966 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1624 ((-3 (-583 $) "failed") $)) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1694 ((-703) $)) (-15 -3645 ($ (-583 $))) (-15 -2433 ($ $)) (-15 -2580 ((-107) $)) (-15 -2554 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -3819 ((-107) $)) (-15 -3519 ((-107) $)) (-15 -3095 ((-107) $)) (-15 -1685 ((-107) $)) (-15 -2608 ((-107) $)) (-15 -3218 ((-583 (-51)) $)) (-15 -2664 ($ $ (-583 (-51)))) (-15 -1469 ($ $ (-583 (-51)))) (-15 -1512 ($ (-1073) (-107) (-107) (-107))) (-15 -1752 ($ $ (-583 (-1073)) (-51))) (-15 -3187 ((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $)) (-15 -2958 ((-107) $)) (-15 -2269 ($ $)) (-15 -1374 ($ $ (-51))) (-15 -2057 ((-583 (-51)) $)) (-15 -1364 ((-583 $) $)) (-15 -2288 ((-3 (-583 $) "failed") (-583 $)))))
-((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 16)) (-3153 (((-107) $) 38)) (-1772 (((-3 (-608 |#1|) "failed") $) 41)) (-3189 (((-608 |#1|) $) 39)) (-1660 (($ $) 18)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2195 (((-703) $) 45)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-608 |#1|) $) 17)) (-2256 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-2409 (($) 8 T CONST)) (-2332 (((-583 (-608 |#1|)) $) 23)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 11)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 48)))
-(((-815 |#1|) (-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 1 ($) -1619) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ($ |#1|)) (-15 -1647 ((-608 |#1|) $)) (-15 -2195 ((-703) $)) (-15 -2332 ((-583 (-608 |#1|)) $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -815))
-((-2409 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2256 (*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 (-2409) ($) -1619) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ($ |#1|)) (-15 -1647 ((-608 |#1|) $)) (-15 -2195 ((-703) $)) (-15 -2332 ((-583 (-608 |#1|)) $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3463 ((-583 |#1|) $))))
-((-1775 ((|#1| |#1| |#1|) 19)))
-(((-816 |#1| |#2|) (-10 -7 (-15 -1775 (|#1| |#1| |#1|))) (-1130 |#2|) (-961)) (T -816))
-((-1775 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1130 *3)))))
-(-10 -7 (-15 -1775 (|#1| |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 13)) (-1547 (((-107) $ $) 6)))
-(((-817) (-1184)) (T -817))
-((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-2238 (*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-950)))))
-(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2238 ((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))))))
+((-4158 (((-107) (-583 |#2|) |#3|) 22) (((-107) |#2| |#3|) 17)) (-2047 (((-811 |#1| |#2|) |#2| |#3|) 42 (-12 (-2455 (|has| |#2| (-952 (-1074)))) (-2455 (|has| |#2| (-961))))) (((-583 (-265 (-874 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-961)) (-2455 (|has| |#2| (-952 (-1074)))))) (((-583 (-265 |#2|)) |#2| |#3|) 34 (|has| |#2| (-952 (-1074)))) (((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 20)))
+(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -4158 ((-107) |#2| |#3|)) (-15 -4158 ((-107) (-583 |#2|) |#3|)) (-15 -2047 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1074))) (-15 -2047 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -2047 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -2047 ((-811 |#1| |#2|) |#2| |#3|))))) (-1003) (-808 |#1|) (-558 (-814 |#1|))) (T -809))
+((-2047 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2455 (-4 *3 (-952 (-1074)))) (-2455 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-2047 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2455 (-4 *3 (-952 (-1074)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-2047 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1074))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-2047 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))) (-4158 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))))
+(-10 -7 (-15 -4158 ((-107) |#2| |#3|)) (-15 -4158 ((-107) (-583 |#2|) |#3|)) (-15 -2047 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1074))) (-15 -2047 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -2047 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -2047 ((-811 |#1| |#2|) |#2| |#3|)))))
+((-1857 (((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)) 21)))
+(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -1857 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)))) (-1003) (-1003) (-1003)) (T -810))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))))
+(-10 -7 (-15 -1857 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|))))
+((-2571 (((-107) $ $) NIL)) (-1408 (($ $ $) 37)) (-1960 (((-3 (-107) "failed") $ (-814 |#1|)) 34)) (-3366 (($) 11)) (-3865 (((-1057) $) NIL)) (-4034 (($ (-814 |#1|) |#2| $) 20)) (-3094 (((-1021) $) NIL)) (-3552 (((-3 |#2| "failed") (-814 |#1|) $) 48)) (-1728 (((-107) $) 14)) (-3637 (($) 12)) (-3775 (((-583 (-2 (|:| -3342 (-1074)) (|:| -1266 |#2|))) $) 25)) (-2197 (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 |#2|)))) 23)) (-2182 (((-787) $) 42)) (-1269 (($ (-814 |#1|) |#2| $ |#2|) 46)) (-4070 (($ (-814 |#1|) |#2| $) 45)) (-1539 (((-107) $ $) 39)))
+(((-811 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1728 ((-107) $)) (-15 -3637 ($)) (-15 -3366 ($)) (-15 -1408 ($ $ $)) (-15 -3552 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -4070 ($ (-814 |#1|) |#2| $)) (-15 -4034 ($ (-814 |#1|) |#2| $)) (-15 -1269 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -3775 ((-583 (-2 (|:| -3342 (-1074)) (|:| -1266 |#2|))) $)) (-15 -2197 ($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 |#2|))))) (-15 -1960 ((-3 (-107) "failed") $ (-814 |#1|))))) (-1003) (-1003)) (T -811))
+((-1728 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3637 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3366 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1408 (*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3552 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))) (-4070 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-4034 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-1269 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2197 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) (-1960 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -1728 ((-107) $)) (-15 -3637 ($)) (-15 -3366 ($)) (-15 -1408 ($ $ $)) (-15 -3552 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -4070 ($ (-814 |#1|) |#2| $)) (-15 -4034 ($ (-814 |#1|) |#2| $)) (-15 -1269 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -3775 ((-583 (-2 (|:| -3342 (-1074)) (|:| -1266 |#2|))) $)) (-15 -2197 ($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 |#2|))))) (-15 -1960 ((-3 (-107) "failed") $ (-814 |#1|)))))
+((-3781 (((-814 |#1|) (-814 |#1|) (-583 (-1074)) (-1 (-107) (-583 |#2|))) 30) (((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|)) 33)) (-1960 (((-107) (-583 |#2|) (-814 |#1|)) 39) (((-107) |#2| (-814 |#1|)) 35)) (-4015 (((-1 (-107) |#2|) (-814 |#1|)) 14)) (-1623 (((-583 |#2|) (-814 |#1|)) 23)) (-2694 (((-814 |#1|) (-814 |#1|) |#2|) 19)))
+(((-812 |#1| |#2|) (-10 -7 (-15 -3781 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -3781 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3781 ((-814 |#1|) (-814 |#1|) (-583 (-1074)) (-1 (-107) (-583 |#2|)))) (-15 -4015 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -1960 ((-107) |#2| (-814 |#1|))) (-15 -1960 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -2694 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -1623 ((-583 |#2|) (-814 |#1|)))) (-1003) (-1109)) (T -812))
+((-1623 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1109)))) (-2694 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1109)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1109)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1109)))) (-3781 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1074))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *1 (-812 *5 *6)))) (-3781 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1109)) (-5 *1 (-812 *4 *5)))) (-3781 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1109)) (-5 *1 (-812 *4 *5)))))
+(-10 -7 (-15 -3781 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -3781 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3781 ((-814 |#1|) (-814 |#1|) (-583 (-1074)) (-1 (-107) (-583 |#2|)))) (-15 -4015 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -1960 ((-107) |#2| (-814 |#1|))) (-15 -1960 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -2694 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -1623 ((-583 |#2|) (-814 |#1|))))
+((-1857 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 17)))
+(((-813 |#1| |#2|) (-10 -7 (-15 -1857 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1003) (-1003)) (T -813))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))))
+(-10 -7 (-15 -1857 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))))
+((-2571 (((-107) $ $) NIL)) (-3854 (($ $ (-583 (-51))) 62)) (-1363 (((-583 $) $) 116)) (-1951 (((-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51))) $) 22)) (-2999 (((-107) $) 29)) (-3794 (($ $ (-583 (-1074)) (-51)) 24)) (-2624 (($ $ (-583 (-51))) 61)) (-1759 (((-3 |#1| "failed") $) 59) (((-3 (-1074) "failed") $) 138)) (-3076 ((|#1| $) 55) (((-1074) $) NIL)) (-3174 (($ $) 106)) (-4104 (((-107) $) 45)) (-2144 (((-583 (-51)) $) 43)) (-2324 (($ (-1074) (-107) (-107) (-107)) 63)) (-3356 (((-3 (-583 $) "failed") (-583 $)) 70)) (-3579 (((-107) $) 48)) (-3484 (((-107) $) 47)) (-3865 (((-1057) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) 34)) (-2816 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-3973 (((-3 (-2 (|:| |val| $) (|:| -2059 $)) "failed") $) 81)) (-3116 (((-3 (-583 $) "failed") $) 31)) (-2608 (((-3 (-583 $) "failed") $ (-109)) 105) (((-3 (-2 (|:| -3812 (-109)) (|:| |arg| (-583 $))) "failed") $) 93)) (-3687 (((-3 (-583 $) "failed") $) 35)) (-2911 (((-3 (-2 (|:| |val| $) (|:| -2059 (-703))) "failed") $) 38)) (-3093 (((-107) $) 28)) (-3094 (((-1021) $) NIL)) (-1839 (((-107) $) 20)) (-3364 (((-107) $) 44)) (-3005 (((-583 (-51)) $) 109)) (-2918 (((-107) $) 46)) (-1986 (($ (-109) (-583 $)) 90)) (-2824 (((-703) $) 27)) (-2322 (($ $) 60)) (-3582 (($ (-583 $)) 57)) (-2625 (((-107) $) 25)) (-2182 (((-787) $) 50) (($ |#1|) 18) (($ (-1074)) 64)) (-2694 (($ $ (-51)) 108)) (-2297 (($) 89 T CONST)) (-2306 (($) 71 T CONST)) (-1539 (((-107) $ $) 77)) (-1649 (($ $ $) 98)) (-1626 (($ $ $) 102)) (** (($ $ (-703)) 97) (($ $ $) 51)) (* (($ $ $) 103)))
+(((-814 |#1|) (-13 (-1003) (-952 |#1|) (-952 (-1074)) (-10 -8 (-15 0 ($) -1605) (-15 1 ($) -1605) (-15 -3116 ((-3 (-583 $) "failed") $)) (-15 -4128 ((-3 (-583 $) "failed") $)) (-15 -2608 ((-3 (-583 $) "failed") $ (-109))) (-15 -2608 ((-3 (-2 (|:| -3812 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -2911 ((-3 (-2 (|:| |val| $) (|:| -2059 (-703))) "failed") $)) (-15 -2816 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3687 ((-3 (-583 $) "failed") $)) (-15 -3973 ((-3 (-2 (|:| |val| $) (|:| -2059 $)) "failed") $)) (-15 -1986 ($ (-109) (-583 $))) (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1649 ($ $ $)) (-15 -2824 ((-703) $)) (-15 -3582 ($ (-583 $))) (-15 -2322 ($ $)) (-15 -3093 ((-107) $)) (-15 -4104 ((-107) $)) (-15 -2999 ((-107) $)) (-15 -2625 ((-107) $)) (-15 -2918 ((-107) $)) (-15 -3484 ((-107) $)) (-15 -3579 ((-107) $)) (-15 -3364 ((-107) $)) (-15 -2144 ((-583 (-51)) $)) (-15 -2624 ($ $ (-583 (-51)))) (-15 -3854 ($ $ (-583 (-51)))) (-15 -2324 ($ (-1074) (-107) (-107) (-107))) (-15 -3794 ($ $ (-583 (-1074)) (-51))) (-15 -1951 ((-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51))) $)) (-15 -1839 ((-107) $)) (-15 -3174 ($ $)) (-15 -2694 ($ $ (-51))) (-15 -3005 ((-583 (-51)) $)) (-15 -1363 ((-583 $) $)) (-15 -3356 ((-3 (-583 $) "failed") (-583 $))))) (-1003)) (T -814))
+((-2297 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2306 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-3116 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-4128 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2608 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-2608 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3812 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2911 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2059 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2816 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3687 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3973 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2059 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1626 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1649 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2322 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2624 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2324 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-3794 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3174 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2694 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3356 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(-13 (-1003) (-952 |#1|) (-952 (-1074)) (-10 -8 (-15 (-2297) ($) -1605) (-15 (-2306) ($) -1605) (-15 -3116 ((-3 (-583 $) "failed") $)) (-15 -4128 ((-3 (-583 $) "failed") $)) (-15 -2608 ((-3 (-583 $) "failed") $ (-109))) (-15 -2608 ((-3 (-2 (|:| -3812 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -2911 ((-3 (-2 (|:| |val| $) (|:| -2059 (-703))) "failed") $)) (-15 -2816 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3687 ((-3 (-583 $) "failed") $)) (-15 -3973 ((-3 (-2 (|:| |val| $) (|:| -2059 $)) "failed") $)) (-15 -1986 ($ (-109) (-583 $))) (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1649 ($ $ $)) (-15 -2824 ((-703) $)) (-15 -3582 ($ (-583 $))) (-15 -2322 ($ $)) (-15 -3093 ((-107) $)) (-15 -4104 ((-107) $)) (-15 -2999 ((-107) $)) (-15 -2625 ((-107) $)) (-15 -2918 ((-107) $)) (-15 -3484 ((-107) $)) (-15 -3579 ((-107) $)) (-15 -3364 ((-107) $)) (-15 -2144 ((-583 (-51)) $)) (-15 -2624 ($ $ (-583 (-51)))) (-15 -3854 ($ $ (-583 (-51)))) (-15 -2324 ($ (-1074) (-107) (-107) (-107))) (-15 -3794 ($ $ (-583 (-1074)) (-51))) (-15 -1951 ((-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51))) $)) (-15 -1839 ((-107) $)) (-15 -3174 ($ $)) (-15 -2694 ($ $ (-51))) (-15 -3005 ((-583 (-51)) $)) (-15 -1363 ((-583 $) $)) (-15 -3356 ((-3 (-583 $) "failed") (-583 $)))))
+((-2571 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) 16)) (-2690 (((-107) $) 38)) (-1759 (((-3 (-608 |#1|) "failed") $) 41)) (-3076 (((-608 |#1|) $) 39)) (-1644 (($ $) 18)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-2542 (((-703) $) 45)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-608 |#1|) $) 17)) (-2182 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-2306 (($) 8 T CONST)) (-2557 (((-583 (-608 |#1|)) $) 23)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 11)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 48)))
+(((-815 |#1|) (-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 1 ($) -1605) (-15 -2182 ((-751 |#1|) $)) (-15 -2182 ($ |#1|)) (-15 -1631 ((-608 |#1|) $)) (-15 -2542 ((-703) $)) (-15 -2557 ((-583 (-608 |#1|)) $)) (-15 -1644 ($ $)) (-15 -2690 ((-107) $)) (-15 -3367 ((-583 |#1|) $)))) (-779)) (T -815))
+((-2306 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2182 (*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-1644 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 (-2306) ($) -1605) (-15 -2182 ((-751 |#1|) $)) (-15 -2182 ($ |#1|)) (-15 -1631 ((-608 |#1|) $)) (-15 -2542 ((-703) $)) (-15 -2557 ((-583 (-608 |#1|)) $)) (-15 -1644 ($ $)) (-15 -2690 ((-107) $)) (-15 -3367 ((-583 |#1|) $))))
+((-2595 ((|#1| |#1| |#1|) 19)))
+(((-816 |#1| |#2|) (-10 -7 (-15 -2595 (|#1| |#1| |#1|))) (-1131 |#2|) (-961)) (T -816))
+((-2595 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1131 *3)))))
+(-10 -7 (-15 -2595 (|#1| |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2831 (((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 14)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-4152 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 13)) (-1539 (((-107) $ $) 6)))
+(((-817) (-1185)) (T -817))
+((-2831 (*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)))))) (-4152 (*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-950)))))
+(-13 (-1003) (-10 -7 (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))) (-15 -4152 ((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3566 ((|#1| |#1| (-703)) 23)) (-1304 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2132 (((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703)) 26) (((-583 |#1|) |#1|) 28)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -2132 ((-583 |#1|) |#1|)) (-15 -2132 ((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1304 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3566 (|#1| |#1| (-703)))) (-1130 |#2|) (-333)) (T -818))
-((-3566 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1130 *4)))) (-1304 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1130 *3)))) (-2132 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1130 *5)))) (-2132 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -2132 ((-583 |#1|) |#1|)) (-15 -2132 ((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1304 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3566 (|#1| |#1| (-703))))
-((-1674 (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056)) 92) (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199)) 87) (((-950) (-820) (-973)) 76) (((-950) (-820)) 77)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973)) 50) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820)) 52)))
-(((-819) (-10 -7 (-15 -1674 ((-950) (-820))) (-15 -1674 ((-950) (-820) (-973))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973))))) (T -819))
-((-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))))
-(-10 -7 (-15 -1674 ((-950) (-820))) (-15 -1674 ((-950) (-820) (-973))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973))))
-((-2750 (((-107) $ $) NIL)) (-3189 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 9)) (-1547 (((-107) $ $) NIL)))
-(((-820) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $))))) (T -820))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $))))
-((-3127 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-2731 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21)))
-(((-821 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2731 (|#1| |#1| |#2| (-703))) (-15 -2731 (|#1| |#1| (-583 |#2|))) (-15 -2731 (|#1| |#1| |#2|)) (-15 -3127 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#2| (-703))) (-15 -3127 (|#1| |#1| (-583 |#2|))) (-15 -3127 (|#1| |#1| |#2|))) (-822 |#2|) (-1003)) (T -821))
-NIL
-(-10 -8 (-15 -2731 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2731 (|#1| |#1| |#2| (-703))) (-15 -2731 (|#1| |#1| (-583 |#2|))) (-15 -2731 (|#1| |#1| |#2|)) (-15 -3127 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#2| (-703))) (-15 -3127 (|#1| |#1| (-583 |#2|))) (-15 -3127 (|#1| |#1| |#2|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-822 |#1|) (-1184) (-1003)) (T -822))
-((-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) (-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))))
-(-13 (-961) (-10 -8 (-15 -3127 ($ $ |t#1|)) (-15 -3127 ($ $ (-583 |t#1|))) (-15 -3127 ($ $ |t#1| (-703))) (-15 -3127 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -2731 ($ $ |t#1|)) (-15 -2731 ($ $ (-583 |t#1|))) (-15 -2731 ($ $ |t#1| (-703))) (-15 -2731 ($ $ (-583 |t#1|) (-583 (-703))))))
+((-2172 ((|#1| |#1| (-703)) 23)) (-1388 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1435 (((-3 (-2 (|:| -3577 |#1|) (|:| -3591 |#1|)) "failed") |#1| (-703) (-703)) 26) (((-583 |#1|) |#1|) 28)))
+(((-818 |#1| |#2|) (-10 -7 (-15 -1435 ((-583 |#1|) |#1|)) (-15 -1435 ((-3 (-2 (|:| -3577 |#1|) (|:| -3591 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1388 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 (|#1| |#1| (-703)))) (-1131 |#2|) (-333)) (T -818))
+((-2172 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1131 *4)))) (-1388 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1131 *3)))) (-1435 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3577 *3) (|:| -3591 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1131 *5)))) (-1435 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -1435 ((-583 |#1|) |#1|)) (-15 -1435 ((-3 (-2 (|:| -3577 |#1|) (|:| -3591 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1388 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 (|#1| |#1| (-703))))
+((-3480 (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057)) 92) (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057) (-199)) 87) (((-950) (-820) (-973)) 76) (((-950) (-820)) 77)) (-2831 (((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820) (-973)) 50) (((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820)) 52)))
+(((-819) (-10 -7 (-15 -3480 ((-950) (-820))) (-15 -3480 ((-950) (-820) (-973))) (-15 -3480 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057) (-199))) (-15 -3480 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820) (-973))))) (T -819))
+((-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-819)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-819)))) (-3480 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1057)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-3480 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1057)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))))
+(-10 -7 (-15 -3480 ((-950) (-820))) (-15 -3480 ((-950) (-820) (-973))) (-15 -3480 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057) (-199))) (-15 -3480 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820))) (-15 -2831 ((-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820) (-973))))
+((-2571 (((-107) $ $) NIL)) (-3076 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))) $) 10)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 9)) (-1539 (((-107) $ $) NIL)))
+(((-820) (-13 (-1003) (-10 -8 (-15 -2182 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))) (-15 -2182 ((-787) $)) (-15 -3076 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))) $))))) (T -820))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *1 (-820)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *1 (-820)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))) (-15 -2182 ((-787) $)) (-15 -3076 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))) $))))
+((-1699 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-2553 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21)))
+(((-821 |#1| |#2|) (-10 -8 (-15 -2553 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2553 (|#1| |#1| |#2| (-703))) (-15 -2553 (|#1| |#1| (-583 |#2|))) (-15 -2553 (|#1| |#1| |#2|)) (-15 -1699 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -1699 (|#1| |#1| |#2| (-703))) (-15 -1699 (|#1| |#1| (-583 |#2|))) (-15 -1699 (|#1| |#1| |#2|))) (-822 |#2|) (-1003)) (T -821))
+NIL
+(-10 -8 (-15 -2553 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2553 (|#1| |#1| |#2| (-703))) (-15 -2553 (|#1| |#1| (-583 |#2|))) (-15 -2553 (|#1| |#1| |#2|)) (-15 -1699 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -1699 (|#1| |#1| |#2| (-703))) (-15 -1699 (|#1| |#1| (-583 |#2|))) (-15 -1699 (|#1| |#1| |#2|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-1699 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-822 |#1|) (-1185) (-1003)) (T -822))
+((-1699 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-1699 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-1699 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) (-2553 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2553 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-2553 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))))
+(-13 (-961) (-10 -8 (-15 -1699 ($ $ |t#1|)) (-15 -1699 ($ $ (-583 |t#1|))) (-15 -1699 ($ $ |t#1| (-703))) (-15 -1699 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -2553 ($ $ |t#1|)) (-15 -2553 ($ $ (-583 |t#1|))) (-15 -2553 ($ $ |t#1| (-703))) (-15 -2553 ($ $ (-583 |t#1|) (-583 (-703))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 26)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2204 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3449 (($ $ $) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 25)) (-2913 (($ |#1|) 12) (($ $ $) 17)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 23)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 20)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) 29 (|has| |#1| (-1003))) (((-1095 |#1|) $) 9)) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 21 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-823 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2913 ($ |#1|)) (-15 -2913 ($ $ $)) (-15 -2256 ((-1095 |#1|) $)))) (-1003)) (T -823))
-((-2913 (*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2913 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))))
-(-13 (-114 |#1|) (-10 -8 (-15 -2913 ($ |#1|)) (-15 -2913 ($ $ $)) (-15 -2256 ((-1095 |#1|) $))))
-((-1531 ((|#2| (-1040 |#1| |#2|)) 39)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -1531 (|#2| (-1040 |#1| |#2|)))) (-843) (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (T -824))
-((-1531 (*1 *2 *3) (-12 (-5 *3 (-1040 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (-5 *1 (-824 *4 *2)))))
-(-10 -7 (-15 -1531 (|#2| (-1040 |#1| |#2|))))
-((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3185 (((-1005 |#1|) $ |#1|) 35)) (-3848 (((-107) $) 19)) (-2967 (($ $ $) 33 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3099 (($ $ $) 32 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 27)) (-3206 (((-1021) $) 10)) (-2051 ((|#1| $ |#1|) 37)) (-1449 ((|#1| $ |#1|) 36)) (-3887 (($ (-583 (-583 |#1|))) 38)) (-1199 (($ (-583 |#1|)) 39)) (-1487 (($ $ $) 23)) (-3394 (($ $ $) 22)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2409 (($) 21 T CONST)) (-1606 (((-107) $ $) 30 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1583 (((-107) $ $) 29 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 31 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1572 (((-107) $ $) 34)) (-1667 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
-(((-825 |#1|) (-1184) (-1003)) (T -825))
-((-1199 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-2051 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-1449 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) (-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(-13 (-442) (-10 -8 (-15 -1199 ($ (-583 |t#1|))) (-15 -3887 ($ (-583 (-583 |t#1|)))) (-15 -2051 (|t#1| $ |t#1|)) (-15 -1449 (|t#1| $ |t#1|)) (-15 -3185 ((-1005 |t#1|) $ |t#1|)) (-15 -1572 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |noBranch|)))
-(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3807 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2842 (((-583 (-583 (-703))) $) 106)) (-4036 (((-583 (-703)) (-827 |#1|) $) 128)) (-1395 (((-583 (-703)) (-827 |#1|) $) 129)) (-4075 (((-583 (-827 |#1|)) $) 96)) (-3209 (((-827 |#1|) $ (-517)) 101) (((-827 |#1|) $) 102)) (-1193 (($ (-583 (-827 |#1|))) 108)) (-3972 (((-703) $) 103)) (-1978 (((-1005 (-1005 |#1|)) $) 126)) (-3185 (((-1005 |#1|) $ |#1|) 119) (((-1005 (-1005 |#1|)) $ (-1005 |#1|)) 137) (((-1005 (-583 |#1|)) $ (-583 |#1|)) 140)) (-2236 (((-1005 |#1|) $) 99)) (-2787 (((-107) (-827 |#1|) $) 90)) (-3985 (((-1056) $) NIL)) (-3408 (((-1158) $) 93) (((-1158) $ (-517) (-517)) 141)) (-3206 (((-1021) $) NIL)) (-3079 (((-583 (-827 |#1|)) $) 94)) (-1449 (((-827 |#1|) $ (-703)) 97)) (-3688 (((-703) $) 104)) (-2256 (((-787) $) 117) (((-583 (-827 |#1|)) $) 22) (($ (-583 (-827 |#1|))) 107)) (-2372 (((-583 |#1|) $) 105)) (-1547 (((-107) $ $) 134)) (-1595 (((-107) $ $) 132)) (-1572 (((-107) $ $) 131)))
-(((-826 |#1|) (-13 (-1003) (-10 -8 (-15 -2256 ((-583 (-827 |#1|)) $)) (-15 -3079 ((-583 (-827 |#1|)) $)) (-15 -1449 ((-827 |#1|) $ (-703))) (-15 -3209 ((-827 |#1|) $ (-517))) (-15 -3209 ((-827 |#1|) $)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $)) (-15 -2372 ((-583 |#1|) $)) (-15 -4075 ((-583 (-827 |#1|)) $)) (-15 -2842 ((-583 (-583 (-703))) $)) (-15 -2256 ($ (-583 (-827 |#1|)))) (-15 -1193 ($ (-583 (-827 |#1|)))) (-15 -3185 ((-1005 |#1|) $ |#1|)) (-15 -1978 ((-1005 (-1005 |#1|)) $)) (-15 -3185 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -3185 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -2787 ((-107) (-827 |#1|) $)) (-15 -4036 ((-583 (-703)) (-827 |#1|) $)) (-15 -1395 ((-583 (-703)) (-827 |#1|) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -1572 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3408 ((-1158) $)) (-15 -3408 ((-1158) $ (-517) (-517))))) (-1003)) (T -826))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-3209 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-1193 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) (-2787 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) (-4036 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-1395 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1572 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1595 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3408 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ((-583 (-827 |#1|)) $)) (-15 -3079 ((-583 (-827 |#1|)) $)) (-15 -1449 ((-827 |#1|) $ (-703))) (-15 -3209 ((-827 |#1|) $ (-517))) (-15 -3209 ((-827 |#1|) $)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $)) (-15 -2372 ((-583 |#1|) $)) (-15 -4075 ((-583 (-827 |#1|)) $)) (-15 -2842 ((-583 (-583 (-703))) $)) (-15 -2256 ($ (-583 (-827 |#1|)))) (-15 -1193 ($ (-583 (-827 |#1|)))) (-15 -3185 ((-1005 |#1|) $ |#1|)) (-15 -1978 ((-1005 (-1005 |#1|)) $)) (-15 -3185 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -3185 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -2787 ((-107) (-827 |#1|) $)) (-15 -4036 ((-583 (-703)) (-827 |#1|) $)) (-15 -1395 ((-583 (-703)) (-827 |#1|) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -1572 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3408 ((-1158) $)) (-15 -3408 ((-1158) $ (-517) (-517)))))
-((-2750 (((-107) $ $) NIL)) (-3166 (((-583 $) (-583 $)) 76)) (-3709 (((-517) $) 59)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3972 (((-703) $) 57)) (-3185 (((-1005 |#1|) $ |#1|) 48)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) 62)) (-3643 (((-703) $) 60)) (-2236 (((-1005 |#1|) $) 41)) (-2967 (($ $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-3099 (($ $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-3897 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 35)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 92)) (-3206 (((-1021) $) NIL)) (-2111 (((-1005 |#1|) $) 99 (|has| |#1| (-338)))) (-3998 (((-107) $) 58)) (-2051 ((|#1| $ |#1|) 46)) (-1449 ((|#1| $ |#1|) 93)) (-3688 (((-703) $) 43)) (-3887 (($ (-583 (-583 |#1|))) 84)) (-3278 (((-888) $) 52)) (-1199 (($ (-583 |#1|)) 21)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2807 (($ (-583 (-583 |#1|))) 38)) (-2408 (($ (-583 (-583 |#1|))) 87)) (-4106 (($ (-583 |#1|)) 95)) (-2256 (((-787) $) 83) (($ (-583 (-583 |#1|))) 65) (($ (-583 |#1|)) 66)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 16 T CONST)) (-1606 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1547 (((-107) $ $) 44)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1572 (((-107) $ $) 64)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22)))
-(((-827 |#1|) (-13 (-825 |#1|) (-10 -8 (-15 -3897 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2807 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 |#1|))) (-15 -2408 ($ (-583 (-583 |#1|)))) (-15 -3688 ((-703) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -3278 ((-888) $)) (-15 -3972 ((-703) $)) (-15 -3643 ((-703) $)) (-15 -3709 ((-517) $)) (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $)) (-15 -3166 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2111 ((-1005 |#1|) $)) |noBranch|) (IF (|has| |#1| (-502)) (-15 -4106 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -4106 ($ (-583 |#1|))) |noBranch|)))) (-1003)) (T -827))
-((-3897 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2807 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
-(-13 (-825 |#1|) (-10 -8 (-15 -3897 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2807 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 |#1|))) (-15 -2408 ($ (-583 (-583 |#1|)))) (-15 -3688 ((-703) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -3278 ((-888) $)) (-15 -3972 ((-703) $)) (-15 -3643 ((-703) $)) (-15 -3709 ((-517) $)) (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $)) (-15 -3166 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2111 ((-1005 |#1|) $)) |noBranch|) (IF (|has| |#1| (-502)) (-15 -4106 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -4106 ($ (-583 |#1|))) |noBranch|))))
-((-3994 (((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|)) 127)) (-2916 ((|#1|) 75)) (-3746 (((-388 (-1069 |#4|)) (-1069 |#4|)) 136)) (-1901 (((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|)) 67)) (-3689 (((-388 (-1069 |#4|)) (-1069 |#4|)) 146)) (-2317 (((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|) 91)))
-(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|))) (-15 -3689 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3746 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -2916 (|#1|)) (-15 -2317 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|)) (-15 -1901 ((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|)))) (-831) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -828))
-((-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1069 *8)))) (-2317 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))) (-2916 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3994 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|))) (-15 -3689 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3746 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -2916 (|#1|)) (-15 -2317 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|)) (-15 -1901 ((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|))))
-((-3994 (((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)) 36)) (-2916 ((|#1|) 53)) (-3746 (((-388 (-1069 |#2|)) (-1069 |#2|)) 101)) (-1901 (((-388 (-1069 |#2|)) (-1069 |#2|)) 88)) (-3689 (((-388 (-1069 |#2|)) (-1069 |#2|)) 112)))
-(((-829 |#1| |#2|) (-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|))) (-15 -3689 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -3746 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -2916 (|#1|)) (-15 -1901 ((-388 (-1069 |#2|)) (-1069 |#2|)))) (-831) (-1130 |#1|)) (T -829))
-((-1901 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-2916 (*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1130 *2)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-3994 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5)))))
-(-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|))) (-15 -3689 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -3746 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -2916 (|#1|)) (-15 -1901 ((-388 (-1069 |#2|)) (-1069 |#2|))))
-((-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 39)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 18)) (-1328 (((-3 $ "failed") $) 33)))
-(((-830 |#1|) (-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)))) (-831)) (T -830))
-NIL
-(-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 60)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 57)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3849 (((-107) $) 53)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2561 (((-388 (-1069 $)) (-1069 $)) 58)) (-2209 (((-388 (-1069 $)) (-1069 $)) 59)) (-3755 (((-388 $) $) 50)) (-2476 (((-3 $ "failed") $ $) 42)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1328 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-831) (-1184)) (T -831))
-((-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-831)))) (-3143 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-2209 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-2561 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *1))) (-5 *3 (-1069 *1)) (-4 *1 (-831)))) (-3870 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1153 *1)))) (-1328 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831)))))
-(-13 (-1112) (-10 -8 (-15 -3143 ((-388 (-1069 $)) (-1069 $))) (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -2561 ((-388 (-1069 $)) (-1069 $))) (-15 -1862 ((-1069 $) (-1069 $) (-1069 $))) (-15 -3179 ((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $))) (IF (|has| $ (-132)) (PROGN (-15 -3870 ((-3 (-1153 $) "failed") (-623 $))) (-15 -1328 ((-3 $ "failed") $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 $ "failed") $) NIL)) (-3189 (($ $) NIL)) (-1967 (($ (-1153 $)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL)) (-3391 (((-107) $) NIL)) (-2378 (($ $) NIL) (($ $ (-703)) NIL)) (-3849 (((-107) $) NIL)) (-3972 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| $ (-338)))) (-2434 (((-107) $) NIL (|has| $ (-338)))) (-1506 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 $) $ (-843)) NIL (|has| $ (-338))) (((-1069 $) $) NIL)) (-1549 (((-843) $) NIL)) (-1704 (((-1069 $) $) NIL (|has| $ (-338)))) (-2729 (((-3 (-1069 $) "failed") $ $) NIL (|has| $ (-338))) (((-1069 $) $) NIL (|has| $ (-338)))) (-3600 (($ $ (-1069 $)) NIL (|has| $ (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL T CONST)) (-3448 (($ (-843)) NIL)) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| $ (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL)) (-3755 (((-388 $) $) NIL)) (-3327 (((-843)) NIL) (((-765 (-843))) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-3141 (((-125)) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-3688 (((-843) $) NIL) (((-765 (-843)) $) NIL)) (-2135 (((-1069 $)) NIL)) (-1766 (($) NIL)) (-1224 (($) NIL (|has| $ (-338)))) (-4114 (((-623 $) (-1153 $)) NIL) (((-1153 $) $) NIL)) (-3645 (((-517) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $) (-843)) NIL) (((-1153 $)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) 26)) (-1799 (((-107) $ (-703)) NIL)) (-4072 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3900 (($ $ $) NIL (|has| $ (-6 -4184)))) (-3561 (($ $ $) NIL (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-3591 (($ $) 25)) (-2760 (($ |#1|) 12) (($ $ $) 17)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3577 (($ $) 23)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) 20)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1482 (((-517) $ $) NIL)) (-2562 (((-107) $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-787) $) 29 (|has| |#1| (-1003))) (((-1096 |#1|) $) 9)) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 21 (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-823 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2760 ($ |#1|)) (-15 -2760 ($ $ $)) (-15 -2182 ((-1096 |#1|) $)))) (-1003)) (T -823))
+((-2760 (*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2760 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))))
+(-13 (-114 |#1|) (-10 -8 (-15 -2760 ($ |#1|)) (-15 -2760 ($ $ $)) (-15 -2182 ((-1096 |#1|) $))))
+((-1375 ((|#2| (-1041 |#1| |#2|)) 39)))
+(((-824 |#1| |#2|) (-10 -7 (-15 -1375 (|#2| (-1041 |#1| |#2|)))) (-843) (-13 (-961) (-10 -7 (-6 (-4185 "*"))))) (T -824))
+((-1375 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4185 "*"))))) (-5 *1 (-824 *4 *2)))))
+(-10 -7 (-15 -1375 (|#2| (-1041 |#1| |#2|))))
+((-2571 (((-107) $ $) 7)) (-3473 (($) 20 T CONST)) (-1568 (((-3 $ "failed") $) 16)) (-1933 (((-1005 |#1|) $ |#1|) 35)) (-2955 (((-107) $) 19)) (-1575 (($ $ $) 33 (-3763 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-2986 (($ $ $) 32 (-3763 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3865 (((-1057) $) 9)) (-4123 (($ $) 27)) (-3094 (((-1021) $) 10)) (-1979 ((|#1| $ |#1|) 37)) (-1986 ((|#1| $ |#1|) 36)) (-2198 (($ (-583 (-583 |#1|))) 38)) (-3930 (($ (-583 |#1|)) 39)) (-2013 (($ $ $) 23)) (-3064 (($ $ $) 22)) (-2182 (((-787) $) 11)) (-2146 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2306 (($) 21 T CONST)) (-1593 (((-107) $ $) 30 (-3763 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1570 (((-107) $ $) 29 (-3763 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 31 (-3763 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1560 (((-107) $ $) 34)) (-1649 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
+(((-825 |#1|) (-1185) (-1003)) (T -825))
+((-3930 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-1979 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-1986 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-1933 (*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) (-1560 (*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(-13 (-442) (-10 -8 (-15 -3930 ($ (-583 |t#1|))) (-15 -2198 ($ (-583 (-583 |t#1|)))) (-15 -1979 (|t#1| $ |t#1|)) (-15 -1986 (|t#1| $ |t#1|)) (-15 -1933 ((-1005 |t#1|) $ |t#1|)) (-15 -1560 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |noBranch|)))
+(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3763 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1015) . T) ((-1003) . T))
+((-2571 (((-107) $ $) NIL)) (-1955 (((-583 (-583 (-703))) $) 106)) (-1372 (((-583 (-703)) (-827 |#1|) $) 128)) (-2919 (((-583 (-703)) (-827 |#1|) $) 129)) (-3507 (((-583 (-827 |#1|)) $) 96)) (-3098 (((-827 |#1|) $ (-517)) 101) (((-827 |#1|) $) 102)) (-3861 (($ (-583 (-827 |#1|))) 108)) (-1921 (((-703) $) 103)) (-3402 (((-1005 (-1005 |#1|)) $) 126)) (-1933 (((-1005 |#1|) $ |#1|) 119) (((-1005 (-1005 |#1|)) $ (-1005 |#1|)) 137) (((-1005 (-583 |#1|)) $ (-583 |#1|)) 140)) (-4141 (((-1005 |#1|) $) 99)) (-2502 (((-107) (-827 |#1|) $) 90)) (-3865 (((-1057) $) NIL)) (-3163 (((-1159) $) 93) (((-1159) $ (-517) (-517)) 141)) (-3094 (((-1021) $) NIL)) (-3326 (((-583 (-827 |#1|)) $) 94)) (-1986 (((-827 |#1|) $ (-703)) 97)) (-4007 (((-703) $) 104)) (-2182 (((-787) $) 117) (((-583 (-827 |#1|)) $) 22) (($ (-583 (-827 |#1|))) 107)) (-4103 (((-583 |#1|) $) 105)) (-1539 (((-107) $ $) 134)) (-1582 (((-107) $ $) 132)) (-1560 (((-107) $ $) 131)))
+(((-826 |#1|) (-13 (-1003) (-10 -8 (-15 -2182 ((-583 (-827 |#1|)) $)) (-15 -3326 ((-583 (-827 |#1|)) $)) (-15 -1986 ((-827 |#1|) $ (-703))) (-15 -3098 ((-827 |#1|) $ (-517))) (-15 -3098 ((-827 |#1|) $)) (-15 -1921 ((-703) $)) (-15 -4007 ((-703) $)) (-15 -4103 ((-583 |#1|) $)) (-15 -3507 ((-583 (-827 |#1|)) $)) (-15 -1955 ((-583 (-583 (-703))) $)) (-15 -2182 ($ (-583 (-827 |#1|)))) (-15 -3861 ($ (-583 (-827 |#1|)))) (-15 -1933 ((-1005 |#1|) $ |#1|)) (-15 -3402 ((-1005 (-1005 |#1|)) $)) (-15 -1933 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -1933 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -2502 ((-107) (-827 |#1|) $)) (-15 -1372 ((-583 (-703)) (-827 |#1|) $)) (-15 -2919 ((-583 (-703)) (-827 |#1|) $)) (-15 -4141 ((-1005 |#1|) $)) (-15 -1560 ((-107) $ $)) (-15 -1582 ((-107) $ $)) (-15 -3163 ((-1159) $)) (-15 -3163 ((-1159) $ (-517) (-517))))) (-1003)) (T -826))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-3098 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-3861 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-1933 (*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1933 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) (-1933 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) (-2502 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) (-1372 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-2919 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1560 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1582 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3163 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ((-583 (-827 |#1|)) $)) (-15 -3326 ((-583 (-827 |#1|)) $)) (-15 -1986 ((-827 |#1|) $ (-703))) (-15 -3098 ((-827 |#1|) $ (-517))) (-15 -3098 ((-827 |#1|) $)) (-15 -1921 ((-703) $)) (-15 -4007 ((-703) $)) (-15 -4103 ((-583 |#1|) $)) (-15 -3507 ((-583 (-827 |#1|)) $)) (-15 -1955 ((-583 (-583 (-703))) $)) (-15 -2182 ($ (-583 (-827 |#1|)))) (-15 -3861 ($ (-583 (-827 |#1|)))) (-15 -1933 ((-1005 |#1|) $ |#1|)) (-15 -3402 ((-1005 (-1005 |#1|)) $)) (-15 -1933 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -1933 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -2502 ((-107) (-827 |#1|) $)) (-15 -1372 ((-583 (-703)) (-827 |#1|) $)) (-15 -2919 ((-583 (-703)) (-827 |#1|) $)) (-15 -4141 ((-1005 |#1|) $)) (-15 -1560 ((-107) $ $)) (-15 -1582 ((-107) $ $)) (-15 -3163 ((-1159) $)) (-15 -3163 ((-1159) $ (-517) (-517)))))
+((-2571 (((-107) $ $) NIL)) (-3056 (((-583 $) (-583 $)) 76)) (-1207 (((-517) $) 59)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-1921 (((-703) $) 57)) (-1933 (((-1005 |#1|) $ |#1|) 48)) (-2955 (((-107) $) NIL)) (-2393 (((-107) $) 62)) (-1791 (((-703) $) 60)) (-4141 (((-1005 |#1|) $) 41)) (-1575 (($ $ $) NIL (-3763 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-2986 (($ $ $) NIL (-3763 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-2265 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 35)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 92)) (-3094 (((-1021) $) NIL)) (-2314 (((-1005 |#1|) $) 99 (|has| |#1| (-338)))) (-3994 (((-107) $) 58)) (-1979 ((|#1| $ |#1|) 46)) (-1986 ((|#1| $ |#1|) 93)) (-4007 (((-703) $) 43)) (-2198 (($ (-583 (-583 |#1|))) 84)) (-1530 (((-888) $) 52)) (-3930 (($ (-583 |#1|)) 21)) (-2013 (($ $ $) NIL)) (-3064 (($ $ $) NIL)) (-2670 (($ (-583 (-583 |#1|))) 38)) (-2141 (($ (-583 (-583 |#1|))) 87)) (-2526 (($ (-583 |#1|)) 95)) (-2182 (((-787) $) 83) (($ (-583 (-583 |#1|))) 65) (($ (-583 |#1|)) 66)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2306 (($) 16 T CONST)) (-1593 (((-107) $ $) NIL (-3763 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1570 (((-107) $ $) NIL (-3763 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1539 (((-107) $ $) 44)) (-1582 (((-107) $ $) NIL (-3763 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1560 (((-107) $ $) 64)) (-1649 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22)))
+(((-827 |#1|) (-13 (-825 |#1|) (-10 -8 (-15 -2265 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2670 ($ (-583 (-583 |#1|)))) (-15 -2182 ($ (-583 (-583 |#1|)))) (-15 -2182 ($ (-583 |#1|))) (-15 -2141 ($ (-583 (-583 |#1|)))) (-15 -4007 ((-703) $)) (-15 -4141 ((-1005 |#1|) $)) (-15 -1530 ((-888) $)) (-15 -1921 ((-703) $)) (-15 -1791 ((-703) $)) (-15 -1207 ((-517) $)) (-15 -3994 ((-107) $)) (-15 -2393 ((-107) $)) (-15 -3056 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2314 ((-1005 |#1|) $)) |noBranch|) (IF (|has| |#1| (-502)) (-15 -2526 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -2526 ($ (-583 |#1|))) |noBranch|)))) (-1003)) (T -827))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2141 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1791 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1207 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3056 (*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))) (-2526 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
+(-13 (-825 |#1|) (-10 -8 (-15 -2265 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2670 ($ (-583 (-583 |#1|)))) (-15 -2182 ($ (-583 (-583 |#1|)))) (-15 -2182 ($ (-583 |#1|))) (-15 -2141 ($ (-583 (-583 |#1|)))) (-15 -4007 ((-703) $)) (-15 -4141 ((-1005 |#1|) $)) (-15 -1530 ((-888) $)) (-15 -1921 ((-703) $)) (-15 -1791 ((-703) $)) (-15 -1207 ((-517) $)) (-15 -3994 ((-107) $)) (-15 -2393 ((-107) $)) (-15 -3056 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2314 ((-1005 |#1|) $)) |noBranch|) (IF (|has| |#1| (-502)) (-15 -2526 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -2526 ($ (-583 |#1|))) |noBranch|))))
+((-3954 (((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|)) 127)) (-1472 ((|#1|) 75)) (-3226 (((-388 (-1070 |#4|)) (-1070 |#4|)) 136)) (-3917 (((-388 (-1070 |#4|)) (-583 |#3|) (-1070 |#4|)) 67)) (-4018 (((-388 (-1070 |#4|)) (-1070 |#4|)) 146)) (-2438 (((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|) |#3|) 91)))
+(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 ((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|))) (-15 -4018 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -3226 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -1472 (|#1|)) (-15 -2438 ((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|) |#3|)) (-15 -3917 ((-388 (-1070 |#4|)) (-583 |#3|) (-1070 |#4|)))) (-831) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -828))
+((-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1070 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1070 *8)))) (-2438 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))) (-1472 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3226 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3954 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3954 ((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|))) (-15 -4018 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -3226 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -1472 (|#1|)) (-15 -2438 ((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|) |#3|)) (-15 -3917 ((-388 (-1070 |#4|)) (-583 |#3|) (-1070 |#4|))))
+((-3954 (((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|)) 36)) (-1472 ((|#1|) 53)) (-3226 (((-388 (-1070 |#2|)) (-1070 |#2|)) 101)) (-3917 (((-388 (-1070 |#2|)) (-1070 |#2|)) 88)) (-4018 (((-388 (-1070 |#2|)) (-1070 |#2|)) 112)))
+(((-829 |#1| |#2|) (-10 -7 (-15 -3954 ((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|))) (-15 -4018 ((-388 (-1070 |#2|)) (-1070 |#2|))) (-15 -3226 ((-388 (-1070 |#2|)) (-1070 |#2|))) (-15 -1472 (|#1|)) (-15 -3917 ((-388 (-1070 |#2|)) (-1070 |#2|)))) (-831) (-1131 |#1|)) (T -829))
+((-3917 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))) (-1472 (*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1131 *2)))) (-3226 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))) (-3954 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5)))))
+(-10 -7 (-15 -3954 ((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|))) (-15 -4018 ((-388 (-1070 |#2|)) (-1070 |#2|))) (-15 -3226 ((-388 (-1070 |#2|)) (-1070 |#2|))) (-15 -1472 (|#1|)) (-15 -3917 ((-388 (-1070 |#2|)) (-1070 |#2|))))
+((-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 39)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 18)) (-1589 (((-3 $ "failed") $) 33)))
+(((-830 |#1|) (-10 -8 (-15 -1589 ((-3 |#1| "failed") |#1|)) (-15 -2963 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)))) (-831)) (T -830))
+NIL
+(-10 -8 (-15 -1589 ((-3 |#1| "failed") |#1|)) (-15 -2963 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-2594 (((-388 (-1070 $)) (-1070 $)) 60)) (-3938 (($ $) 51)) (-3490 (((-388 $) $) 52)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 57)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2965 (((-107) $) 53)) (-2955 (((-107) $) 31)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-1206 (((-388 (-1070 $)) (-1070 $)) 58)) (-3923 (((-388 (-1070 $)) (-1070 $)) 59)) (-3693 (((-388 $) $) 50)) (-2349 (((-3 $ "failed") $ $) 42)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1589 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-831) (-1185)) (T -831))
+((-4129 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-831)))) (-2594 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))) (-3923 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))) (-1206 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))) (-2963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *1))) (-5 *3 (-1070 *1)) (-4 *1 (-831)))) (-2071 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1154 *1)))) (-1589 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831)))))
+(-13 (-1113) (-10 -8 (-15 -2594 ((-388 (-1070 $)) (-1070 $))) (-15 -3923 ((-388 (-1070 $)) (-1070 $))) (-15 -1206 ((-388 (-1070 $)) (-1070 $))) (-15 -4129 ((-1070 $) (-1070 $) (-1070 $))) (-15 -2963 ((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $))) (IF (|has| $ (-132)) (PROGN (-15 -2071 ((-3 (-1154 $) "failed") (-623 $))) (-15 -1589 ((-3 $ "failed") $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1416 (((-107) $) NIL)) (-2360 (((-703)) NIL)) (-1470 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-4160 (((-1083 (-843) (-703)) (-517)) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1598 (((-703)) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 $ "failed") $) NIL)) (-3076 (($ $) NIL)) (-3291 (($ (-1154 $)) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-3493 (($) NIL)) (-1337 (((-107) $) NIL)) (-2990 (($ $) NIL) (($ $ (-703)) NIL)) (-2965 (((-107) $) NIL)) (-1921 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2955 (((-107) $) NIL)) (-1441 (($) NIL (|has| $ (-338)))) (-2327 (((-107) $) NIL (|has| $ (-338)))) (-2289 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-3744 (((-3 $ "failed") $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3523 (((-1070 $) $ (-843)) NIL (|has| $ (-338))) (((-1070 $) $) NIL)) (-2903 (((-843) $) NIL)) (-3740 (((-1070 $) $) NIL (|has| $ (-338)))) (-3153 (((-3 (-1070 $) "failed") $ $) NIL (|has| $ (-338))) (((-1070 $) $) NIL (|has| $ (-338)))) (-2426 (($ $ (-1070 $)) NIL (|has| $ (-338)))) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL T CONST)) (-3353 (($ (-843)) NIL)) (-2039 (((-107) $) NIL)) (-3094 (((-1021) $) NIL)) (-3107 (($) NIL (|has| $ (-338)))) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL)) (-3693 (((-388 $) $) NIL)) (-3738 (((-843)) NIL) (((-765 (-843))) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-3654 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-2586 (((-125)) NIL)) (-1699 (($ $ (-703)) NIL) (($ $) NIL)) (-4007 (((-843) $) NIL) (((-765 (-843)) $) NIL)) (-1457 (((-1070 $)) NIL)) (-3788 (($) NIL)) (-2379 (($) NIL (|has| $ (-338)))) (-2575 (((-623 $) (-1154 $)) NIL) (((-1154 $) $) NIL)) (-3582 (((-517) $) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-1589 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1865 (((-703)) NIL)) (-3809 (((-1154 $) (-843)) NIL) (((-1154 $)) NIL)) (-3767 (((-107) $ $) NIL)) (-1223 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2496 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
(((-832 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-843)) (T -832))
NIL
(-13 (-319) (-299 $) (-558 (-517)))
-((-3046 (((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-3027 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-3972 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14)))
-(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -3027 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -833))
-((-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-3972 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -3027 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|))))
-((-3046 (((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-3027 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-3972 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11)))
-(((-834 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3027 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1130 (-377 (-517))) (-1130 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -834))
-((-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *6))) (-5 *1 (-834 *4 *5 *6)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))) (-3972 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))))
-(-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3027 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))))
-((-2327 ((|#2| |#2|) 25)) (-1284 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-3024 (((-843) (-517)) 35)) (-3812 (((-517) |#2|) 42)) (-1962 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -3024 ((-843) (-517))) (-15 -1962 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -1962 ((-517) |#2|)) (-15 -1284 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3812 ((-517) |#2|)) (-15 -2327 (|#2| |#2|))) (-1130 (-377 (-517))) (-1130 (-377 |#1|))) (T -835))
-((-2327 (*1 *2 *2) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1130 (-377 *3))))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1284 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1962 (*1 *2 *3) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1130 (-377 *3))))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))))
-(-10 -7 (-15 -3024 ((-843) (-517))) (-15 -1962 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -1962 ((-517) |#2|)) (-15 -1284 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3812 ((-517) |#2|)) (-15 -2327 (|#2| |#2|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#1| $) 80)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 74)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2121 (($ |#1| (-388 |#1|)) 72)) (-1693 (((-1069 |#1|) |#1| |#1|) 40)) (-2008 (($ $) 48)) (-3848 (((-107) $) NIL)) (-1911 (((-517) $) 77)) (-3894 (($ $ (-517)) 79)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2227 ((|#1| $) 76)) (-1833 (((-388 |#1|) $) 75)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 73)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3966 (($ $) 38)) (-2256 (((-787) $) 98) (($ (-517)) 53) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 58) (($ (-377 (-388 |#1|))) 66)) (-2961 (((-703)) 51)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 23 T CONST)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (($ $ $) NIL)) (-1654 (($ $) 87) (($ $ $) NIL)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 89) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL)))
-(((-836 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2256 ((-377 |#1|) $)) (-15 -2256 ($ (-377 (-388 |#1|)))) (-15 -3966 ($ $)) (-15 -1833 ((-388 |#1|) $)) (-15 -2227 (|#1| $)) (-15 -3894 ($ $ (-517))) (-15 -1911 ((-517) $)) (-15 -1693 ((-1069 |#1|) |#1| |#1|)) (-15 -2008 ($ $)) (-15 -2121 ($ |#1| (-388 |#1|))) (-15 -2668 (|#1| $)))) (-278)) (T -836))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) (-3966 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2227 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-3894 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-1693 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-2121 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) (-2668 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
-(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2256 ((-377 |#1|) $)) (-15 -2256 ($ (-377 (-388 |#1|)))) (-15 -3966 ($ $)) (-15 -1833 ((-388 |#1|) $)) (-15 -2227 (|#1| $)) (-15 -3894 ($ $ (-517))) (-15 -1911 ((-517) $)) (-15 -1693 ((-1069 |#1|) |#1| |#1|)) (-15 -2008 ($ $)) (-15 -2121 ($ |#1| (-388 |#1|))) (-15 -2668 (|#1| $))))
-((-2121 (((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073)) 16) (((-51) (-377 (-874 |#1|)) (-1073)) 17)))
-(((-837 |#1|) (-10 -7 (-15 -2121 ((-51) (-377 (-874 |#1|)) (-1073))) (-15 -2121 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073)))) (-13 (-278) (-134))) (T -837))
-((-2121 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1073)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))))
-(-10 -7 (-15 -2121 ((-51) (-377 (-874 |#1|)) (-1073))) (-15 -2121 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073))))
-((-2116 ((|#4| (-583 |#4|)) 118) (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-1401 (((-1069 |#4|) (-583 (-1069 |#4|))) 111) (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 48) ((|#4| (-583 |#4|)) 53) ((|#4| |#4| |#4|) 82)))
-(((-838 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1401 (|#4| |#4| |#4|)) (-15 -1401 (|#4| (-583 |#4|))) (-15 -1401 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -1401 ((-1069 |#4|) (-583 (-1069 |#4|)))) (-15 -2116 (|#4| |#4| |#4|)) (-15 -2116 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2116 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -838))
-((-2116 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2116 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-2116 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 (-1069 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1069 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1401 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-1401 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))))
-(-10 -7 (-15 -1401 (|#4| |#4| |#4|)) (-15 -1401 (|#4| (-583 |#4|))) (-15 -1401 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -1401 ((-1069 |#4|) (-583 (-1069 |#4|)))) (-15 -2116 (|#4| |#4| |#4|)) (-15 -2116 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2116 (|#4| (-583 |#4|))))
-((-2548 (((-826 (-517)) (-888)) 22) (((-826 (-517)) (-583 (-517))) 19)) (-3077 (((-826 (-517)) (-583 (-517))) 46) (((-826 (-517)) (-843)) 47)) (-2616 (((-826 (-517))) 23)) (-3275 (((-826 (-517))) 36) (((-826 (-517)) (-583 (-517))) 35)) (-3277 (((-826 (-517))) 34) (((-826 (-517)) (-583 (-517))) 33)) (-3399 (((-826 (-517))) 32) (((-826 (-517)) (-583 (-517))) 31)) (-1952 (((-826 (-517))) 30) (((-826 (-517)) (-583 (-517))) 29)) (-1925 (((-826 (-517))) 28) (((-826 (-517)) (-583 (-517))) 27)) (-3745 (((-826 (-517))) 38) (((-826 (-517)) (-583 (-517))) 37)) (-2519 (((-826 (-517)) (-583 (-517))) 50) (((-826 (-517)) (-843)) 51)) (-2340 (((-826 (-517)) (-583 (-517))) 48) (((-826 (-517)) (-843)) 49)) (-1744 (((-826 (-517)) (-583 (-517))) 43) (((-826 (-517)) (-843)) 45)) (-3436 (((-826 (-517)) (-583 (-843))) 40)))
-(((-839) (-10 -7 (-15 -3077 ((-826 (-517)) (-843))) (-15 -3077 ((-826 (-517)) (-583 (-517)))) (-15 -1744 ((-826 (-517)) (-843))) (-15 -1744 ((-826 (-517)) (-583 (-517)))) (-15 -3436 ((-826 (-517)) (-583 (-843)))) (-15 -2340 ((-826 (-517)) (-843))) (-15 -2340 ((-826 (-517)) (-583 (-517)))) (-15 -2519 ((-826 (-517)) (-843))) (-15 -2519 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)))) (-15 -1952 ((-826 (-517)) (-583 (-517)))) (-15 -1952 ((-826 (-517)))) (-15 -3399 ((-826 (-517)) (-583 (-517)))) (-15 -3399 ((-826 (-517)))) (-15 -3277 ((-826 (-517)) (-583 (-517)))) (-15 -3277 ((-826 (-517)))) (-15 -3275 ((-826 (-517)) (-583 (-517)))) (-15 -3275 ((-826 (-517)))) (-15 -3745 ((-826 (-517)) (-583 (-517)))) (-15 -3745 ((-826 (-517)))) (-15 -2616 ((-826 (-517)))) (-15 -2548 ((-826 (-517)) (-583 (-517)))) (-15 -2548 ((-826 (-517)) (-888))))) (T -839))
-((-2548 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2616 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3745 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3275 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3277 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3399 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1952 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1925 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(-10 -7 (-15 -3077 ((-826 (-517)) (-843))) (-15 -3077 ((-826 (-517)) (-583 (-517)))) (-15 -1744 ((-826 (-517)) (-843))) (-15 -1744 ((-826 (-517)) (-583 (-517)))) (-15 -3436 ((-826 (-517)) (-583 (-843)))) (-15 -2340 ((-826 (-517)) (-843))) (-15 -2340 ((-826 (-517)) (-583 (-517)))) (-15 -2519 ((-826 (-517)) (-843))) (-15 -2519 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)))) (-15 -1952 ((-826 (-517)) (-583 (-517)))) (-15 -1952 ((-826 (-517)))) (-15 -3399 ((-826 (-517)) (-583 (-517)))) (-15 -3399 ((-826 (-517)))) (-15 -3277 ((-826 (-517)) (-583 (-517)))) (-15 -3277 ((-826 (-517)))) (-15 -3275 ((-826 (-517)) (-583 (-517)))) (-15 -3275 ((-826 (-517)))) (-15 -3745 ((-826 (-517)) (-583 (-517)))) (-15 -3745 ((-826 (-517)))) (-15 -2616 ((-826 (-517)))) (-15 -2548 ((-826 (-517)) (-583 (-517)))) (-15 -2548 ((-826 (-517)) (-888))))
-((-3833 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))) 10)) (-3161 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))) 9)))
-(((-840 |#1|) (-10 -7 (-15 -3161 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3833 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))))) (-421)) (T -840))
-((-3833 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))) (-3161 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
-(-10 -7 (-15 -3161 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3833 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)))))
-((-2256 (((-286 |#1|) (-446)) 15)))
-(((-841 |#1|) (-10 -7 (-15 -2256 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -841))
-((-2256 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))))
-(-10 -7 (-15 -2256 ((-286 |#1|) (-446))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-842) (-1184)) (T -842))
-((-1780 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1931 (-583 *1)) (|:| -3220 *1))) (-5 *3 (-583 *1)))) (-1737 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842)))))
-(-13 (-421) (-10 -8 (-15 -1780 ((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $))) (-15 -1737 ((-3 (-583 $) "failed") (-583 $) $))))
+((-3059 (((-3 (-2 (|:| -1921 (-703)) (|:| -1243 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-1205 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-1921 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14)))
+(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1921 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -1205 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3059 ((-3 (-2 (|:| -1921 (-703)) (|:| -1243 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|) (-1131 |#2|) (-1131 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -833))
+((-3059 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -1921 (-703)) (|:| -1243 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-1921 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1921 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -1205 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3059 ((-3 (-2 (|:| -1921 (-703)) (|:| -1243 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|))))
+((-3059 (((-3 (-2 (|:| -1921 (-703)) (|:| -1243 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-1205 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-1921 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11)))
+(((-834 |#1| |#2| |#3|) (-10 -7 (-15 -1921 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -1205 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3059 ((-3 (-2 (|:| -1921 (-703)) (|:| -1243 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1131 (-377 (-517))) (-1131 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -834))
+((-3059 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -1921 (-703)) (|:| -1243 *6))) (-5 *1 (-834 *4 *5 *6)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))) (-1921 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))))
+(-10 -7 (-15 -1921 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -1205 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3059 ((-3 (-2 (|:| -1921 (-703)) (|:| -1243 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))))
+((-2505 ((|#2| |#2|) 25)) (-3793 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-4146 (((-843) (-517)) 35)) (-2579 (((-517) |#2|) 42)) (-3235 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20)))
+(((-835 |#1| |#2|) (-10 -7 (-15 -4146 ((-843) (-517))) (-15 -3235 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -3235 ((-517) |#2|)) (-15 -3793 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -2579 ((-517) |#2|)) (-15 -2505 (|#2| |#2|))) (-1131 (-377 (-517))) (-1131 (-377 |#1|))) (T -835))
+((-2505 (*1 *2 *2) (-12 (-4 *3 (-1131 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1131 (-377 *3))))) (-2579 (*1 *2 *3) (-12 (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1131 (-377 *4))))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1131 (-377 *4))))) (-3235 (*1 *2 *3) (-12 (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1131 (-377 *4))))) (-3235 (*1 *2 *3) (-12 (-4 *3 (-1131 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1131 (-377 *3))))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1131 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1131 (-377 *4))))))
+(-10 -7 (-15 -4146 ((-843) (-517))) (-15 -3235 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -3235 ((-517) |#2|)) (-15 -3793 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -2579 ((-517) |#2|)) (-15 -2505 (|#2| |#2|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 ((|#1| $) 80)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-1568 (((-3 $ "failed") $) 74)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2404 (($ |#1| (-388 |#1|)) 72)) (-3651 (((-1070 |#1|) |#1| |#1|) 40)) (-2489 (($ $) 48)) (-2955 (((-107) $) NIL)) (-4005 (((-517) $) 77)) (-2238 (($ $ (-517)) 79)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4066 ((|#1| $) 76)) (-3911 (((-388 |#1|) $) 75)) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) 73)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1871 (($ $) 38)) (-2182 (((-787) $) 98) (($ (-517)) 53) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 58) (($ (-377 (-388 |#1|))) 66)) (-1865 (((-703)) 51)) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 23 T CONST)) (-2306 (($) 11 T CONST)) (-1539 (((-107) $ $) 67)) (-1649 (($ $ $) NIL)) (-1637 (($ $) 87) (($ $ $) NIL)) (-1626 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 89) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL)))
+(((-836 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2182 ((-377 |#1|) $)) (-15 -2182 ($ (-377 (-388 |#1|)))) (-15 -1871 ($ $)) (-15 -3911 ((-388 |#1|) $)) (-15 -4066 (|#1| $)) (-15 -2238 ($ $ (-517))) (-15 -4005 ((-517) $)) (-15 -3651 ((-1070 |#1|) |#1| |#1|)) (-15 -2489 ($ $)) (-15 -2404 ($ |#1| (-388 |#1|))) (-15 -2667 (|#1| $)))) (-278)) (T -836))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) (-1871 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-4066 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-3651 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2489 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-2404 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) (-2667 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
+(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2182 ((-377 |#1|) $)) (-15 -2182 ($ (-377 (-388 |#1|)))) (-15 -1871 ($ $)) (-15 -3911 ((-388 |#1|) $)) (-15 -4066 (|#1| $)) (-15 -2238 ($ $ (-517))) (-15 -4005 ((-517) $)) (-15 -3651 ((-1070 |#1|) |#1| |#1|)) (-15 -2489 ($ $)) (-15 -2404 ($ |#1| (-388 |#1|))) (-15 -2667 (|#1| $))))
+((-2404 (((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1074)) 16) (((-51) (-377 (-874 |#1|)) (-1074)) 17)))
+(((-837 |#1|) (-10 -7 (-15 -2404 ((-51) (-377 (-874 |#1|)) (-1074))) (-15 -2404 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1074)))) (-13 (-278) (-134))) (T -837))
+((-2404 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1074)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))))
+(-10 -7 (-15 -2404 ((-51) (-377 (-874 |#1|)) (-1074))) (-15 -2404 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1074))))
+((-2359 ((|#4| (-583 |#4|)) 118) (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-1396 (((-1070 |#4|) (-583 (-1070 |#4|))) 111) (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 48) ((|#4| (-583 |#4|)) 53) ((|#4| |#4| |#4|) 82)))
+(((-838 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1396 (|#4| |#4| |#4|)) (-15 -1396 (|#4| (-583 |#4|))) (-15 -1396 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -1396 ((-1070 |#4|) (-583 (-1070 |#4|)))) (-15 -2359 (|#4| |#4| |#4|)) (-15 -2359 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -2359 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -838))
+((-2359 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2359 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-2359 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-583 (-1070 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1070 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1396 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-1396 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))))
+(-10 -7 (-15 -1396 (|#4| |#4| |#4|)) (-15 -1396 (|#4| (-583 |#4|))) (-15 -1396 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -1396 ((-1070 |#4|) (-583 (-1070 |#4|)))) (-15 -2359 (|#4| |#4| |#4|)) (-15 -2359 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -2359 (|#4| (-583 |#4|))))
+((-4045 (((-826 (-517)) (-888)) 22) (((-826 (-517)) (-583 (-517))) 19)) (-3303 (((-826 (-517)) (-583 (-517))) 46) (((-826 (-517)) (-843)) 47)) (-3475 (((-826 (-517))) 23)) (-1500 (((-826 (-517))) 36) (((-826 (-517)) (-583 (-517))) 35)) (-1521 (((-826 (-517))) 34) (((-826 (-517)) (-583 (-517))) 33)) (-3096 (((-826 (-517))) 32) (((-826 (-517)) (-583 (-517))) 31)) (-3138 (((-826 (-517))) 30) (((-826 (-517)) (-583 (-517))) 29)) (-4147 (((-826 (-517))) 28) (((-826 (-517)) (-583 (-517))) 27)) (-3214 (((-826 (-517))) 38) (((-826 (-517)) (-583 (-517))) 37)) (-3761 (((-826 (-517)) (-583 (-517))) 50) (((-826 (-517)) (-843)) 51)) (-2600 (((-826 (-517)) (-583 (-517))) 48) (((-826 (-517)) (-843)) 49)) (-1307 (((-826 (-517)) (-583 (-517))) 43) (((-826 (-517)) (-843)) 45)) (-3424 (((-826 (-517)) (-583 (-843))) 40)))
+(((-839) (-10 -7 (-15 -3303 ((-826 (-517)) (-843))) (-15 -3303 ((-826 (-517)) (-583 (-517)))) (-15 -1307 ((-826 (-517)) (-843))) (-15 -1307 ((-826 (-517)) (-583 (-517)))) (-15 -3424 ((-826 (-517)) (-583 (-843)))) (-15 -2600 ((-826 (-517)) (-843))) (-15 -2600 ((-826 (-517)) (-583 (-517)))) (-15 -3761 ((-826 (-517)) (-843))) (-15 -3761 ((-826 (-517)) (-583 (-517)))) (-15 -4147 ((-826 (-517)) (-583 (-517)))) (-15 -4147 ((-826 (-517)))) (-15 -3138 ((-826 (-517)) (-583 (-517)))) (-15 -3138 ((-826 (-517)))) (-15 -3096 ((-826 (-517)) (-583 (-517)))) (-15 -3096 ((-826 (-517)))) (-15 -1521 ((-826 (-517)) (-583 (-517)))) (-15 -1521 ((-826 (-517)))) (-15 -1500 ((-826 (-517)) (-583 (-517)))) (-15 -1500 ((-826 (-517)))) (-15 -3214 ((-826 (-517)) (-583 (-517)))) (-15 -3214 ((-826 (-517)))) (-15 -3475 ((-826 (-517)))) (-15 -4045 ((-826 (-517)) (-583 (-517)))) (-15 -4045 ((-826 (-517)) (-888))))) (T -839))
+((-4045 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3475 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3214 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1500 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1521 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1521 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3096 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3138 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-4147 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(-10 -7 (-15 -3303 ((-826 (-517)) (-843))) (-15 -3303 ((-826 (-517)) (-583 (-517)))) (-15 -1307 ((-826 (-517)) (-843))) (-15 -1307 ((-826 (-517)) (-583 (-517)))) (-15 -3424 ((-826 (-517)) (-583 (-843)))) (-15 -2600 ((-826 (-517)) (-843))) (-15 -2600 ((-826 (-517)) (-583 (-517)))) (-15 -3761 ((-826 (-517)) (-843))) (-15 -3761 ((-826 (-517)) (-583 (-517)))) (-15 -4147 ((-826 (-517)) (-583 (-517)))) (-15 -4147 ((-826 (-517)))) (-15 -3138 ((-826 (-517)) (-583 (-517)))) (-15 -3138 ((-826 (-517)))) (-15 -3096 ((-826 (-517)) (-583 (-517)))) (-15 -3096 ((-826 (-517)))) (-15 -1521 ((-826 (-517)) (-583 (-517)))) (-15 -1521 ((-826 (-517)))) (-15 -1500 ((-826 (-517)) (-583 (-517)))) (-15 -1500 ((-826 (-517)))) (-15 -3214 ((-826 (-517)) (-583 (-517)))) (-15 -3214 ((-826 (-517)))) (-15 -3475 ((-826 (-517)))) (-15 -4045 ((-826 (-517)) (-583 (-517)))) (-15 -4045 ((-826 (-517)) (-888))))
+((-2767 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074))) 10)) (-2778 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074))) 9)))
+(((-840 |#1|) (-10 -7 (-15 -2778 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -2767 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074))))) (-421)) (T -840))
+((-2767 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-840 *4)))) (-2778 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
+(-10 -7 (-15 -2778 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -2767 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)))))
+((-2182 (((-286 |#1|) (-446)) 15)))
+(((-841 |#1|) (-10 -7 (-15 -2182 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -841))
+((-2182 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))))
+(-10 -7 (-15 -2182 ((-286 |#1|) (-446))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2955 (((-107) $) 31)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-842) (-1185)) (T -842))
+((-2678 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1883 (-583 *1)) (|:| -3107 *1))) (-5 *3 (-583 *1)))) (-3991 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842)))))
+(-13 (-421) (-10 -8 (-15 -2678 ((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $))) (-15 -3991 ((-3 (-583 $) "failed") (-583 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1401 (($ $ $) NIL)) (-2256 (((-787) $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2409 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ $ $) NIL)))
-(((-843) (-13 (-25) (-779) (-659) (-10 -8 (-15 -1401 ($ $ $)) (-6 (-4182 "*"))))) (T -843))
-((-1401 (*1 *1 *1 *1) (-5 *1 (-843))))
-(-13 (-25) (-779) (-659) (-10 -8 (-15 -1401 ($ $ $)) (-6 (-4182 "*"))))
-((-4082 ((|#2| (-583 |#1|) (-583 |#1|)) 22)))
-(((-844 |#1| |#2|) (-10 -7 (-15 -4082 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1130 |#1|)) (T -844))
-((-4082 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1130 *4)) (-5 *1 (-844 *4 *2)))))
-(-10 -7 (-15 -4082 (|#2| (-583 |#1|) (-583 |#1|))))
-((-4058 (((-1069 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13)))
-(((-845 |#1| |#2|) (-10 -7 (-15 -4058 ((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -4058 ((-1069 |#2|) (-583 |#2|) (-583 |#2|)))) (-1073) (-333)) (T -845))
-((-4058 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1069 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1073)))) (-4058 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1127 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1073)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))))
-(-10 -7 (-15 -4058 ((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -4058 ((-1069 |#2|) (-583 |#2|) (-583 |#2|))))
-((-3149 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056)) 137)) (-3214 ((|#4| |#4|) 153)) (-1798 (((-583 (-377 (-874 |#1|))) (-583 (-1073))) 116)) (-2628 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-3758 (((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|)) 57)) (-3938 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-3461 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056)) 149)) (-1246 (((-517) (-623 |#4|) (-843) (-1056)) 130) (((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056)) 129) (((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056)) 128) (((-517) (-623 |#4|) (-1056)) 125) (((-517) (-623 |#4|) (-583 (-1073)) (-1056)) 124) (((-517) (-623 |#4|) (-583 |#4|) (-1056)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843)) 120) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|)) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073))) 117) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 114)) (-1301 ((|#4| (-874 |#1|)) 66)) (-1957 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 150)) (-2465 (((-583 (-583 (-517))) (-517) (-517)) 127)) (-3740 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-1376 (((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-2534 (((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-3489 (((-107) (-583 (-874 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-3787 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-2440 (((-583 |#4|) |#4|) 47)) (-3240 (((-583 (-377 (-874 |#1|))) (-583 |#4|)) 112) (((-623 (-377 (-874 |#1|))) (-623 |#4|)) 54) (((-377 (-874 |#1|)) |#4|) 109)) (-2739 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517)) 89)) (-4093 (((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-3478 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-2006 (((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46)))
-(((-846 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-843) (-1056))) (-15 -3149 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -3461 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -2739 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517))) (-15 -3240 ((-377 (-874 |#1|)) |#4|)) (-15 -3240 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -3240 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -1798 ((-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1301 (|#4| (-874 |#1|))) (-15 -3787 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4093 ((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -3758 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -2006 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -2440 ((-583 |#4|) |#4|)) (-15 -2534 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -1376 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3740 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2465 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3478 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3938 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2628 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3214 (|#4| |#4|)) (-15 -3489 ((-107) (-583 |#4|))) (-15 -3489 ((-107) (-583 (-874 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1073))) (-725) (-871 |#1| |#3| |#2|)) (T -846))
-((-3489 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3214 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))) (-2628 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1073)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *9)))) (|:| -1753 (-583 (-1153 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))) (-2465 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))) (-3740 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2790 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3758 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))) (-3787 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1301 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-3240 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-2739 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1056)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1073)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *8)))) (|:| -1753 (-583 (-1153 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *4 (-1056)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-1246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1056)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1073))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(-10 -7 (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-843) (-1056))) (-15 -3149 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -3461 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -2739 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517))) (-15 -3240 ((-377 (-874 |#1|)) |#4|)) (-15 -3240 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -3240 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -1798 ((-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1301 (|#4| (-874 |#1|))) (-15 -3787 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4093 ((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -3758 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -2006 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -2440 ((-583 |#4|) |#4|)) (-15 -2534 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -1376 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3740 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2465 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3478 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3938 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2628 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3214 (|#4| |#4|)) (-15 -3489 ((-107) (-583 |#4|))) (-15 -3489 ((-107) (-583 (-874 |#1|)))))
-((-2059 (((-849) |#1| (-1073)) 16) (((-849) |#1| (-1073) (-998 (-199))) 20)) (-3982 (((-849) |#1| |#1| (-1073) (-998 (-199))) 18) (((-849) |#1| (-1073) (-998 (-199))) 14)))
-(((-847 |#1|) (-10 -7 (-15 -3982 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -3982 ((-849) |#1| |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073)))) (-558 (-493))) (T -847))
-((-2059 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-2059 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3982 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3982 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -3982 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -3982 ((-849) |#1| |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073))))
-((-4132 (($ $ (-998 (-199)) (-998 (-199)) (-998 (-199))) 68)) (-1422 (((-998 (-199)) $) 40)) (-1408 (((-998 (-199)) $) 39)) (-1397 (((-998 (-199)) $) 38)) (-3633 (((-583 (-583 (-199))) $) 43)) (-1557 (((-998 (-199)) $) 41)) (-1353 (((-517) (-517)) 32)) (-1276 (((-517) (-517)) 28)) (-1305 (((-517) (-517)) 30)) (-4050 (((-107) (-107)) 35)) (-2152 (((-517)) 31)) (-3437 (($ $ (-998 (-199))) 71) (($ $) 72)) (-3427 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 76) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 77)) (-3982 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 79) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 80) (($ $ (-998 (-199))) 74)) (-3973 (((-517)) 36)) (-3974 (((-517)) 27)) (-3496 (((-517)) 29)) (-2602 (((-583 (-583 (-865 (-199)))) $) 92)) (-3286 (((-107) (-107)) 37)) (-2256 (((-787) $) 91)) (-2215 (((-107)) 34)))
-(((-848) (-13 (-891) (-10 -8 (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -3633 ((-583 (-583 (-199))) $)) (-15 -3974 ((-517))) (-15 -1276 ((-517) (-517))) (-15 -3496 ((-517))) (-15 -1305 ((-517) (-517))) (-15 -2152 ((-517))) (-15 -1353 ((-517) (-517))) (-15 -2215 ((-107))) (-15 -4050 ((-107) (-107))) (-15 -3973 ((-517))) (-15 -3286 ((-107) (-107)))))) (T -848))
-((-3427 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3427 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-4132 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3437 (*1 *1 *1) (-5 *1 (-848))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))) (-3974 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1276 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3496 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1305 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2152 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2215 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-3973 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
-(-13 (-891) (-10 -8 (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -3633 ((-583 (-583 (-199))) $)) (-15 -3974 ((-517))) (-15 -1276 ((-517) (-517))) (-15 -3496 ((-517))) (-15 -1305 ((-517) (-517))) (-15 -2152 ((-517))) (-15 -1353 ((-517) (-517))) (-15 -2215 ((-107))) (-15 -4050 ((-107) (-107))) (-15 -3973 ((-517))) (-15 -3286 ((-107) (-107)))))
-((-4132 (($ $ (-998 (-199))) 69) (($ $ (-998 (-199)) (-998 (-199))) 70)) (-1408 (((-998 (-199)) $) 43)) (-1397 (((-998 (-199)) $) 42)) (-1557 (((-998 (-199)) $) 44)) (-2675 (((-517) (-517)) 36)) (-3223 (((-517) (-517)) 32)) (-1687 (((-517) (-517)) 34)) (-2471 (((-107) (-107)) 38)) (-3553 (((-517)) 35)) (-3437 (($ $ (-998 (-199))) 73) (($ $) 74)) (-3427 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 83) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 84)) (-2059 (($ (-1 (-199) (-199)) (-998 (-199))) 91) (($ (-1 (-199) (-199))) 94)) (-3982 (($ (-1 (-199) (-199)) (-998 (-199))) 78) (($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199))) 79) (($ (-583 (-1 (-199) (-199))) (-998 (-199))) 86) (($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199))) 87) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 81) (($ $ (-998 (-199))) 75)) (-2094 (((-107) $) 39)) (-2113 (((-517)) 40)) (-2761 (((-517)) 31)) (-4056 (((-517)) 33)) (-2602 (((-583 (-583 (-865 (-199)))) $) 22)) (-1424 (((-107) (-107)) 41)) (-2256 (((-787) $) 105)) (-2798 (((-107)) 37)))
-(((-849) (-13 (-876) (-10 -8 (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -2094 ((-107) $)) (-15 -4132 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -2761 ((-517))) (-15 -3223 ((-517) (-517))) (-15 -4056 ((-517))) (-15 -1687 ((-517) (-517))) (-15 -3553 ((-517))) (-15 -2675 ((-517) (-517))) (-15 -2798 ((-107))) (-15 -2471 ((-107) (-107))) (-15 -2113 ((-517))) (-15 -1424 ((-107) (-107)))))) (T -849))
-((-3982 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3427 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3427 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2059 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-4132 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-4132 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3437 (*1 *1 *1) (-5 *1 (-849))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2761 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-4056 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3553 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2798 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2113 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1424 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(-13 (-876) (-10 -8 (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -2094 ((-107) $)) (-15 -4132 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -2761 ((-517))) (-15 -3223 ((-517) (-517))) (-15 -4056 ((-517))) (-15 -1687 ((-517) (-517))) (-15 -3553 ((-517))) (-15 -2675 ((-517) (-517))) (-15 -2798 ((-107))) (-15 -2471 ((-107) (-107))) (-15 -2113 ((-517))) (-15 -1424 ((-107) (-107)))))
-((-3244 (((-583 (-998 (-199))) (-583 (-583 (-865 (-199))))) 23)))
-(((-850) (-10 -7 (-15 -3244 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))) (T -850))
-((-3244 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850)))))
-(-10 -7 (-15 -3244 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))
-((-2167 ((|#2| |#2|) 25)) (-3751 ((|#2| |#2|) 26)) (-1619 ((|#2| |#2|) 24)) (-2107 ((|#2| |#2| (-1056)) 23)))
-(((-851 |#1| |#2|) (-10 -7 (-15 -2107 (|#2| |#2| (-1056))) (-15 -1619 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -3751 (|#2| |#2|))) (-779) (-400 |#1|)) (T -851))
-((-3751 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2107 (*1 *2 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))))
-(-10 -7 (-15 -2107 (|#2| |#2| (-1056))) (-15 -1619 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -3751 (|#2| |#2|)))
-((-2167 (((-286 (-517)) (-1073)) 15)) (-3751 (((-286 (-517)) (-1073)) 13)) (-1619 (((-286 (-517)) (-1073)) 11)) (-2107 (((-286 (-517)) (-1073) (-1056)) 18)))
-(((-852) (-10 -7 (-15 -2107 ((-286 (-517)) (-1073) (-1056))) (-15 -1619 ((-286 (-517)) (-1073))) (-15 -2167 ((-286 (-517)) (-1073))) (-15 -3751 ((-286 (-517)) (-1073))))) (T -852))
-((-3751 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1056)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
-(-10 -7 (-15 -2107 ((-286 (-517)) (-1073) (-1056))) (-15 -1619 ((-286 (-517)) (-1073))) (-15 -2167 ((-286 (-517)) (-1073))) (-15 -3751 ((-286 (-517)) (-1073))))
-((-4057 (((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)) 24)) (-1216 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12)))
-(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -1216 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -4057 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-808 |#1|) (-13 (-1003) (-952 |#2|))) (T -853))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6)))))
-(-10 -7 (-15 -1216 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -4057 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|))))
-((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 29)))
-(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-779) (-808 |#1|)) (-13 (-400 |#2|) (-558 (-814 |#1|)) (-808 |#1|) (-952 (-556 $)))) (T -854))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))))
-(-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))
-((-4057 (((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)) 12)))
-(((-855 |#1|) (-10 -7 (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)))) (-502)) (T -855))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))))
-(-10 -7 (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))))
-((-4057 (((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)) 52)))
-(((-856 |#1| |#2|) (-10 -7 (-15 -4057 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)))) (-1003) (-13 (-779) (-952 (-556 $)) (-558 (-814 |#1|)) (-808 |#1|))) (T -856))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))))
-(-10 -7 (-15 -4057 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|))))
-((-4057 (((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)) 14)))
-(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)))) (-1003) (-808 |#1|) (-603 |#2|)) (T -857))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))))
-(-10 -7 (-15 -4057 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|))))
-((-4057 (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|)) 17 (|has| |#3| (-808 |#1|))) (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|))) 16)))
-(((-858 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |noBranch|)) (-1003) (-725) (-779) (-13 (-961) (-779) (-808 |#1|)) (-13 (-871 |#4| |#2| |#3|) (-558 (-814 |#1|)))) (T -858))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) (-4057 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |noBranch|))
-((-3820 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12)))
-(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -3820 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3820 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1108)) (T -859))
-((-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))))
-(-10 -7 (-15 -3820 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3820 (|#2| |#2| (-583 (-1 (-107) |#3|)))))
-((-3820 (((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1073) (-1 (-107) |#1|)) 13)))
-(((-860 |#1|) (-10 -7 (-15 -3820 ((-286 (-517)) (-1073) (-1 (-107) |#1|))) (-15 -3820 ((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|))))) (-1108)) (T -860))
-((-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))))
-(-10 -7 (-15 -3820 ((-286 (-517)) (-1073) (-1 (-107) |#1|))) (-15 -3820 ((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|)))))
-((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 25)))
-(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-808 |#1|) (-558 (-814 |#1|))) (-909 |#2|)) (T -861))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))))
-(-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))
-((-4057 (((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073))) 17)))
-(((-862 |#1|) (-10 -7 (-15 -4057 ((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073))))) (-1003)) (T -862))
-((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1073))) (-5 *3 (-1073)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))))
-(-10 -7 (-15 -4057 ((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073)))))
-((-3906 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 33)) (-4057 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 32)))
-(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -3906 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))) (-1003) (-13 (-961) (-779)) (-13 (-961) (-558 (-814 |#1|)) (-952 |#2|))) (T -863))
-((-3906 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))) (-4057 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9)))))
-(-10 -7 (-15 -4057 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -3906 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))))
-((-3357 (((-1069 (-377 (-517))) (-517)) 61)) (-2313 (((-1069 (-517)) (-517)) 64)) (-3682 (((-1069 (-517)) (-517)) 58)) (-1982 (((-517) (-1069 (-517))) 53)) (-3747 (((-1069 (-377 (-517))) (-517)) 47)) (-2765 (((-1069 (-517)) (-517)) 36)) (-2598 (((-1069 (-517)) (-517)) 66)) (-1342 (((-1069 (-517)) (-517)) 65)) (-1781 (((-1069 (-377 (-517))) (-517)) 49)))
-(((-864) (-10 -7 (-15 -1781 ((-1069 (-377 (-517))) (-517))) (-15 -1342 ((-1069 (-517)) (-517))) (-15 -2598 ((-1069 (-517)) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3747 ((-1069 (-377 (-517))) (-517))) (-15 -1982 ((-517) (-1069 (-517)))) (-15 -3682 ((-1069 (-517)) (-517))) (-15 -2313 ((-1069 (-517)) (-517))) (-15 -3357 ((-1069 (-377 (-517))) (-517))))) (T -864))
-((-3357 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2313 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3682 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))) (-3747 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2765 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1342 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(-10 -7 (-15 -1781 ((-1069 (-377 (-517))) (-517))) (-15 -1342 ((-1069 (-517)) (-517))) (-15 -2598 ((-1069 (-517)) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3747 ((-1069 (-377 (-517))) (-517))) (-15 -1982 ((-517) (-1069 (-517)))) (-15 -3682 ((-1069 (-517)) (-517))) (-15 -2313 ((-1069 (-517)) (-517))) (-15 -3357 ((-1069 (-377 (-517))) (-517))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-2889 (($ (-583 |#1|)) 13)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 8)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 10 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-1672 (($ $ (-583 |#1|)) 24)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3141 (((-843) $) 16)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) 22)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) 14 (|has| $ (-6 -4180)))))
+((-2571 (((-107) $ $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1396 (($ $ $) NIL)) (-2182 (((-787) $) NIL)) (-2146 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2306 (($) NIL T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ $ $) NIL)))
+(((-843) (-13 (-25) (-779) (-659) (-10 -8 (-15 -1396 ($ $ $)) (-6 (-4185 "*"))))) (T -843))
+((-1396 (*1 *1 *1 *1) (-5 *1 (-843))))
+(-13 (-25) (-779) (-659) (-10 -8 (-15 -1396 ($ $ $)) (-6 (-4185 "*"))))
+((-3581 ((|#2| (-583 |#1|) (-583 |#1|)) 22)))
+(((-844 |#1| |#2|) (-10 -7 (-15 -3581 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1131 |#1|)) (T -844))
+((-3581 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1131 *4)) (-5 *1 (-844 *4 *2)))))
+(-10 -7 (-15 -3581 (|#2| (-583 |#1|) (-583 |#1|))))
+((-3300 (((-1070 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1128 |#1| |#2|) (-1128 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13)))
+(((-845 |#1| |#2|) (-10 -7 (-15 -3300 ((-1128 |#1| |#2|) (-1128 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3300 ((-1070 |#2|) (-583 |#2|) (-583 |#2|)))) (-1074) (-333)) (T -845))
+((-3300 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1070 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1074)))) (-3300 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1128 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1074)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))))
+(-10 -7 (-15 -3300 ((-1128 |#1| |#2|) (-1128 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3300 ((-1070 |#2|) (-583 |#2|) (-583 |#2|))))
+((-2652 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057)) 137)) (-2127 ((|#4| |#4|) 153)) (-3248 (((-583 (-377 (-874 |#1|))) (-583 (-1074))) 116)) (-3586 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-3324 (((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-583 |#4|)) 57)) (-1573 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-3675 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057)) 149)) (-2138 (((-517) (-623 |#4|) (-843) (-1057)) 130) (((-517) (-623 |#4|) (-583 (-1074)) (-843) (-1057)) 129) (((-517) (-623 |#4|) (-583 |#4|) (-843) (-1057)) 128) (((-517) (-623 |#4|) (-1057)) 125) (((-517) (-623 |#4|) (-583 (-1074)) (-1057)) 124) (((-517) (-623 |#4|) (-583 |#4|) (-1057)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)) (-843)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843)) 120) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|)) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074))) 117) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 114)) (-1371 ((|#4| (-874 |#1|)) 66)) (-3180 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 150)) (-1528 (((-583 (-583 (-517))) (-517) (-517)) 127)) (-3167 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-2708 (((-703) (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-3929 (((-703) (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-2619 (((-107) (-583 (-874 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-3630 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-2381 (((-583 |#4|) |#4|) 47)) (-2279 (((-583 (-377 (-874 |#1|))) (-583 |#4|)) 112) (((-623 (-377 (-874 |#1|))) (-623 |#4|)) 54) (((-377 (-874 |#1|)) |#4|) 109)) (-3253 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1057) (-517)) 89)) (-3689 (((-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-2535 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-2470 (((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| -2522 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -3795 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46)))
+(((-846 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)) (-843))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -2138 ((-517) (-623 |#4|) (-583 |#4|) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-583 (-1074)) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-583 (-1074)) (-843) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-843) (-1057))) (-15 -2652 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057))) (-15 -3675 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057))) (-15 -3253 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1057) (-517))) (-15 -2279 ((-377 (-874 |#1|)) |#4|)) (-15 -2279 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -2279 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -3248 ((-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -1371 (|#4| (-874 |#1|))) (-15 -3630 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -3689 ((-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -3324 ((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -2470 ((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| -2522 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -3795 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -2381 ((-583 |#4|) |#4|)) (-15 -3929 ((-703) (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2708 ((-703) (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3167 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -1528 ((-583 (-583 (-517))) (-517) (-517))) (-15 -3180 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2535 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -1573 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -3586 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -2127 (|#4| |#4|)) (-15 -2619 ((-107) (-583 |#4|))) (-15 -2619 ((-107) (-583 (-874 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1074))) (-725) (-871 |#1| |#3| |#2|)) (T -846))
+((-2619 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2127 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1074)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))) (-3586 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1074)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *9)))) (|:| -3809 (-583 (-1154 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))) (-1573 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-3180 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1528 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))) (-3167 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1074)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2381 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2522 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -3795 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -3809 (-583 (-1154 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3324 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -3809 (-583 (-1154 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))) (-3630 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-2279 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-3253 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1057)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1074)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *8)))) (|:| -3809 (-583 (-1154 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -3809 (-583 (-1154 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -3809 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *4 (-1057)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-2138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-2138 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1074))) (-5 *5 (-843)) (-5 *6 (-1057)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1074)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-2138 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1057)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1074)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1057)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-2138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1074))) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-2138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -3809 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-2138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1074))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *6)))) (|:| -3809 (-583 (-1154 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) (-2138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *6)))) (|:| -3809 (-583 (-1154 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -3809 (-583 (-1154 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1074))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -3809 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -3809 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(-10 -7 (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)) (-843))) (-15 -2138 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -2138 ((-517) (-623 |#4|) (-583 |#4|) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-583 (-1074)) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-583 (-1074)) (-843) (-1057))) (-15 -2138 ((-517) (-623 |#4|) (-843) (-1057))) (-15 -2652 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057))) (-15 -3675 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057))) (-15 -3253 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1057) (-517))) (-15 -2279 ((-377 (-874 |#1|)) |#4|)) (-15 -2279 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -2279 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -3248 ((-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -1371 (|#4| (-874 |#1|))) (-15 -3630 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -3689 ((-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -3324 ((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -2470 ((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| -2522 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -3795 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -2381 ((-583 |#4|) |#4|)) (-15 -3929 ((-703) (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2708 ((-703) (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3167 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -1528 ((-583 (-583 (-517))) (-517) (-517))) (-15 -3180 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2535 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -1573 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -3586 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -3809 (-583 (-1154 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -2127 (|#4| |#4|)) (-15 -2619 ((-107) (-583 |#4|))) (-15 -2619 ((-107) (-583 (-874 |#1|)))))
+((-1941 (((-849) |#1| (-1074)) 16) (((-849) |#1| (-1074) (-998 (-199))) 20)) (-3828 (((-849) |#1| |#1| (-1074) (-998 (-199))) 18) (((-849) |#1| (-1074) (-998 (-199))) 14)))
+(((-847 |#1|) (-10 -7 (-15 -3828 ((-849) |#1| (-1074) (-998 (-199)))) (-15 -3828 ((-849) |#1| |#1| (-1074) (-998 (-199)))) (-15 -1941 ((-849) |#1| (-1074) (-998 (-199)))) (-15 -1941 ((-849) |#1| (-1074)))) (-558 (-493))) (T -847))
+((-1941 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3828 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3828 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -3828 ((-849) |#1| (-1074) (-998 (-199)))) (-15 -3828 ((-849) |#1| |#1| (-1074) (-998 (-199)))) (-15 -1941 ((-849) |#1| (-1074) (-998 (-199)))) (-15 -1941 ((-849) |#1| (-1074))))
+((-2711 (($ $ (-998 (-199)) (-998 (-199)) (-998 (-199))) 68)) (-1201 (((-998 (-199)) $) 40)) (-1190 (((-998 (-199)) $) 39)) (-4154 (((-998 (-199)) $) 38)) (-1694 (((-583 (-583 (-199))) $) 43)) (-2969 (((-998 (-199)) $) 41)) (-2687 (((-517) (-517)) 32)) (-3694 (((-517) (-517)) 28)) (-1400 (((-517) (-517)) 30)) (-3208 (((-107) (-107)) 35)) (-1607 (((-517)) 31)) (-3438 (($ $ (-998 (-199))) 71) (($ $) 72)) (-3332 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 76) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 77)) (-3828 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 79) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 80) (($ $ (-998 (-199))) 74)) (-1927 (((-517)) 36)) (-1935 (((-517)) 27)) (-2684 (((-517)) 29)) (-3315 (((-583 (-583 (-865 (-199)))) $) 92)) (-1606 (((-107) (-107)) 37)) (-2182 (((-787) $) 91)) (-3983 (((-107)) 34)))
+(((-848) (-13 (-891) (-10 -8 (-15 -3332 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3332 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3828 ($ $ (-998 (-199)))) (-15 -2711 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3438 ($ $ (-998 (-199)))) (-15 -3438 ($ $)) (-15 -2969 ((-998 (-199)) $)) (-15 -1694 ((-583 (-583 (-199))) $)) (-15 -1935 ((-517))) (-15 -3694 ((-517) (-517))) (-15 -2684 ((-517))) (-15 -1400 ((-517) (-517))) (-15 -1607 ((-517))) (-15 -2687 ((-517) (-517))) (-15 -3983 ((-107))) (-15 -3208 ((-107) (-107))) (-15 -1927 ((-517))) (-15 -1606 ((-107) (-107)))))) (T -848))
+((-3332 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3332 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3828 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3828 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3828 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-2711 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3438 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3438 (*1 *1 *1) (-5 *1 (-848))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))) (-1935 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2684 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1607 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2687 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3983 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-1927 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1606 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
+(-13 (-891) (-10 -8 (-15 -3332 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3332 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3828 ($ $ (-998 (-199)))) (-15 -2711 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3438 ($ $ (-998 (-199)))) (-15 -3438 ($ $)) (-15 -2969 ((-998 (-199)) $)) (-15 -1694 ((-583 (-583 (-199))) $)) (-15 -1935 ((-517))) (-15 -3694 ((-517) (-517))) (-15 -2684 ((-517))) (-15 -1400 ((-517) (-517))) (-15 -1607 ((-517))) (-15 -2687 ((-517) (-517))) (-15 -3983 ((-107))) (-15 -3208 ((-107) (-107))) (-15 -1927 ((-517))) (-15 -1606 ((-107) (-107)))))
+((-2711 (($ $ (-998 (-199))) 69) (($ $ (-998 (-199)) (-998 (-199))) 70)) (-1190 (((-998 (-199)) $) 43)) (-4154 (((-998 (-199)) $) 42)) (-2969 (((-998 (-199)) $) 44)) (-2755 (((-517) (-517)) 36)) (-2166 (((-517) (-517)) 32)) (-3605 (((-517) (-517)) 34)) (-1592 (((-107) (-107)) 38)) (-2087 (((-517)) 35)) (-3438 (($ $ (-998 (-199))) 73) (($ $) 74)) (-3332 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 83) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 84)) (-1941 (($ (-1 (-199) (-199)) (-998 (-199))) 91) (($ (-1 (-199) (-199))) 94)) (-3828 (($ (-1 (-199) (-199)) (-998 (-199))) 78) (($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199))) 79) (($ (-583 (-1 (-199) (-199))) (-998 (-199))) 86) (($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199))) 87) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 81) (($ $ (-998 (-199))) 75)) (-2196 (((-107) $) 39)) (-2330 (((-517)) 40)) (-3514 (((-517)) 31)) (-3278 (((-517)) 33)) (-3315 (((-583 (-583 (-865 (-199)))) $) 22)) (-1417 (((-107) (-107)) 41)) (-2182 (((-787) $) 105)) (-2589 (((-107)) 37)))
+(((-849) (-13 (-876) (-10 -8 (-15 -3828 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3828 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3828 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3332 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3332 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -1941 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -1941 ($ (-1 (-199) (-199)))) (-15 -3828 ($ $ (-998 (-199)))) (-15 -2196 ((-107) $)) (-15 -2711 ($ $ (-998 (-199)))) (-15 -2711 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -3438 ($ $ (-998 (-199)))) (-15 -3438 ($ $)) (-15 -2969 ((-998 (-199)) $)) (-15 -3514 ((-517))) (-15 -2166 ((-517) (-517))) (-15 -3278 ((-517))) (-15 -3605 ((-517) (-517))) (-15 -2087 ((-517))) (-15 -2755 ((-517) (-517))) (-15 -2589 ((-107))) (-15 -1592 ((-107) (-107))) (-15 -2330 ((-517))) (-15 -1417 ((-107) (-107)))))) (T -849))
+((-3828 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3828 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3828 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3828 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3828 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3828 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3332 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3332 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-1941 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-1941 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) (-3828 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2711 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2711 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3438 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3438 (*1 *1 *1) (-5 *1 (-849))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3514 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2166 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3278 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2087 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2755 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2589 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2330 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1417 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(-13 (-876) (-10 -8 (-15 -3828 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3828 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3828 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3828 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3332 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3332 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -1941 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -1941 ($ (-1 (-199) (-199)))) (-15 -3828 ($ $ (-998 (-199)))) (-15 -2196 ((-107) $)) (-15 -2711 ($ $ (-998 (-199)))) (-15 -2711 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -3438 ($ $ (-998 (-199)))) (-15 -3438 ($ $)) (-15 -2969 ((-998 (-199)) $)) (-15 -3514 ((-517))) (-15 -2166 ((-517) (-517))) (-15 -3278 ((-517))) (-15 -3605 ((-517) (-517))) (-15 -2087 ((-517))) (-15 -2755 ((-517) (-517))) (-15 -2589 ((-107))) (-15 -1592 ((-107) (-107))) (-15 -2330 ((-517))) (-15 -1417 ((-107) (-107)))))
+((-2315 (((-583 (-998 (-199))) (-583 (-583 (-865 (-199))))) 23)))
+(((-850) (-10 -7 (-15 -2315 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))) (T -850))
+((-2315 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850)))))
+(-10 -7 (-15 -2315 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))
+((-2109 ((|#2| |#2|) 25)) (-3686 ((|#2| |#2|) 26)) (-1605 ((|#2| |#2|) 24)) (-2045 ((|#2| |#2| (-1057)) 23)))
+(((-851 |#1| |#2|) (-10 -7 (-15 -2045 (|#2| |#2| (-1057))) (-15 -1605 (|#2| |#2|)) (-15 -2109 (|#2| |#2|)) (-15 -3686 (|#2| |#2|))) (-779) (-400 |#1|)) (T -851))
+((-3686 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2109 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2045 (*1 *2 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))))
+(-10 -7 (-15 -2045 (|#2| |#2| (-1057))) (-15 -1605 (|#2| |#2|)) (-15 -2109 (|#2| |#2|)) (-15 -3686 (|#2| |#2|)))
+((-2109 (((-286 (-517)) (-1074)) 15)) (-3686 (((-286 (-517)) (-1074)) 13)) (-1605 (((-286 (-517)) (-1074)) 11)) (-2045 (((-286 (-517)) (-1074) (-1057)) 18)))
+(((-852) (-10 -7 (-15 -2045 ((-286 (-517)) (-1074) (-1057))) (-15 -1605 ((-286 (-517)) (-1074))) (-15 -2109 ((-286 (-517)) (-1074))) (-15 -3686 ((-286 (-517)) (-1074))))) (T -852))
+((-3686 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1057)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
+(-10 -7 (-15 -2045 ((-286 (-517)) (-1074) (-1057))) (-15 -1605 ((-286 (-517)) (-1074))) (-15 -2109 ((-286 (-517)) (-1074))) (-15 -3686 ((-286 (-517)) (-1074))))
+((-3289 (((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)) 24)) (-3233 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12)))
+(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -3233 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3289 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-808 |#1|) (-13 (-1003) (-952 |#2|))) (T -853))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6)))))
+(-10 -7 (-15 -3233 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3289 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|))))
+((-3289 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 29)))
+(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -3289 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-779) (-808 |#1|)) (-13 (-400 |#2|) (-558 (-814 |#1|)) (-808 |#1|) (-952 (-556 $)))) (T -854))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))))
+(-10 -7 (-15 -3289 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))
+((-3289 (((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)) 12)))
+(((-855 |#1|) (-10 -7 (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)))) (-502)) (T -855))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))))
+(-10 -7 (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))))
+((-3289 (((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)) 52)))
+(((-856 |#1| |#2|) (-10 -7 (-15 -3289 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)))) (-1003) (-13 (-779) (-952 (-556 $)) (-558 (-814 |#1|)) (-808 |#1|))) (T -856))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))))
+(-10 -7 (-15 -3289 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|))))
+((-3289 (((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)) 14)))
+(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -3289 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)))) (-1003) (-808 |#1|) (-603 |#2|)) (T -857))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))))
+(-10 -7 (-15 -3289 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|))))
+((-3289 (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|)) 17 (|has| |#3| (-808 |#1|))) (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|))) 16)))
+(((-858 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3289 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -3289 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |noBranch|)) (-1003) (-725) (-779) (-13 (-961) (-779) (-808 |#1|)) (-13 (-871 |#4| |#2| |#3|) (-558 (-814 |#1|)))) (T -858))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) (-3289 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3289 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -3289 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |noBranch|))
+((-3781 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12)))
+(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -3781 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3781 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1109)) (T -859))
+((-3781 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1109)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) (-3781 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1109)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))))
+(-10 -7 (-15 -3781 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3781 (|#2| |#2| (-583 (-1 (-107) |#3|)))))
+((-3781 (((-286 (-517)) (-1074) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1074) (-1 (-107) |#1|)) 13)))
+(((-860 |#1|) (-10 -7 (-15 -3781 ((-286 (-517)) (-1074) (-1 (-107) |#1|))) (-15 -3781 ((-286 (-517)) (-1074) (-583 (-1 (-107) |#1|))))) (-1109)) (T -860))
+((-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1109)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1109)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))))
+(-10 -7 (-15 -3781 ((-286 (-517)) (-1074) (-1 (-107) |#1|))) (-15 -3781 ((-286 (-517)) (-1074) (-583 (-1 (-107) |#1|)))))
+((-3289 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 25)))
+(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3289 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-808 |#1|) (-558 (-814 |#1|))) (-909 |#2|)) (T -861))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))))
+(-10 -7 (-15 -3289 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))
+((-3289 (((-811 |#1| (-1074)) (-1074) (-814 |#1|) (-811 |#1| (-1074))) 17)))
+(((-862 |#1|) (-10 -7 (-15 -3289 ((-811 |#1| (-1074)) (-1074) (-814 |#1|) (-811 |#1| (-1074))))) (-1003)) (T -862))
+((-3289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1074))) (-5 *3 (-1074)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))))
+(-10 -7 (-15 -3289 ((-811 |#1| (-1074)) (-1074) (-814 |#1|) (-811 |#1| (-1074)))))
+((-2333 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 33)) (-3289 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 32)))
+(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -3289 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -2333 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))) (-1003) (-13 (-961) (-779)) (-13 (-961) (-558 (-814 |#1|)) (-952 |#2|))) (T -863))
+((-2333 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))) (-3289 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9)))))
+(-10 -7 (-15 -3289 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -2333 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))))
+((-4032 (((-1070 (-377 (-517))) (-517)) 61)) (-3644 (((-1070 (-517)) (-517)) 64)) (-3959 (((-1070 (-517)) (-517)) 58)) (-3459 (((-517) (-1070 (-517))) 53)) (-3237 (((-1070 (-377 (-517))) (-517)) 47)) (-3564 (((-1070 (-517)) (-517)) 36)) (-3273 (((-1070 (-517)) (-517)) 66)) (-2775 (((-1070 (-517)) (-517)) 65)) (-2702 (((-1070 (-377 (-517))) (-517)) 49)))
+(((-864) (-10 -7 (-15 -2702 ((-1070 (-377 (-517))) (-517))) (-15 -2775 ((-1070 (-517)) (-517))) (-15 -3273 ((-1070 (-517)) (-517))) (-15 -3564 ((-1070 (-517)) (-517))) (-15 -3237 ((-1070 (-377 (-517))) (-517))) (-15 -3459 ((-517) (-1070 (-517)))) (-15 -3959 ((-1070 (-517)) (-517))) (-15 -3644 ((-1070 (-517)) (-517))) (-15 -4032 ((-1070 (-377 (-517))) (-517))))) (T -864))
+((-4032 (*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3959 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-1070 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))) (-3237 (*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3564 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3273 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2775 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2702 (*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2702 ((-1070 (-377 (-517))) (-517))) (-15 -2775 ((-1070 (-517)) (-517))) (-15 -3273 ((-1070 (-517)) (-517))) (-15 -3564 ((-1070 (-517)) (-517))) (-15 -3237 ((-1070 (-377 (-517))) (-517))) (-15 -3459 ((-517) (-1070 (-517)))) (-15 -3959 ((-1070 (-517)) (-517))) (-15 -3644 ((-1070 (-517)) (-517))) (-15 -4032 ((-1070 (-377 (-517))) (-517))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3437 (($ (-703)) NIL (|has| |#1| (-23)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2446 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1503 (($ (-583 |#1|)) 13)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2544 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3366 (($ (-703) |#1|) 8)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) 10 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2751 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-2942 (((-107) $ (-703)) NIL)) (-2542 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) NIL (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-3467 (($ $ (-583 |#1|)) 24)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1122 (-517))) NIL)) (-2736 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-2586 (((-843) $) 16)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-2115 (($ $ $) 22)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2197 (($ (-583 |#1|)) NIL)) (-2337 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1637 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1626 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2210 (((-703) $) 14 (|has| $ (-6 -4183)))))
(((-865 |#1|) (-897 |#1|) (-961)) (T -865))
NIL
(-897 |#1|)
-((-2753 (((-449 |#1| |#2|) (-874 |#2|)) 17)) (-4024 (((-221 |#1| |#2|) (-874 |#2|)) 29)) (-3156 (((-874 |#2|) (-449 |#1| |#2|)) 22)) (-3241 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-3256 (((-874 |#2|) (-221 |#1| |#2|)) 26)) (-4104 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44)))
-(((-866 |#1| |#2|) (-10 -7 (-15 -4104 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -3241 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2753 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -3156 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -3256 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -4024 ((-221 |#1| |#2|) (-874 |#2|)))) (-583 (-1073)) (-961)) (T -866))
-((-4024 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)))))
-(-10 -7 (-15 -4104 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -3241 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2753 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -3156 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -3256 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -4024 ((-221 |#1| |#2|) (-874 |#2|))))
-((-1945 (((-583 |#2|) |#2| |#2|) 10)) (-1273 (((-703) (-583 |#1|)) 37 (|has| |#1| (-777)))) (-4002 (((-583 |#2|) |#2|) 11)) (-2026 (((-703) (-583 |#1|) (-517) (-517)) 39 (|has| |#1| (-777)))) (-3495 ((|#1| |#2|) 32 (|has| |#1| (-777)))))
-(((-867 |#1| |#2|) (-10 -7 (-15 -1945 ((-583 |#2|) |#2| |#2|)) (-15 -4002 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3495 (|#1| |#2|)) (-15 -1273 ((-703) (-583 |#1|))) (-15 -2026 ((-703) (-583 |#1|) (-517) (-517)))) |noBranch|)) (-333) (-1130 |#1|)) (T -867))
-((-2026 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1130 *5)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1130 *4)))) (-3495 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1130 *2)))) (-4002 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))) (-1945 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -1945 ((-583 |#2|) |#2| |#2|)) (-15 -4002 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3495 (|#1| |#2|)) (-15 -1273 ((-703) (-583 |#1|))) (-15 -2026 ((-703) (-583 |#1|) (-517) (-517)))) |noBranch|))
-((-1893 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 18)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -1893 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-961) (-961)) (T -868))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))))
-(-10 -7 (-15 -1893 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|))))
-((-2352 (((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|)) 18)))
-(((-869 |#1| |#2|) (-10 -7 (-15 -2352 ((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|)))) (-1073) (-961)) (T -869))
-((-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-1149 *5)) (-14 *5 (-1073)) (-4 *6 (-961)) (-5 *2 (-1127 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))))
-(-10 -7 (-15 -2352 ((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|))))
-((-1369 (((-703) $) 69) (((-703) $ (-583 |#4|)) 72)) (-2535 (($ $) 169)) (-2759 (((-388 $) $) 161)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 112)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 57)) (-3388 (($ $ $ |#4|) 74)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 102) (((-623 |#2|) (-623 $)) 95)) (-3534 (($ $) 176) (($ $ |#4|) 179)) (-1201 (((-583 $) $) 61)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 194) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 188)) (-4094 (((-583 $) $) 27)) (-1339 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 55)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#4|) 158)) (-3703 (((-3 (-583 $) "failed") $) 41)) (-3401 (((-3 (-583 $) "failed") $) 30)) (-3174 (((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") $) 45)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 105)) (-2561 (((-388 (-1069 $)) (-1069 $)) 118)) (-2209 (((-388 (-1069 $)) (-1069 $)) 116)) (-3755 (((-388 $) $) 136)) (-2051 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-3010 (($ $ |#4|) 76)) (-3645 (((-814 (-349)) $) 208) (((-814 (-517)) $) 201) (((-493) $) 216)) (-3266 ((|#2| $) NIL) (($ $ |#4|) 171)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 150)) (-2720 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 50) (($ $ (-583 |#4|) (-583 (-703))) 53)) (-1328 (((-3 $ "failed") $) 152)) (-1572 (((-107) $ $) 182)))
-(((-870 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -3534 (|#1| |#1| |#4|)) (-15 -3266 (|#1| |#1| |#4|)) (-15 -3010 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -1201 ((-583 |#1|) |#1|)) (-15 -1369 ((-703) |#1| (-583 |#4|))) (-15 -1369 ((-703) |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1339 (|#1| |#1| |#4| (-703))) (-15 -2711 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -4094 ((-583 |#1|) |#1|)) (-15 -2720 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2720 (|#1| |#1| |#4| (-703))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1339 (|#1| |#2| |#3|)) (-15 -2720 (|#2| |#1| |#3|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3534 (|#1| |#1|))) (-871 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -870))
-NIL
-(-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -3534 (|#1| |#1| |#4|)) (-15 -3266 (|#1| |#1| |#4|)) (-15 -3010 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -1201 ((-583 |#1|) |#1|)) (-15 -1369 ((-703) |#1| (-583 |#4|))) (-15 -1369 ((-703) |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1339 (|#1| |#1| |#4| (-703))) (-15 -2711 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -4094 ((-583 |#1|) |#1|)) (-15 -2720 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2720 (|#1| |#1| |#4| (-703))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1339 (|#1| |#2| |#3|)) (-15 -2720 (|#2| |#1| |#3|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3534 (|#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135)) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| |#2| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-2349 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#2| |#2|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1409 (((-3 |#3| "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3688 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-871 |#1| |#2| |#3|) (-1184) (-961) (-725) (-779)) (T -871))
-((-3534 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3688 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-4094 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-2352 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *3)))) (-1409 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2349 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2349 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2711 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-871 *4 *5 *3)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3703 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3174 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-703)))))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-1369 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-1201 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3388 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3010 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3266 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-3534 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-2535 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2759 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))))
-(-13 (-822 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-952 |t#3|) (-347 |t#1|) (-10 -8 (-15 -3688 ((-703) $ |t#3|)) (-15 -3688 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2720 ($ $ |t#3| (-703))) (-15 -2720 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -4094 ((-583 $) $)) (-15 -2352 ((-1069 $) $ |t#3|)) (-15 -2352 ((-1069 |t#1|) $)) (-15 -1409 ((-3 |t#3| "failed") $)) (-15 -2349 ((-703) $ |t#3|)) (-15 -2349 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2711 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |t#3|)) (-15 -1339 ($ $ |t#3| (-703))) (-15 -1339 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -1350 ($ (-1069 |t#1|) |t#3|)) (-15 -1350 ($ (-1069 $) |t#3|)) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |var| |t#3|) (|:| -2077 (-703))) "failed") $)) (-15 -1369 ((-703) $)) (-15 -1369 ((-703) $ (-583 |t#3|))) (-15 -1364 ((-583 |t#3|) $)) (-15 -1201 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-517)))) (IF (|has| |t#3| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (IF (|has| |t#3| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-808 (-517))) (IF (|has| |t#3| (-808 (-517))) (-6 (-808 (-517))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-808 (-349))) (IF (|has| |t#3| (-808 (-349))) (-6 (-808 (-349))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3388 ($ $ $ |t#3|)) (-15 -3010 ($ $ |t#3|))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -3266 ($ $ |t#3|)) (-15 -3534 ($ $)) (-15 -3534 ($ $ |t#3|)) (-15 -2759 ((-388 $) $)) (-15 -2535 ($ $))) |noBranch|) (IF (|has| |t#1| (-6 -4178)) (-6 -4178) |noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831)))
-((-1364 (((-583 |#2|) |#5|) 36)) (-2352 (((-1069 |#5|) |#5| |#2| (-1069 |#5|)) 23) (((-377 (-1069 |#5|)) |#5| |#2|) 16)) (-1350 ((|#5| (-377 (-1069 |#5|)) |#2|) 30)) (-1409 (((-3 |#2| "failed") |#5|) 61)) (-3703 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-1735 (((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|) 45)) (-3401 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|) 48)))
-(((-872 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1364 ((-583 |#2|) |#5|)) (-15 -1409 ((-3 |#2| "failed") |#5|)) (-15 -2352 ((-377 (-1069 |#5|)) |#5| |#2|)) (-15 -1350 (|#5| (-377 (-1069 |#5|)) |#2|)) (-15 -2352 ((-1069 |#5|) |#5| |#2| (-1069 |#5|))) (-15 -3401 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3703 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3174 ((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|)) (-15 -1735 ((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2256 ($ |#4|)) (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $))))) (T -872))
-((-1735 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3174 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3703 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3401 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-2352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) (-2352 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1069 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-1409 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *6)) (-15 -1787 (*6 $)) (-15 -1800 (*6 $))))))) (-1364 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
-(-10 -7 (-15 -1364 ((-583 |#2|) |#5|)) (-15 -1409 ((-3 |#2| "failed") |#5|)) (-15 -2352 ((-377 (-1069 |#5|)) |#5| |#2|)) (-15 -1350 (|#5| (-377 (-1069 |#5|)) |#2|)) (-15 -2352 ((-1069 |#5|) |#5| |#2| (-1069 |#5|))) (-15 -3401 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3703 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3174 ((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|)) (-15 -1735 ((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|)))
-((-1893 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
-(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1893 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -873))
-((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))))
-(-10 -7 (-15 -1893 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) 15)) (-2352 (((-1069 $) $ (-1073)) 21) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-1073))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-1073) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-1073) $) NIL)) (-3388 (($ $ $ (-1073)) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1073)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-1073)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1073) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1073) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-1073)) NIL) (($ (-1069 $) (-1073)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-1073)) NIL)) (-2349 (((-489 (-1073)) $) NIL) (((-703) $ (-1073)) NIL) (((-583 (-703)) $ (-583 (-1073))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-1073)) (-489 (-1073))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1409 (((-3 (-1073) "failed") $) 19)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-1073)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $ (-1073)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1073) |#1|) NIL) (($ $ (-583 (-1073)) (-583 |#1|)) NIL) (($ $ (-1073) $) NIL) (($ $ (-583 (-1073)) (-583 $)) NIL)) (-3010 (($ $ (-1073)) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-3688 (((-489 (-1073)) $) NIL) (((-703) $ (-1073)) NIL) (((-583 (-703)) $ (-583 (-1073))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-1073) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-1073) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-1073) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1073)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1073)) 27) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-874 |#1|) (-13 (-871 |#1| (-489 (-1073)) (-1073)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1073))) |noBranch|))) (-961)) (T -874))
-((-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))))
-(-13 (-871 |#1| (-489 (-1073)) (-1073)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1073))) |noBranch|)))
-((-1434 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-2315 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-2936 (((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-3827 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421)))))
-(((-875 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1434 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2315 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -3827 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |noBranch|) (-15 -2936 ((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $)) (-15 -2256 ($ |#4|))))) (T -875))
-((-2936 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*3 $)) (-15 -1800 (*3 $)) (-15 -2256 ($ *3))))))) (-3827 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))) (-1434 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*7 $)) (-15 -1800 (*7 $)) (-15 -2256 ($ *7))))))))
-(-10 -7 (-15 -1434 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2315 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -3827 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |noBranch|) (-15 -2936 ((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703))))
-((-1408 (((-998 (-199)) $) 8)) (-1397 (((-998 (-199)) $) 9)) (-2602 (((-583 (-583 (-865 (-199)))) $) 10)) (-2256 (((-787) $) 6)))
-(((-876) (-1184)) (T -876))
-((-2602 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2602 ((-583 (-583 (-865 (-199)))) $)) (-15 -1397 ((-998 (-199)) $)) (-15 -1408 ((-998 (-199)) $))))
+((-3407 (((-449 |#1| |#2|) (-874 |#2|)) 17)) (-1270 (((-221 |#1| |#2|) (-874 |#2|)) 29)) (-2728 (((-874 |#2|) (-449 |#1| |#2|)) 22)) (-2288 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-2384 (((-874 |#2|) (-221 |#1| |#2|)) 26)) (-2506 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44)))
+(((-866 |#1| |#2|) (-10 -7 (-15 -2506 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -2288 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -3407 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -2728 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -2384 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -1270 ((-221 |#1| |#2|) (-874 |#2|)))) (-583 (-1074)) (-961)) (T -866))
+((-1270 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1074))))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-3407 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1074))))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)))))
+(-10 -7 (-15 -2506 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -2288 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -3407 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -2728 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -2384 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -1270 ((-221 |#1| |#2|) (-874 |#2|))))
+((-3074 (((-583 |#2|) |#2| |#2|) 10)) (-1715 (((-703) (-583 |#1|)) 37 (|has| |#1| (-777)))) (-4033 (((-583 |#2|) |#2|) 11)) (-2643 (((-703) (-583 |#1|) (-517) (-517)) 39 (|has| |#1| (-777)))) (-2671 ((|#1| |#2|) 32 (|has| |#1| (-777)))))
+(((-867 |#1| |#2|) (-10 -7 (-15 -3074 ((-583 |#2|) |#2| |#2|)) (-15 -4033 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -2671 (|#1| |#2|)) (-15 -1715 ((-703) (-583 |#1|))) (-15 -2643 ((-703) (-583 |#1|) (-517) (-517)))) |noBranch|)) (-333) (-1131 |#1|)) (T -867))
+((-2643 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1131 *5)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1131 *4)))) (-2671 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1131 *2)))) (-4033 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1131 *4)))) (-3074 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -3074 ((-583 |#2|) |#2| |#2|)) (-15 -4033 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -2671 (|#1| |#2|)) (-15 -1715 ((-703) (-583 |#1|))) (-15 -2643 ((-703) (-583 |#1|) (-517) (-517)))) |noBranch|))
+((-1857 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 18)))
+(((-868 |#1| |#2|) (-10 -7 (-15 -1857 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-961) (-961)) (T -868))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))))
+(-10 -7 (-15 -1857 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|))))
+((-2255 (((-1128 |#1| (-874 |#2|)) (-874 |#2|) (-1150 |#1|)) 18)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -2255 ((-1128 |#1| (-874 |#2|)) (-874 |#2|) (-1150 |#1|)))) (-1074) (-961)) (T -869))
+((-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-1150 *5)) (-14 *5 (-1074)) (-4 *6 (-961)) (-5 *2 (-1128 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))))
+(-10 -7 (-15 -2255 ((-1128 |#1| (-874 |#2|)) (-874 |#2|) (-1150 |#1|))))
+((-3860 (((-703) $) 69) (((-703) $ (-583 |#4|)) 72)) (-3938 (($ $) 169)) (-3490 (((-388 $) $) 161)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 112)) (-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-3076 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 57)) (-1309 (($ $ $ |#4|) 74)) (-4012 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 102) (((-623 |#2|) (-623 $)) 95)) (-3039 (($ $) 176) (($ $ |#4|) 179)) (-1203 (((-583 $) $) 61)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 194) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 188)) (-3704 (((-583 $) $) 27)) (-1343 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 55)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ |#4|) 158)) (-4128 (((-3 (-583 $) "failed") $) 41)) (-3116 (((-3 (-583 $) "failed") $) 30)) (-2911 (((-3 (-2 (|:| |var| |#4|) (|:| -2059 (-703))) "failed") $) 45)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 105)) (-1206 (((-388 (-1070 $)) (-1070 $)) 118)) (-3923 (((-388 (-1070 $)) (-1070 $)) 116)) (-3693 (((-388 $) $) 136)) (-1979 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-4042 (($ $ |#4|) 76)) (-3582 (((-814 (-349)) $) 208) (((-814 (-517)) $) 201) (((-493) $) 216)) (-1423 ((|#2| $) NIL) (($ $ |#4|) 171)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 150)) (-3086 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 50) (($ $ (-583 |#4|) (-583 (-703))) 53)) (-1589 (((-3 $ "failed") $) 152)) (-1560 (((-107) $ $) 182)))
+(((-870 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -1589 ((-3 |#1| "failed") |#1|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3289 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3923 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -1206 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2963 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -2071 ((-3 (-1154 |#1|) "failed") (-623 |#1|))) (-15 -3039 (|#1| |#1| |#4|)) (-15 -1423 (|#1| |#1| |#4|)) (-15 -4042 (|#1| |#1| |#4|)) (-15 -1309 (|#1| |#1| |#1| |#4|)) (-15 -1203 ((-583 |#1|) |#1|)) (-15 -3860 ((-703) |#1| (-583 |#4|))) (-15 -3860 ((-703) |#1|)) (-15 -2911 ((-3 (-2 (|:| |var| |#4|) (|:| -2059 (-703))) "failed") |#1|)) (-15 -4128 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3116 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1343 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1343 (|#1| |#1| |#4| (-703))) (-15 -3009 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1| |#4|)) (-15 -3704 ((-583 |#1|) |#1|)) (-15 -3086 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3086 (|#1| |#1| |#4| (-703))) (-15 -4012 ((-623 |#2|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -3076 (|#4| |#1|)) (-15 -1759 ((-3 |#4| "failed") |#1|)) (-15 -1979 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#4| |#1|)) (-15 -1979 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#4| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1343 (|#1| |#2| |#3|)) (-15 -3086 (|#2| |#1| |#3|)) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -3039 (|#1| |#1|))) (-871 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -870))
+NIL
+(-10 -8 (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -1589 ((-3 |#1| "failed") |#1|)) (-15 -1560 ((-107) |#1| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3289 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3923 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -1206 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2963 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -2071 ((-3 (-1154 |#1|) "failed") (-623 |#1|))) (-15 -3039 (|#1| |#1| |#4|)) (-15 -1423 (|#1| |#1| |#4|)) (-15 -4042 (|#1| |#1| |#4|)) (-15 -1309 (|#1| |#1| |#1| |#4|)) (-15 -1203 ((-583 |#1|) |#1|)) (-15 -3860 ((-703) |#1| (-583 |#4|))) (-15 -3860 ((-703) |#1|)) (-15 -2911 ((-3 (-2 (|:| |var| |#4|) (|:| -2059 (-703))) "failed") |#1|)) (-15 -4128 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3116 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1343 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1343 (|#1| |#1| |#4| (-703))) (-15 -3009 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1| |#4|)) (-15 -3704 ((-583 |#1|) |#1|)) (-15 -3086 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3086 (|#1| |#1| |#4| (-703))) (-15 -4012 ((-623 |#2|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -3076 (|#4| |#1|)) (-15 -1759 ((-3 |#4| "failed") |#1|)) (-15 -1979 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#4| |#1|)) (-15 -1979 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -1979 (|#1| |#1| |#4| |#2|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1343 (|#1| |#2| |#3|)) (-15 -3086 (|#2| |#1| |#3|)) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -3039 (|#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 |#3|) $) 110)) (-2255 (((-1070 $) $ |#3|) 125) (((-1070 |#1|) $) 124)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-3209 (($ $) 88 (|has| |#1| (-509)))) (-1452 (((-107) $) 90 (|has| |#1| (-509)))) (-3860 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1387 (((-3 $ "failed") $ $) 19)) (-2594 (((-388 (-1070 $)) (-1070 $)) 100 (|has| |#1| (-831)))) (-3938 (($ $) 98 (|has| |#1| (-421)))) (-3490 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-831)))) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136)) (-3076 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135)) (-1309 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1217 (($ $) 154)) (-4012 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-1568 (((-3 $ "failed") $) 34)) (-3039 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1203 (((-583 $) $) 109)) (-2965 (((-107) $) 96 (|has| |#1| (-831)))) (-2253 (($ $ |#1| |#2| $) 172)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-2955 (((-107) $) 31)) (-2091 (((-703) $) 169)) (-1352 (($ (-1070 |#1|) |#3|) 117) (($ (-1070 $) |#3|) 116)) (-3704 (((-583 $) $) 126)) (-1331 (((-107) $) 152)) (-1343 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ |#3|) 120)) (-2672 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-1575 (($ $ $) 79 (|has| |#1| (-779)))) (-2986 (($ $ $) 78 (|has| |#1| (-779)))) (-3751 (($ (-1 |#2| |#2|) $) 171)) (-1857 (($ (-1 |#1| |#1|) $) 151)) (-1954 (((-3 |#3| "failed") $) 123)) (-4159 (($ $) 149)) (-1192 ((|#1| $) 148)) (-1368 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3865 (((-1057) $) 9)) (-4128 (((-3 (-583 $) "failed") $) 114)) (-3116 (((-3 (-583 $) "failed") $) 115)) (-2911 (((-3 (-2 (|:| |var| |#3|) (|:| -2059 (-703))) "failed") $) 113)) (-3094 (((-1021) $) 10)) (-4134 (((-107) $) 166)) (-4144 ((|#1| $) 167)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 95 (|has| |#1| (-421)))) (-1396 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) 101 (|has| |#1| (-831)))) (-3693 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2349 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-4042 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-1699 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-4007 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3582 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 104 (-1651 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3763 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-2834 (((-583 |#1|) $) 168)) (-3086 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1589 (((-3 $ "failed") $) 73 (-3763 (-1651 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) 29)) (-2962 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3767 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1593 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1649 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-871 |#1| |#2| |#3|) (-1185) (-961) (-725) (-779)) (T -871))
+((-3039 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-4007 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-4007 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-3086 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-3086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-3704 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-2255 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1070 *1)) (-4 *1 (-871 *4 *5 *3)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1070 *3)))) (-1954 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2672 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2672 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-3009 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-871 *4 *5 *3)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-1352 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1352 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) (-3116 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-4128 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-2911 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2059 (-703)))))) (-3860 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-1203 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-1309 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-4042 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-1423 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-3039 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3490 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))))
+(-13 (-822 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-952 |t#3|) (-347 |t#1|) (-10 -8 (-15 -4007 ((-703) $ |t#3|)) (-15 -4007 ((-583 (-703)) $ (-583 |t#3|))) (-15 -3086 ($ $ |t#3| (-703))) (-15 -3086 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -3704 ((-583 $) $)) (-15 -2255 ((-1070 $) $ |t#3|)) (-15 -2255 ((-1070 |t#1|) $)) (-15 -1954 ((-3 |t#3| "failed") $)) (-15 -2672 ((-703) $ |t#3|)) (-15 -2672 ((-583 (-703)) $ (-583 |t#3|))) (-15 -3009 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $ |t#3|)) (-15 -1343 ($ $ |t#3| (-703))) (-15 -1343 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -1352 ($ (-1070 |t#1|) |t#3|)) (-15 -1352 ($ (-1070 $) |t#3|)) (-15 -3116 ((-3 (-583 $) "failed") $)) (-15 -4128 ((-3 (-583 $) "failed") $)) (-15 -2911 ((-3 (-2 (|:| |var| |t#3|) (|:| -2059 (-703))) "failed") $)) (-15 -3860 ((-703) $)) (-15 -3860 ((-703) $ (-583 |t#3|))) (-15 -1363 ((-583 |t#3|) $)) (-15 -1203 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-517)))) (IF (|has| |t#3| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (IF (|has| |t#3| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-808 (-517))) (IF (|has| |t#3| (-808 (-517))) (-6 (-808 (-517))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-808 (-349))) (IF (|has| |t#3| (-808 (-349))) (-6 (-808 (-349))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -1309 ($ $ $ |t#3|)) (-15 -4042 ($ $ |t#3|))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -1423 ($ $ |t#3|)) (-15 -3039 ($ $)) (-15 -3039 ($ $ |t#3|)) (-15 -3490 ((-388 $) $)) (-15 -3938 ($ $))) |noBranch|) (IF (|has| |t#1| (-6 -4181)) (-6 -4181) |noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-262) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3763 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) |has| |#1| (-831)))
+((-1363 (((-583 |#2|) |#5|) 36)) (-2255 (((-1070 |#5|) |#5| |#2| (-1070 |#5|)) 23) (((-377 (-1070 |#5|)) |#5| |#2|) 16)) (-1352 ((|#5| (-377 (-1070 |#5|)) |#2|) 30)) (-1954 (((-3 |#2| "failed") |#5|) 61)) (-4128 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-3973 (((-3 (-2 (|:| |val| |#5|) (|:| -2059 (-517))) "failed") |#5|) 45)) (-3116 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-2911 (((-3 (-2 (|:| |var| |#2|) (|:| -2059 (-517))) "failed") |#5|) 48)))
+(((-872 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1363 ((-583 |#2|) |#5|)) (-15 -1954 ((-3 |#2| "failed") |#5|)) (-15 -2255 ((-377 (-1070 |#5|)) |#5| |#2|)) (-15 -1352 (|#5| (-377 (-1070 |#5|)) |#2|)) (-15 -2255 ((-1070 |#5|) |#5| |#2| (-1070 |#5|))) (-15 -3116 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -4128 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -2911 ((-3 (-2 (|:| |var| |#2|) (|:| -2059 (-517))) "failed") |#5|)) (-15 -3973 ((-3 (-2 (|:| |val| |#5|) (|:| -2059 (-517))) "failed") |#5|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2182 ($ |#4|)) (-15 -1772 (|#4| $)) (-15 -1783 (|#4| $))))) (T -872))
+((-3973 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2059 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))) (-2911 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2059 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))) (-4128 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))) (-3116 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))) (-2255 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1070 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) (-2255 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1070 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))) (-1954 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *6)) (-15 -1772 (*6 $)) (-15 -1783 (*6 $))))))) (-1363 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))))
+(-10 -7 (-15 -1363 ((-583 |#2|) |#5|)) (-15 -1954 ((-3 |#2| "failed") |#5|)) (-15 -2255 ((-377 (-1070 |#5|)) |#5| |#2|)) (-15 -1352 (|#5| (-377 (-1070 |#5|)) |#2|)) (-15 -2255 ((-1070 |#5|) |#5| |#2| (-1070 |#5|))) (-15 -3116 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -4128 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -2911 ((-3 (-2 (|:| |var| |#2|) (|:| -2059 (-517))) "failed") |#5|)) (-15 -3973 ((-3 (-2 (|:| |val| |#5|) (|:| -2059 (-517))) "failed") |#5|)))
+((-1857 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
+(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1857 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -873))
+((-1857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))))
+(-10 -7 (-15 -1857 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-1074)) $) 15)) (-2255 (((-1070 $) $ (-1074)) 21) (((-1070 |#1|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-1074))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-1074) "failed") $) NIL)) (-3076 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-1074) $) NIL)) (-1309 (($ $ $ (-1074)) NIL (|has| |#1| (-156)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1074)) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-2253 (($ $ |#1| (-489 (-1074)) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1074) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1074) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-1352 (($ (-1070 |#1|) (-1074)) NIL) (($ (-1070 $) (-1074)) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-489 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-1074)) NIL)) (-2672 (((-489 (-1074)) $) NIL) (((-703) $ (-1074)) NIL) (((-583 (-703)) $ (-583 (-1074))) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-489 (-1074)) (-489 (-1074))) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1954 (((-3 (-1074) "failed") $) 19)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3865 (((-1057) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-1074)) (|:| -2059 (-703))) "failed") $) NIL)) (-2863 (($ $ (-1074)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1074) |#1|) NIL) (($ $ (-583 (-1074)) (-583 |#1|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-583 (-1074)) (-583 $)) NIL)) (-4042 (($ $ (-1074)) NIL (|has| |#1| (-156)))) (-1699 (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-4007 (((-489 (-1074)) $) NIL) (((-703) $ (-1074)) NIL) (((-583 (-703)) $ (-583 (-1074))) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-1074) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-1074) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-1074) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1074)) NIL (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1074)) 27) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-489 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-874 |#1|) (-13 (-871 |#1| (-489 (-1074)) (-1074)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1074))) |noBranch|))) (-961)) (T -874))
+((-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))))
+(-13 (-871 |#1| (-489 (-1074)) (-1074)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1074))) |noBranch|)))
+((-2092 (((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-3664 (((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-1634 (((-2 (|:| -2059 (-703)) (|:| -1883 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-2704 (((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421)))))
+(((-875 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2092 ((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -3664 ((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -2704 ((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |noBranch|) (-15 -1634 ((-2 (|:| -2059 (-703)) (|:| -1883 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -1772 (|#4| $)) (-15 -1783 (|#4| $)) (-15 -2182 ($ |#4|))))) (T -875))
+((-1634 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1772 (*3 $)) (-15 -1783 (*3 $)) (-15 -2182 ($ *3))))))) (-2704 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1772 (*8 $)) (-15 -1783 (*8 $)) (-15 -2182 ($ *8))))))) (-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1772 (*8 $)) (-15 -1783 (*8 $)) (-15 -2182 ($ *8))))))) (-2092 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1772 (*7 $)) (-15 -1783 (*7 $)) (-15 -2182 ($ *7))))))))
+(-10 -7 (-15 -2092 ((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -3664 ((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -2704 ((-2 (|:| -2059 (-703)) (|:| -1883 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |noBranch|) (-15 -1634 ((-2 (|:| -2059 (-703)) (|:| -1883 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703))))
+((-1190 (((-998 (-199)) $) 8)) (-4154 (((-998 (-199)) $) 9)) (-3315 (((-583 (-583 (-865 (-199)))) $) 10)) (-2182 (((-787) $) 6)))
+(((-876) (-1185)) (T -876))
+((-3315 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) (-1190 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))))
+(-13 (-557 (-787)) (-10 -8 (-15 -3315 ((-583 (-583 (-865 (-199)))) $)) (-15 -4154 ((-998 (-199)) $)) (-15 -1190 ((-998 (-199)) $))))
(((-557 (-787)) . T))
-((-3198 (((-3 (-623 |#1|) "failed") |#2| (-843)) 14)))
-(((-877 |#1| |#2|) (-10 -7 (-15 -3198 ((-3 (-623 |#1|) "failed") |#2| (-843)))) (-509) (-593 |#1|)) (T -877))
-((-3198 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5)))))
-(-10 -7 (-15 -3198 ((-3 (-623 |#1|) "failed") |#2| (-843))))
-((-3905 (((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 18)) (-1893 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 13)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -3905 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1893 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1108) (-1108)) (T -878))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-878 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))))
-(-10 -7 (-15 -3905 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1893 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 14)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 13)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 10 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 12 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 11)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 8 (|has| $ (-6 -4180)))))
-(((-879 |#1|) (-19 |#1|) (-1108)) (T -879))
+((-2019 (((-3 (-623 |#1|) "failed") |#2| (-843)) 14)))
+(((-877 |#1| |#2|) (-10 -7 (-15 -2019 ((-3 (-623 |#1|) "failed") |#2| (-843)))) (-509) (-593 |#1|)) (T -877))
+((-2019 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5)))))
+(-10 -7 (-15 -2019 ((-3 (-623 |#1|) "failed") |#2| (-843))))
+((-2325 (((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 16)) (-2521 ((|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 18)) (-1857 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 13)))
+(((-878 |#1| |#2|) (-10 -7 (-15 -2325 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1857 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1109) (-1109)) (T -878))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-878 *5 *2)))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))))
+(-10 -7 (-15 -2325 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1857 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 14)) (-2446 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3366 (($ (-703) |#1|) 13)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) 10 (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) NIL (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) 12 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) 11)) (-1986 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1122 (-517))) NIL)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) NIL)) (-2337 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2210 (((-703) $) 8 (|has| $ (-6 -4183)))))
+(((-879 |#1|) (-19 |#1|) (-1109)) (T -879))
NIL
(-19 |#1|)
-((-2082 (($ $ (-996 $)) 7) (($ $ (-1073)) 6)))
-(((-880) (-1184)) (T -880))
-((-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))) (-2082 (*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1073)))))
-(-13 (-10 -8 (-15 -2082 ($ $ (-1073))) (-15 -2082 ($ $ (-996 $)))))
-((-3442 (((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073)) 23) (((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073)) 41)))
-(((-881 |#1|) (-10 -7 (-15 -3442 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073)))) (-13 (-333) (-134))) (T -881))
-((-3442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-5 *5 (-1073)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *6))) (|:| |prim| (-1069 *6)))) (-5 *1 (-881 *6)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) (-3442 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1073)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))))
-(-10 -7 (-15 -3442 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073))))
-((-2400 (((-583 |#1|) |#1| |#1|) 42)) (-3849 (((-107) |#1|) 39)) (-2450 ((|#1| |#1|) 64)) (-3090 ((|#1| |#1|) 63)))
-(((-882 |#1|) (-10 -7 (-15 -3849 ((-107) |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2400 ((-583 |#1|) |#1| |#1|))) (-502)) (T -882))
-((-2400 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) (-2450 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-3090 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-3849 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -3849 ((-107) |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2400 ((-583 |#1|) |#1| |#1|)))
-((-2808 (((-1158) (-787)) 9)))
-(((-883) (-10 -7 (-15 -2808 ((-1158) (-787))))) (T -883))
-((-2808 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-883)))))
-(-10 -7 (-15 -2808 ((-1158) (-787))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 62 (|has| |#1| (-509)))) (-1213 (($ $) 63 (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) 24)) (-3621 (((-3 $ "failed") $) 35)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-1436 (($ $ |#1| |#2| $) 47)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 16)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2349 ((|#2| $) 19)) (-3328 (($ (-1 |#2| |#2|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ $) 23)) (-1191 ((|#1| $) 21)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 40)) (-4141 ((|#1| $) NIL)) (-1953 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2476 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3688 ((|#2| $) 17)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ |#2|) 31)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 15)) (-2053 (($ $ $ (-703)) 58 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 68 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 54) (($ $ (-703)) 55)) (-2396 (($) 22 T CONST)) (-2409 (($) 12 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 53) (($ $ (-703)) 51)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-884 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -1953 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961) (-724)) (T -884))
-((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))))
-(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -1953 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1640 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-4038 (((-3 $ "failed") $ $) 50 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1611 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3324 ((|#2| $) 21)) (-2234 ((|#1| $) 20)) (-3092 (($) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3209 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3848 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2967 (($ $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-2599 (($ |#1| |#2|) 19)) (-1549 (((-843) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3448 (($ (-843)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3206 (((-1021) $) NIL)) (-1487 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3394 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2256 (((-787) $) 14)) (-2207 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2396 (($) 40 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-2409 (($) 24 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1547 (((-107) $ $) 18)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1572 (((-107) $ $) 66 (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1667 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1654 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1642 (($ $ $) 43 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-843) $) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))))
-(((-885 |#1| |#2|) (-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |noBranch|) |noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |noBranch|) |noBranch|) (-15 -2599 ($ |#1| |#2|)) (-15 -2234 (|#1| $)) (-15 -3324 (|#2| $)))) (-1003) (-1003)) (T -885))
-((-2599 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-2234 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))) (-3324 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003)))))
-(-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |noBranch|) |noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |noBranch|) |noBranch|) (-15 -2599 ($ |#1| |#2|)) (-15 -2234 (|#1| $)) (-15 -3324 (|#2| $))))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2797 (($ $ $) 43)) (-3237 (($ $ $) 44)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 45)) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-886 |#1|) (-1184) (-779)) (T -886))
-((-3099 (*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-2797 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -3099 (|t#1| $)) (-15 -3237 ($ $ $)) (-15 -2797 ($ $ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-3624 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 84)) (-3081 ((|#2| |#2| |#2|) 82)) (-3131 (((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 86)) (-3169 (((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 88)) (-1714 (((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|) 106 (|has| |#1| (-421)))) (-3850 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 45)) (-2406 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 63)) (-2312 (((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 65)) (-1385 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-1713 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 70)) (-3498 (((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|) 96)) (-3253 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-2329 (((-583 (-703)) |#2| |#2|) 81)) (-4028 ((|#1| |#2| |#2|) 41)) (-2963 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|) 104 (|has| |#1| (-421)))) (-2407 ((|#1| |#2| |#2|) 102 (|has| |#1| (-421)))) (-4026 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 43)) (-3475 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 62)) (-3388 ((|#1| |#2| |#2|) 60)) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|) 35)) (-2683 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-1446 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-1855 ((|#2| |#2| |#2|) 74)) (-2840 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 68)) (-3753 ((|#2| |#2| |#2| (-703)) 66)) (-1401 ((|#2| |#2| |#2|) 110 (|has| |#1| (-421)))) (-2476 (((-1153 |#2|) (-1153 |#2|) |#1|) 21)) (-1306 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|) 38)) (-1271 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|) 94)) (-3010 ((|#1| |#2|) 91)) (-2015 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 72)) (-2809 ((|#2| |#2| |#2| (-703)) 71)) (-3292 (((-583 |#2|) |#2| |#2|) 79)) (-2072 ((|#2| |#2| |#1| |#1| (-703)) 49)) (-2903 ((|#1| |#1| |#1| (-703)) 48)) (* (((-1153 |#2|) |#1| (-1153 |#2|)) 16)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -3475 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2406 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2312 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| (-703))) (-15 -2840 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1713 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2809 (|#2| |#2| |#2| (-703))) (-15 -2015 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1446 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1385 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3081 (|#2| |#2| |#2|)) (-15 -3624 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3131 ((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3010 (|#1| |#2|)) (-15 -1271 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3498 ((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3292 ((-583 |#2|) |#2| |#2|)) (-15 -2329 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2407 (|#1| |#2| |#2|)) (-15 -2963 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1714 ((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1401 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1153 |#2|) |#1| (-1153 |#2|))) (-15 -2476 ((-1153 |#2|) (-1153 |#2|) |#1|)) (-15 -1874 ((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -1306 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -2903 (|#1| |#1| |#1| (-703))) (-15 -2072 (|#2| |#2| |#1| |#1| (-703))) (-15 -2683 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4028 (|#1| |#2| |#2|)) (-15 -4026 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3850 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|))) (-509) (-1130 |#1|)) (T -887))
-((-3850 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-4026 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-4028 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-2683 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-2072 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-2903 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1130 *2)))) (-1306 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1931 *4) (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2476 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (-1401 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-1714 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2963 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2407 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-2329 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3292 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1271 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3010 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-3169 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3131 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3081 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-1385 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1446 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1855 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-3253 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2015 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2809 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))) (-1713 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2840 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-3753 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))) (-2312 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2406 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3475 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3388 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))))
-(-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -3475 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2406 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2312 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| (-703))) (-15 -2840 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1713 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2809 (|#2| |#2| |#2| (-703))) (-15 -2015 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1446 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1385 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3081 (|#2| |#2| |#2|)) (-15 -3624 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3131 ((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3010 (|#1| |#2|)) (-15 -1271 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3498 ((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3292 ((-583 |#2|) |#2| |#2|)) (-15 -2329 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2407 (|#1| |#2| |#2|)) (-15 -2963 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1714 ((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1401 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1153 |#2|) |#1| (-1153 |#2|))) (-15 -2476 ((-1153 |#2|) (-1153 |#2|) |#1|)) (-15 -1874 ((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -1306 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -2903 (|#1| |#1| |#1| (-703))) (-15 -2072 (|#2| |#2| |#1| |#1| (-703))) (-15 -2683 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4028 (|#1| |#2| |#2|)) (-15 -4026 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3850 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) NIL T CONST)) (-2027 (((-583 (-583 (-517))) (-583 (-517))) 28)) (-2380 (((-517) $) 44)) (-3790 (($ (-583 (-517))) 17)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3645 (((-583 (-517)) $) 11)) (-1487 (($ $) 31)) (-2256 (((-787) $) 42) (((-583 (-517)) $) 9)) (-2396 (($) 7 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 19)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 24) (($ (-843) $) NIL)))
-(((-888) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3790 ($ (-583 (-517)))) (-15 -2027 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2380 ((-517) $)) (-15 -1487 ($ $)) (-15 -2256 ((-583 (-517)) $))))) (T -888))
-((-3790 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) (-2027 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))) (-1487 (*1 *1 *1) (-5 *1 (-888))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))))
-(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3790 ($ (-583 (-517)))) (-15 -2027 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2380 ((-517) $)) (-15 -1487 ($ $)) (-15 -2256 ((-583 (-517)) $))))
-((-1667 (($ $ |#2|) 30)) (-1654 (($ $) 22) (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28)))
-(((-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1667 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-890 |#2| |#3| |#4|) (-961) (-724) (-779)) (T -889))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1667 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3201 (((-107) $) 73)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-890 |#1| |#2| |#3|) (-1184) (-961) (-724) (-779)) (T -890))
-((-1191 (*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1339 ($ $ |t#3| |t#2|)) (-15 -1339 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -4152 ($ $)) (-15 -1191 (|t#1| $)) (-15 -3688 (|t#2| $)) (-15 -1364 ((-583 |t#3|) $)) (-15 -3201 ((-107) $)) (-15 -1545 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1422 (((-998 (-199)) $) 8)) (-1408 (((-998 (-199)) $) 9)) (-1397 (((-998 (-199)) $) 10)) (-2602 (((-583 (-583 (-865 (-199)))) $) 11)) (-2256 (((-787) $) 6)))
-(((-891) (-1184)) (T -891))
-((-2602 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2602 ((-583 (-583 (-865 (-199)))) $)) (-15 -1397 ((-998 (-199)) $)) (-15 -1408 ((-998 (-199)) $)) (-15 -1422 ((-998 (-199)) $))))
+((-2110 (($ $ (-996 $)) 7) (($ $ (-1074)) 6)))
+(((-880) (-1185)) (T -880))
+((-2110 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))) (-2110 (*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1074)))))
+(-13 (-10 -8 (-15 -2110 ($ $ (-1074))) (-15 -2110 ($ $ (-996 $)))))
+((-3493 (((-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)) (-1074)) 23) (((-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 |#1|))) (-874 |#1|) (-1074) (-874 |#1|) (-1074)) 41)))
+(((-881 |#1|) (-10 -7 (-15 -3493 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 |#1|))) (-874 |#1|) (-1074) (-874 |#1|) (-1074))) (-15 -3493 ((-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -3493 ((-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)) (-1074)))) (-13 (-333) (-134))) (T -881))
+((-3493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-5 *5 (-1074)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 *6))) (|:| |prim| (-1070 *6)))) (-5 *1 (-881 *6)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-881 *5)))) (-3493 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1074)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 *5)))) (-5 *1 (-881 *5)))))
+(-10 -7 (-15 -3493 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 |#1|))) (-874 |#1|) (-1074) (-874 |#1|) (-1074))) (-15 -3493 ((-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -3493 ((-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)) (-1074))))
+((-2065 (((-583 |#1|) |#1| |#1|) 42)) (-2965 (((-107) |#1|) 39)) (-1418 ((|#1| |#1|) 64)) (-3445 ((|#1| |#1|) 63)))
+(((-882 |#1|) (-10 -7 (-15 -2965 ((-107) |#1|)) (-15 -3445 (|#1| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -2065 ((-583 |#1|) |#1| |#1|))) (-502)) (T -882))
+((-2065 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) (-1418 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-3445 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-2965 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -2965 ((-107) |#1|)) (-15 -3445 (|#1| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -2065 ((-583 |#1|) |#1| |#1|)))
+((-2634 (((-1159) (-787)) 9)))
+(((-883) (-10 -7 (-15 -2634 ((-1159) (-787))))) (T -883))
+((-2634 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-883)))))
+(-10 -7 (-15 -2634 ((-1159) (-787))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 62 (|has| |#1| (-509)))) (-3209 (($ $) 63 (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1217 (($ $) 24)) (-1568 (((-3 $ "failed") $) 35)) (-3039 (($ $) NIL (|has| |#1| (-421)))) (-2253 (($ $ |#1| |#2| $) 47)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) 16)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| |#2|) NIL)) (-2672 ((|#2| $) 19)) (-3751 (($ (-1 |#2| |#2|) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-4159 (($ $) 23)) (-1192 ((|#1| $) 21)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) 40)) (-4144 ((|#1| $) NIL)) (-3150 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2349 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-4007 ((|#2| $) 17)) (-1423 ((|#1| $) NIL (|has| |#1| (-421)))) (-2182 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ |#2|) 31)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) 15)) (-2962 (($ $ $ (-703)) 58 (|has| |#1| (-156)))) (-3767 (((-107) $ $) 68 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 54) (($ $ (-703)) 55)) (-2297 (($) 22 T CONST)) (-2306 (($) 12 T CONST)) (-1539 (((-107) $ $) 67)) (-1649 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) 53) (($ $ (-703)) 51)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-884 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -3150 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |noBranch|))) (-961) (-724)) (T -884))
+((-3150 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))))
+(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -3150 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1754 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-1387 (((-3 $ "failed") $ $) 50 (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1598 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3700 ((|#2| $) 21)) (-4119 ((|#1| $) 20)) (-3473 (($) NIL (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-1568 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3098 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-2955 (((-107) $) NIL (-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-1575 (($ $ $) NIL (-3763 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-2986 (($ $ $) NIL (-3763 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3282 (($ |#1| |#2|) 19)) (-2903 (((-843) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3353 (($ (-843)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3094 (((-1021) $) NIL)) (-2013 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3064 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2182 (((-787) $) 14)) (-2146 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2297 (($) 40 (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-2306 (($) 24 (-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1593 (((-107) $ $) NIL (-3763 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1570 (((-107) $ $) NIL (-3763 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1539 (((-107) $ $) 18)) (-1582 (((-107) $ $) NIL (-3763 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1560 (((-107) $ $) 66 (-3763 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1649 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1637 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1626 (($ $ $) 43 (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-843) $) NIL (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3763 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))))
+(((-885 |#1| |#2|) (-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |noBranch|) |noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |noBranch|) |noBranch|) (-15 -3282 ($ |#1| |#2|)) (-15 -4119 (|#1| $)) (-15 -3700 (|#2| $)))) (-1003) (-1003)) (T -885))
+((-3282 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-4119 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))) (-3700 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003)))))
+(-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |noBranch|) |noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |noBranch|) |noBranch|) (-15 -3282 ($ |#1| |#2|)) (-15 -4119 (|#1| $)) (-15 -3700 (|#2| $))))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-3473 (($) 7 T CONST)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-2581 (($ $ $) 43)) (-2262 (($ $ $) 44)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2986 ((|#1| $) 45)) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-886 |#1|) (-1185) (-779)) (T -886))
+((-2986 (*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-2262 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-2581 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4183) (-15 -2986 (|t#1| $)) (-15 -2262 ($ $ $)) (-15 -2581 ($ $ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-1604 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1396 |#2|)) |#2| |#2|) 84)) (-3348 ((|#2| |#2| |#2|) 82)) (-2508 (((-2 (|:| |coef2| |#2|) (|:| -1396 |#2|)) |#2| |#2|) 86)) (-2836 (((-2 (|:| |coef1| |#2|) (|:| -1396 |#2|)) |#2| |#2|) 88)) (-1585 (((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 106 (|has| |#1| (-421)))) (-2975 (((-2 (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|) 45)) (-2125 (((-2 (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|) 63)) (-3634 (((-2 (|:| |coef1| |#2|) (|:| -1309 |#1|)) |#2| |#2|) 65)) (-2805 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-3842 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 70)) (-2696 (((-2 (|:| |coef2| |#2|) (|:| -4042 |#1|)) |#2|) 96)) (-2376 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-2525 (((-583 (-703)) |#2| |#2|) 81)) (-1299 ((|#1| |#2| |#2|) 41)) (-1880 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 104 (|has| |#1| (-421)))) (-2133 ((|#1| |#2| |#2|) 102 (|has| |#1| (-421)))) (-1280 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|) 43)) (-2513 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|) 62)) (-1309 ((|#1| |#2| |#2|) 60)) (-1257 (((-2 (|:| -1883 |#1|) (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2|) 35)) (-2827 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-3607 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-4065 ((|#2| |#2| |#2|) 74)) (-1947 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 68)) (-3283 ((|#2| |#2| |#2| (-703)) 66)) (-1396 ((|#2| |#2| |#2|) 110 (|has| |#1| (-421)))) (-2349 (((-1154 |#2|) (-1154 |#2|) |#1|) 21)) (-1412 (((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2|) 38)) (-1690 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4042 |#1|)) |#2|) 94)) (-4042 ((|#1| |#2|) 91)) (-2550 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 72)) (-2683 ((|#2| |#2| |#2| (-703)) 71)) (-1676 (((-583 |#2|) |#2| |#2|) 79)) (-2028 ((|#2| |#2| |#1| |#1| (-703)) 49)) (-1351 ((|#1| |#1| |#1| (-703)) 48)) (* (((-1154 |#2|) |#1| (-1154 |#2|)) 16)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -1309 (|#1| |#2| |#2|)) (-15 -2513 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|)) (-15 -2125 ((-2 (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|)) (-15 -3634 ((-2 (|:| |coef1| |#2|) (|:| -1309 |#1|)) |#2| |#2|)) (-15 -3283 (|#2| |#2| |#2| (-703))) (-15 -1947 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3842 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2683 (|#2| |#2| |#2| (-703))) (-15 -2550 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2376 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -4065 (|#2| |#2| |#2|)) (-15 -3607 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2805 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2|)) (-15 -1604 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1396 |#2|)) |#2| |#2|)) (-15 -2508 ((-2 (|:| |coef2| |#2|) (|:| -1396 |#2|)) |#2| |#2|)) (-15 -2836 ((-2 (|:| |coef1| |#2|) (|:| -1396 |#2|)) |#2| |#2|)) (-15 -4042 (|#1| |#2|)) (-15 -1690 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4042 |#1|)) |#2|)) (-15 -2696 ((-2 (|:| |coef2| |#2|) (|:| -4042 |#1|)) |#2|)) (-15 -1676 ((-583 |#2|) |#2| |#2|)) (-15 -2525 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2133 (|#1| |#2| |#2|)) (-15 -1880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1585 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1396 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1154 |#2|) |#1| (-1154 |#2|))) (-15 -2349 ((-1154 |#2|) (-1154 |#2|) |#1|)) (-15 -1257 ((-2 (|:| -1883 |#1|) (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2|)) (-15 -1412 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2|)) (-15 -1351 (|#1| |#1| |#1| (-703))) (-15 -2028 (|#2| |#2| |#1| |#1| (-703))) (-15 -2827 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1299 (|#1| |#2| |#2|)) (-15 -1280 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|)) (-15 -2975 ((-2 (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|))) (-509) (-1131 |#1|)) (T -887))
+((-2975 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1280 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1299 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) (-2827 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-2028 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-1351 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1131 *2)))) (-1412 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1257 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1883 *4) (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (-1396 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-1585 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1880 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2133 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) (-2525 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1676 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4042 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1690 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4042 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-4042 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) (-2836 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1396 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2508 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1396 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1604 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1396 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3348 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-2805 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-4065 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-2376 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))) (-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))) (-2683 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1131 *4)))) (-3842 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))) (-1947 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))) (-3283 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1131 *4)))) (-3634 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2125 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2513 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1309 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))))
+(-10 -7 (-15 -1309 (|#1| |#2| |#2|)) (-15 -2513 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|)) (-15 -2125 ((-2 (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|)) (-15 -3634 ((-2 (|:| |coef1| |#2|) (|:| -1309 |#1|)) |#2| |#2|)) (-15 -3283 (|#2| |#2| |#2| (-703))) (-15 -1947 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3842 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2683 (|#2| |#2| |#2| (-703))) (-15 -2550 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2376 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -4065 (|#2| |#2| |#2|)) (-15 -3607 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2805 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2|)) (-15 -1604 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1396 |#2|)) |#2| |#2|)) (-15 -2508 ((-2 (|:| |coef2| |#2|) (|:| -1396 |#2|)) |#2| |#2|)) (-15 -2836 ((-2 (|:| |coef1| |#2|) (|:| -1396 |#2|)) |#2| |#2|)) (-15 -4042 (|#1| |#2|)) (-15 -1690 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4042 |#1|)) |#2|)) (-15 -2696 ((-2 (|:| |coef2| |#2|) (|:| -4042 |#1|)) |#2|)) (-15 -1676 ((-583 |#2|) |#2| |#2|)) (-15 -2525 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2133 (|#1| |#2| |#2|)) (-15 -1880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1585 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1396 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1154 |#2|) |#1| (-1154 |#2|))) (-15 -2349 ((-1154 |#2|) (-1154 |#2|) |#1|)) (-15 -1257 ((-2 (|:| -1883 |#1|) (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2|)) (-15 -1412 ((-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) |#2| |#2|)) (-15 -1351 (|#1| |#1| |#1| (-703))) (-15 -2028 (|#2| |#2| |#1| |#1| (-703))) (-15 -2827 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1299 (|#1| |#2| |#2|)) (-15 -1280 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|)) (-15 -2975 ((-2 (|:| |coef2| |#2|) (|:| -1309 |#1|)) |#2| |#2|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) 26)) (-3473 (($) NIL T CONST)) (-2653 (((-583 (-583 (-517))) (-583 (-517))) 28)) (-3012 (((-517) $) 44)) (-3648 (($ (-583 (-517))) 17)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-3582 (((-583 (-517)) $) 11)) (-2013 (($ $) 31)) (-2182 (((-787) $) 42) (((-583 (-517)) $) 9)) (-2297 (($) 7 T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 19)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 18)) (-1626 (($ $ $) 20)) (* (($ (-703) $) 24) (($ (-843) $) NIL)))
+(((-888) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3648 ($ (-583 (-517)))) (-15 -2653 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -3012 ((-517) $)) (-15 -2013 ($ $)) (-15 -2182 ((-583 (-517)) $))))) (T -888))
+((-3648 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) (-2653 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))) (-2013 (*1 *1 *1) (-5 *1 (-888))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))))
+(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3648 ($ (-583 (-517)))) (-15 -2653 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -3012 ((-517) $)) (-15 -2013 ($ $)) (-15 -2182 ((-583 (-517)) $))))
+((-1649 (($ $ |#2|) 30)) (-1637 (($ $) 22) (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28)))
+(((-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1649 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-890 |#2| |#3| |#4|) (-961) (-724) (-779)) (T -889))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1649 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 |#3|) $) 74)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1217 (($ $) 60)) (-1568 (((-3 $ "failed") $) 34)) (-2029 (((-107) $) 73)) (-2955 (((-107) $) 31)) (-1331 (((-107) $) 62)) (-1343 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-1857 (($ (-1 |#1| |#1|) $) 63)) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-4007 ((|#2| $) 64)) (-2860 (($ $) 72)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3086 ((|#1| $ |#2|) 59)) (-1589 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-890 |#1| |#2| |#3|) (-1185) (-961) (-724) (-779)) (T -890))
+((-1192 (*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) (-4159 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2860 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1343 ($ $ |t#3| |t#2|)) (-15 -1343 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -4159 ($ $)) (-15 -1192 (|t#1| $)) (-15 -4007 (|t#2| $)) (-15 -1363 ((-583 |t#3|) $)) (-15 -2029 ((-107) $)) (-15 -2860 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1201 (((-998 (-199)) $) 8)) (-1190 (((-998 (-199)) $) 9)) (-4154 (((-998 (-199)) $) 10)) (-3315 (((-583 (-583 (-865 (-199)))) $) 11)) (-2182 (((-787) $) 6)))
+(((-891) (-1185)) (T -891))
+((-3315 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-1190 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(-13 (-557 (-787)) (-10 -8 (-15 -3315 ((-583 (-583 (-865 (-199)))) $)) (-15 -4154 ((-998 (-199)) $)) (-15 -1190 ((-998 (-199)) $)) (-15 -1201 ((-998 (-199)) $))))
(((-557 (-787)) . T))
-((-1364 (((-583 |#4|) $) 23)) (-1235 (((-107) $) 47)) (-3586 (((-107) $) 46)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#4|) 35)) (-1615 (((-107) $) 48)) (-2512 (((-107) $ $) 54)) (-3630 (((-107) $ $) 57)) (-2703 (((-107) $) 52)) (-1677 (((-583 |#5|) (-583 |#5|) $) 89)) (-1741 (((-583 |#5|) (-583 |#5|) $) 86)) (-3060 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3921 (((-583 |#4|) $) 27)) (-1792 (((-107) |#4| $) 29)) (-2690 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-2442 (($ $ |#4|) 32)) (-3759 (($ $ |#4|) 31)) (-1846 (($ $ |#4|) 33)) (-1547 (((-107) $ $) 39)))
-(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3586 ((-107) |#1|)) (-15 -1677 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1741 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3060 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2690 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1615 ((-107) |#1|)) (-15 -3630 ((-107) |#1| |#1|)) (-15 -2512 ((-107) |#1| |#1|)) (-15 -2703 ((-107) |#1|)) (-15 -1235 ((-107) |#1|)) (-15 -3166 ((-2 (|:| |under| |#1|) (|:| -2597 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -1846 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1792 ((-107) |#4| |#1|)) (-15 -3921 ((-583 |#4|) |#1|)) (-15 -1364 ((-583 |#4|) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-893 |#2| |#3| |#4| |#5|) (-961) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -892))
-NIL
-(-10 -8 (-15 -3586 ((-107) |#1|)) (-15 -1677 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1741 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3060 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2690 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1615 ((-107) |#1|)) (-15 -3630 ((-107) |#1| |#1|)) (-15 -2512 ((-107) |#1| |#1|)) (-15 -2703 ((-107) |#1|)) (-15 -1235 ((-107) |#1|)) (-15 -3166 ((-2 (|:| |under| |#1|) (|:| -2597 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -1846 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1792 ((-107) |#4| |#1|)) (-15 -3921 ((-583 |#4|) |#1|)) (-15 -1364 ((-583 |#4|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180)))) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180)))) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3206 (((-1021) $) 10)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
-(((-893 |#1| |#2| |#3| |#4|) (-1184) (-961) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -893))
-((-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1792 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-2442 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-3166 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2597 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))) (-1235 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2512 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-3630 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2690 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3060 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1741 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-1677 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(-13 (-1003) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4180) (-15 -1772 ((-3 $ "failed") (-583 |t#4|))) (-15 -3189 ($ (-583 |t#4|))) (-15 -1976 (|t#3| $)) (-15 -1364 ((-583 |t#3|) $)) (-15 -3921 ((-583 |t#3|) $)) (-15 -1792 ((-107) |t#3| $)) (-15 -3759 ($ $ |t#3|)) (-15 -1846 ($ $ |t#3|)) (-15 -2442 ($ $ |t#3|)) (-15 -3166 ((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |t#3|)) (-15 -1235 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2703 ((-107) $)) (-15 -2512 ((-107) $ $)) (-15 -3630 ((-107) $ $)) (-15 -1615 ((-107) $)) (-15 -2690 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3060 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1741 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -1677 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -3586 ((-107) $))) |noBranch|)))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-1003) . T) ((-1108) . T))
-((-1681 (((-583 |#4|) |#4| |#4|) 116)) (-1935 (((-583 |#4|) (-583 |#4|) (-107)) 105 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 106 (|has| |#1| (-421)))) (-1964 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 34)) (-1665 (((-107) |#4|) 33)) (-3734 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-2499 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 19)) (-1969 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 21)) (-2100 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-2142 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|)) 72)) (-2355 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-1558 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-3640 (((-583 |#4|) (-583 |#4|)) 108)) (-2783 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 47) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 49)) (-3700 ((|#4| |#4| (-583 |#4|)) 48)) (-2371 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 112 (|has| |#1| (-421)))) (-3528 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 115 (|has| |#1| (-421)))) (-1632 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-1816 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 86) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 88) (((-583 |#4|) (-583 |#4|) |#4|) 119) (((-583 |#4|) |#4| |#4|) 117) (((-583 |#4|) (-583 |#4|)) 87)) (-3503 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1603 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 40)) (-2284 (((-107) (-583 |#4|)) 61)) (-2898 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 52)) (-1528 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 28)) (-2035 (((-107) |#4|) 27)) (-2737 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3662 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1343 (((-583 |#4|) (-583 |#4|)) 65)) (-3144 (((-583 |#4|) (-583 |#4|)) 78)) (-3451 (((-107) (-583 |#4|) (-583 |#4|)) 50)) (-2899 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 38)) (-1698 (((-107) |#4|) 35)))
-(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1816 ((-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) |#4| |#4|)) (-15 -3640 ((-583 |#4|) (-583 |#4|))) (-15 -1681 ((-583 |#4|) |#4| |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -3451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2898 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2284 ((-107) (-583 |#4|))) (-15 -2499 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -1969 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2100 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -1603 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1665 ((-107) |#4|)) (-15 -1964 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2035 ((-107) |#4|)) (-15 -1528 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1698 ((-107) |#4|)) (-15 -2899 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3700 (|#4| |#4| (-583 |#4|))) (-15 -1343 ((-583 |#4|) (-583 |#4|))) (-15 -2142 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -3144 ((-583 |#4|) (-583 |#4|))) (-15 -2355 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1558 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3734 ((-583 |#4|) |#4|)) (-15 -1935 ((-583 |#4|) (-583 |#4|))) (-15 -1935 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2371 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1632 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3528 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3662 ((-583 |#4|) (-583 |#4|))) (-15 -2737 ((-583 |#4|) (-583 |#4|))) (-15 -3503 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) |noBranch|)) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -894))
-((-3503 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3662 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1632 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2371 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1935 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1558 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))) (-2355 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2142 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -4139 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1343 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3700 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))) (-2783 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2783 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1528 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1665 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2100 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))) (-3451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1816 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1816 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1816 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) (-1681 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1816 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1816 ((-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) |#4| |#4|)) (-15 -3640 ((-583 |#4|) (-583 |#4|))) (-15 -1681 ((-583 |#4|) |#4| |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -3451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2898 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2284 ((-107) (-583 |#4|))) (-15 -2499 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -1969 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2100 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -1603 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1665 ((-107) |#4|)) (-15 -1964 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2035 ((-107) |#4|)) (-15 -1528 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1698 ((-107) |#4|)) (-15 -2899 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3700 (|#4| |#4| (-583 |#4|))) (-15 -1343 ((-583 |#4|) (-583 |#4|))) (-15 -2142 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -3144 ((-583 |#4|) (-583 |#4|))) (-15 -2355 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1558 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3734 ((-583 |#4|) |#4|)) (-15 -1935 ((-583 |#4|) (-583 |#4|))) (-15 -1935 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2371 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1632 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3528 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3662 ((-583 |#4|) (-583 |#4|))) (-15 -2737 ((-583 |#4|) (-583 |#4|))) (-15 -3503 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) |noBranch|))
-((-1441 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2584 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)) 35)) (-2838 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
-(((-895 |#1|) (-10 -7 (-15 -1441 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2838 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2584 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)))) (-333)) (T -895))
-((-2584 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)))) (-2838 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))) (-1441 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6)))))
-(-10 -7 (-15 -1441 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2838 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2584 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|))))
-((-2759 (((-388 |#4|) |#4|) 47)))
-(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2759 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-871 |#3| |#2| |#1|)) (T -896))
-((-2759 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
-(-10 -7 (-15 -2759 ((-388 |#4|) |#4|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703)) 112 (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-2889 (($ (-583 |#1|)) 118)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1292 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3847 (((-107) $ (-703)) 10)) (-2195 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-1672 (($ $ (-583 |#1|)) 115)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3501 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-3141 (((-843) $) 117)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-2862 (($ $ $) 104)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1654 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-897 |#1|) (-1184) (-961)) (T -897))
-((-2889 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))))
-(-13 (-1151 |t#1|) (-10 -8 (-15 -2889 ($ (-583 |t#1|))) (-15 -3141 ((-843) $)) (-15 -3645 ($ (-583 |t#1|))) (-15 -2862 ($ $ $)) (-15 -1672 ($ $ (-583 |t#1|)))))
-(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T) ((-1151 |#1|) . T))
-((-1893 (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)) 17)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -1893 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) (-961) (-961)) (T -898))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))))
-(-10 -7 (-15 -1893 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|))))
-((-2517 ((|#1| (-865 |#1|)) 13)) (-2017 ((|#1| (-865 |#1|)) 12)) (-1563 ((|#1| (-865 |#1|)) 11)) (-3705 ((|#1| (-865 |#1|)) 15)) (-2239 ((|#1| (-865 |#1|)) 21)) (-1987 ((|#1| (-865 |#1|)) 14)) (-3654 ((|#1| (-865 |#1|)) 16)) (-3512 ((|#1| (-865 |#1|)) 20)) (-1205 ((|#1| (-865 |#1|)) 19)))
-(((-899 |#1|) (-10 -7 (-15 -1563 (|#1| (-865 |#1|))) (-15 -2017 (|#1| (-865 |#1|))) (-15 -2517 (|#1| (-865 |#1|))) (-15 -1987 (|#1| (-865 |#1|))) (-15 -3705 (|#1| (-865 |#1|))) (-15 -3654 (|#1| (-865 |#1|))) (-15 -1205 (|#1| (-865 |#1|))) (-15 -3512 (|#1| (-865 |#1|))) (-15 -2239 (|#1| (-865 |#1|)))) (-961)) (T -899))
-((-2239 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(-10 -7 (-15 -1563 (|#1| (-865 |#1|))) (-15 -2017 (|#1| (-865 |#1|))) (-15 -2517 (|#1| (-865 |#1|))) (-15 -1987 (|#1| (-865 |#1|))) (-15 -3705 (|#1| (-865 |#1|))) (-15 -3654 (|#1| (-865 |#1|))) (-15 -1205 (|#1| (-865 |#1|))) (-15 -3512 (|#1| (-865 |#1|))) (-15 -2239 (|#1| (-865 |#1|))))
-((-3885 (((-3 |#1| "failed") |#1|) 18)) (-1878 (((-3 |#1| "failed") |#1|) 6)) (-4078 (((-3 |#1| "failed") |#1|) 16)) (-3113 (((-3 |#1| "failed") |#1|) 4)) (-2944 (((-3 |#1| "failed") |#1|) 20)) (-3413 (((-3 |#1| "failed") |#1|) 8)) (-2492 (((-3 |#1| "failed") |#1| (-703)) 1)) (-2064 (((-3 |#1| "failed") |#1|) 3)) (-3930 (((-3 |#1| "failed") |#1|) 2)) (-3608 (((-3 |#1| "failed") |#1|) 21)) (-2011 (((-3 |#1| "failed") |#1|) 9)) (-1779 (((-3 |#1| "failed") |#1|) 19)) (-1312 (((-3 |#1| "failed") |#1|) 7)) (-1282 (((-3 |#1| "failed") |#1|) 17)) (-3518 (((-3 |#1| "failed") |#1|) 5)) (-1266 (((-3 |#1| "failed") |#1|) 24)) (-3884 (((-3 |#1| "failed") |#1|) 12)) (-2460 (((-3 |#1| "failed") |#1|) 22)) (-2895 (((-3 |#1| "failed") |#1|) 10)) (-3829 (((-3 |#1| "failed") |#1|) 26)) (-1778 (((-3 |#1| "failed") |#1|) 14)) (-1240 (((-3 |#1| "failed") |#1|) 27)) (-3363 (((-3 |#1| "failed") |#1|) 15)) (-1403 (((-3 |#1| "failed") |#1|) 25)) (-1297 (((-3 |#1| "failed") |#1|) 13)) (-2828 (((-3 |#1| "failed") |#1|) 23)) (-1247 (((-3 |#1| "failed") |#1|) 11)))
-(((-900 |#1|) (-1184) (-1094)) (T -900))
-((-1240 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3829 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1403 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1266 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2828 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2460 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3608 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2944 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1779 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3885 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1282 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4078 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1778 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1297 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3884 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1247 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2895 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2011 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3413 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1312 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1878 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3518 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3113 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2064 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3930 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2492 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(-13 (-10 -7 (-15 -2492 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -3930 ((-3 |t#1| "failed") |t#1|)) (-15 -2064 ((-3 |t#1| "failed") |t#1|)) (-15 -3113 ((-3 |t#1| "failed") |t#1|)) (-15 -3518 ((-3 |t#1| "failed") |t#1|)) (-15 -1878 ((-3 |t#1| "failed") |t#1|)) (-15 -1312 ((-3 |t#1| "failed") |t#1|)) (-15 -3413 ((-3 |t#1| "failed") |t#1|)) (-15 -2011 ((-3 |t#1| "failed") |t#1|)) (-15 -2895 ((-3 |t#1| "failed") |t#1|)) (-15 -1247 ((-3 |t#1| "failed") |t#1|)) (-15 -3884 ((-3 |t#1| "failed") |t#1|)) (-15 -1297 ((-3 |t#1| "failed") |t#1|)) (-15 -1778 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -4078 ((-3 |t#1| "failed") |t#1|)) (-15 -1282 ((-3 |t#1| "failed") |t#1|)) (-15 -3885 ((-3 |t#1| "failed") |t#1|)) (-15 -1779 ((-3 |t#1| "failed") |t#1|)) (-15 -2944 ((-3 |t#1| "failed") |t#1|)) (-15 -3608 ((-3 |t#1| "failed") |t#1|)) (-15 -2460 ((-3 |t#1| "failed") |t#1|)) (-15 -2828 ((-3 |t#1| "failed") |t#1|)) (-15 -1266 ((-3 |t#1| "failed") |t#1|)) (-15 -1403 ((-3 |t#1| "failed") |t#1|)) (-15 -3829 ((-3 |t#1| "failed") |t#1|)) (-15 -1240 ((-3 |t#1| "failed") |t#1|))))
-((-2906 ((|#4| |#4| (-583 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-2885 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1893 ((|#4| (-1 |#4| (-874 |#1|)) |#4|) 30)))
-(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2885 (|#4| |#4| |#3|)) (-15 -2885 (|#4| |#4| (-583 |#3|))) (-15 -2906 (|#4| |#4| |#3|)) (-15 -2906 (|#4| |#4| (-583 |#3|))) (-15 -1893 (|#4| (-1 |#4| (-874 |#1|)) |#4|))) (-961) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-871 (-874 |#1|) |#2| |#3|)) (T -901))
-((-1893 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *6 *2)))) (-2906 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-2906 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) (-2885 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-2885 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))))
-(-10 -7 (-15 -2885 (|#4| |#4| |#3|)) (-15 -2885 (|#4| |#4| (-583 |#3|))) (-15 -2906 (|#4| |#4| |#3|)) (-15 -2906 (|#4| |#4| (-583 |#3|))) (-15 -1893 (|#4| (-1 |#4| (-874 |#1|)) |#4|)))
-((-1616 ((|#2| |#3|) 34)) (-4140 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-2216 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86)))
-(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -1616 (|#2| |#3|))) (-319) (-1130 |#1|) (-1130 |#2|) (-657 |#2| |#3|)) (T -902))
-((-1616 (*1 *2 *3) (-12 (-4 *3 (-1130 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-2216 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))))
-(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -1616 (|#2| |#3|)))
-((-4099 (((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 64)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -4099 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1073)) (-703)) (T -903))
-((-4099 (*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4)))))
-(-10 -7 (-15 -4099 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))))))
-((-2750 (((-107) $ $) NIL)) (-2324 (((-3 (-107) "failed") $) 67)) (-3670 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-4117 (($ $ (-3 (-107) "failed")) 68)) (-3196 (($ (-583 |#4|) |#4|) 24)) (-3985 (((-1056) $) NIL)) (-1891 (($ $) 65)) (-3206 (((-1021) $) NIL)) (-3619 (((-107) $) 66)) (-1746 (($) 29)) (-2923 ((|#4| $) 70)) (-3140 (((-583 |#4|) $) 69)) (-2256 (((-787) $) 64)) (-1547 (((-107) $ $) NIL)))
-(((-904 |#1| |#2| |#3| |#4|) (-13 (-1003) (-557 (-787)) (-10 -8 (-15 -1746 ($)) (-15 -3196 ($ (-583 |#4|) |#4|)) (-15 -2324 ((-3 (-107) "failed") $)) (-15 -4117 ($ $ (-3 (-107) "failed"))) (-15 -3619 ((-107) $)) (-15 -3140 ((-583 |#4|) $)) (-15 -2923 (|#4| $)) (-15 -1891 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3670 ($ $)) |noBranch|) |noBranch|))) (-421) (-779) (-725) (-871 |#1| |#3| |#2|)) (T -904))
-((-1746 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3196 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))) (-2324 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-3619 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-3140 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-2923 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-1891 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3670 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))))
-(-13 (-1003) (-557 (-787)) (-10 -8 (-15 -1746 ($)) (-15 -3196 ($ (-583 |#4|) |#4|)) (-15 -2324 ((-3 (-107) "failed") $)) (-15 -4117 ($ $ (-3 (-107) "failed"))) (-15 -3619 ((-107) $)) (-15 -3140 ((-583 |#4|) $)) (-15 -2923 (|#4| $)) (-15 -1891 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3670 ($ $)) |noBranch|) |noBranch|)))
-((-3471 (((-107) |#5| |#5|) 37)) (-1331 (((-107) |#5| |#5|) 51)) (-3499 (((-107) |#5| (-583 |#5|)) 73) (((-107) |#5| |#5|) 60)) (-2254 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-1837 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 62)) (-4034 (((-1158)) 33)) (-1882 (((-1158) (-1056) (-1056) (-1056)) 29)) (-3694 (((-583 |#5|) (-583 |#5|)) 80)) (-2197 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) 78)) (-2871 (((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 100)) (-3576 (((-107) |#5| |#5|) 46)) (-2954 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3506 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-1451 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3411 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3444 (((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 96)) (-1634 (((-583 |#5|) (-583 |#5|)) 42)))
-(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -905))
-((-3444 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-2871 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-3499 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2954 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-2254 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3576 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-4034 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1882 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
-((-1638 (((-1073) $) 15)) (-3199 (((-1056) $) 16)) (-2126 (($ (-1073) (-1056)) 14)) (-2256 (((-787) $) 13)))
-(((-906) (-13 (-557 (-787)) (-10 -8 (-15 -2126 ($ (-1073) (-1056))) (-15 -1638 ((-1073) $)) (-15 -3199 ((-1056) $))))) (T -906))
-((-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-906)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-906)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-906)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2126 ($ (-1073) (-1056))) (-15 -1638 ((-1073) $)) (-15 -3199 ((-1056) $))))
-((-1893 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-909 |#1|) (-909 |#2|)) (T -907))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))))
-(-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-1073) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3189 ((|#2| $) NIL) (((-1073) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-3209 (($) 98)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 74) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 83)) (-1405 (($ $) 10)) (-1319 (((-3 $ "failed") $) 20)) (-1893 (($ (-1 |#2| |#2|) $) 22)) (-2836 (($) 16)) (-1927 (($ $) 54)) (-3127 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2971 (($ $) 12)) (-3645 (((-814 (-517)) $) 69) (((-814 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1073)) 57)) (-2961 (((-703)) 31)) (-1572 (((-107) $ $) 50)))
-(((-908 |#1| |#2|) (-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -3209 (|#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|))) (-909 |#2|) (-509)) (T -908))
-((-2961 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))))
-(-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -3209 (|#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 ((|#1| $) 139 (|has| |#1| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 130 (|has| |#1| (-831)))) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 133 (|has| |#1| (-831)))) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 120 (|has| |#1| (-752)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 178) (((-3 (-1073) "failed") $) 128 (|has| |#1| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 177) (((-1073) $) 127 (|has| |#1| (-952 (-1073)))) (((-377 (-517)) $) 111 (|has| |#1| (-952 (-517)))) (((-517) $) 109 (|has| |#1| (-952 (-517))))) (-2518 (($ $ $) 55)) (-3355 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 137 (|has| |#1| (-502)))) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3556 (((-107) $) 122 (|has| |#1| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 146 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 145 (|has| |#1| (-808 (-349))))) (-3848 (((-107) $) 31)) (-1405 (($ $) 141)) (-1787 ((|#1| $) 143)) (-1319 (((-3 $ "failed") $) 108 (|has| |#1| (-1049)))) (-2475 (((-107) $) 121 (|has| |#1| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 118 (|has| |#1| (-779)))) (-3099 (($ $ $) 117 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 169)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 107 (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 138 (|has| |#1| (-278)))) (-2597 ((|#1| $) 135 (|has| |#1| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 132 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 131 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 170 (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) 58)) (-1449 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-3127 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1073)) 164 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 163 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 162 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 161 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2971 (($ $) 140)) (-1800 ((|#1| $) 142)) (-3645 (((-814 (-517)) $) 148 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 147 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-937))) (((-199) $) 123 (|has| |#1| (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 134 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1073)) 129 (|has| |#1| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) 126 (-3807 (|has| |#1| (-132)) (-4035 (|has| $ (-132)) (|has| |#1| (-831)))))) (-2961 (((-703)) 29)) (-1949 ((|#1| $) 136 (|has| |#1| (-502)))) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 119 (|has| |#1| (-752)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1073)) 160 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 159 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 158 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 157 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1606 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1667 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-909 |#1|) (-1184) (-509)) (T -909))
-((-1667 (*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-2971 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-1927 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-3209 (*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))))
-(-13 (-333) (-37 |t#1|) (-952 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-806 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1667 ($ |t#1| |t#1|)) (-15 -1787 (|t#1| $)) (-15 -1800 (|t#1| $)) (-15 -1405 ($ $)) (-15 -2971 ($ $)) (IF (|has| |t#1| (-1049)) (-6 (-1049)) |noBranch|) (IF (|has| |t#1| (-952 (-517))) (PROGN (-6 (-952 (-517))) (-6 (-952 (-377 (-517))))) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-952 (-1073))) (-6 (-952 (-1073))) |noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -2668 (|t#1| $)) (-15 -1927 ($ $))) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3209 ($)) (-15 -1949 (|t#1| $)) (-15 -2597 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-937)) ((-558 (-349)) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3807 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) |has| |#1| (-831)) ((-842) . T) ((-937) |has| |#1| (-937)) ((-952 (-377 (-517))) |has| |#1| (-952 (-517))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-1073)) |has| |#1| (-952 (-1073))) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-1049)) ((-1108) . T) ((-1112) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-2182 (($ (-1040 |#1| |#2|)) 11)) (-1840 (((-1040 |#1| |#2|) $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL)))
-(((-910 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2182 ($ (-1040 |#1| |#2|))) (-15 -1840 ((-1040 |#1| |#2|) $)) (-15 -1449 (|#2| $ (-214 |#1| |#2|))))) (-843) (-333)) (T -910))
-((-2182 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2182 ($ (-1040 |#1| |#2|))) (-15 -1840 ((-1040 |#1| |#2|) $)) (-15 -1449 (|#2| $ (-214 |#1| |#2|)))))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-3186 (($ $) 46)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-2195 (((-703) $) 45)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2578 ((|#1| $) 44)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3838 ((|#1| |#1| $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3129 ((|#1| $) 47)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-2028 ((|#1| $) 43)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-911 |#1|) (-1184) (-1108)) (T -911))
-((-3838 (*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-3186 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -3838 (|t#1| |t#1| $)) (-15 -3129 (|t#1| $)) (-15 -3186 ($ $)) (-15 -2195 ((-703) $)) (-15 -2578 (|t#1| $)) (-15 -2028 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-2814 (((-107) $) 42)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-1256 (((-3 (-377 (-517)) "failed") $) 78)) (-1355 (((-107) $) 72)) (-3364 (((-377 (-517)) $) 76)) (-3848 (((-107) $) 41)) (-1506 ((|#2| $) 22)) (-1893 (($ (-1 |#2| |#2|) $) 19)) (-4118 (($ $) 61)) (-3127 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3645 (((-493) $) 67)) (-1487 (($ $) 17)) (-2256 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 10)) (-3710 ((|#2| $) 71)) (-1547 (((-107) $ $) 25)) (-1572 (((-107) $ $) 69)) (-1654 (($ $) 29) (($ $ $) 28)) (-1642 (($ $ $) 26)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-912 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -4118 (|#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -3848 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-913 |#2|) (-156)) (T -912))
-((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))))
-(-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -4118 (|#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -3848 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 119 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3189 (((-517) $) 120 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 115)) (-3355 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 80)) (-1256 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-1355 (((-107) $) 78 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-2802 (($ |#1| |#1| |#1| |#1|) 81)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 82)) (-2967 (($ $ $) 68 (|has| |#1| (-779)))) (-3099 (($ $ $) 67 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 91)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 73 (|has| |#1| (-333)))) (-2976 ((|#1| $) 83)) (-2999 ((|#1| $) 84)) (-1467 ((|#1| $) 85)) (-3206 (((-1021) $) 10)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 92 (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-3127 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1073)) 110 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 109 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 108 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 107 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3645 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 86)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3710 ((|#1| $) 79 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1073)) 106 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 105 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 104 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 103 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1606 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333)))))
-(((-913 |#1|) (-1184) (-156)) (T -913))
-((-1487 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1467 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2802 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
-(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1487 ($ $)) (-15 -1467 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2976 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -2802 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3775 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 (-377 (-517))) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-333)) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-913 |#2|) (-156) (-913 |#4|) (-156)) (T -914))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))))
-(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 12)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2802 (($ |#1| |#1| |#1| |#1|) 16)) (-3848 (((-107) $) NIL)) (-1506 ((|#1| $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2976 ((|#1| $) 15)) (-2999 ((|#1| $) 14)) (-1467 ((|#1| $) 13)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3710 ((|#1| $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 8 T CONST)) (-2409 (($) 10 T CONST)) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333)))))
+((-1363 (((-583 |#4|) $) 23)) (-3521 (((-107) $) 47)) (-2320 (((-107) $) 46)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#4|) 35)) (-1216 (((-107) $) 48)) (-1930 (((-107) $ $) 54)) (-1660 (((-107) $ $) 57)) (-3045 (((-107) $) 52)) (-3515 (((-583 |#5|) (-583 |#5|) $) 89)) (-4024 (((-583 |#5|) (-583 |#5|) $) 86)) (-3169 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-2434 (((-583 |#4|) $) 27)) (-2995 (((-107) |#4| $) 29)) (-2929 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-2399 (($ $ |#4|) 32)) (-3339 (($ $ |#4|) 31)) (-4011 (($ $ |#4|) 33)) (-1539 (((-107) $ $) 39)))
+(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2320 ((-107) |#1|)) (-15 -3515 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -4024 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3169 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2929 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1216 ((-107) |#1|)) (-15 -1660 ((-107) |#1| |#1|)) (-15 -1930 ((-107) |#1| |#1|)) (-15 -3045 ((-107) |#1|)) (-15 -3521 ((-107) |#1|)) (-15 -3056 ((-2 (|:| |under| |#1|) (|:| -3263 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2399 (|#1| |#1| |#4|)) (-15 -4011 (|#1| |#1| |#4|)) (-15 -3339 (|#1| |#1| |#4|)) (-15 -2995 ((-107) |#4| |#1|)) (-15 -2434 ((-583 |#4|) |#1|)) (-15 -1363 ((-583 |#4|) |#1|)) (-15 -1539 ((-107) |#1| |#1|))) (-893 |#2| |#3| |#4| |#5|) (-961) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -892))
+NIL
+(-10 -8 (-15 -2320 ((-107) |#1|)) (-15 -3515 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -4024 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3169 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2929 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1216 ((-107) |#1|)) (-15 -1660 ((-107) |#1| |#1|)) (-15 -1930 ((-107) |#1| |#1|)) (-15 -3045 ((-107) |#1|)) (-15 -3521 ((-107) |#1|)) (-15 -3056 ((-2 (|:| |under| |#1|) (|:| -3263 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2399 (|#1| |#1| |#4|)) (-15 -4011 (|#1| |#1| |#4|)) (-15 -3339 (|#1| |#1| |#4|)) (-15 -2995 ((-107) |#4| |#1|)) (-15 -2434 ((-583 |#4|) |#1|)) (-15 -1363 ((-583 |#4|) |#1|)) (-15 -1539 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-1363 (((-583 |#3|) $) 33)) (-3521 (((-107) $) 26)) (-2320 (((-107) $) 17 (|has| |#1| (-509)))) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) 27)) (-1799 (((-107) $ (-703)) 44)) (-3451 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183)))) (-3473 (($) 45 T CONST)) (-1216 (((-107) $) 22 (|has| |#1| (-509)))) (-1930 (((-107) $ $) 24 (|has| |#1| (-509)))) (-1660 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3045 (((-107) $) 25 (|has| |#1| (-509)))) (-3515 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) 36)) (-3076 (($ (-583 |#4|)) 35)) (-1667 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183)))) (-3037 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-3377 ((|#3| $) 34)) (-4064 (((-107) $ (-703)) 43)) (-1196 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 47)) (-2434 (((-583 |#3|) $) 32)) (-2995 (((-107) |#3| $) 31)) (-2942 (((-107) $ (-703)) 42)) (-3865 (((-1057) $) 9)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3094 (((-1021) $) 10)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2925 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) 38)) (-1546 (((-107) $) 41)) (-1326 (($) 40)) (-3105 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2322 (($ $) 39)) (-3582 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 60)) (-2399 (($ $ |#3|) 28)) (-3339 (($ $ |#3|) 30)) (-4011 (($ $ |#3|) 29)) (-2182 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3883 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 6)) (-2210 (((-703) $) 46 (|has| $ (-6 -4183)))))
+(((-893 |#1| |#2| |#3| |#4|) (-1185) (-961) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -893))
+((-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2995 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3339 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-4011 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-2399 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-3056 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3263 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-1930 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-1660 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-1216 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2929 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3169 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4024 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-3515 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(-13 (-1003) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4183) (-15 -1759 ((-3 $ "failed") (-583 |t#4|))) (-15 -3076 ($ (-583 |t#4|))) (-15 -3377 (|t#3| $)) (-15 -1363 ((-583 |t#3|) $)) (-15 -2434 ((-583 |t#3|) $)) (-15 -2995 ((-107) |t#3| $)) (-15 -3339 ($ $ |t#3|)) (-15 -4011 ($ $ |t#3|)) (-15 -2399 ($ $ |t#3|)) (-15 -3056 ((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |t#3|)) (-15 -3521 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -3045 ((-107) $)) (-15 -1930 ((-107) $ $)) (-15 -1660 ((-107) $ $)) (-15 -1216 ((-107) $)) (-15 -2929 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3169 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4024 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -3515 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2320 ((-107) $))) |noBranch|)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-1003) . T) ((-1109) . T))
+((-3540 (((-583 |#4|) |#4| |#4|) 116)) (-1273 (((-583 |#4|) (-583 |#4|) (-107)) 105 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 106 (|has| |#1| (-421)))) (-3260 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 34)) (-3395 (((-107) |#4|) 33)) (-3123 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-1838 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 19)) (-3313 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 21)) (-2237 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-1512 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|)) 72)) (-2735 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-2978 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-1760 (((-583 |#4|) (-583 |#4|)) 108)) (-2474 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 47) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 49)) (-4105 ((|#4| |#4| (-583 |#4|)) 48)) (-2933 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 112 (|has| |#1| (-421)))) (-2991 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 115 (|has| |#1| (-421)))) (-1688 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-3711 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 86) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 88) (((-583 |#4|) (-583 |#4|) |#4|) 119) (((-583 |#4|) |#4| |#4|) 117) (((-583 |#4|) (-583 |#4|)) 87)) (-2746 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-4101 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 40)) (-3320 (((-107) (-583 |#4|)) 61)) (-2372 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 52)) (-1367 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 28)) (-2753 (((-107) |#4|) 27)) (-3227 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1931 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-2787 (((-583 |#4|) (-583 |#4|)) 65)) (-2604 (((-583 |#4|) (-583 |#4|)) 78)) (-3593 (((-107) (-583 |#4|) (-583 |#4|)) 50)) (-1322 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 38)) (-3674 (((-107) |#4|) 35)))
+(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3711 ((-583 |#4|) (-583 |#4|))) (-15 -3711 ((-583 |#4|) |#4| |#4|)) (-15 -1760 ((-583 |#4|) (-583 |#4|))) (-15 -3540 ((-583 |#4|) |#4| |#4|)) (-15 -3711 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -3711 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3711 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -3593 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2372 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3320 ((-107) (-583 |#4|))) (-15 -1838 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3313 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2237 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -4101 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3395 ((-107) |#4|)) (-15 -3260 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2753 ((-107) |#4|)) (-15 -1367 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3674 ((-107) |#4|)) (-15 -1322 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2474 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2474 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -4105 (|#4| |#4| (-583 |#4|))) (-15 -2787 ((-583 |#4|) (-583 |#4|))) (-15 -1512 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2604 ((-583 |#4|) (-583 |#4|))) (-15 -2735 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2978 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3123 ((-583 |#4|) |#4|)) (-15 -1273 ((-583 |#4|) (-583 |#4|))) (-15 -1273 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2933 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1688 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2991 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -1931 ((-583 |#4|) (-583 |#4|))) (-15 -3227 ((-583 |#4|) (-583 |#4|))) (-15 -2746 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) |noBranch|)) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -894))
+((-2746 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2991 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1688 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2933 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1273 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-2978 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))) (-2735 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1512 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -4143 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-4105 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))) (-2474 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2474 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1322 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1367 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2753 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-3260 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3395 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-4101 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))) (-3593 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-3711 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-3711 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3711 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) (-3540 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3711 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3711 ((-583 |#4|) (-583 |#4|))) (-15 -3711 ((-583 |#4|) |#4| |#4|)) (-15 -1760 ((-583 |#4|) (-583 |#4|))) (-15 -3540 ((-583 |#4|) |#4| |#4|)) (-15 -3711 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -3711 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3711 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -3593 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2372 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3320 ((-107) (-583 |#4|))) (-15 -1838 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3313 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2237 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -4101 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3395 ((-107) |#4|)) (-15 -3260 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2753 ((-107) |#4|)) (-15 -1367 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3674 ((-107) |#4|)) (-15 -1322 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2474 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2474 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -4105 (|#4| |#4| (-583 |#4|))) (-15 -2787 ((-583 |#4|) (-583 |#4|))) (-15 -1512 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2604 ((-583 |#4|) (-583 |#4|))) (-15 -2735 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2978 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3123 ((-583 |#4|) |#4|)) (-15 -1273 ((-583 |#4|) (-583 |#4|))) (-15 -1273 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2933 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1688 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2991 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -1931 ((-583 |#4|) (-583 |#4|))) (-15 -3227 ((-583 |#4|) (-583 |#4|))) (-15 -2746 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) |noBranch|))
+((-3568 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3132 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|)) 35)) (-1929 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
+(((-895 |#1|) (-10 -7 (-15 -3568 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1929 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3132 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|)))) (-333)) (T -895))
+((-3132 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1154 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)))) (-1929 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))) (-3568 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6)))))
+(-10 -7 (-15 -3568 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1929 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3132 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|))))
+((-3490 (((-388 |#4|) |#4|) 47)))
+(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3490 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-871 |#3| |#2| |#1|)) (T -896))
+((-3490 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
+(-10 -7 (-15 -3490 ((-388 |#4|) |#4|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3437 (($ (-703)) 112 (|has| |#1| (-23)))) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1227 (($ $) 90 (|has| $ (-6 -4184)))) (-2979 (($ $) 100)) (-1667 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 51)) (-2446 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1503 (($ (-583 |#1|)) 118)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2544 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3366 (($ (-703) |#1|) 69)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-1575 (($ $ $) 87 (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-2986 (($ $ $) 86 (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2751 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-2942 (((-107) $ (-703)) 10)) (-2542 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 42 (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-1254 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-3467 (($ $ (-583 |#1|)) 115)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-2736 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-2586 (((-843) $) 117)) (-3685 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-2115 (($ $ $) 104)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3966 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2197 (($ (-583 |#1|)) 70)) (-2337 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1582 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1637 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1626 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-897 |#1|) (-1185) (-961)) (T -897))
+((-1503 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-2586 (*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-2115 (*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))))
+(-13 (-1152 |t#1|) (-10 -8 (-15 -1503 ($ (-583 |t#1|))) (-15 -2586 ((-843) $)) (-15 -3582 ($ (-583 |t#1|))) (-15 -2115 ($ $ $)) (-15 -3467 ($ $ (-583 |t#1|)))))
+(((-33) . T) ((-97) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1109) . T) ((-1152 |#1|) . T))
+((-1857 (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)) 17)))
+(((-898 |#1| |#2|) (-10 -7 (-15 -1857 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) (-961) (-961)) (T -898))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))))
+(-10 -7 (-15 -1857 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|))))
+((-3743 ((|#1| (-865 |#1|)) 13)) (-2568 ((|#1| (-865 |#1|)) 12)) (-3020 ((|#1| (-865 |#1|)) 11)) (-4149 ((|#1| (-865 |#1|)) 15)) (-1188 ((|#1| (-865 |#1|)) 21)) (-3519 ((|#1| (-865 |#1|)) 14)) (-1866 ((|#1| (-865 |#1|)) 16)) (-2845 ((|#1| (-865 |#1|)) 20)) (-2681 ((|#1| (-865 |#1|)) 19)))
+(((-899 |#1|) (-10 -7 (-15 -3020 (|#1| (-865 |#1|))) (-15 -2568 (|#1| (-865 |#1|))) (-15 -3743 (|#1| (-865 |#1|))) (-15 -3519 (|#1| (-865 |#1|))) (-15 -4149 (|#1| (-865 |#1|))) (-15 -1866 (|#1| (-865 |#1|))) (-15 -2681 (|#1| (-865 |#1|))) (-15 -2845 (|#1| (-865 |#1|))) (-15 -1188 (|#1| (-865 |#1|)))) (-961)) (T -899))
+((-1188 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(-10 -7 (-15 -3020 (|#1| (-865 |#1|))) (-15 -2568 (|#1| (-865 |#1|))) (-15 -3743 (|#1| (-865 |#1|))) (-15 -3519 (|#1| (-865 |#1|))) (-15 -4149 (|#1| (-865 |#1|))) (-15 -1866 (|#1| (-865 |#1|))) (-15 -2681 (|#1| (-865 |#1|))) (-15 -2845 (|#1| (-865 |#1|))) (-15 -1188 (|#1| (-865 |#1|))))
+((-2190 (((-3 |#1| "failed") |#1|) 18)) (-3669 (((-3 |#1| "failed") |#1|) 6)) (-3542 (((-3 |#1| "failed") |#1|) 16)) (-3639 (((-3 |#1| "failed") |#1|) 4)) (-1717 (((-3 |#1| "failed") |#1|) 20)) (-3218 (((-3 |#1| "failed") |#1|) 8)) (-1792 (((-3 |#1| "failed") |#1| (-703)) 1)) (-1970 (((-3 |#1| "failed") |#1|) 3)) (-1493 (((-3 |#1| "failed") |#1|) 2)) (-1465 (((-3 |#1| "failed") |#1|) 21)) (-2516 (((-3 |#1| "failed") |#1|) 9)) (-2654 (((-3 |#1| "failed") |#1|) 19)) (-2846 (((-3 |#1| "failed") |#1|) 7)) (-3778 (((-3 |#1| "failed") |#1|) 17)) (-2907 (((-3 |#1| "failed") |#1|) 5)) (-1437 (((-3 |#1| "failed") |#1|) 24)) (-2183 (((-3 |#1| "failed") |#1|) 12)) (-1490 (((-3 |#1| "failed") |#1|) 22)) (-2345 (((-3 |#1| "failed") |#1|) 10)) (-2731 (((-3 |#1| "failed") |#1|) 26)) (-2633 (((-3 |#1| "failed") |#1|) 14)) (-3571 (((-3 |#1| "failed") |#1|) 27)) (-4067 (((-3 |#1| "failed") |#1|) 15)) (-1922 (((-3 |#1| "failed") |#1|) 25)) (-1339 (((-3 |#1| "failed") |#1|) 13)) (-2920 (((-3 |#1| "failed") |#1|) 23)) (-2199 (((-3 |#1| "failed") |#1|) 11)))
+(((-900 |#1|) (-1185) (-1095)) (T -900))
+((-3571 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2731 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1922 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1437 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2920 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1490 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1465 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1717 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2654 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2190 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3778 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3542 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-4067 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2633 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1339 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2183 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2199 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2345 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2516 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3218 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2846 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3669 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2907 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3639 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1970 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1493 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1792 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(-13 (-10 -7 (-15 -1792 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -1493 ((-3 |t#1| "failed") |t#1|)) (-15 -1970 ((-3 |t#1| "failed") |t#1|)) (-15 -3639 ((-3 |t#1| "failed") |t#1|)) (-15 -2907 ((-3 |t#1| "failed") |t#1|)) (-15 -3669 ((-3 |t#1| "failed") |t#1|)) (-15 -2846 ((-3 |t#1| "failed") |t#1|)) (-15 -3218 ((-3 |t#1| "failed") |t#1|)) (-15 -2516 ((-3 |t#1| "failed") |t#1|)) (-15 -2345 ((-3 |t#1| "failed") |t#1|)) (-15 -2199 ((-3 |t#1| "failed") |t#1|)) (-15 -2183 ((-3 |t#1| "failed") |t#1|)) (-15 -1339 ((-3 |t#1| "failed") |t#1|)) (-15 -2633 ((-3 |t#1| "failed") |t#1|)) (-15 -4067 ((-3 |t#1| "failed") |t#1|)) (-15 -3542 ((-3 |t#1| "failed") |t#1|)) (-15 -3778 ((-3 |t#1| "failed") |t#1|)) (-15 -2190 ((-3 |t#1| "failed") |t#1|)) (-15 -2654 ((-3 |t#1| "failed") |t#1|)) (-15 -1717 ((-3 |t#1| "failed") |t#1|)) (-15 -1465 ((-3 |t#1| "failed") |t#1|)) (-15 -1490 ((-3 |t#1| "failed") |t#1|)) (-15 -2920 ((-3 |t#1| "failed") |t#1|)) (-15 -1437 ((-3 |t#1| "failed") |t#1|)) (-15 -1922 ((-3 |t#1| "failed") |t#1|)) (-15 -2731 ((-3 |t#1| "failed") |t#1|)) (-15 -3571 ((-3 |t#1| "failed") |t#1|))))
+((-1383 ((|#4| |#4| (-583 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-2275 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1857 ((|#4| (-1 |#4| (-874 |#1|)) |#4|) 30)))
+(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2275 (|#4| |#4| |#3|)) (-15 -2275 (|#4| |#4| (-583 |#3|))) (-15 -1383 (|#4| |#4| |#3|)) (-15 -1383 (|#4| |#4| (-583 |#3|))) (-15 -1857 (|#4| (-1 |#4| (-874 |#1|)) |#4|))) (-961) (-725) (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074))))) (-871 (-874 |#1|) |#2| |#3|)) (T -901))
+((-1857 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *6 *2)))) (-1383 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-1383 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) (-2275 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-2275 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))))
+(-10 -7 (-15 -2275 (|#4| |#4| |#3|)) (-15 -2275 (|#4| |#4| (-583 |#3|))) (-15 -1383 (|#4| |#4| |#3|)) (-15 -1383 (|#4| |#4| (-583 |#3|))) (-15 -1857 (|#4| (-1 |#4| (-874 |#1|)) |#4|)))
+((-1229 ((|#2| |#3|) 34)) (-2786 (((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-3993 (((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86)))
+(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -2786 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -1229 (|#2| |#3|))) (-319) (-1131 |#1|) (-1131 |#2|) (-657 |#2| |#3|)) (T -902))
+((-1229 (*1 *2 *3) (-12 (-4 *3 (-1131 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-2786 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-3993 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -3809 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))))
+(-10 -7 (-15 -3993 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -2786 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -1229 (|#2| |#3|)))
+((-3756 (((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 64)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -3756 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1074)) (-703)) (T -903))
+((-3756 (*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1074))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4)))))
+(-10 -7 (-15 -3756 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))))))
+((-2571 (((-107) $ $) NIL)) (-2233 (((-3 (-107) "failed") $) 67)) (-3822 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-2601 (($ $ (-3 (-107) "failed")) 68)) (-2003 (($ (-583 |#4|) |#4|) 24)) (-3865 (((-1057) $) NIL)) (-3820 (($ $) 65)) (-3094 (((-1021) $) NIL)) (-1546 (((-107) $) 66)) (-1326 (($) 29)) (-1536 ((|#4| $) 70)) (-2577 (((-583 |#4|) $) 69)) (-2182 (((-787) $) 64)) (-1539 (((-107) $ $) NIL)))
+(((-904 |#1| |#2| |#3| |#4|) (-13 (-1003) (-557 (-787)) (-10 -8 (-15 -1326 ($)) (-15 -2003 ($ (-583 |#4|) |#4|)) (-15 -2233 ((-3 (-107) "failed") $)) (-15 -2601 ($ $ (-3 (-107) "failed"))) (-15 -1546 ((-107) $)) (-15 -2577 ((-583 |#4|) $)) (-15 -1536 (|#4| $)) (-15 -3820 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3822 ($ $)) |noBranch|) |noBranch|))) (-421) (-779) (-725) (-871 |#1| |#3| |#2|)) (T -904))
+((-1326 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-2003 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))) (-2233 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-2601 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-1546 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-2577 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-1536 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-3820 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3822 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))))
+(-13 (-1003) (-557 (-787)) (-10 -8 (-15 -1326 ($)) (-15 -2003 ($ (-583 |#4|) |#4|)) (-15 -2233 ((-3 (-107) "failed") $)) (-15 -2601 ($ $ (-3 (-107) "failed"))) (-15 -1546 ((-107) $)) (-15 -2577 ((-583 |#4|) $)) (-15 -1536 (|#4| $)) (-15 -3820 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3822 ($ $)) |noBranch|) |noBranch|)))
+((-2477 (((-107) |#5| |#5|) 37)) (-1612 (((-107) |#5| |#5|) 51)) (-2709 (((-107) |#5| (-583 |#5|)) 73) (((-107) |#5| |#5|) 60)) (-3054 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-3941 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) 62)) (-1360 (((-1159)) 33)) (-3707 (((-1159) (-1057) (-1057) (-1057)) 29)) (-4053 (((-583 |#5|) (-583 |#5|)) 80)) (-3813 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) 78)) (-2177 (((-583 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 100)) (-2235 (((-107) |#5| |#5|) 46)) (-1809 (((-3 (-107) "failed") |#5| |#5|) 70)) (-2773 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-3690 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3196 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3517 (((-3 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 96)) (-1714 (((-583 |#5|) (-583 |#5|)) 42)))
+(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3707 ((-1159) (-1057) (-1057) (-1057))) (-15 -1360 ((-1159))) (-15 -2477 ((-107) |#5| |#5|)) (-15 -1714 ((-583 |#5|) (-583 |#5|))) (-15 -2235 ((-107) |#5| |#5|)) (-15 -1612 ((-107) |#5| |#5|)) (-15 -3054 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2773 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3690 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3196 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1809 ((-3 (-107) "failed") |#5| |#5|)) (-15 -2709 ((-107) |#5| |#5|)) (-15 -2709 ((-107) |#5| (-583 |#5|))) (-15 -4053 ((-583 |#5|) (-583 |#5|))) (-15 -3941 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) (-15 -3813 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-15 -2177 ((-583 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3517 ((-3 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -905))
+((-3517 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2075 (-583 *9)) (|:| -3656 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-2177 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2075 (-583 *9)) (|:| -3656 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3656 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3941 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3656 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-2709 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1809 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3196 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3690 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-2773 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3054 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1612 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2235 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1360 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3707 ((-1159) (-1057) (-1057) (-1057))) (-15 -1360 ((-1159))) (-15 -2477 ((-107) |#5| |#5|)) (-15 -1714 ((-583 |#5|) (-583 |#5|))) (-15 -2235 ((-107) |#5| |#5|)) (-15 -1612 ((-107) |#5| |#5|)) (-15 -3054 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2773 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3690 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3196 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1809 ((-3 (-107) "failed") |#5| |#5|)) (-15 -2709 ((-107) |#5| |#5|)) (-15 -2709 ((-107) |#5| (-583 |#5|))) (-15 -4053 ((-583 |#5|) (-583 |#5|))) (-15 -3941 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) (-15 -3813 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-15 -2177 ((-583 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3517 ((-3 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
+((-1625 (((-1074) $) 15)) (-3088 (((-1057) $) 16)) (-2070 (($ (-1074) (-1057)) 14)) (-2182 (((-787) $) 13)))
+(((-906) (-13 (-557 (-787)) (-10 -8 (-15 -2070 ($ (-1074) (-1057))) (-15 -1625 ((-1074) $)) (-15 -3088 ((-1057) $))))) (T -906))
+((-2070 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1057)) (-5 *1 (-906)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-906)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-906)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2070 ($ (-1074) (-1057))) (-15 -1625 ((-1074) $)) (-15 -3088 ((-1057) $))))
+((-1857 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-909 |#1|) (-909 |#2|)) (T -907))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))))
+(-10 -7 (-15 -1857 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-1074) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3076 ((|#2| $) NIL) (((-1074) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-4012 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-3098 (($) 98)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 74) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 83)) (-1936 (($ $) 10)) (-3744 (((-3 $ "failed") $) 20)) (-1857 (($ (-1 |#2| |#2|) $) 22)) (-2663 (($) 16)) (-1194 (($ $) 54)) (-1699 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3691 (($ $) 12)) (-3582 (((-814 (-517)) $) 69) (((-814 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1074)) 57)) (-1865 (((-703)) 31)) (-1560 (((-107) $ $) 50)))
+(((-908 |#1| |#2|) (-10 -8 (-15 -1560 ((-107) |#1| |#1|)) (-15 -2663 (|#1|)) (-15 -3744 ((-3 |#1| "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3582 ((-199) |#1|)) (-15 -3582 ((-349) |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3076 ((-1074) |#1|)) (-15 -1759 ((-3 (-1074) "failed") |#1|)) (-15 -2182 (|#1| (-1074))) (-15 -3098 (|#1|)) (-15 -1194 (|#1| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 -1936 (|#1| |#1|)) (-15 -3289 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -4012 ((-623 |#2|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| |#1|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 -2182 ((-787) |#1|))) (-909 |#2|) (-509)) (T -908))
+((-1865 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))))
+(-10 -8 (-15 -1560 ((-107) |#1| |#1|)) (-15 -2663 (|#1|)) (-15 -3744 ((-3 |#1| "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3582 ((-199) |#1|)) (-15 -3582 ((-349) |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3076 ((-1074) |#1|)) (-15 -1759 ((-3 (-1074) "failed") |#1|)) (-15 -2182 (|#1| (-1074))) (-15 -3098 (|#1|)) (-15 -1194 (|#1| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 -1936 (|#1| |#1|)) (-15 -3289 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3289 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -4012 ((-623 |#2|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| |#1|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-2667 ((|#1| $) 139 (|has| |#1| (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-2594 (((-388 (-1070 $)) (-1070 $)) 130 (|has| |#1| (-831)))) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 133 (|has| |#1| (-831)))) (-3765 (((-107) $ $) 59)) (-1207 (((-517) $) 120 (|has| |#1| (-752)))) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#1| "failed") $) 178) (((-3 (-1074) "failed") $) 128 (|has| |#1| (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-952 (-517))))) (-3076 ((|#1| $) 177) (((-1074) $) 127 (|has| |#1| (-952 (-1074)))) (((-377 (-517)) $) 111 (|has| |#1| (-952 (-517)))) (((-517) $) 109 (|has| |#1| (-952 (-517))))) (-2383 (($ $ $) 55)) (-4012 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-1568 (((-3 $ "failed") $) 34)) (-3098 (($) 137 (|has| |#1| (-502)))) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2965 (((-107) $) 71)) (-2099 (((-107) $) 122 (|has| |#1| (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 146 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 145 (|has| |#1| (-808 (-349))))) (-2955 (((-107) $) 31)) (-1936 (($ $) 141)) (-1772 ((|#1| $) 143)) (-3744 (((-3 $ "failed") $) 108 (|has| |#1| (-1050)))) (-1624 (((-107) $) 121 (|has| |#1| (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1575 (($ $ $) 118 (|has| |#1| (-779)))) (-2986 (($ $ $) 117 (|has| |#1| (-779)))) (-1857 (($ (-1 |#1| |#1|) $) 169)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-2663 (($) 107 (|has| |#1| (-1050)) CONST)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-1194 (($ $) 138 (|has| |#1| (-278)))) (-3263 ((|#1| $) 135 (|has| |#1| (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) 132 (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) 131 (|has| |#1| (-831)))) (-3693 (((-388 $) $) 74)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) 170 (|has| |#1| (-478 (-1074) |#1|)))) (-2623 (((-703) $) 58)) (-1986 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-1699 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1074)) 164 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 163 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 162 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 161 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3691 (($ $) 140)) (-1783 ((|#1| $) 142)) (-3582 (((-814 (-517)) $) 148 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 147 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-937))) (((-199) $) 123 (|has| |#1| (-937)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 134 (-1651 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1074)) 129 (|has| |#1| (-952 (-1074))))) (-1589 (((-3 $ "failed") $) 126 (-3763 (|has| |#1| (-132)) (-1651 (|has| $ (-132)) (|has| |#1| (-831)))))) (-1865 (((-703)) 29)) (-3112 ((|#1| $) 136 (|has| |#1| (-502)))) (-3767 (((-107) $ $) 39)) (-1221 (($ $) 119 (|has| |#1| (-752)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1074)) 160 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 159 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 158 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 157 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1593 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1649 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+(((-909 |#1|) (-1185) (-509)) (T -909))
+((-1649 (*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1936 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-3691 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-1194 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-3098 (*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))))
+(-13 (-333) (-37 |t#1|) (-952 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-806 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1649 ($ |t#1| |t#1|)) (-15 -1772 (|t#1| $)) (-15 -1783 (|t#1| $)) (-15 -1936 ($ $)) (-15 -3691 ($ $)) (IF (|has| |t#1| (-1050)) (-6 (-1050)) |noBranch|) (IF (|has| |t#1| (-952 (-517))) (PROGN (-6 (-952 (-517))) (-6 (-952 (-377 (-517))))) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-952 (-1074))) (-6 (-952 (-1074))) |noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -2667 (|t#1| $)) (-15 -1194 ($ $))) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3098 ($)) (-15 -3112 (|t#1| $)) (-15 -3263 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-937)) ((-558 (-349)) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3763 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) |has| |#1| (-831)) ((-842) . T) ((-937) |has| |#1| (-937)) ((-952 (-377 (-517))) |has| |#1| (-952 (-517))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-1074)) |has| |#1| (-952 (-1074))) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-1050)) ((-1109) . T) ((-1113) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1893 (($ (-1041 |#1| |#2|)) 11)) (-1813 (((-1041 |#1| |#2|) $) 12)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1986 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2182 (((-787) $) NIL)) (-2297 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL)))
+(((-910 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1893 ($ (-1041 |#1| |#2|))) (-15 -1813 ((-1041 |#1| |#2|) $)) (-15 -1986 (|#2| $ (-214 |#1| |#2|))))) (-843) (-333)) (T -910))
+((-1893 (*1 *1 *2) (-12 (-5 *2 (-1041 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-1041 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1893 ($ (-1041 |#1| |#2|))) (-15 -1813 ((-1041 |#1| |#2|) $)) (-15 -1986 (|#2| $ (-214 |#1| |#2|)))))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) 8)) (-3473 (($) 7 T CONST)) (-1942 (($ $) 46)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-2542 (((-703) $) 45)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1376 ((|#1| $) 44)) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-2813 ((|#1| |#1| $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-2490 ((|#1| $) 47)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 42)) (-2665 ((|#1| $) 43)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-911 |#1|) (-1185) (-1109)) (T -911))
+((-2813 (*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))) (-1942 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))) (-2542 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4183) (-15 -2813 (|t#1| |t#1| $)) (-15 -2490 (|t#1| $)) (-15 -1942 ($ $)) (-15 -2542 ((-703) $)) (-15 -1376 (|t#1| $)) (-15 -2665 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-2745 (((-107) $) 42)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3076 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-1422 (((-3 (-377 (-517)) "failed") $) 78)) (-2712 (((-107) $) 72)) (-4078 (((-377 (-517)) $) 76)) (-2955 (((-107) $) 41)) (-2289 ((|#2| $) 22)) (-1857 (($ (-1 |#2| |#2|) $) 19)) (-4123 (($ $) 61)) (-1699 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3582 (((-493) $) 67)) (-2013 (($ $) 17)) (-2182 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-1865 (((-703)) 10)) (-1221 ((|#2| $) 71)) (-1539 (((-107) $ $) 25)) (-1560 (((-107) $ $) 69)) (-1637 (($ $) 29) (($ $ $) 28)) (-1626 (($ $ $) 26)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-912 |#1| |#2|) (-10 -8 (-15 -2182 (|#1| (-377 (-517)))) (-15 -1560 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -4123 (|#1| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -1221 (|#2| |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -2182 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 -2955 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2745 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1626 (|#1| |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|))) (-913 |#2|) (-156)) (T -912))
+((-1865 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))))
+(-10 -8 (-15 -2182 (|#1| (-377 (-517)))) (-15 -1560 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -4123 (|#1| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -1221 (|#2| |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -2182 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 -2955 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2745 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1626 (|#1| |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1759 (((-3 (-517) "failed") $) 119 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3076 (((-517) $) 120 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 115)) (-4012 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-1568 (((-3 $ "failed") $) 34)) (-3720 ((|#1| $) 80)) (-1422 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-2712 (((-107) $) 78 (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-2626 (($ |#1| |#1| |#1| |#1|) 81)) (-2955 (((-107) $) 31)) (-2289 ((|#1| $) 82)) (-1575 (($ $ $) 68 (|has| |#1| (-779)))) (-2986 (($ $ $) 67 (|has| |#1| (-779)))) (-1857 (($ (-1 |#1| |#1|) $) 91)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 73 (|has| |#1| (-333)))) (-3759 ((|#1| $) 83)) (-3967 ((|#1| $) 84)) (-3830 ((|#1| $) 85)) (-3094 (((-1021) $) 10)) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) 92 (|has| |#1| (-478 (-1074) |#1|)))) (-1986 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-1699 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1074)) 110 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 109 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 108 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 107 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3582 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-2013 (($ $) 86)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3763 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1589 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-1221 ((|#1| $) 79 (|has| |#1| (-970)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1074)) 106 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 105 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 104 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 103 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1593 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333)))))
+(((-913 |#1|) (-1185) (-156)) (T -913))
+((-2013 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2626 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1221 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1422 (*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
+(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -2013 ($ $)) (-15 -3830 (|t#1| $)) (-15 -3967 (|t#1| $)) (-15 -3759 (|t#1| $)) (-15 -2289 (|t#1| $)) (-15 -2626 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3720 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -1221 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -2712 ((-107) $)) (-15 -4078 ((-377 (-517)) $)) (-15 -1422 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3763 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 (-377 (-517))) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-333)) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1857 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#3| (-1 |#4| |#2|) |#1|))) (-913 |#2|) (-156) (-913 |#4|) (-156)) (T -914))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))))
+(-10 -7 (-15 -1857 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3720 ((|#1| $) 12)) (-1422 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-2712 (((-107) $) NIL (|has| |#1| (-502)))) (-4078 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2626 (($ |#1| |#1| |#1| |#1|) 16)) (-2955 (((-107) $) NIL)) (-2289 ((|#1| $) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-3759 ((|#1| $) 15)) (-3967 ((|#1| $) 14)) (-3830 ((|#1| $) 13)) (-3094 (((-1021) $) NIL)) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|)))) (-1986 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1699 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2013 (($ $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-1221 ((|#1| $) NIL (|has| |#1| (-970)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 8 T CONST)) (-2306 (($) 10 T CONST)) (-2553 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333)))))
(((-915 |#1|) (-913 |#1|) (-156)) (T -915))
NIL
(-913 |#1|)
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-3186 (($ $) 20)) (-1692 (($ (-583 |#1|)) 29)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-2195 (((-703) $) 22)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 24)) (-1710 (($ |#1| $) 15)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2578 ((|#1| $) 23)) (-4006 ((|#1| $) 19)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3838 ((|#1| |#1| $) 14)) (-3619 (((-107) $) 17)) (-1746 (($) NIL)) (-3129 ((|#1| $) 18)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-2028 ((|#1| $) 26)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-916 |#1|) (-13 (-911 |#1|) (-10 -8 (-15 -1692 ($ (-583 |#1|))))) (-1003)) (T -916))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3)))))
-(-13 (-911 |#1|) (-10 -8 (-15 -1692 ($ (-583 |#1|)))))
-((-3766 (($ $) 12)) (-3824 (($ $ (-517)) 13)))
-(((-917 |#1|) (-10 -8 (-15 -3766 (|#1| |#1|)) (-15 -3824 (|#1| |#1| (-517)))) (-918)) (T -917))
-NIL
-(-10 -8 (-15 -3766 (|#1| |#1|)) (-15 -3824 (|#1| |#1| (-517))))
-((-3766 (($ $) 6)) (-3824 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8)))
-(((-918) (-1184)) (T -918))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) (-3824 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))) (-3766 (*1 *1 *1) (-4 *1 (-918))))
-(-13 (-10 -8 (-15 -3766 ($ $)) (-15 -3824 ($ $ (-517))) (-15 ** ($ $ (-377 (-517))))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-1213 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1472 (((-377 |#2|) $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) NIL)) (-1639 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) NIL) (($ (-1153 (-377 |#2|))) 70) (($ (-1153 |#2|) |#2|) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-3843 (((-1153 $) (-1153 $)) NIL)) (-3225 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3407 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) NIL)) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) NIL)) (-2666 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2497 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-3534 (($ $) NIL)) (-3442 (($) NIL (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) NIL)) (-1790 (((-703)) NIL)) (-1870 (((-1153 $) (-1153 $)) NIL)) (-1506 (((-377 |#2|) $) NIL)) (-2043 (((-583 (-874 |#1|)) (-1073)) NIL (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) NIL)) (-1909 (((-623 (-377 |#2|))) 52)) (-2041 (((-623 (-377 |#2|))) 51)) (-4118 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 71)) (-3580 (((-623 (-377 |#2|))) 50)) (-1872 (((-623 (-377 |#2|))) 49)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 77)) (-1924 (((-1153 $)) 46)) (-2216 (((-1153 $)) 45)) (-2491 (((-107) $) NIL)) (-3291 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2836 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) 63)) (-3206 (((-1021) $) NIL)) (-1786 (((-703)) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) NIL)) (-3259 (((-3 |#2| "failed")) 62)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) NIL) (((-377 |#2|)) 42)) (-1620 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 53)) (-1766 (($) NIL (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1153 $)) NIL)) (-3645 (((-1153 (-377 |#2|)) $) NIL) (($ (-1153 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1328 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) NIL)) (-2961 (((-703)) NIL)) (-2025 (((-107)) 60)) (-2992 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-1753 (((-1153 $)) 124)) (-3329 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4065 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2396 (($) 94 T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
-(((-919 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1112) (-1130 |#1|) (-1130 (-377 |#2|)) (-377 |#2|) (-703)) (T -919))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1799 (((-107) $ (-703)) NIL)) (-3473 (($) NIL T CONST)) (-1942 (($ $) 20)) (-3643 (($ (-583 |#1|)) 29)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-2542 (((-703) $) 22)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1835 ((|#1| $) 24)) (-3816 (($ |#1| $) 15)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1376 ((|#1| $) 23)) (-4049 ((|#1| $) 19)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-2813 ((|#1| |#1| $) 14)) (-1546 (((-107) $) 17)) (-1326 (($) NIL)) (-2490 ((|#1| $) 18)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) NIL)) (-2665 ((|#1| $) 26)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-916 |#1|) (-13 (-911 |#1|) (-10 -8 (-15 -3643 ($ (-583 |#1|))))) (-1003)) (T -916))
+((-3643 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3)))))
+(-13 (-911 |#1|) (-10 -8 (-15 -3643 ($ (-583 |#1|)))))
+((-3706 (($ $) 12)) (-2666 (($ $ (-517)) 13)))
+(((-917 |#1|) (-10 -8 (-15 -3706 (|#1| |#1|)) (-15 -2666 (|#1| |#1| (-517)))) (-918)) (T -917))
+NIL
+(-10 -8 (-15 -3706 (|#1| |#1|)) (-15 -2666 (|#1| |#1| (-517))))
+((-3706 (($ $) 6)) (-2666 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8)))
+(((-918) (-1185)) (T -918))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) (-2666 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))) (-3706 (*1 *1 *1) (-4 *1 (-918))))
+(-13 (-10 -8 (-15 -3706 ($ $)) (-15 -2666 ($ $ (-517))) (-15 ** ($ $ (-377 (-517))))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2800 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-3209 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1452 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3129 (((-623 (-377 |#2|)) (-1154 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1470 (((-377 |#2|) $) NIL)) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3490 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3765 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1598 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-3392 (((-107)) NIL)) (-1744 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-3291 (($ (-1154 (-377 |#2|)) (-1154 $)) NIL) (($ (-1154 (-377 |#2|))) 70) (($ (-1154 |#2|) |#2|) NIL)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2148 (((-623 (-377 |#2|)) $ (-1154 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-377 |#2|))) (|:| |vec| (-1154 (-377 |#2|)))) (-623 $) (-1154 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-2882 (((-1154 $) (-1154 $)) NIL)) (-2521 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-1568 (((-3 $ "failed") $) NIL)) (-3154 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-1277 (((-107) |#1| |#1|) NIL)) (-3795 (((-843)) NIL)) (-3098 (($) NIL (|has| (-377 |#2|) (-338)))) (-2147 (((-107)) NIL)) (-2644 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2366 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-3039 (($ $) NIL)) (-3493 (($) NIL (|has| (-377 |#2|) (-319)))) (-1337 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2990 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-2965 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1921 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-2955 (((-107) $) NIL)) (-2812 (((-703)) NIL)) (-1209 (((-1154 $) (-1154 $)) NIL)) (-2289 (((-377 |#2|) $) NIL)) (-2851 (((-583 (-874 |#1|)) (-1074)) NIL (|has| |#1| (-333)))) (-3744 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3523 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-2903 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-2511 ((|#3| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3865 (((-1057) $) NIL)) (-3987 (((-623 (-377 |#2|))) 52)) (-2823 (((-623 (-377 |#2|))) 51)) (-4123 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3612 (($ (-1154 |#2|) |#2|) 71)) (-2267 (((-623 (-377 |#2|))) 50)) (-1235 (((-623 (-377 |#2|))) 49)) (-4092 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2752 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) 77)) (-4135 (((-1154 $)) 46)) (-3993 (((-1154 $)) 45)) (-1780 (((-107) $) NIL)) (-1663 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2663 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3353 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3014 (((-3 |#2| "failed")) 63)) (-3094 (((-1021) $) NIL)) (-2789 (((-703)) NIL)) (-3107 (($) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| (-377 |#2|) (-333)))) (-1396 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3693 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2349 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2623 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1986 ((|#1| $ |#1| |#1|) NIL)) (-1357 (((-3 |#2| "failed")) 62)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-4042 (((-377 |#2|) (-1154 $)) NIL) (((-377 |#2|)) 42)) (-3654 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-1699 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-703)) NIL (-3763 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3763 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3680 (((-623 (-377 |#2|)) (-1154 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-1457 ((|#3|) 53)) (-3788 (($) NIL (|has| (-377 |#2|) (-319)))) (-2575 (((-1154 (-377 |#2|)) $ (-1154 $)) NIL) (((-623 (-377 |#2|)) (-1154 $) (-1154 $)) NIL) (((-1154 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1154 $)) NIL)) (-3582 (((-1154 (-377 |#2|)) $) NIL) (($ (-1154 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-4063 (((-1154 $) (-1154 $)) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3763 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1589 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3804 ((|#3| $) NIL)) (-1865 (((-703)) NIL)) (-2631 (((-107)) 60)) (-3916 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-3809 (((-1154 $)) 124)) (-3767 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3385 (((-107)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2297 (($) 94 T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-703)) NIL (-3763 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3763 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
+(((-919 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1113) (-1131 |#1|) (-1131 (-377 |#2|)) (-377 |#2|) (-703)) (T -919))
NIL
(-312 |#1| |#2| |#3|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1314 (((-583 (-517)) $) 54)) (-2629 (($ (-583 (-517))) 62)) (-2668 (((-517) $) 40 (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 49) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2210 (((-583 (-517)) $) 60)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) 37)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-2959 (((-1054 (-517)) $) 59)) (-2160 (($ (-583 (-517)) (-583 (-517))) 63)) (-2597 (((-517) $) 53 (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) 39)) (-3676 (((-583 (-517)) $) 61)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) 17)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) 9)) (-1949 (((-517) $) 51 (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) 14)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1667 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1654 (($ $) 15) (($ $ $) 22)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL)))
-(((-920 |#1|) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1314 ((-583 (-517)) $)) (-15 -2959 ((-1054 (-517)) $)) (-15 -2210 ((-583 (-517)) $)) (-15 -3676 ((-583 (-517)) $)) (-15 -2629 ($ (-583 (-517)))) (-15 -2160 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -920))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2629 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2160 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1314 ((-583 (-517)) $)) (-15 -2959 ((-1054 (-517)) $)) (-15 -2210 ((-583 (-517)) $)) (-15 -3676 ((-583 (-517)) $)) (-15 -2629 ($ (-583 (-517)))) (-15 -2160 ($ (-583 (-517)) (-583 (-517))))))
-((-3711 (((-51) (-377 (-517)) (-517)) 9)))
-(((-921) (-10 -7 (-15 -3711 ((-51) (-377 (-517)) (-517))))) (T -921))
-((-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921)))))
-(-10 -7 (-15 -3711 ((-51) (-377 (-517)) (-517))))
-((-1611 (((-517)) 13)) (-2980 (((-517)) 16)) (-1658 (((-1158) (-517)) 15)) (-1581 (((-517) (-517)) 17) (((-517)) 12)))
-(((-922) (-10 -7 (-15 -1581 ((-517))) (-15 -1611 ((-517))) (-15 -1581 ((-517) (-517))) (-15 -1658 ((-1158) (-517))) (-15 -2980 ((-517))))) (T -922))
-((-2980 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-922)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1611 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1581 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
-(-10 -7 (-15 -1581 ((-517))) (-15 -1611 ((-517))) (-15 -1581 ((-517) (-517))) (-15 -1658 ((-1158) (-517))) (-15 -2980 ((-517))))
-((-3432 (((-388 |#1|) |#1|) 40)) (-3755 (((-388 |#1|) |#1|) 39)))
-(((-923 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|))) (-1130 (-377 (-517)))) (T -923))
-((-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))))
-(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|)))
-((-1256 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-1355 (((-107) |#1|) 13)) (-3364 (((-377 (-517)) |#1|) 9)))
-(((-924 |#1|) (-10 -7 (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|))) (-952 (-377 (-517)))) (T -924))
-((-1256 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))) (-3364 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
-(-10 -7 (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)))
-((-2411 ((|#2| $ "value" |#2|) 12)) (-1449 ((|#2| $ "value") 10)) (-2732 (((-107) $ $) 18)))
-(((-925 |#1| |#2|) (-10 -8 (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -1449 (|#2| |#1| "value"))) (-926 |#2|) (-1108)) (T -925))
-NIL
-(-10 -8 (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -1449 (|#2| |#1| "value")))
-((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-926 |#1|) (-1184) (-1108)) (T -926))
-((-1479 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-3063 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-2459 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))) (-2732 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1272 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-4040 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4181)) (-4 *1 (-926 *3)) (-4 *3 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-1918 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))))
-(-13 (-456 |t#1|) (-10 -8 (-15 -1479 ((-583 $) $)) (-15 -3063 ((-583 $) $)) (-15 -1763 ((-107) $)) (-15 -3199 (|t#1| $)) (-15 -1449 (|t#1| $ "value")) (-15 -2655 ((-107) $)) (-15 -3992 ((-583 |t#1|) $)) (-15 -2459 ((-517) $ $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2732 ((-107) $ $)) (-15 -1272 ((-107) $ $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -4040 ($ $ (-583 $))) (-15 -2411 (|t#1| $ "value" |t#1|)) (-15 -1918 (|t#1| $ |t#1|))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-3766 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) 23) (((-3 $ "failed") (-1069 $) (-843)) 28)) (-3824 (($ $ (-517)) 49)) (-2961 (((-703)) 16)) (-3995 (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 (-377 (-517)))) 54) (((-583 $) (-1069 (-517))) 59) (((-583 $) (-874 $)) 63) (((-583 $) (-874 (-377 (-517)))) 67) (((-583 $) (-874 (-517))) 71)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47)))
-(((-927 |#1|) (-10 -8 (-15 -3766 (|#1| (-517))) (-15 -3766 (|#1| (-377 (-517)))) (-15 -3766 (|#1| |#1| (-703))) (-15 -3995 ((-583 |#1|) (-874 (-517)))) (-15 -3995 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-874 |#1|))) (-15 -3995 ((-583 |#1|) (-1069 (-517)))) (-15 -3995 ((-583 |#1|) (-1069 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-1069 |#1|))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3824 (|#1| |#1| (-517))) (-15 -3766 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843)))) (-928)) (T -927))
-((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))))
-(-10 -8 (-15 -3766 (|#1| (-517))) (-15 -3766 (|#1| (-377 (-517)))) (-15 -3766 (|#1| |#1| (-703))) (-15 -3995 ((-583 |#1|) (-874 (-517)))) (-15 -3995 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-874 |#1|))) (-15 -3995 ((-583 |#1|) (-1069 (-517)))) (-15 -3995 ((-583 |#1|) (-1069 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-1069 |#1|))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3824 (|#1| |#1| (-517))) (-15 -3766 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 89)) (-1213 (($ $) 90)) (-2454 (((-107) $) 92)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 109)) (-2759 (((-388 $) $) 110)) (-3766 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-1707 (((-107) $ $) 100)) (-3709 (((-517) $) 127)) (-3092 (($) 17 T CONST)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) 67) (((-3 $ "failed") (-1069 $) (-843)) 66)) (-1772 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3189 (((-517) $) 86 (|has| (-377 (-517)) (-952 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 80)) (-1610 (($ $ (-787)) 56)) (-4144 (($ $ (-787)) 55)) (-2518 (($ $ $) 104)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 103)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 98)) (-3849 (((-107) $) 111)) (-3556 (((-107) $) 125)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 72)) (-2475 (((-107) $) 126)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-2967 (($ $ $) 124)) (-3099 (($ $ $) 123)) (-3928 (((-3 (-1069 $) "failed") $) 68)) (-3326 (((-3 (-787) "failed") $) 70)) (-1315 (((-3 (-1069 $) "failed") $) 69)) (-1365 (($ (-583 $)) 96) (($ $ $) 95)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 112)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 97)) (-1401 (($ (-583 $)) 94) (($ $ $) 93)) (-3755 (((-388 $) $) 108)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 105)) (-2476 (((-3 $ "failed") $ $) 88)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-3146 (((-703) $) 101)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 102)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 91)) (-3383 (((-377 (-517)) $ $) 54)) (-3995 (((-583 $) (-1069 $)) 65) (((-583 $) (-1069 (-377 (-517)))) 64) (((-583 $) (-1069 (-517))) 63) (((-583 $) (-874 $)) 62) (((-583 $) (-874 (-377 (-517)))) 61) (((-583 $) (-874 (-517))) 60)) (-3710 (($ $) 128)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 121)) (-1583 (((-107) $ $) 120)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 122)) (-1572 (((-107) $ $) 119)) (-1667 (($ $ $) 118)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74)))
-(((-928) (-1184)) (T -928))
-((-3766 (*1 *1 *1) (-4 *1 (-928))) (-3326 (*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))) (-1315 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))) (-3928 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))) (-3267 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) (-3267 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) (-1610 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-4144 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-3383 (*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))))
-(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-918) (-10 -8 (-15 -3326 ((-3 (-787) "failed") $)) (-15 -1315 ((-3 (-1069 $) "failed") $)) (-15 -3928 ((-3 (-1069 $) "failed") $)) (-15 -3267 ((-3 $ "failed") (-1069 $) (-843) (-787))) (-15 -3267 ((-3 $ "failed") (-1069 $) (-843))) (-15 -3995 ((-583 $) (-1069 $))) (-15 -3995 ((-583 $) (-1069 (-377 (-517))))) (-15 -3995 ((-583 $) (-1069 (-517)))) (-15 -3995 ((-583 $) (-874 $))) (-15 -3995 ((-583 $) (-874 (-377 (-517))))) (-15 -3995 ((-583 $) (-874 (-517)))) (-15 -3766 ($ $ (-703))) (-15 -3766 ($ $)) (-15 -3766 ($ (-377 (-517)))) (-15 -3766 ($ (-517))) (-15 -1610 ($ $ (-787))) (-15 -4144 ($ $ (-787))) (-15 -3383 ((-377 (-517)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 (-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 (-517) (-517)) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 (-517)) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) |has| (-377 (-517)) (-952 (-517))) ((-967 (-377 (-517))) . T) ((-967 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
-((-3991 (((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -3991 ((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-27) (-400 |#1|))) (T -929))
-((-3991 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4)))))
-(-10 -7 (-15 -3991 ((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3028 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
-(((-930 |#1| |#2|) (-10 -7 (-15 -3028 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-27) (-400 |#1|))) (T -930))
-((-3028 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4)))))
-(-10 -7 (-15 -3028 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-1773 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-2431 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 56)) (-1618 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 61)))
-(((-931 |#1| |#2|) (-10 -7 (-15 -2431 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1618 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -1773 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -931))
-((-1773 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))) (-1618 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))) (-2431 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -2431 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1618 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -1773 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|))))
-((-3896 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-2781 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32)))
-(((-932 |#1| |#2|) (-10 -7 (-15 -3896 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2781 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -932))
-((-2781 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))) (-3896 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -3896 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2781 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))))
-((-3601 (((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517))))) 37)) (-3290 (((-1 |#1|) (-1005 |#1|)) 45)) (-3877 (((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517)) 34)))
-(((-933 |#1|) (-10 -7 (-15 -3290 ((-1 |#1|) (-1005 |#1|))) (-15 -3601 ((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517)))))) (-15 -3877 ((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517)))) (-1003)) (T -933))
-((-3877 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 *6)) (-5 *4 (-1153 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3199 *4) (|:| -2932 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))))
-(-10 -7 (-15 -3290 ((-1 |#1|) (-1005 |#1|))) (-15 -3601 ((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517)))))) (-15 -3877 ((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517))))
-((-3972 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -934))
-((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-4 *4 (-1130 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3437 (((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 31) (((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 28)) (-3813 (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 32) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|) 27)) (-3632 (((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) 19)) (-2555 (((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 16)))
-(((-935 |#1|) (-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -2555 ((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3632 ((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))))) (-1130 (-517))) (T -935))
-((-3632 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))) (-3437 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) (-3437 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-377 (-517))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))))
-(-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -2555 ((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3632 ((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))))
-((-3437 (((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 35) (((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 32)) (-3813 (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 28) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|) 24)))
-(((-936 |#1|) (-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-1130 (-377 (-517)))) (T -936))
-((-3437 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) (-3437 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *5)) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *4) (|:| -3652 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))))
-(-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))))
-((-3645 (((-199) $) 6) (((-349) $) 9)))
-(((-937) (-1184)) (T -937))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2875 (((-583 (-517)) $) 54)) (-3599 (($ (-583 (-517))) 62)) (-2667 (((-517) $) 40 (|has| (-517) (-278)))) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL (|has| (-517) (-752)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) 49) (((-3 (-1074) "failed") $) NIL (|has| (-517) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-952 (-517))))) (-3076 (((-517) $) NIL) (((-1074) $) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2383 (($ $ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3098 (($) NIL (|has| (-517) (-502)))) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-3933 (((-583 (-517)) $) 60)) (-2099 (((-107) $) NIL (|has| (-517) (-752)))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL)) (-1772 (((-517) $) 37)) (-3744 (((-3 $ "failed") $) NIL (|has| (-517) (-1050)))) (-1624 (((-107) $) NIL (|has| (-517) (-752)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| (-517) (-779)))) (-1857 (($ (-1 (-517) (-517)) $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL)) (-2663 (($) NIL (|has| (-517) (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1194 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-1848 (((-1055 (-517)) $) 59)) (-1700 (($ (-583 (-517)) (-583 (-517))) 63)) (-3263 (((-517) $) 53 (|has| (-517) (-502)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-3693 (((-388 $) $) NIL)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1979 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1074)) (-583 (-517))) NIL (|has| (-517) (-478 (-1074) (-517)))) (($ $ (-1074) (-517)) NIL (|has| (-517) (-478 (-1074) (-517))))) (-2623 (((-703) $) NIL)) (-1986 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-3691 (($ $) NIL)) (-1783 (((-517) $) 39)) (-3895 (((-583 (-517)) $) 61)) (-3582 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2182 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1074)) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) 17)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-1865 (((-703)) 9)) (-3112 (((-517) $) 51 (|has| (-517) (-502)))) (-3767 (((-107) $ $) NIL)) (-1221 (($ $) NIL (|has| (-517) (-752)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 10 T CONST)) (-2306 (($) 12 T CONST)) (-2553 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1593 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1539 (((-107) $ $) 14)) (-1582 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1560 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1649 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1637 (($ $) 15) (($ $ $) 22)) (-1626 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL)))
+(((-920 |#1|) (-13 (-909 (-517)) (-10 -8 (-15 -2182 ((-377 (-517)) $)) (-15 -1194 ((-377 (-517)) $)) (-15 -2875 ((-583 (-517)) $)) (-15 -1848 ((-1055 (-517)) $)) (-15 -3933 ((-583 (-517)) $)) (-15 -3895 ((-583 (-517)) $)) (-15 -3599 ($ (-583 (-517)))) (-15 -1700 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -920))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1194 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-3599 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1700 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(-13 (-909 (-517)) (-10 -8 (-15 -2182 ((-377 (-517)) $)) (-15 -1194 ((-377 (-517)) $)) (-15 -2875 ((-583 (-517)) $)) (-15 -1848 ((-1055 (-517)) $)) (-15 -3933 ((-583 (-517)) $)) (-15 -3895 ((-583 (-517)) $)) (-15 -3599 ($ (-583 (-517)))) (-15 -1700 ($ (-583 (-517)) (-583 (-517))))))
+((-1233 (((-51) (-377 (-517)) (-517)) 9)))
+(((-921) (-10 -7 (-15 -1233 ((-51) (-377 (-517)) (-517))))) (T -921))
+((-1233 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921)))))
+(-10 -7 (-15 -1233 ((-51) (-377 (-517)) (-517))))
+((-1598 (((-517)) 13)) (-3806 (((-517)) 16)) (-2876 (((-1159) (-517)) 15)) (-2961 (((-517) (-517)) 17) (((-517)) 12)))
+(((-922) (-10 -7 (-15 -2961 ((-517))) (-15 -1598 ((-517))) (-15 -2961 ((-517) (-517))) (-15 -2876 ((-1159) (-517))) (-15 -3806 ((-517))))) (T -922))
+((-3806 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-922)))) (-2961 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1598 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-2961 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
+(-10 -7 (-15 -2961 ((-517))) (-15 -1598 ((-517))) (-15 -2961 ((-517) (-517))) (-15 -2876 ((-1159) (-517))) (-15 -3806 ((-517))))
+((-3397 (((-388 |#1|) |#1|) 40)) (-3693 (((-388 |#1|) |#1|) 39)))
+(((-923 |#1|) (-10 -7 (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3397 ((-388 |#1|) |#1|))) (-1131 (-377 (-517)))) (T -923))
+((-3397 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1131 (-377 (-517)))))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1131 (-377 (-517)))))))
+(-10 -7 (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3397 ((-388 |#1|) |#1|)))
+((-1422 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-2712 (((-107) |#1|) 13)) (-4078 (((-377 (-517)) |#1|) 9)))
+(((-924 |#1|) (-10 -7 (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|))) (-952 (-377 (-517)))) (T -924))
+((-1422 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))) (-2712 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))) (-4078 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
+(-10 -7 (-15 -4078 ((-377 (-517)) |#1|)) (-15 -2712 ((-107) |#1|)) (-15 -1422 ((-3 (-377 (-517)) "failed") |#1|)))
+((-2307 ((|#2| $ "value" |#2|) 12)) (-1986 ((|#2| $ "value") 10)) (-3172 (((-107) $ $) 18)))
+(((-925 |#1| |#2|) (-10 -8 (-15 -2307 (|#2| |#1| "value" |#2|)) (-15 -3172 ((-107) |#1| |#1|)) (-15 -1986 (|#2| |#1| "value"))) (-926 |#2|) (-1109)) (T -925))
+NIL
+(-10 -8 (-15 -2307 (|#2| |#1| "value" |#2|)) (-15 -3172 ((-107) |#1| |#1|)) (-15 -1986 (|#2| |#1| "value")))
+((-2571 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3088 ((|#1| $) 48)) (-1799 (((-107) $ (-703)) 8)) (-4072 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3473 (($) 7 T CONST)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 50)) (-1703 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3617 (((-583 |#1|) $) 45)) (-3762 (((-107) $) 49)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ "value") 47)) (-1482 (((-517) $ $) 44)) (-2562 (((-107) $) 46)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3935 (((-583 $) $) 51)) (-3172 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-926 |#1|) (-1185) (-1109)) (T -926))
+((-3935 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-3200 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1109)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1109)))) (-2562 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))) (-1482 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-517)))) (-3172 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1703 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1414 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4184)) (-4 *1 (-926 *3)) (-4 *3 (-1109)))) (-2307 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4184)) (-4 *1 (-926 *2)) (-4 *2 (-1109)))) (-4072 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-926 *2)) (-4 *2 (-1109)))))
+(-13 (-456 |t#1|) (-10 -8 (-15 -3935 ((-583 $) $)) (-15 -3200 ((-583 $) $)) (-15 -3762 ((-107) $)) (-15 -3088 (|t#1| $)) (-15 -1986 (|t#1| $ "value")) (-15 -2562 ((-107) $)) (-15 -3617 ((-583 |t#1|) $)) (-15 -1482 ((-517) $ $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3172 ((-107) $ $)) (-15 -1703 ((-107) $ $))) |noBranch|) (IF (|has| $ (-6 -4184)) (PROGN (-15 -1414 ($ $ (-583 $))) (-15 -2307 (|t#1| $ "value" |t#1|)) (-15 -4072 (|t#1| $ |t#1|))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-3706 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-1434 (((-3 $ "failed") (-1070 $) (-843) (-787)) 23) (((-3 $ "failed") (-1070 $) (-843)) 28)) (-2666 (($ $ (-517)) 49)) (-1865 (((-703)) 16)) (-3964 (((-583 $) (-1070 $)) NIL) (((-583 $) (-1070 (-377 (-517)))) 54) (((-583 $) (-1070 (-517))) 59) (((-583 $) (-874 $)) 63) (((-583 $) (-874 (-377 (-517)))) 67) (((-583 $) (-874 (-517))) 71)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47)))
+(((-927 |#1|) (-10 -8 (-15 -3706 (|#1| (-517))) (-15 -3706 (|#1| (-377 (-517)))) (-15 -3706 (|#1| |#1| (-703))) (-15 -3964 ((-583 |#1|) (-874 (-517)))) (-15 -3964 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3964 ((-583 |#1|) (-874 |#1|))) (-15 -3964 ((-583 |#1|) (-1070 (-517)))) (-15 -3964 ((-583 |#1|) (-1070 (-377 (-517))))) (-15 -3964 ((-583 |#1|) (-1070 |#1|))) (-15 -1434 ((-3 |#1| "failed") (-1070 |#1|) (-843))) (-15 -1434 ((-3 |#1| "failed") (-1070 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2666 (|#1| |#1| (-517))) (-15 -3706 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1865 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843)))) (-928)) (T -927))
+((-1865 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))))
+(-10 -8 (-15 -3706 (|#1| (-517))) (-15 -3706 (|#1| (-377 (-517)))) (-15 -3706 (|#1| |#1| (-703))) (-15 -3964 ((-583 |#1|) (-874 (-517)))) (-15 -3964 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3964 ((-583 |#1|) (-874 |#1|))) (-15 -3964 ((-583 |#1|) (-1070 (-517)))) (-15 -3964 ((-583 |#1|) (-1070 (-377 (-517))))) (-15 -3964 ((-583 |#1|) (-1070 |#1|))) (-15 -1434 ((-3 |#1| "failed") (-1070 |#1|) (-843))) (-15 -1434 ((-3 |#1| "failed") (-1070 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2666 (|#1| |#1| (-517))) (-15 -3706 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1865 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 89)) (-3209 (($ $) 90)) (-1452 (((-107) $) 92)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 109)) (-3490 (((-388 $) $) 110)) (-3706 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-3765 (((-107) $ $) 100)) (-1207 (((-517) $) 127)) (-3473 (($) 17 T CONST)) (-1434 (((-3 $ "failed") (-1070 $) (-843) (-787)) 67) (((-3 $ "failed") (-1070 $) (-843)) 66)) (-1759 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3076 (((-517) $) 86 (|has| (-377 (-517)) (-952 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 80)) (-1191 (($ $ (-787)) 56)) (-2808 (($ $ (-787)) 55)) (-2383 (($ $ $) 104)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 103)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 98)) (-2965 (((-107) $) 111)) (-2099 (((-107) $) 125)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 72)) (-1624 (((-107) $) 126)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-1575 (($ $ $) 124)) (-2986 (($ $ $) 123)) (-1477 (((-3 (-1070 $) "failed") $) 68)) (-3726 (((-3 (-787) "failed") $) 70)) (-2890 (((-3 (-1070 $) "failed") $) 69)) (-1368 (($ (-583 $)) 96) (($ $ $) 95)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 112)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 97)) (-1396 (($ (-583 $)) 94) (($ $ $) 93)) (-3693 (((-388 $) $) 108)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 105)) (-2349 (((-3 $ "failed") $ $) 88)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-2623 (((-703) $) 101)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 102)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 91)) (-3284 (((-377 (-517)) $ $) 54)) (-3964 (((-583 $) (-1070 $)) 65) (((-583 $) (-1070 (-377 (-517)))) 64) (((-583 $) (-1070 (-517))) 63) (((-583 $) (-874 $)) 62) (((-583 $) (-874 (-377 (-517)))) 61) (((-583 $) (-874 (-517))) 60)) (-1221 (($ $) 128)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1593 (((-107) $ $) 121)) (-1570 (((-107) $ $) 120)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 122)) (-1560 (((-107) $ $) 119)) (-1649 (($ $ $) 118)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74)))
+(((-928) (-1185)) (T -928))
+((-3706 (*1 *1 *1) (-4 *1 (-928))) (-3726 (*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))) (-2890 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-928)))) (-1477 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-928)))) (-1434 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) (-1434 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1070 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1070 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3706 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) (-1191 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-2808 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-3284 (*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))))
+(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-918) (-10 -8 (-15 -3726 ((-3 (-787) "failed") $)) (-15 -2890 ((-3 (-1070 $) "failed") $)) (-15 -1477 ((-3 (-1070 $) "failed") $)) (-15 -1434 ((-3 $ "failed") (-1070 $) (-843) (-787))) (-15 -1434 ((-3 $ "failed") (-1070 $) (-843))) (-15 -3964 ((-583 $) (-1070 $))) (-15 -3964 ((-583 $) (-1070 (-377 (-517))))) (-15 -3964 ((-583 $) (-1070 (-517)))) (-15 -3964 ((-583 $) (-874 $))) (-15 -3964 ((-583 $) (-874 (-377 (-517))))) (-15 -3964 ((-583 $) (-874 (-517)))) (-15 -3706 ($ $ (-703))) (-15 -3706 ($ $)) (-15 -3706 ($ (-377 (-517)))) (-15 -3706 ($ (-517))) (-15 -1191 ($ $ (-787))) (-15 -2808 ($ $ (-787))) (-15 -3284 ((-377 (-517)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 (-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 (-517) (-517)) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 (-517)) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) |has| (-377 (-517)) (-952 (-517))) ((-967 (-377 (-517))) . T) ((-967 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
+((-3934 (((-2 (|:| |ans| |#2|) (|:| -3591 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61)))
+(((-929 |#1| |#2|) (-10 -7 (-15 -3934 ((-2 (|:| |ans| |#2|) (|:| -3591 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-27) (-400 |#1|))) (T -929))
+((-3934 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1074)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2230 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1095) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3591 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4)))))
+(-10 -7 (-15 -3934 ((-2 (|:| |ans| |#2|) (|:| -3591 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1218 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -1218 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-27) (-400 |#1|))) (T -930))
+((-1218 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1074)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2230 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1095) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4)))))
+(-10 -7 (-15 -1218 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2530 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2075 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-2312 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2090 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 56)) (-3647 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 61)))
+(((-931 |#1| |#2|) (-10 -7 (-15 -2312 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2090 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3647 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -2530 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2075 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1131 |#1|)) (T -931))
+((-2530 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1131 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2075 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))) (-3647 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))) (-2312 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2090 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -2312 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2090 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3647 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -2530 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2075 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|))))
+((-2257 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2090 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-2458 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32)))
+(((-932 |#1| |#2|) (-10 -7 (-15 -2257 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2090 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2458 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1131 |#1|)) (T -932))
+((-2458 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))) (-2257 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2090 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -2257 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2090 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2458 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))))
+((-1392 (((-1 |#1|) (-583 (-2 (|:| -3088 |#1|) (|:| -1587 (-517))))) 37)) (-1653 (((-1 |#1|) (-1005 |#1|)) 45)) (-2137 (((-1 |#1|) (-1154 |#1|) (-1154 (-517)) (-517)) 34)))
+(((-933 |#1|) (-10 -7 (-15 -1653 ((-1 |#1|) (-1005 |#1|))) (-15 -1392 ((-1 |#1|) (-583 (-2 (|:| -3088 |#1|) (|:| -1587 (-517)))))) (-15 -2137 ((-1 |#1|) (-1154 |#1|) (-1154 (-517)) (-517)))) (-1003)) (T -933))
+((-2137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *6)) (-5 *4 (-1154 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3088 *4) (|:| -1587 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))))
+(-10 -7 (-15 -1653 ((-1 |#1|) (-1005 |#1|))) (-15 -1392 ((-1 |#1|) (-583 (-2 (|:| -3088 |#1|) (|:| -1587 (-517)))))) (-15 -2137 ((-1 |#1|) (-1154 |#1|) (-1154 (-517)) (-517))))
+((-1921 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1921 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -934))
+((-1921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-4 *4 (-1131 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -1921 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3438 (((-3 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) "failed") |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) 31) (((-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517))) 28)) (-2588 (((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) 32) (((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1|) 27)) (-1683 (((-583 (-377 (-517))) (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) 19)) (-4116 (((-377 (-517)) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) 16)))
+(((-935 |#1|) (-10 -7 (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1|)) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517)))) (-15 -3438 ((-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517)))) (-15 -3438 ((-3 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) "failed") |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-15 -4116 ((-377 (-517)) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-15 -1683 ((-583 (-377 (-517))) (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))))) (-1131 (-517))) (T -935))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1131 (-517))))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1131 (-517))))) (-3438 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) (-3438 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) (-2588 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3577 *5) (|:| -3591 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-2 (|:| -3577 *5) (|:| -3591 *5))))) (-2588 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-377 (-517))))) (-2588 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))))) (-2588 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))))
+(-10 -7 (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1|)) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517)))) (-15 -3438 ((-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517)))) (-15 -3438 ((-3 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) "failed") |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-15 -4116 ((-377 (-517)) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-15 -1683 ((-583 (-377 (-517))) (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))))))
+((-3438 (((-3 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) "failed") |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) 35) (((-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517))) 32)) (-2588 (((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) 28) (((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1|) 24)))
+(((-936 |#1|) (-10 -7 (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1|)) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517)))) (-15 -3438 ((-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517)))) (-15 -3438 ((-3 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) "failed") |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))))) (-1131 (-377 (-517)))) (T -936))
+((-3438 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))))) (-3438 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *4)))) (-2588 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3577 *5) (|:| -3591 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *5)) (-5 *4 (-2 (|:| -3577 *5) (|:| -3591 *5))))) (-2588 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3577 *4) (|:| -3591 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *4)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))) (-5 *4 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))))) (-2588 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))))))
+(-10 -7 (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1|)) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2588 ((-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517)))) (-15 -3438 ((-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-377 (-517)))) (-15 -3438 ((-3 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) "failed") |#1| (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))) (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))))
+((-3582 (((-199) $) 6) (((-349) $) 9)))
+(((-937) (-1185)) (T -937))
NIL
(-13 (-558 (-199)) (-558 (-349)))
(((-558 (-199)) . T) ((-558 (-349)) . T))
-((-1674 (((-583 (-349)) (-874 (-517)) (-349)) 27) (((-583 (-349)) (-874 (-377 (-517))) (-349)) 26)) (-2047 (((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349)) 36)))
-(((-938) (-10 -7 (-15 -1674 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -1674 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -2047 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349))))) (T -938))
-((-2047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))))
-(-10 -7 (-15 -1674 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -1674 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -2047 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 70)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) 65)) (-3092 (($) NIL T CONST)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) NIL) (((-3 $ "failed") (-1069 $) (-843)) 49)) (-1772 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-3189 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-1610 (($ $ (-787)) 40)) (-4144 (($ $ (-787)) 41)) (-2518 (($ $ $) NIL)) (-2002 (((-377 (-517)) $ $) 18)) (-3621 (((-3 $ "failed") $) 83)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) 60)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-2475 (((-107) $) 63)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3928 (((-3 (-1069 $) "failed") $) 78)) (-3326 (((-3 (-787) "failed") $) 77)) (-1315 (((-3 (-1069 $) "failed") $) 75)) (-3115 (((-3 (-971 $ (-1069 $)) "failed") $) 73)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 84)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ $) 24)) (-3995 (((-583 $) (-1069 $)) 55) (((-583 $) (-1069 (-377 (-517)))) NIL) (((-583 $) (-1069 (-517))) NIL) (((-583 $) (-874 $)) NIL) (((-583 $) (-874 (-377 (-517)))) NIL) (((-583 $) (-874 (-517))) NIL)) (-2325 (($ (-971 $ (-1069 $)) (-787)) 39)) (-3710 (($ $) 19)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 28 T CONST)) (-2409 (($) 34 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 71)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 21)) (-1667 (($ $ $) 32)) (-1654 (($ $) 33) (($ $ $) 69)) (-1642 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
-(((-939 |#1|) (-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2325 ($ (-971 $ (-1069 $)) (-787))) (-15 -3115 ((-3 (-971 $ (-1069 $)) "failed") $)) (-15 -2002 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-937))) (T -939))
-((-2325 (*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1069 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))) (-3115 (*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1069 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) (-2002 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))))
-(-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2325 ($ (-971 $ (-1069 $)) (-787))) (-15 -3115 ((-3 (-971 $ (-1069 $)) "failed") $)) (-15 -2002 ((-377 (-517)) $ $))))
-((-2702 (((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -2702 (|#2| |#2| |#1|)) (-15 -2702 ((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -940))
-((-2702 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3837 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-2702 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))))
-(-10 -7 (-15 -2702 (|#2| |#2| |#1|)) (-15 -2702 ((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2356 ((|#1| $ |#1|) 14)) (-2411 ((|#1| $ |#1|) 12)) (-2651 (($ |#1|) 10)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1449 ((|#1| $) 11)) (-3126 ((|#1| $) 13)) (-2256 (((-787) $) 21 (|has| |#1| (-1003)))) (-1547 (((-107) $ $) 9)))
-(((-941 |#1|) (-13 (-1108) (-10 -8 (-15 -2651 ($ |#1|)) (-15 -1449 (|#1| $)) (-15 -2411 (|#1| $ |#1|)) (-15 -3126 (|#1| $)) (-15 -2356 (|#1| $ |#1|)) (-15 -1547 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -941))
-((-2651 (*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-3126 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-2356 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-1547 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1108)))))
-(-13 (-1108) (-10 -8 (-15 -2651 ($ |#1|)) (-15 -1449 (|#1| $)) (-15 -2411 (|#1| $ |#1|)) (-15 -3126 (|#1| $)) (-15 -2356 (|#1| $ |#1|)) (-15 -1547 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 104) (((-583 $) (-583 |#4|) (-107)) 105) (((-583 $) (-583 |#4|) (-107) (-107)) 103) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 106)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 98)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 53)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) 56)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-4063 (((-107) |#4| $) NIL)) (-1829 (((-107) |#4| $) NIL)) (-1538 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2865 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 118)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 96)) (-2068 (((-3 |#4| "failed") $) 37)) (-2117 (((-583 $) |#4| $) 79)) (-2834 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 89) (((-107) |#4| $) 51)) (-1812 (((-583 $) |#4| $) 101) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 102) (((-583 $) |#4| (-583 $)) NIL)) (-3160 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 113)) (-2474 (($ |#4| $) 69) (($ (-583 |#4|) $) 70) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 66)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 47)) (-1672 (($ $ |#4|) NIL) (((-583 $) |#4| $) 81) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 76)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3596 (((-583 $) |#4| $) 78) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-2119 (((-107) |#4| $) NIL)) (-1871 (((-107) |#3| $) 52)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-942 |#1| |#2| |#3| |#4|) (-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -942))
-((-2474 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-4029 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-2865 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
-((-3130 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-2363 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 51) (((-623 |#1|) (-623 |#1|) (-843)) 50)) (-3860 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-827 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-827 (-517)) (-517)) 62)) (-3369 (((-623 (-874 |#1|)) (-703)) 80)) (-2965 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 37 (|has| |#1| (-6 (-4182 "*")))) (((-623 |#1|) (-623 |#1|) (-843)) 35 (|has| |#1| (-6 (-4182 "*"))))))
-(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-623 |#1|) (-623 |#1|) (-843))) |noBranch|) (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |noBranch|) (-15 -3369 ((-623 (-874 |#1|)) (-703))) (-15 -2363 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -2363 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -3130 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3130 ((-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3860 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3860 ((-623 (-517)) (-583 (-517)))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-961)) (T -943))
-((-3860 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2363 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-2363 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-2965 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-2965 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-623 |#1|) (-623 |#1|) (-843))) |noBranch|) (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |noBranch|) (-15 -3369 ((-623 (-874 |#1|)) (-703))) (-15 -2363 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -2363 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -3130 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3130 ((-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3860 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3860 ((-623 (-517)) (-583 (-517)))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-583 (-517))))))
-((-4010 (((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)) 48 (|has| |#1| (-278)))) (-1313 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|)) 76 (|has| |#1| (-333)))) (-1555 (((-1153 |#1|) (-583 (-1153 |#1|)) (-517)) 90 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-1646 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843)) 82 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 79 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-3348 (((-107) (-583 (-623 |#1|))) 68 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 70 (|has| |#1| (-333)))) (-1521 (((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|)) 46 (|has| |#1| (-278)))) (-1209 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 32)) (-2510 (((-623 |#1|) (-1153 (-1153 |#1|))) 29)) (-3421 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 62 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 61 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 66 (|has| |#1| (-333)))))
-(((-944 |#1|) (-10 -7 (-15 -2510 ((-623 |#1|) (-1153 (-1153 |#1|)))) (-15 -1209 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -1521 ((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -4010 ((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))))) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -1555 ((-1153 |#1|) (-583 (-1153 |#1|)) (-517)))) |noBranch|) |noBranch|)) (-961)) (T -944))
-((-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1153 *5))) (-5 *4 (-517)) (-5 *2 (-1153 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1646 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) (-1646 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1153 (-1153 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) (-3421 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))) (-3421 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) (-3421 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1153 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))) (-1521 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1153 (-1153 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1153 *5)))) (-1209 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)))))
-(-10 -7 (-15 -2510 ((-623 |#1|) (-1153 (-1153 |#1|)))) (-15 -1209 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -1521 ((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -4010 ((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))))) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -1555 ((-1153 |#1|) (-583 (-1153 |#1|)) (-517)))) |noBranch|) |noBranch|))
-((-4003 ((|#1| (-843) |#1|) 9)))
-(((-945 |#1|) (-10 -7 (-15 -4003 (|#1| (-843) |#1|))) (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $))))) (T -945))
-((-4003 (*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $))))))))
-(-10 -7 (-15 -4003 (|#1| (-843) |#1|)))
-((-2633 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517))))) 58)) (-2159 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517))))) 48)) (-2559 (((-583 (-286 (-517))) (-623 (-377 (-874 (-517))))) 41)) (-3686 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517))))) 67)) (-3915 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-2822 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-1400 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517))))) 65)))
-(((-946) (-10 -7 (-15 -2633 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -2159 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -2559 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1400 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -3915 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2822 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3686 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))) (T -946))
-((-3686 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-2822 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946)))))
-(-10 -7 (-15 -2633 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -2159 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -2559 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1400 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -3915 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2822 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3686 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))
-((-3577 ((|#1| |#1| (-843)) 9)))
-(((-947 |#1|) (-10 -7 (-15 -3577 (|#1| |#1| (-843)))) (-13 (-1003) (-10 -8 (-15 * ($ $ $))))) (T -947))
-((-3577 (*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3577 (|#1| |#1| (-843))))
-((-2256 ((|#1| (-282)) 11) (((-1158) |#1|) 9)))
-(((-948 |#1|) (-10 -7 (-15 -2256 ((-1158) |#1|)) (-15 -2256 (|#1| (-282)))) (-1108)) (T -948))
-((-2256 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1108)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-948 *3)) (-4 *3 (-1108)))))
-(-10 -7 (-15 -2256 ((-1158) |#1|)) (-15 -2256 (|#1| (-282))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ |#4|) 25)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3216 ((|#4| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2961 (((-703)) 43)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 23 T CONST)) (-1547 (((-107) $ $) 40)) (-1654 (($ $) 31) (($ $ $) NIL)) (-1642 (($ $ $) 29)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-949 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -3225 ($ |#4|)) (-15 -2256 ($ |#4|)) (-15 -3216 (|#4| $)))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|) (-583 |#4|)) (T -949))
-((-3225 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3216 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
-(-13 (-156) (-37 |#1|) (-10 -8 (-15 -3225 ($ |#4|)) (-15 -2256 ($ |#4|)) (-15 -3216 (|#4| $))))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1073) (-1073)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2106 (((-107) (-107)) 39)) (-3816 (((-107) (-107)) 38)) (-2411 (((-51) $ (-1073) (-51)) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1073) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1073) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1073)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1073) $) NIL (|has| (-1073) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1073) $) NIL (|has| (-1073) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1073)) $) 34)) (-2793 (((-107) (-1073) $) NIL)) (-3309 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1857 (((-583 (-1073)) $) NIL)) (-4088 (((-107) (-1073) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-1647 (((-51) $) NIL (|has| (-1073) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1073)) 35) (((-51) $ (-1073) (-51)) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-2256 (((-787) $) 37 (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-950) (-13 (-1085 (-1073) (-51)) (-10 -7 (-15 -2106 ((-107) (-107))) (-15 -3816 ((-107) (-107))) (-6 -4180)))) (T -950))
-((-2106 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
-(-13 (-1085 (-1073) (-51)) (-10 -7 (-15 -2106 ((-107) (-107))) (-15 -3816 ((-107) (-107))) (-6 -4180)))
-((-3189 ((|#2| $) 10)))
-(((-951 |#1| |#2|) (-10 -8 (-15 -3189 (|#2| |#1|))) (-952 |#2|) (-1108)) (T -951))
-NIL
-(-10 -8 (-15 -3189 (|#2| |#1|)))
-((-1772 (((-3 |#1| "failed") $) 7)) (-3189 ((|#1| $) 8)) (-2256 (($ |#1|) 6)))
-(((-952 |#1|) (-1184) (-1108)) (T -952))
-((-3189 (*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) (-1772 (*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))))
-(-13 (-10 -8 (-15 -2256 ($ |t#1|)) (-15 -1772 ((-3 |t#1| "failed") $)) (-15 -3189 (|t#1| $))))
-((-1488 (((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073))) 35)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -1488 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073))))) (-509) (-13 (-509) (-952 |#1|))) (T -953))
-((-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6)))))
-(-10 -7 (-15 -1488 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073)))))
-((-3041 (((-349)) 15)) (-3290 (((-1 (-349)) (-349) (-349)) 20)) (-2147 (((-1 (-349)) (-703)) 42)) (-2466 (((-349)) 33)) (-2527 (((-1 (-349)) (-349) (-349)) 34)) (-3907 (((-349)) 26)) (-2697 (((-1 (-349)) (-349)) 27)) (-3125 (((-349) (-703)) 37)) (-2136 (((-1 (-349)) (-703)) 38)) (-1696 (((-1 (-349)) (-703) (-703)) 41)) (-2350 (((-1 (-349)) (-703) (-703)) 39)))
-(((-954) (-10 -7 (-15 -3041 ((-349))) (-15 -2466 ((-349))) (-15 -3907 ((-349))) (-15 -3125 ((-349) (-703))) (-15 -3290 ((-1 (-349)) (-349) (-349))) (-15 -2527 ((-1 (-349)) (-349) (-349))) (-15 -2697 ((-1 (-349)) (-349))) (-15 -2136 ((-1 (-349)) (-703))) (-15 -2350 ((-1 (-349)) (-703) (-703))) (-15 -1696 ((-1 (-349)) (-703) (-703))) (-15 -2147 ((-1 (-349)) (-703))))) (T -954))
-((-2147 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-1696 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2350 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2697 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-3290 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))) (-3907 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-2466 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-3041 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
-(-10 -7 (-15 -3041 ((-349))) (-15 -2466 ((-349))) (-15 -3907 ((-349))) (-15 -3125 ((-349) (-703))) (-15 -3290 ((-1 (-349)) (-349) (-349))) (-15 -2527 ((-1 (-349)) (-349) (-349))) (-15 -2697 ((-1 (-349)) (-349))) (-15 -2136 ((-1 (-349)) (-703))) (-15 -2350 ((-1 (-349)) (-703) (-703))) (-15 -1696 ((-1 (-349)) (-703) (-703))) (-15 -2147 ((-1 (-349)) (-703))))
-((-3755 (((-388 |#1|) |#1|) 31)))
-(((-955 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|))) (-1130 (-377 (-874 (-517))))) (T -955))
-((-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1130 (-377 (-874 (-517))))))))
-(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)))
-((-3954 (((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))) 14)))
-(((-956 |#1|) (-10 -7 (-15 -3954 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))))) (-278)) (T -956))
-((-3954 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4)))))
-(-10 -7 (-15 -3954 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|)))))
-((-1364 (((-583 (-1073)) (-377 (-874 |#1|))) 15)) (-2352 (((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073)) 22)) (-1350 (((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073)) 24)) (-1409 (((-3 (-1073) "failed") (-377 (-874 |#1|))) 18)) (-2051 (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|))))) 29) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 31) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|)))) 26) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))) 27)) (-2256 (((-377 (-874 |#1|)) |#1|) 11)))
-(((-957 |#1|) (-10 -7 (-15 -1364 ((-583 (-1073)) (-377 (-874 |#1|)))) (-15 -1409 ((-3 (-1073) "failed") (-377 (-874 |#1|)))) (-15 -2352 ((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1350 ((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2256 ((-377 (-874 |#1|)) |#1|))) (-509)) (T -957))
-((-2256 (*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-2051 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) (-2051 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 (-377 (-874 *5))))) (-5 *4 (-1073)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-377 (-1069 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))) (-1409 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1073)) (-5 *1 (-957 *4)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1073))) (-5 *1 (-957 *4)))))
-(-10 -7 (-15 -1364 ((-583 (-1073)) (-377 (-874 |#1|)))) (-15 -1409 ((-3 (-1073) "failed") (-377 (-874 |#1|)))) (-15 -2352 ((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1350 ((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2256 ((-377 (-874 |#1|)) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-4029 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-1364 (((-583 (-789 |#2|)) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2437 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2535 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1677 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3189 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-1660 (((-3 $ "failed") $) NIL)) (-3659 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-2052 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3283 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-4049 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3225 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4180))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2901 (((-2 (|:| -1210 (-583 (-712 |#1| (-789 |#2|)))) (|:| -1513 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-4063 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1829 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1538 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1536 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1497 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1976 (((-789 |#2|) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-1433 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-3921 (((-583 (-789 |#2|)) $) NIL)) (-1792 (((-107) (-789 |#2|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1855 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2068 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2117 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-2834 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1812 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-2474 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-2774 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3852 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3522 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-1959 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3183 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2887 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-1195 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-1672 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-2048 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-3688 (((-703) $) NIL)) (-3217 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2442 (($ $ (-789 |#2|)) NIL)) (-3759 (($ $ (-789 |#2|)) NIL)) (-2303 (($ $) NIL)) (-1846 (($ $ (-789 |#2|)) NIL)) (-2256 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1605 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2114 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-3596 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 (-789 |#2|)) $) NIL)) (-2119 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1871 (((-107) (-789 |#2|) $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-958 |#1| |#2|) (-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -4029 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1073))) (T -958))
-((-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))))
-(-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -4029 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)))))
-((-3290 (((-1 (-517)) (-998 (-517))) 33)) (-2685 (((-517) (-517) (-517) (-517) (-517)) 30)) (-3336 (((-1 (-517)) |RationalNumber|) NIL)) (-1251 (((-1 (-517)) |RationalNumber|) NIL)) (-1270 (((-1 (-517)) (-517) |RationalNumber|) NIL)))
-(((-959) (-10 -7 (-15 -3290 ((-1 (-517)) (-998 (-517)))) (-15 -1270 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -3336 ((-1 (-517)) |RationalNumber|)) (-15 -1251 ((-1 (-517)) |RationalNumber|)) (-15 -2685 ((-517) (-517) (-517) (-517) (-517))))) (T -959))
-((-2685 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))) (-1251 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-3336 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-1270 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
-(-10 -7 (-15 -3290 ((-1 (-517)) (-998 (-517)))) (-15 -1270 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -3336 ((-1 (-517)) |RationalNumber|)) (-15 -1251 ((-1 (-517)) |RationalNumber|)) (-15 -2685 ((-517) (-517) (-517) (-517) (-517))))
-((-2256 (((-787) $) NIL) (($ (-517)) 10)))
-(((-960 |#1|) (-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-961)) (T -960))
-NIL
-(-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-961) (-1184)) (T -961))
-((-2961 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))))
-(-13 (-968) (-659) (-585 $) (-10 -8 (-15 -2961 ((-703))) (-15 -2256 ($ (-517))) (-6 -4177)))
+((-3480 (((-583 (-349)) (-874 (-517)) (-349)) 27) (((-583 (-349)) (-874 (-377 (-517))) (-349)) 26)) (-2912 (((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1074)) (-349)) 36)))
+(((-938) (-10 -7 (-15 -3480 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -3480 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -2912 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1074)) (-349))))) (T -938))
+((-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))))
+(-10 -7 (-15 -3480 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -3480 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -2912 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1074)) (-349))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 70)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3706 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) 65)) (-3473 (($) NIL T CONST)) (-1434 (((-3 $ "failed") (-1070 $) (-843) (-787)) NIL) (((-3 $ "failed") (-1070 $) (-843)) 49)) (-1759 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3763 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-3076 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3763 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-1191 (($ $ (-787)) 40)) (-2808 (($ $ (-787)) 41)) (-2383 (($ $ $) NIL)) (-2439 (((-377 (-517)) $ $) 18)) (-1568 (((-3 $ "failed") $) 83)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2099 (((-107) $) 60)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL)) (-1624 (((-107) $) 63)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1477 (((-3 (-1070 $) "failed") $) 78)) (-3726 (((-3 (-787) "failed") $) 77)) (-2890 (((-3 (-1070 $) "failed") $) 75)) (-2416 (((-3 (-971 $ (-1070 $)) "failed") $) 73)) (-1368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 84)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-2182 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-1865 (((-703)) NIL)) (-3767 (((-107) $ $) NIL)) (-3284 (((-377 (-517)) $ $) 24)) (-3964 (((-583 $) (-1070 $)) 55) (((-583 $) (-1070 (-377 (-517)))) NIL) (((-583 $) (-1070 (-517))) NIL) (((-583 $) (-874 $)) NIL) (((-583 $) (-874 (-377 (-517)))) NIL) (((-583 $) (-874 (-517))) NIL)) (-2486 (($ (-971 $ (-1070 $)) (-787)) 39)) (-1221 (($ $) 19)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2297 (($) 28 T CONST)) (-2306 (($) 34 T CONST)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 71)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 21)) (-1649 (($ $ $) 32)) (-1637 (($ $) 33) (($ $ $) 69)) (-1626 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
+(((-939 |#1|) (-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2486 ($ (-971 $ (-1070 $)) (-787))) (-15 -2416 ((-3 (-971 $ (-1070 $)) "failed") $)) (-15 -2439 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-937))) (T -939))
+((-2486 (*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1070 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))) (-2416 (*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1070 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) (-2439 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))))
+(-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2486 ($ (-971 $ (-1070 $)) (-787))) (-15 -2416 ((-3 (-971 $ (-1070 $)) "failed") $)) (-15 -2439 ((-377 (-517)) $ $))))
+((-3035 (((-2 (|:| -2075 |#2|) (|:| -3812 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -3035 (|#2| |#2| |#1|)) (-15 -3035 ((-2 (|:| -2075 |#2|) (|:| -3812 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -940))
+((-3035 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3812 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-3035 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))))
+(-10 -7 (-15 -3035 (|#2| |#2| |#1|)) (-15 -3035 ((-2 (|:| -2075 |#2|) (|:| -3812 (-583 |#1|))) |#2| (-583 |#1|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2747 ((|#1| $ |#1|) 14)) (-2307 ((|#1| $ |#1|) 12)) (-2520 (($ |#1|) 10)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1986 ((|#1| $) 11)) (-2480 ((|#1| $) 13)) (-2182 (((-787) $) 21 (|has| |#1| (-1003)))) (-1539 (((-107) $ $) 9)))
+(((-941 |#1|) (-13 (-1109) (-10 -8 (-15 -2520 ($ |#1|)) (-15 -1986 (|#1| $)) (-15 -2307 (|#1| $ |#1|)) (-15 -2480 (|#1| $)) (-15 -2747 (|#1| $ |#1|)) (-15 -1539 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1109)) (T -941))
+((-2520 (*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-1986 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-2307 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-2480 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-2747 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-1539 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1109)))))
+(-13 (-1109) (-10 -8 (-15 -2520 ($ |#1|)) (-15 -1986 (|#1| $)) (-15 -2307 (|#1| $ |#1|)) (-15 -2480 (|#1| $)) (-15 -2747 (|#1| $ |#1|)) (-15 -1539 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) NIL)) (-1310 (((-583 $) (-583 |#4|)) 104) (((-583 $) (-583 |#4|) (-107)) 105) (((-583 $) (-583 |#4|) (-107) (-107)) 103) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 106)) (-1363 (((-583 |#3|) $) NIL)) (-3521 (((-107) $) NIL)) (-2320 (((-107) $) NIL (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2356 ((|#4| |#4| $) NIL)) (-3938 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| $) 98)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-3451 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 53)) (-3473 (($) NIL T CONST)) (-1216 (((-107) $) 26 (|has| |#1| (-509)))) (-1930 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1660 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3045 (((-107) $) NIL (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3515 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3076 (($ (-583 |#4|)) NIL)) (-1644 (((-3 $ "failed") $) 39)) (-1907 ((|#4| |#4| $) 56)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1971 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-3197 ((|#4| |#4| $) NIL)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) NIL)) (-3357 (((-107) |#4| $) NIL)) (-3862 (((-107) |#4| $) NIL)) (-1442 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2139 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 118)) (-3037 (((-583 |#4|) $) 16 (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3377 ((|#3| $) 33)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#4|) $) 17 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1213 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 21)) (-2434 (((-583 |#3|) $) NIL)) (-2995 (((-107) |#3| $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-1765 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-4065 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| |#4| $) 96)) (-1988 (((-3 |#4| "failed") $) 37)) (-2368 (((-583 $) |#4| $) 79)) (-1905 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-2491 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 $))) |#4| $) 89) (((-107) |#4| $) 51)) (-2551 (((-583 $) |#4| $) 101) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 102) (((-583 $) |#4| (-583 $)) NIL)) (-2764 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 113)) (-1615 (($ |#4| $) 69) (($ (-583 |#4|) $) 70) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 66)) (-2425 (((-583 |#4|) $) NIL)) (-2998 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2946 ((|#4| |#4| $) NIL)) (-3196 (((-107) $ $) NIL)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3006 ((|#4| |#4| $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-3 |#4| "failed") $) 35)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3886 (((-3 $ "failed") $ |#4|) 47)) (-3467 (($ $ |#4|) NIL) (((-583 $) |#4| $) 81) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 76)) (-2925 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 15)) (-1326 (($) 13)) (-4007 (((-703) $) NIL)) (-3105 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) 12)) (-3582 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 20)) (-2399 (($ $ |#3|) 42)) (-3339 (($ $ |#3|) 43)) (-3529 (($ $) NIL)) (-4011 (($ $ |#3|) NIL)) (-2182 (((-787) $) 31) (((-583 |#4|) $) 40)) (-4124 (((-703) $) NIL (|has| |#3| (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2401 (((-583 $) |#4| $) 78) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3883 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) NIL)) (-2385 (((-107) |#4| $) NIL)) (-1223 (((-107) |#3| $) 52)) (-1539 (((-107) $ $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-942 |#1| |#2| |#3| |#4|) (-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1615 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -1310 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -1310 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -2764 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2139 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -942))
+((-1615 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-1310 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-1310 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-2764 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-2139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1615 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -1310 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -1310 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -2764 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2139 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
+((-2497 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-2833 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 51) (((-623 |#1|) (-623 |#1|) (-843)) 50)) (-3068 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-827 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-827 (-517)) (-517)) 62)) (-4120 (((-623 (-874 |#1|)) (-703)) 80)) (-3658 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 37 (|has| |#1| (-6 (-4185 "*")))) (((-623 |#1|) (-623 |#1|) (-843)) 35 (|has| |#1| (-6 (-4185 "*"))))))
+(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4185 "*"))) (-15 -3658 ((-623 |#1|) (-623 |#1|) (-843))) |noBranch|) (IF (|has| |#1| (-6 (-4185 "*"))) (-15 -3658 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |noBranch|) (-15 -4120 ((-623 (-874 |#1|)) (-703))) (-15 -2833 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -2833 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -2497 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2497 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -2497 ((-623 |#1|) (-623 |#1|))) (-15 -2497 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3068 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3068 ((-623 (-517)) (-583 (-517)))) (-15 -3068 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3068 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-961)) (T -943))
+((-3068 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-2497 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2497 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2497 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2497 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2833 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-2833 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3658 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4185 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3658 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4185 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4185 "*"))) (-15 -3658 ((-623 |#1|) (-623 |#1|) (-843))) |noBranch|) (IF (|has| |#1| (-6 (-4185 "*"))) (-15 -3658 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |noBranch|) (-15 -4120 ((-623 (-874 |#1|)) (-703))) (-15 -2833 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -2833 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -2497 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2497 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -2497 ((-623 |#1|) (-623 |#1|))) (-15 -2497 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3068 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3068 ((-623 (-517)) (-583 (-517)))) (-15 -3068 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3068 ((-583 (-623 (-517))) (-583 (-583 (-517))))))
+((-4089 (((-623 |#1|) (-583 (-623 |#1|)) (-1154 |#1|)) 48 (|has| |#1| (-278)))) (-2861 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 (-1154 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 |#1|)) 76 (|has| |#1| (-333)))) (-2959 (((-1154 |#1|) (-583 (-1154 |#1|)) (-517)) 90 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-1894 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843)) 82 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 79 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-3952 (((-107) (-583 (-623 |#1|))) 68 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 70 (|has| |#1| (-333)))) (-1314 (((-1154 (-1154 |#1|)) (-583 (-623 |#1|)) (-1154 |#1|)) 46 (|has| |#1| (-278)))) (-2719 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 32)) (-1916 (((-623 |#1|) (-1154 (-1154 |#1|))) 29)) (-3288 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 62 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 61 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 66 (|has| |#1| (-333)))))
+(((-944 |#1|) (-10 -7 (-15 -1916 ((-623 |#1|) (-1154 (-1154 |#1|)))) (-15 -2719 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -1314 ((-1154 (-1154 |#1|)) (-583 (-623 |#1|)) (-1154 |#1|))) (-15 -4089 ((-623 |#1|) (-583 (-623 |#1|)) (-1154 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3288 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3288 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3288 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3952 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3952 ((-107) (-583 (-623 |#1|)))) (-15 -2861 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 |#1|))) (-15 -2861 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 (-1154 |#1|))))) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -1894 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -1894 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -1894 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -1894 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -2959 ((-1154 |#1|) (-583 (-1154 |#1|)) (-517)))) |noBranch|) |noBranch|)) (-961)) (T -944))
+((-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1154 *5))) (-5 *4 (-517)) (-5 *2 (-1154 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))) (-1894 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1894 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1894 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) (-1894 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) (-2861 (*1 *2 *3 *4) (-12 (-5 *4 (-1154 (-1154 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-2861 (*1 *2 *3 *4) (-12 (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) (-3288 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))) (-3288 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) (-3288 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1154 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))) (-1314 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1154 (-1154 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1154 *5)))) (-2719 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-1154 (-1154 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)))))
+(-10 -7 (-15 -1916 ((-623 |#1|) (-1154 (-1154 |#1|)))) (-15 -2719 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -1314 ((-1154 (-1154 |#1|)) (-583 (-623 |#1|)) (-1154 |#1|))) (-15 -4089 ((-623 |#1|) (-583 (-623 |#1|)) (-1154 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3288 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3288 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3288 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3952 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3952 ((-107) (-583 (-623 |#1|)))) (-15 -2861 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 |#1|))) (-15 -2861 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 (-1154 |#1|))))) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -1894 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -1894 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -1894 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -1894 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -2959 ((-1154 |#1|) (-583 (-1154 |#1|)) (-517)))) |noBranch|) |noBranch|))
+((-4008 ((|#1| (-843) |#1|) 9)))
+(((-945 |#1|) (-10 -7 (-15 -4008 (|#1| (-843) |#1|))) (-13 (-1003) (-10 -8 (-15 -1626 ($ $ $))))) (T -945))
+((-4008 (*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1626 ($ $ $))))))))
+(-10 -7 (-15 -4008 (|#1| (-843) |#1|)))
+((-3621 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517))))) 58)) (-1686 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517))))) 48)) (-4162 (((-583 (-286 (-517))) (-623 (-377 (-874 (-517))))) 41)) (-3989 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517))))) 67)) (-2396 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-2832 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-1904 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517))))) 65)))
+(((-946) (-10 -7 (-15 -3621 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -1686 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -4162 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1904 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -2396 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2832 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3989 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))) (T -946))
+((-3989 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-2832 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-1904 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946)))))
+(-10 -7 (-15 -3621 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -1686 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -4162 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1904 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -2396 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2832 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3989 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))
+((-2243 ((|#1| |#1| (-843)) 9)))
+(((-947 |#1|) (-10 -7 (-15 -2243 (|#1| |#1| (-843)))) (-13 (-1003) (-10 -8 (-15 * ($ $ $))))) (T -947))
+((-2243 (*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2243 (|#1| |#1| (-843))))
+((-2182 ((|#1| (-282)) 11) (((-1159) |#1|) 9)))
+(((-948 |#1|) (-10 -7 (-15 -2182 ((-1159) |#1|)) (-15 -2182 (|#1| (-282)))) (-1109)) (T -948))
+((-2182 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1109)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *1 (-948 *3)) (-4 *3 (-1109)))))
+(-10 -7 (-15 -2182 ((-1159) |#1|)) (-15 -2182 (|#1| (-282))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-2521 (($ |#4|) 25)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-2511 ((|#4| $) 27)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1865 (((-703)) 43)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 21 T CONST)) (-2306 (($) 23 T CONST)) (-1539 (((-107) $ $) 40)) (-1637 (($ $) 31) (($ $ $) NIL)) (-1626 (($ $ $) 29)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-949 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -2521 ($ |#4|)) (-15 -2182 ($ |#4|)) (-15 -2511 (|#4| $)))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|) (-583 |#4|)) (T -949))
+((-2521 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2182 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2511 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
+(-13 (-156) (-37 |#1|) (-10 -8 (-15 -2521 ($ |#4|)) (-15 -2182 ($ |#4|)) (-15 -2511 (|#4| $))))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL)) (-3423 (((-1159) $ (-1074) (-1074)) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2280 (((-107) (-107)) 39)) (-2606 (((-107) (-107)) 38)) (-2307 (((-51) $ (-1074) (-51)) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 (-51) "failed") (-1074) $) NIL)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-2111 (($ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-3 (-51) "failed") (-1074) $) NIL)) (-1971 (($ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-1226 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -4184)))) (-4020 (((-51) $ (-1074)) NIL)) (-3037 (((-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-1074) $) NIL (|has| (-1074) (-779)))) (-1196 (((-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-2564 (((-1074) $) NIL (|has| (-1074) (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-3799 (((-583 (-1074)) $) 34)) (-2555 (((-107) (-1074) $) NIL)) (-1835 (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL)) (-3816 (($ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL)) (-4086 (((-583 (-1074)) $) NIL)) (-3646 (((-107) (-1074) $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-1631 (((-51) $) NIL (|has| (-1074) (-779)))) (-2293 (((-3 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) "failed") (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL)) (-1254 (($ $ (-51)) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))))) NIL (-12 (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL (-12 (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ $ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) NIL (-12 (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL (-12 (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3042 (((-583 (-51)) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 (((-51) $ (-1074)) 35) (((-51) $ (-1074) (-51)) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL)) (-2182 (((-787) $) 37 (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-950) (-13 (-1086 (-1074) (-51)) (-10 -7 (-15 -2280 ((-107) (-107))) (-15 -2606 ((-107) (-107))) (-6 -4183)))) (T -950))
+((-2280 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
+(-13 (-1086 (-1074) (-51)) (-10 -7 (-15 -2280 ((-107) (-107))) (-15 -2606 ((-107) (-107))) (-6 -4183)))
+((-3076 ((|#2| $) 10)))
+(((-951 |#1| |#2|) (-10 -8 (-15 -3076 (|#2| |#1|))) (-952 |#2|) (-1109)) (T -951))
+NIL
+(-10 -8 (-15 -3076 (|#2| |#1|)))
+((-1759 (((-3 |#1| "failed") $) 7)) (-3076 ((|#1| $) 8)) (-2182 (($ |#1|) 6)))
+(((-952 |#1|) (-1185) (-1109)) (T -952))
+((-3076 (*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) (-1759 (*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) (-2182 (*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))))
+(-13 (-10 -8 (-15 -2182 ($ |t#1|)) (-15 -1759 ((-3 |t#1| "failed") $)) (-15 -3076 (|t#1| $))))
+((-2022 (((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1074))) 35)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -2022 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1074))))) (-509) (-13 (-509) (-952 |#1|))) (T -953))
+((-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6)))))
+(-10 -7 (-15 -2022 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1074)))))
+((-3032 (((-349)) 15)) (-1653 (((-1 (-349)) (-349) (-349)) 20)) (-2090 (((-1 (-349)) (-703)) 42)) (-1538 (((-349)) 33)) (-2400 (((-1 (-349)) (-349) (-349)) 34)) (-2342 (((-349)) 26)) (-2997 (((-1 (-349)) (-349)) 27)) (-2471 (((-349) (-703)) 37)) (-1467 (((-1 (-349)) (-703)) 38)) (-2184 (((-1 (-349)) (-703) (-703)) 41)) (-2685 (((-1 (-349)) (-703) (-703)) 39)))
+(((-954) (-10 -7 (-15 -3032 ((-349))) (-15 -1538 ((-349))) (-15 -2342 ((-349))) (-15 -2471 ((-349) (-703))) (-15 -1653 ((-1 (-349)) (-349) (-349))) (-15 -2400 ((-1 (-349)) (-349) (-349))) (-15 -2997 ((-1 (-349)) (-349))) (-15 -1467 ((-1 (-349)) (-703))) (-15 -2685 ((-1 (-349)) (-703) (-703))) (-15 -2184 ((-1 (-349)) (-703) (-703))) (-15 -2090 ((-1 (-349)) (-703))))) (T -954))
+((-2090 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2184 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2685 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2997 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-2400 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-1653 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))) (-2342 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-1538 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-3032 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
+(-10 -7 (-15 -3032 ((-349))) (-15 -1538 ((-349))) (-15 -2342 ((-349))) (-15 -2471 ((-349) (-703))) (-15 -1653 ((-1 (-349)) (-349) (-349))) (-15 -2400 ((-1 (-349)) (-349) (-349))) (-15 -2997 ((-1 (-349)) (-349))) (-15 -1467 ((-1 (-349)) (-703))) (-15 -2685 ((-1 (-349)) (-703) (-703))) (-15 -2184 ((-1 (-349)) (-703) (-703))) (-15 -2090 ((-1 (-349)) (-703))))
+((-3693 (((-388 |#1|) |#1|) 31)))
+(((-955 |#1|) (-10 -7 (-15 -3693 ((-388 |#1|) |#1|))) (-1131 (-377 (-874 (-517))))) (T -955))
+((-3693 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1131 (-377 (-874 (-517))))))))
+(-10 -7 (-15 -3693 ((-388 |#1|) |#1|)))
+((-1755 (((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))) 14)))
+(((-956 |#1|) (-10 -7 (-15 -1755 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))))) (-278)) (T -956))
+((-1755 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4)))))
+(-10 -7 (-15 -1755 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|)))))
+((-1363 (((-583 (-1074)) (-377 (-874 |#1|))) 15)) (-2255 (((-377 (-1070 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074)) 22)) (-1352 (((-377 (-874 |#1|)) (-377 (-1070 (-377 (-874 |#1|)))) (-1074)) 24)) (-1954 (((-3 (-1074) "failed") (-377 (-874 |#1|))) 18)) (-1979 (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|))))) 29) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 31) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1074)) (-583 (-377 (-874 |#1|)))) 26) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|))) 27)) (-2182 (((-377 (-874 |#1|)) |#1|) 11)))
+(((-957 |#1|) (-10 -7 (-15 -1363 ((-583 (-1074)) (-377 (-874 |#1|)))) (-15 -1954 ((-3 (-1074) "failed") (-377 (-874 |#1|)))) (-15 -2255 ((-377 (-1070 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074))) (-15 -1352 ((-377 (-874 |#1|)) (-377 (-1070 (-377 (-874 |#1|)))) (-1074))) (-15 -1979 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)))) (-15 -1979 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1074)) (-583 (-377 (-874 |#1|))))) (-15 -1979 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -1979 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2182 ((-377 (-874 |#1|)) |#1|))) (-509)) (T -957))
+((-2182 (*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) (-1979 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-1979 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-1979 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) (-1979 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1074)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1070 (-377 (-874 *5))))) (-5 *4 (-1074)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-377 (-1070 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))) (-1954 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1074)) (-5 *1 (-957 *4)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1074))) (-5 *1 (-957 *4)))))
+(-10 -7 (-15 -1363 ((-583 (-1074)) (-377 (-874 |#1|)))) (-15 -1954 ((-3 (-1074) "failed") (-377 (-874 |#1|)))) (-15 -2255 ((-377 (-1070 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074))) (-15 -1352 ((-377 (-874 |#1|)) (-377 (-1070 (-377 (-874 |#1|)))) (-1074))) (-15 -1979 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)))) (-15 -1979 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1074)) (-583 (-377 (-874 |#1|))))) (-15 -1979 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -1979 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2182 ((-377 (-874 |#1|)) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-1310 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-1363 (((-583 (-789 |#2|)) $) NIL)) (-3521 (((-107) $) NIL)) (-2320 (((-107) $) NIL (|has| |#1| (-509)))) (-1586 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2356 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3938 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3656 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-3451 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-3473 (($) NIL T CONST)) (-1216 (((-107) $) NIL (|has| |#1| (-509)))) (-1930 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1660 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3045 (((-107) $) NIL (|has| |#1| (-509)))) (-3702 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-3515 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-4024 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3076 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-1644 (((-3 $ "failed") $) NIL)) (-1907 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-1971 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-1584 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-3197 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2521 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4183))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1333 (((-2 (|:| -1215 (-583 (-712 |#1| (-789 |#2|)))) (|:| -1511 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-3357 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-3862 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1442 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3037 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2096 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3377 (((-789 |#2|) $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-1213 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-2434 (((-583 (-789 |#2|)) $) NIL)) (-2995 (((-107) (-789 |#2|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-1765 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-4065 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3656 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1988 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2368 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-1905 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2491 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-2551 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-1615 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-2425 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-2998 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2946 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3196 (((-107) $ $) NIL)) (-2929 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3201 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3006 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2293 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-3886 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-3467 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-2925 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-4007 (((-703) $) NIL)) (-3105 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2399 (($ $ (-789 |#2|)) NIL)) (-3339 (($ $ (-789 |#2|)) NIL)) (-3529 (($ $) NIL)) (-4011 (($ $ (-789 |#2|)) NIL)) (-2182 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-4124 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2340 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-2401 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3883 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3447 (((-583 (-789 |#2|)) $) NIL)) (-2385 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1223 (((-107) (-789 |#2|) $) NIL)) (-1539 (((-107) $ $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-958 |#1| |#2|) (-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -1310 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1074))) (T -958))
+((-1310 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))))
+(-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -1310 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)))))
+((-1653 (((-1 (-517)) (-998 (-517))) 33)) (-2854 (((-517) (-517) (-517) (-517) (-517)) 30)) (-3840 (((-1 (-517)) |RationalNumber|) NIL)) (-2231 (((-1 (-517)) |RationalNumber|) NIL)) (-1679 (((-1 (-517)) (-517) |RationalNumber|) NIL)))
+(((-959) (-10 -7 (-15 -1653 ((-1 (-517)) (-998 (-517)))) (-15 -1679 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -3840 ((-1 (-517)) |RationalNumber|)) (-15 -2231 ((-1 (-517)) |RationalNumber|)) (-15 -2854 ((-517) (-517) (-517) (-517) (-517))))) (T -959))
+((-2854 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))) (-2231 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-3840 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-1679 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
+(-10 -7 (-15 -1653 ((-1 (-517)) (-998 (-517)))) (-15 -1679 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -3840 ((-1 (-517)) |RationalNumber|)) (-15 -2231 ((-1 (-517)) |RationalNumber|)) (-15 -2854 ((-517) (-517) (-517) (-517) (-517))))
+((-2182 (((-787) $) NIL) (($ (-517)) 10)))
+(((-960 |#1|) (-10 -8 (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|))) (-961)) (T -960))
+NIL
+(-10 -8 (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-961) (-1185)) (T -961))
+((-1865 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))))
+(-13 (-968) (-659) (-585 $) (-10 -8 (-15 -1865 ((-703))) (-15 -2182 ($ (-517))) (-6 -4180)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-4058 (((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45)))
-(((-962 |#1| |#2|) (-10 -7 (-15 -4058 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1073) (-333)) (T -962))
-((-4058 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1073)))))
-(-10 -7 (-15 -4058 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703))))
-((-2818 (((-107) $) 27)) (-3213 (((-107) $) 16)) (-1477 (((-703) $) 13)) (-1486 (((-703) $) 14)) (-1516 (((-107) $) 25)) (-1683 (((-107) $) 29)))
-(((-963 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1486 ((-703) |#1|)) (-15 -1477 ((-703) |#1|)) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|))) (-964 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-961) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -963))
-NIL
-(-10 -8 (-15 -1486 ((-703) |#1|)) (-15 -1477 ((-703) |#1|)) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2818 (((-107) $) 51)) (-4038 (((-3 $ "failed") $ $) 19)) (-3213 (((-107) $) 53)) (-2953 (((-107) $ (-703)) 61)) (-3092 (($) 17 T CONST)) (-2468 (($ $) 34 (|has| |#3| (-278)))) (-1939 ((|#4| $ (-517)) 39)) (-2261 (((-703) $) 33 (|has| |#3| (-509)))) (-1377 ((|#3| $ (-517) (-517)) 41)) (-1536 (((-583 |#3|) $) 68 (|has| $ (-6 -4180)))) (-1948 (((-703) $) 32 (|has| |#3| (-509)))) (-3706 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-1477 (((-703) $) 45)) (-1486 (((-703) $) 44)) (-2550 (((-107) $ (-703)) 60)) (-2813 (((-517) $) 49)) (-1338 (((-517) $) 47)) (-2560 (((-583 |#3|) $) 69 (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 48)) (-1307 (((-517) $) 46)) (-1840 (($ (-583 (-583 |#3|))) 54)) (-1433 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3035 (((-583 (-583 |#3|)) $) 43)) (-3847 (((-107) $ (-703)) 59)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-2048 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) 55)) (-3619 (((-107) $) 58)) (-1746 (($) 57)) (-1449 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-1516 (((-107) $) 52)) (-3217 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4180)))) (-2433 (($ $) 56)) (-3728 ((|#5| $ (-517)) 38)) (-2256 (((-787) $) 11)) (-3675 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 50)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2296 (((-703) $) 62 (|has| $ (-6 -4180)))))
-(((-964 |#1| |#2| |#3| |#4| |#5|) (-1184) (-703) (-703) (-961) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -964))
-((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-1377 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-1449 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
-(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4180) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |noBranch|) (-15 -1840 ($ (-583 (-583 |t#3|)))) (-15 -3213 ((-107) $)) (-15 -1516 ((-107) $)) (-15 -2818 ((-107) $)) (-15 -1683 ((-107) $)) (-15 -2813 ((-517) $)) (-15 -2718 ((-517) $)) (-15 -1338 ((-517) $)) (-15 -1307 ((-517) $)) (-15 -1477 ((-703) $)) (-15 -1486 ((-703) $)) (-15 -3035 ((-583 (-583 |t#3|)) $)) (-15 -1449 (|t#3| $ (-517) (-517))) (-15 -1377 (|t#3| $ (-517) (-517))) (-15 -1449 (|t#3| $ (-517) (-517) |t#3|)) (-15 -1939 (|t#4| $ (-517))) (-15 -3728 (|t#5| $ (-517))) (-15 -1893 ($ (-1 |t#3| |t#3|) $)) (-15 -1893 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-333)) (-15 -1667 ($ $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-278)) (-15 -2468 ($ $)) |noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -2261 ((-703) $)) (-15 -1948 ((-703) $)) (-15 -3706 ((-583 |t#5|) $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-967 |#3|) . T) ((-1003) . T) ((-1108) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 40 (|has| |#3| (-278)))) (-1939 (((-214 |#2| |#3|) $ (-517)) 29)) (-4054 (($ (-623 |#3|)) 38)) (-2261 (((-703) $) 42 (|has| |#3| (-509)))) (-1377 ((|#3| $ (-517) (-517)) NIL)) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-1948 (((-703) $) 44 (|has| |#3| (-509)))) (-3706 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-1477 (((-703) $) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#3|))) 24)) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3035 (((-583 (-583 |#3|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-3141 (((-125)) 51 (|has| |#3| (-333)))) (-1516 (((-107) $) NIL)) (-3217 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-3728 (((-214 |#1| |#3|) $ (-517)) 33)) (-2256 (((-787) $) 16) (((-623 |#3|) $) 35)) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-2396 (($) 13 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-965 |#1| |#2| |#3|) (-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1160 |#3|)) |noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (-15 -4054 ($ (-623 |#3|))) (-15 -2256 ((-623 |#3|) $)))) (-703) (-703) (-961)) (T -965))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
-(-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1160 |#3|)) |noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (-15 -4054 ($ (-623 |#3|))) (-15 -2256 ((-623 |#3|) $))))
-((-3225 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1893 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-966 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1893 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3225 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-961) (-212 |#2| |#3|) (-212 |#1| |#3|) (-964 |#1| |#2| |#3| |#4| |#5|) (-961) (-212 |#2| |#7|) (-212 |#1| |#7|) (-964 |#1| |#2| |#7| |#8| |#9|)) (T -966))
-((-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))))
-(-10 -7 (-15 -1893 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3225 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23)))
-(((-967 |#1|) (-1184) (-968)) (T -967))
+((-3300 (((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -3300 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1074) (-333)) (T -962))
+((-3300 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1074)))))
+(-10 -7 (-15 -3300 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703))))
+((-2794 (((-107) $) 27)) (-2119 (((-107) $) 16)) (-4122 (((-703) $) 13)) (-1875 (((-703) $) 14)) (-1274 (((-107) $) 25)) (-3565 (((-107) $) 29)))
+(((-963 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1875 ((-703) |#1|)) (-15 -4122 ((-703) |#1|)) (-15 -3565 ((-107) |#1|)) (-15 -2794 ((-107) |#1|)) (-15 -1274 ((-107) |#1|)) (-15 -2119 ((-107) |#1|))) (-964 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-961) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -963))
+NIL
+(-10 -8 (-15 -1875 ((-703) |#1|)) (-15 -4122 ((-703) |#1|)) (-15 -3565 ((-107) |#1|)) (-15 -2794 ((-107) |#1|)) (-15 -1274 ((-107) |#1|)) (-15 -2119 ((-107) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-2794 (((-107) $) 51)) (-1387 (((-3 $ "failed") $ $) 19)) (-2119 (((-107) $) 53)) (-1799 (((-107) $ (-703)) 61)) (-3473 (($) 17 T CONST)) (-1558 (($ $) 34 (|has| |#3| (-278)))) (-3023 ((|#4| $ (-517)) 39)) (-3795 (((-703) $) 33 (|has| |#3| (-509)))) (-4020 ((|#3| $ (-517) (-517)) 41)) (-3037 (((-583 |#3|) $) 68 (|has| $ (-6 -4183)))) (-3101 (((-703) $) 32 (|has| |#3| (-509)))) (-4163 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-4122 (((-703) $) 45)) (-1875 (((-703) $) 44)) (-4064 (((-107) $ (-703)) 60)) (-2734 (((-517) $) 49)) (-2397 (((-517) $) 47)) (-1196 (((-583 |#3|) $) 69 (|has| $ (-6 -4183)))) (-2502 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4183))))) (-3070 (((-517) $) 48)) (-2820 (((-517) $) 46)) (-1813 (($ (-583 (-583 |#3|))) 54)) (-1213 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-1263 (((-583 (-583 |#3|)) $) 43)) (-2942 (((-107) $ (-703)) 59)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-2925 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3670 (((-107) $ $) 55)) (-1546 (((-107) $) 58)) (-1326 (($) 57)) (-1986 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-1274 (((-107) $) 52)) (-3105 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4183)))) (-2322 (($ $) 56)) (-1377 ((|#5| $ (-517)) 38)) (-2182 (((-787) $) 11)) (-3883 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4183)))) (-3565 (((-107) $) 50)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2210 (((-703) $) 62 (|has| $ (-6 -4183)))))
+(((-964 |#1| |#2| |#3| |#4| |#5|) (-1185) (-703) (-703) (-961) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -964))
+((-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1274 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1263 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-1986 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-4020 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-1986 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-3023 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-1377 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-1857 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2349 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1649 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-1558 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
+(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4183) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |noBranch|) (-15 -1813 ($ (-583 (-583 |t#3|)))) (-15 -2119 ((-107) $)) (-15 -1274 ((-107) $)) (-15 -2794 ((-107) $)) (-15 -3565 ((-107) $)) (-15 -2734 ((-517) $)) (-15 -3070 ((-517) $)) (-15 -2397 ((-517) $)) (-15 -2820 ((-517) $)) (-15 -4122 ((-703) $)) (-15 -1875 ((-703) $)) (-15 -1263 ((-583 (-583 |t#3|)) $)) (-15 -1986 (|t#3| $ (-517) (-517))) (-15 -4020 (|t#3| $ (-517) (-517))) (-15 -1986 (|t#3| $ (-517) (-517) |t#3|)) (-15 -3023 (|t#4| $ (-517))) (-15 -1377 (|t#5| $ (-517))) (-15 -1857 ($ (-1 |t#3| |t#3|) $)) (-15 -1857 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2349 ((-3 $ "failed") $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-333)) (-15 -1649 ($ $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-278)) (-15 -1558 ($ $)) |noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -3795 ((-703) $)) (-15 -3101 ((-703) $)) (-15 -4163 ((-583 |t#5|) $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-967 |#3|) . T) ((-1003) . T) ((-1109) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2794 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2119 (((-107) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-3473 (($) NIL T CONST)) (-1558 (($ $) 40 (|has| |#3| (-278)))) (-3023 (((-214 |#2| |#3|) $ (-517)) 29)) (-3257 (($ (-623 |#3|)) 38)) (-3795 (((-703) $) 42 (|has| |#3| (-509)))) (-4020 ((|#3| $ (-517) (-517)) NIL)) (-3037 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-3101 (((-703) $) 44 (|has| |#3| (-509)))) (-4163 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-4122 (((-703) $) NIL)) (-1875 (((-703) $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2734 (((-517) $) NIL)) (-2397 (((-517) $) NIL)) (-1196 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-3070 (((-517) $) NIL)) (-2820 (((-517) $) NIL)) (-1813 (($ (-583 (-583 |#3|))) 24)) (-1213 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1263 (((-583 (-583 |#3|)) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2349 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-2925 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-2586 (((-125)) 51 (|has| |#3| (-333)))) (-1274 (((-107) $) NIL)) (-3105 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-1377 (((-214 |#1| |#3|) $ (-517)) 33)) (-2182 (((-787) $) 16) (((-623 |#3|) $) 35)) (-3883 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-3565 (((-107) $) NIL)) (-2297 (($) 13 T CONST)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-965 |#1| |#2| |#3|) (-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1161 |#3|)) |noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (-15 -3257 ($ (-623 |#3|))) (-15 -2182 ((-623 |#3|) $)))) (-703) (-703) (-961)) (T -965))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) (-3257 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
+(-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1161 |#3|)) |noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (-15 -3257 ($ (-623 |#3|))) (-15 -2182 ((-623 |#3|) $))))
+((-2521 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1857 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-966 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1857 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2521 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-961) (-212 |#2| |#3|) (-212 |#1| |#3|) (-964 |#1| |#2| |#3| |#4| |#5|) (-961) (-212 |#2| |#7|) (-212 |#1| |#7|) (-964 |#1| |#2| |#7| |#8| |#9|)) (T -966))
+((-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))))
+(-10 -7 (-15 -1857 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2521 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23)))
+(((-967 |#1|) (-1185) (-968)) (T -967))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 26)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-968) (-1184)) (T -968))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2146 (($ $ (-843)) 26)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-968) (-1185)) (T -968))
NIL
(-13 (-21) (-1015))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1015) . T) ((-1003) . T))
-((-1974 (($ $) 16)) (-2531 (($ $) 22)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 49)) (-1506 (($ $) 24)) (-1927 (($ $) 11)) (-2597 (($ $) 38)) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) 33)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-2961 (((-703)) 8)) (-1949 (($ $) 39)))
-(((-969 |#1|) (-10 -8 (-15 -2531 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2597 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|))) (-970)) (T -969))
-((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970)))))
-(-10 -8 (-15 -2531 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2597 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 (((-517) $) 89)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1974 (($ $) 87)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 97)) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 114)) (-3092 (($) 17 T CONST)) (-2531 (($ $) 86)) (-1772 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3189 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3556 (((-107) $) 112)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 96)) (-1506 (($ $) 92)) (-2475 (((-107) $) 113)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 111)) (-3099 (($ $ $) 110)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 88)) (-2597 (($ $) 90)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-3645 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-2961 (((-703)) 29)) (-1949 (($ $) 91)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 115)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 108)) (-1583 (((-107) $ $) 107)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 109)) (-1572 (((-107) $ $) 106)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-970) (-1184)) (T -970))
-((-3710 (*1 *1 *1) (-4 *1 (-970))) (-1506 (*1 *1 *1) (-4 *1 (-970))) (-1949 (*1 *1 *1) (-4 *1 (-970))) (-2597 (*1 *1 *1) (-4 *1 (-970))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))) (-1927 (*1 *1 *1) (-4 *1 (-970))) (-1974 (*1 *1 *1) (-4 *1 (-970))) (-2531 (*1 *1 *1) (-4 *1 (-970))))
-(-13 (-333) (-777) (-937) (-952 (-517)) (-952 (-377 (-517))) (-918) (-558 (-814 (-349))) (-808 (-349)) (-134) (-10 -8 (-15 -1506 ($ $)) (-15 -1949 ($ $)) (-15 -2597 ($ $)) (-15 -2668 ((-517) $)) (-15 -1927 ($ $)) (-15 -1974 ($ $)) (-15 -2531 ($ $)) (-15 -3710 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) |#2| $) 23)) (-1611 ((|#1| $) 10)) (-3709 (((-517) |#2| $) 88)) (-3267 (((-3 $ "failed") |#2| (-843)) 58)) (-3652 ((|#1| $) 28)) (-2002 ((|#1| |#2| $ |#1|) 37)) (-3437 (($ $) 25)) (-3621 (((-3 |#2| "failed") |#2| $) 87)) (-3556 (((-107) |#2| $) NIL)) (-2475 (((-107) |#2| $) NIL)) (-2046 (((-107) |#2| $) 24)) (-2270 ((|#1| $) 89)) (-3639 ((|#1| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2135 ((|#2| $) 79)) (-2256 (((-787) $) 71)) (-3383 ((|#1| |#2| $ |#1|) 38)) (-3995 (((-583 $) |#2|) 60)) (-1547 (((-107) $ $) 74)))
-(((-971 |#1| |#2|) (-13 (-977 |#1| |#2|) (-10 -8 (-15 -3639 (|#1| $)) (-15 -3652 (|#1| $)) (-15 -1611 (|#1| $)) (-15 -2270 (|#1| $)) (-15 -3437 ($ $)) (-15 -2046 ((-107) |#2| $)) (-15 -2002 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1130 |#1|)) (T -971))
-((-2002 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3639 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3652 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-1611 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-2270 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3437 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-2046 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1130 *4)))))
-(-13 (-977 |#1| |#2|) (-10 -8 (-15 -3639 (|#1| $)) (-15 -3652 (|#1| $)) (-15 -1611 (|#1| $)) (-15 -2270 (|#1| $)) (-15 -3437 ($ $)) (-15 -2046 ((-107) |#2| $)) (-15 -2002 (|#1| |#2| $ |#1|))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) NIL)) (-3092 (($) NIL T CONST)) (-4011 (($ (-1073)) 10) (($ (-517)) 7)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) NIL) (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) NIL)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1522 (($ $) NIL)) (-2195 (($ $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) NIL)) (-3206 (((-1021) $) NIL) (($ $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) NIL)) (-2433 (($ $) NIL)) (-3645 (((-517) $) 16) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1073)) 9)) (-2256 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) NIL)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $) 19) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
-(((-972) (-13 (-502) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3645 ($ (-1073))) (-15 -4011 ($ (-1073))) (-15 -4011 ($ (-517)))))) (T -972))
-((-3645 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))))
-(-13 (-502) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3645 ($ (-1073))) (-15 -4011 ($ (-1073))) (-15 -4011 ($ (-517)))))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1073) (-1073)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2872 (($) 9)) (-2411 (((-51) $ (-1073) (-51)) NIL)) (-1936 (($ $) 23)) (-2014 (($ $) 21)) (-1688 (($ $) 20)) (-1835 (($ $) 22)) (-3172 (($ $) 25)) (-2375 (($ $) 26)) (-3699 (($ $) 19)) (-2263 (($ $) 24)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) 18 (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1073) $) 34)) (-3092 (($) NIL T CONST)) (-2665 (($) 7)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) 46 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1073) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-2381 (((-3 (-1056) "failed") $ (-1056) (-517)) 59)) (-1445 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1073)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1073) $) NIL (|has| (-1073) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) 28 (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1073) $) NIL (|has| (-1073) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1073)) $) NIL)) (-2793 (((-107) (-1073) $) NIL)) (-3309 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) 37)) (-1857 (((-583 (-1073)) $) NIL)) (-4088 (((-107) (-1073) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3947 (((-349) $ (-1073)) 45)) (-2000 (((-583 (-1056)) $ (-1056)) 60)) (-1647 (((-51) $) NIL (|has| (-1073) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1073)) NIL) (((-51) $ (-1073) (-51)) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3468 (($ $ (-1073)) 47)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) 30)) (-2452 (($ $ $) 31)) (-2256 (((-787) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-4129 (($ $ (-1073) (-349)) 43)) (-3219 (($ $ (-1073) (-349)) 44)) (-1222 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-973) (-13 (-1085 (-1073) (-51)) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2665 ($)) (-15 -3699 ($ $)) (-15 -1688 ($ $)) (-15 -2014 ($ $)) (-15 -1835 ($ $)) (-15 -2263 ($ $)) (-15 -1936 ($ $)) (-15 -3172 ($ $)) (-15 -2375 ($ $)) (-15 -4129 ($ $ (-1073) (-349))) (-15 -3219 ($ $ (-1073) (-349))) (-15 -3947 ((-349) $ (-1073))) (-15 -2000 ((-583 (-1056)) $ (-1056))) (-15 -3468 ($ $ (-1073))) (-15 -2872 ($)) (-15 -2381 ((-3 (-1056) "failed") $ (-1056) (-517))) (-6 -4180)))) (T -973))
-((-2452 (*1 *1 *1 *1) (-5 *1 (-973))) (-2665 (*1 *1) (-5 *1 (-973))) (-3699 (*1 *1 *1) (-5 *1 (-973))) (-1688 (*1 *1 *1) (-5 *1 (-973))) (-2014 (*1 *1 *1) (-5 *1 (-973))) (-1835 (*1 *1 *1) (-5 *1 (-973))) (-2263 (*1 *1 *1) (-5 *1 (-973))) (-1936 (*1 *1 *1) (-5 *1 (-973))) (-3172 (*1 *1 *1) (-5 *1 (-973))) (-2375 (*1 *1 *1) (-5 *1 (-973))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))) (-3219 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-349)) (-5 *1 (-973)))) (-2000 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-973)) (-5 *3 (-1056)))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-973)))) (-2872 (*1 *1) (-5 *1 (-973))) (-2381 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-973)))))
-(-13 (-1085 (-1073) (-51)) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2665 ($)) (-15 -3699 ($ $)) (-15 -1688 ($ $)) (-15 -2014 ($ $)) (-15 -1835 ($ $)) (-15 -2263 ($ $)) (-15 -1936 ($ $)) (-15 -3172 ($ $)) (-15 -2375 ($ $)) (-15 -4129 ($ $ (-1073) (-349))) (-15 -3219 ($ $ (-1073) (-349))) (-15 -3947 ((-349) $ (-1073))) (-15 -2000 ((-583 (-1056)) $ (-1056))) (-15 -3468 ($ $ (-1073))) (-15 -2872 ($)) (-15 -2381 ((-3 (-1056) "failed") $ (-1056) (-517))) (-6 -4180)))
-((-2779 (($ $) 45)) (-2421 (((-107) $ $) 74)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) 226) (((-3 $ "failed") (-874 (-517))) 225) (((-3 $ "failed") (-874 |#2|)) 228)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-874 (-377 (-517)))) 214) (($ (-874 (-517))) 210) (($ (-874 |#2|)) 230)) (-1212 (($ $) NIL) (($ $ |#4|) 43)) (-3283 (((-107) $ $) 111) (((-107) $ (-583 $)) 112)) (-1869 (((-107) $) 56)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106)) (-4083 (($ $) 137)) (-2557 (($ $) 133)) (-1454 (($ $) 132)) (-1440 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2489 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1497 (((-107) $ $) 120) (((-107) $ (-583 $)) 121)) (-1976 ((|#4| $) 33)) (-1439 (($ $ $) 109)) (-4156 (((-107) $) 55)) (-2401 (((-703) $) 35)) (-3074 (($ $) 151)) (-1923 (($ $) 148)) (-1726 (((-583 $) $) 68)) (-2070 (($ $) 57)) (-3622 (($ $) 144)) (-2235 (((-583 $) $) 65)) (-3839 (($ $) 59)) (-1191 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 110)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 107) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#4|) 108)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) 103) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#4|) 104)) (-3692 (($ $ $) 89) (($ $ $ |#4|) 94)) (-2928 (($ $ $) 90) (($ $ $ |#4|) 95)) (-1628 (((-583 $) $) 51)) (-3852 (((-107) $ $) 117) (((-107) $ (-583 $)) 118)) (-3522 (($ $ $) 102)) (-2836 (($ $) 37)) (-3411 (((-107) $ $) 72)) (-1959 (((-107) $ $) 113) (((-107) $ (-583 $)) 115)) (-3183 (($ $ $) 100)) (-3059 (($ $) 40)) (-1401 ((|#2| |#2| $) 141) (($ (-583 $)) NIL) (($ $ $) NIL)) (-3716 (($ $ |#2|) NIL) (($ $ $) 130)) (-3068 (($ $ |#2|) 125) (($ $ $) 128)) (-2451 (($ $) 48)) (-3443 (($ $) 52)) (-3645 (((-814 (-349)) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (($ (-874 (-377 (-517)))) 216) (($ (-874 (-517))) 212) (($ (-874 |#2|)) 227) (((-1056) $) 249) (((-874 |#2|) $) 161)) (-2256 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-874 |#2|) $) 162) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2791 (((-3 (-107) "failed") $ $) 71)))
-(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1401 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 ((-874 |#2|) |#1|)) (-15 -3645 ((-874 |#2|) |#1|)) (-15 -3645 ((-1056) |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -1401 (|#2| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3068 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3068 (|#1| |#1| |#2|)) (-15 -2557 (|#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3645 (|#1| (-874 |#2|))) (-15 -3189 (|#1| (-874 |#2|))) (-15 -1772 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3645 (|#1| (-874 (-517)))) (-15 -3189 (|#1| (-874 (-517)))) (-15 -1772 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3645 (|#1| (-874 (-377 (-517))))) (-15 -3189 (|#1| (-874 (-377 (-517))))) (-15 -1772 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -3522 (|#1| |#1| |#1|)) (-15 -3183 (|#1| |#1| |#1|)) (-15 -3634 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1349 (-703))) |#1| |#1|)) (-15 -1439 (|#1| |#1| |#1|)) (-15 -1874 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1| |#4|)) (-15 -3692 (|#1| |#1| |#1| |#4|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -3692 (|#1| |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1| |#4|)) (-15 -1440 (|#1| |#1| |#1| |#4|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1497 ((-107) |#1| (-583 |#1|))) (-15 -1497 ((-107) |#1| |#1|)) (-15 -3852 ((-107) |#1| (-583 |#1|))) (-15 -3852 ((-107) |#1| |#1|)) (-15 -1959 ((-107) |#1| (-583 |#1|))) (-15 -1959 ((-107) |#1| |#1|)) (-15 -3283 ((-107) |#1| (-583 |#1|))) (-15 -3283 ((-107) |#1| |#1|)) (-15 -2421 ((-107) |#1| |#1|)) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2791 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1726 ((-583 |#1|) |#1|)) (-15 -2235 ((-583 |#1|) |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -1869 ((-107) |#1|)) (-15 -4156 ((-107) |#1|)) (-15 -1212 (|#1| |#1| |#4|)) (-15 -1191 (|#1| |#1| |#4|)) (-15 -3443 (|#1| |#1|)) (-15 -1628 ((-583 |#1|) |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3059 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2401 ((-703) |#1|)) (-15 -1976 (|#4| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -1191 (|#2| |#1|)) (-15 -1212 (|#1| |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-975 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -974))
-NIL
-(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1401 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 ((-874 |#2|) |#1|)) (-15 -3645 ((-874 |#2|) |#1|)) (-15 -3645 ((-1056) |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -1401 (|#2| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3068 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3068 (|#1| |#1| |#2|)) (-15 -2557 (|#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3645 (|#1| (-874 |#2|))) (-15 -3189 (|#1| (-874 |#2|))) (-15 -1772 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3645 (|#1| (-874 (-517)))) (-15 -3189 (|#1| (-874 (-517)))) (-15 -1772 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3645 (|#1| (-874 (-377 (-517))))) (-15 -3189 (|#1| (-874 (-377 (-517))))) (-15 -1772 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -3522 (|#1| |#1| |#1|)) (-15 -3183 (|#1| |#1| |#1|)) (-15 -3634 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1349 (-703))) |#1| |#1|)) (-15 -1439 (|#1| |#1| |#1|)) (-15 -1874 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1| |#4|)) (-15 -3692 (|#1| |#1| |#1| |#4|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -3692 (|#1| |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1| |#4|)) (-15 -1440 (|#1| |#1| |#1| |#4|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1497 ((-107) |#1| (-583 |#1|))) (-15 -1497 ((-107) |#1| |#1|)) (-15 -3852 ((-107) |#1| (-583 |#1|))) (-15 -3852 ((-107) |#1| |#1|)) (-15 -1959 ((-107) |#1| (-583 |#1|))) (-15 -1959 ((-107) |#1| |#1|)) (-15 -3283 ((-107) |#1| (-583 |#1|))) (-15 -3283 ((-107) |#1| |#1|)) (-15 -2421 ((-107) |#1| |#1|)) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2791 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1726 ((-583 |#1|) |#1|)) (-15 -2235 ((-583 |#1|) |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -1869 ((-107) |#1|)) (-15 -4156 ((-107) |#1|)) (-15 -1212 (|#1| |#1| |#4|)) (-15 -1191 (|#1| |#1| |#4|)) (-15 -3443 (|#1| |#1|)) (-15 -1628 ((-583 |#1|) |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3059 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2401 ((-703) |#1|)) (-15 -1976 (|#4| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -1191 (|#2| |#1|)) (-15 -1212 (|#1| |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2779 (($ $) 271)) (-2421 (((-107) $ $) 257)) (-4038 (((-3 $ "failed") $ $) 19)) (-3081 (($ $ $) 216 (|has| |#1| (-509)))) (-2788 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-874 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (((-3 $ "failed") (-874 (-517))) 228 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (((-3 $ "failed") (-874 |#1|)) 225 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-502))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))))) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) (($ (-874 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (($ (-874 (-517))) 227 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (($ (-874 |#1|)) 224 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-502))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))))) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-1212 (($ $) 154) (($ $ |#3|) 266)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3283 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-3621 (((-3 $ "failed") $) 34)) (-1869 (((-107) $) 264)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 236)) (-4083 (($ $) 205 (|has| |#1| (-421)))) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-2557 (($ $) 221 (|has| |#1| (-509)))) (-1454 (($ $) 222 (|has| |#1| (-509)))) (-1440 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2489 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1436 (($ $ |#1| |#2| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1497 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-3239 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-1976 ((|#3| $) 275)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-1439 (($ $ $) 235)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-4156 (((-107) $) 265)) (-2349 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-2401 (((-703) $) 274)) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#2| |#2|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1409 (((-3 |#3| "failed") $) 123)) (-3074 (($ $) 202 (|has| |#1| (-421)))) (-1923 (($ $) 203 (|has| |#1| (-421)))) (-1726 (((-583 $) $) 260)) (-2070 (($ $) 263)) (-3622 (($ $) 204 (|has| |#1| (-421)))) (-2235 (((-583 $) $) 261)) (-3839 (($ $) 262)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148) (($ $ |#3|) 267)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 234)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 238) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 237)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) 240) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#3|) 239)) (-3692 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2928 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3985 (((-1056) $) 9)) (-1855 (($ $ $) 210 (|has| |#1| (-509)))) (-1628 (((-583 $) $) 269)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-3852 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-3522 (($ $ $) 232)) (-2836 (($ $) 273)) (-3411 (((-107) $ $) 258)) (-1959 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-3183 (($ $ $) 233)) (-3059 (($ $) 272)) (-3206 (((-1021) $) 10)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3716 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-3068 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3688 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-2451 (($ $) 270)) (-3443 (($ $) 268)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-874 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (($ (-874 (-517))) 226 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (($ (-874 |#1|)) 223 (|has| |#3| (-558 (-1073)))) (((-1056) $) 201 (-12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1073))))) (((-874 |#1|) $) 200 (|has| |#3| (-558 (-1073))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-874 |#1|) $) 199 (|has| |#3| (-558 (-1073)))) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2791 (((-3 (-107) "failed") $ $) 259)) (-2409 (($) 30 T CONST)) (-3872 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-3051 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-975 |#1| |#2| |#3|) (-1184) (-961) (-725) (-779)) (T -975))
-((-1976 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3059 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1628 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1191 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1212 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2235 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-1726 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-2791 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3411 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2421 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3283 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3283 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1959 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3852 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1497 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1497 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1440 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2489 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1440 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2489 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3692 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2928 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3692 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2928 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2915 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-2915 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) (-2669 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-2669 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) (-1874 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-1439 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3634 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1349 (-703)))) (-4 *1 (-975 *3 *4 *5)))) (-3183 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3522 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-1772 (*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3189 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3645 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-1772 (*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3189 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1073))) (-4 *4 (-725)) (-4 *5 (-779)))) (-1454 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2557 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3068 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3716 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3068 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3716 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1478 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3704 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3388 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2788 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3051 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3872 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3239 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1401 (*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-4083 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3622 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3074 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(-13 (-871 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1976 (|t#3| $)) (-15 -2401 ((-703) $)) (-15 -2836 ($ $)) (-15 -3059 ($ $)) (-15 -2779 ($ $)) (-15 -2451 ($ $)) (-15 -1628 ((-583 $) $)) (-15 -3443 ($ $)) (-15 -1191 ($ $ |t#3|)) (-15 -1212 ($ $ |t#3|)) (-15 -4156 ((-107) $)) (-15 -1869 ((-107) $)) (-15 -2070 ($ $)) (-15 -3839 ($ $)) (-15 -2235 ((-583 $) $)) (-15 -1726 ((-583 $) $)) (-15 -2791 ((-3 (-107) "failed") $ $)) (-15 -3411 ((-107) $ $)) (-15 -2421 ((-107) $ $)) (-15 -3283 ((-107) $ $)) (-15 -3283 ((-107) $ (-583 $))) (-15 -1959 ((-107) $ $)) (-15 -1959 ((-107) $ (-583 $))) (-15 -3852 ((-107) $ $)) (-15 -3852 ((-107) $ (-583 $))) (-15 -1497 ((-107) $ $)) (-15 -1497 ((-107) $ (-583 $))) (-15 -1440 ($ $ $)) (-15 -2489 ($ $ $)) (-15 -1440 ($ $ $ |t#3|)) (-15 -2489 ($ $ $ |t#3|)) (-15 -3692 ($ $ $)) (-15 -2928 ($ $ $)) (-15 -3692 ($ $ $ |t#3|)) (-15 -2928 ($ $ $ |t#3|)) (-15 -2915 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $)) (-15 -2915 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |t#3|)) (-15 -2669 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2669 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |t#3|)) (-15 -1874 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $)) (-15 -3183 ($ $ $)) (-15 -3522 ($ $ $)) (IF (|has| |t#3| (-558 (-1073))) (PROGN (-6 (-557 (-874 |t#1|))) (-6 (-558 (-874 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1772 ((-3 $ "failed") (-874 (-377 (-517))))) (-15 -3189 ($ (-874 (-377 (-517))))) (-15 -3645 ($ (-874 (-377 (-517))))) (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-874 (-517)))) (-15 -3645 ($ (-874 (-517)))) (IF (|has| |t#1| (-909 (-517))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|)))))) |noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-874 (-517)))) (-15 -3645 ($ (-874 (-517)))) (IF (|has| |t#1| (-502)) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|))))))) |noBranch|) (IF (|has| |t#1| (-37 (-517))) |noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|)))))) (-15 -3645 ($ (-874 |t#1|))) (IF (|has| |t#1| (-952 (-517))) (-6 (-558 (-1056))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -1454 ($ $)) (-15 -2557 ($ $)) (-15 -3068 ($ $ |t#1|)) (-15 -3716 ($ $ |t#1|)) (-15 -3068 ($ $ $)) (-15 -3716 ($ $ $)) (-15 -3081 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -3388 ($ $ $)) (-15 -2788 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -3051 ($ $ $ (-703))) (-15 -3872 ($ $ $ $ (-703))) (-15 -3239 ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -1401 (|t#1| |t#1| $)) (-15 -4083 ($ $)) (-15 -3622 ($ $)) (-15 -1923 ($ $)) (-15 -3074 ($ $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-874 |#1|)) |has| |#3| (-558 (-1073))) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-558 (-874 |#1|)) |has| |#3| (-558 (-1073))) ((-558 (-1056)) -12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1073)))) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#2| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831)))
-((-2814 (((-107) |#3| $) 13)) (-3267 (((-3 $ "failed") |#3| (-843)) 23)) (-3621 (((-3 |#3| "failed") |#3| $) 37)) (-3556 (((-107) |#3| $) 16)) (-2475 (((-107) |#3| $) 14)))
-(((-976 |#1| |#2| |#3|) (-10 -8 (-15 -3267 ((-3 |#1| "failed") |#3| (-843))) (-15 -3621 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3556 ((-107) |#3| |#1|)) (-15 -2475 ((-107) |#3| |#1|)) (-15 -2814 ((-107) |#3| |#1|))) (-977 |#2| |#3|) (-13 (-777) (-333)) (-1130 |#2|)) (T -976))
-NIL
-(-10 -8 (-15 -3267 ((-3 |#1| "failed") |#3| (-843))) (-15 -3621 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3556 ((-107) |#3| |#1|)) (-15 -2475 ((-107) |#3| |#1|)) (-15 -2814 ((-107) |#3| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) |#2| $) 21)) (-3709 (((-517) |#2| $) 22)) (-3267 (((-3 $ "failed") |#2| (-843)) 15)) (-2002 ((|#1| |#2| $ |#1|) 13)) (-3621 (((-3 |#2| "failed") |#2| $) 18)) (-3556 (((-107) |#2| $) 19)) (-2475 (((-107) |#2| $) 20)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2135 ((|#2| $) 17)) (-2256 (((-787) $) 11)) (-3383 ((|#1| |#2| $ |#1|) 14)) (-3995 (((-583 $) |#2|) 16)) (-1547 (((-107) $ $) 6)))
-(((-977 |#1| |#2|) (-1184) (-13 (-777) (-333)) (-1130 |t#1|)) (T -977))
-((-3709 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-517)))) (-2814 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-2475 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-3556 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-3621 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) (-3995 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))) (-3267 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1130 *4)))) (-3383 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))) (-2002 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))))
-(-13 (-1003) (-10 -8 (-15 -3709 ((-517) |t#2| $)) (-15 -2814 ((-107) |t#2| $)) (-15 -2475 ((-107) |t#2| $)) (-15 -3556 ((-107) |t#2| $)) (-15 -3621 ((-3 |t#2| "failed") |t#2| $)) (-15 -2135 (|t#2| $)) (-15 -3995 ((-583 $) |t#2|)) (-15 -3267 ((-3 $ "failed") |t#2| (-843))) (-15 -3383 (|t#1| |t#2| $ |t#1|)) (-15 -2002 (|t#1| |t#2| $ |t#1|))))
+((-3349 (($ $) 16)) (-3896 (($ $) 22)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 49)) (-2289 (($ $) 24)) (-1194 (($ $) 11)) (-3263 (($ $) 38)) (-3582 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) 33)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-1865 (((-703)) 8)) (-3112 (($ $) 39)))
+(((-969 |#1|) (-10 -8 (-15 -3896 (|#1| |#1|)) (-15 -3349 (|#1| |#1|)) (-15 -1194 (|#1| |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -3112 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -3289 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| (-517))) (-15 -3582 ((-199) |#1|)) (-15 -3582 ((-349) |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| |#1|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 -2182 ((-787) |#1|))) (-970)) (T -969))
+((-1865 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970)))))
+(-10 -8 (-15 -3896 (|#1| |#1|)) (-15 -3349 (|#1| |#1|)) (-15 -1194 (|#1| |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -3112 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -3289 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| (-517))) (-15 -3582 ((-199) |#1|)) (-15 -3582 ((-349) |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| |#1|)) (-15 -2182 (|#1| (-517))) (-15 -1865 ((-703))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-2667 (((-517) $) 89)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-3349 (($ $) 87)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3706 (($ $) 97)) (-3765 (((-107) $ $) 59)) (-1207 (((-517) $) 114)) (-3473 (($) 17 T CONST)) (-3896 (($ $) 86)) (-1759 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3076 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2965 (((-107) $) 71)) (-2099 (((-107) $) 112)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 96)) (-2289 (($ $) 92)) (-1624 (((-107) $) 113)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1575 (($ $ $) 111)) (-2986 (($ $ $) 110)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-1194 (($ $) 88)) (-3263 (($ $) 90)) (-3693 (((-388 $) $) 74)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-3582 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-1865 (((-703)) 29)) (-3112 (($ $) 91)) (-3767 (((-107) $ $) 39)) (-1221 (($ $) 115)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1593 (((-107) $ $) 108)) (-1570 (((-107) $ $) 107)) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 109)) (-1560 (((-107) $ $) 106)) (-1649 (($ $ $) 64)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-970) (-1185)) (T -970))
+((-1221 (*1 *1 *1) (-4 *1 (-970))) (-2289 (*1 *1 *1) (-4 *1 (-970))) (-3112 (*1 *1 *1) (-4 *1 (-970))) (-3263 (*1 *1 *1) (-4 *1 (-970))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))) (-1194 (*1 *1 *1) (-4 *1 (-970))) (-3349 (*1 *1 *1) (-4 *1 (-970))) (-3896 (*1 *1 *1) (-4 *1 (-970))))
+(-13 (-333) (-777) (-937) (-952 (-517)) (-952 (-377 (-517))) (-918) (-558 (-814 (-349))) (-808 (-349)) (-134) (-10 -8 (-15 -2289 ($ $)) (-15 -3112 ($ $)) (-15 -3263 ($ $)) (-15 -2667 ((-517) $)) (-15 -1194 ($ $)) (-15 -3349 ($ $)) (-15 -3896 ($ $)) (-15 -1221 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) |#2| $) 23)) (-1598 ((|#1| $) 10)) (-1207 (((-517) |#2| $) 88)) (-1434 (((-3 $ "failed") |#2| (-843)) 58)) (-3591 ((|#1| $) 28)) (-2439 ((|#1| |#2| $ |#1|) 37)) (-3438 (($ $) 25)) (-1568 (((-3 |#2| "failed") |#2| $) 87)) (-2099 (((-107) |#2| $) NIL)) (-1624 (((-107) |#2| $) NIL)) (-2896 (((-107) |#2| $) 24)) (-3185 ((|#1| $) 89)) (-3577 ((|#1| $) 27)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1457 ((|#2| $) 79)) (-2182 (((-787) $) 71)) (-3284 ((|#1| |#2| $ |#1|) 38)) (-3964 (((-583 $) |#2|) 60)) (-1539 (((-107) $ $) 74)))
+(((-971 |#1| |#2|) (-13 (-977 |#1| |#2|) (-10 -8 (-15 -3577 (|#1| $)) (-15 -3591 (|#1| $)) (-15 -1598 (|#1| $)) (-15 -3185 (|#1| $)) (-15 -3438 ($ $)) (-15 -2896 ((-107) |#2| $)) (-15 -2439 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1131 |#1|)) (T -971))
+((-2439 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-3577 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-3591 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-1598 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-3185 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-3438 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-2896 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1131 *4)))))
+(-13 (-977 |#1| |#2|) (-10 -8 (-15 -3577 (|#1| $)) (-15 -3591 (|#1| $)) (-15 -1598 (|#1| $)) (-15 -3185 (|#1| $)) (-15 -3438 ($ $)) (-15 -2896 ((-107) |#2| $)) (-15 -2439 (|#1| |#2| $ |#1|))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3641 (($ $ $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2044 (($ $ $ $) NIL)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL)) (-1362 (($ $ $) NIL)) (-3473 (($) NIL T CONST)) (-4099 (($ (-1074)) 10) (($ (-517)) 7)) (-1759 (((-3 (-517) "failed") $) NIL)) (-3076 (((-517) $) NIL)) (-2383 (($ $ $) NIL)) (-4012 (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-1422 (((-3 (-377 (-517)) "failed") $) NIL)) (-2712 (((-107) $) NIL)) (-4078 (((-377 (-517)) $) NIL)) (-3098 (($) NIL) (($ $) NIL)) (-2366 (($ $ $) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2566 (($ $ $ $) NIL)) (-3837 (($ $ $) NIL)) (-2099 (((-107) $) NIL)) (-1808 (($ $ $) NIL)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-2955 (((-107) $) NIL)) (-2393 (((-107) $) NIL)) (-3744 (((-3 $ "failed") $) NIL)) (-1624 (((-107) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3601 (($ $ $ $) NIL)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1520 (($ $) NIL)) (-2542 (($ $) NIL)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-3638 (($ $ $) NIL)) (-2663 (($) NIL T CONST)) (-3143 (($ $) NIL)) (-3094 (((-1021) $) NIL) (($ $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1938 (($ $) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3994 (((-107) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-1699 (($ $ (-703)) NIL) (($ $) NIL)) (-1347 (($ $) NIL)) (-2322 (($ $) NIL)) (-3582 (((-517) $) 16) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1074)) 9)) (-2182 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-1865 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-1679 (($ $ $) NIL)) (-4103 (($) NIL)) (-3767 (((-107) $ $) NIL)) (-4061 (($ $ $ $) NIL)) (-1221 (($ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) NIL)) (-1637 (($ $) 19) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-972) (-13 (-502) (-10 -8 (-6 -4170) (-6 -4175) (-6 -4171) (-15 -3582 ($ (-1074))) (-15 -4099 ($ (-1074))) (-15 -4099 ($ (-517)))))) (T -972))
+((-3582 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-972)))) (-4099 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-972)))) (-4099 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))))
+(-13 (-502) (-10 -8 (-6 -4170) (-6 -4175) (-6 -4171) (-15 -3582 ($ (-1074))) (-15 -4099 ($ (-1074))) (-15 -4099 ($ (-517)))))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL)) (-3423 (((-1159) $ (-1074) (-1074)) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2185 (($) 9)) (-2307 (((-51) $ (-1074) (-51)) NIL)) (-1284 (($ $) 23)) (-2537 (($ $) 21)) (-3614 (($ $) 20)) (-3921 (($ $) 22)) (-2881 (($ $) 25)) (-2958 (($ $) 26)) (-4094 (($ $) 19)) (-3117 (($ $) 24)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) 18 (|has| $ (-6 -4183)))) (-3147 (((-3 (-51) "failed") (-1074) $) 34)) (-3473 (($) NIL T CONST)) (-2635 (($) 7)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-2111 (($ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) 46 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-3 (-51) "failed") (-1074) $) NIL)) (-1971 (($ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3019 (((-3 (-1057) "failed") $ (-1057) (-517)) 59)) (-1226 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -4184)))) (-4020 (((-51) $ (-1074)) NIL)) (-3037 (((-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-1074) $) NIL (|has| (-1074) (-779)))) (-1196 (((-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) 28 (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-2564 (((-1074) $) NIL (|has| (-1074) (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-3799 (((-583 (-1074)) $) NIL)) (-2555 (((-107) (-1074) $) NIL)) (-1835 (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL)) (-3816 (($ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) 37)) (-4086 (((-583 (-1074)) $) NIL)) (-3646 (((-107) (-1074) $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-1678 (((-349) $ (-1074)) 45)) (-2429 (((-583 (-1057)) $ (-1057)) 60)) (-1631 (((-51) $) NIL (|has| (-1074) (-779)))) (-2293 (((-3 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) "failed") (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL)) (-1254 (($ $ (-51)) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))))) NIL (-12 (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL (-12 (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ $ (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) NIL (-12 (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL (-12 (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-280 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3042 (((-583 (-51)) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 (((-51) $ (-1074)) NIL) (((-51) $ (-1074) (-51)) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL)) (-2452 (($ $ (-1074)) 47)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) 30)) (-2337 (($ $ $) 31)) (-2182 (((-787) $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-2686 (($ $ (-1074) (-349)) 43)) (-2151 (($ $ (-1074) (-349)) 44)) (-2373 (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 (-1074)) (|:| -1266 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-51) (-1003)) (|has| (-2 (|:| -3342 (-1074)) (|:| -1266 (-51))) (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-973) (-13 (-1086 (-1074) (-51)) (-10 -8 (-15 -2337 ($ $ $)) (-15 -2635 ($)) (-15 -4094 ($ $)) (-15 -3614 ($ $)) (-15 -2537 ($ $)) (-15 -3921 ($ $)) (-15 -3117 ($ $)) (-15 -1284 ($ $)) (-15 -2881 ($ $)) (-15 -2958 ($ $)) (-15 -2686 ($ $ (-1074) (-349))) (-15 -2151 ($ $ (-1074) (-349))) (-15 -1678 ((-349) $ (-1074))) (-15 -2429 ((-583 (-1057)) $ (-1057))) (-15 -2452 ($ $ (-1074))) (-15 -2185 ($)) (-15 -3019 ((-3 (-1057) "failed") $ (-1057) (-517))) (-6 -4183)))) (T -973))
+((-2337 (*1 *1 *1 *1) (-5 *1 (-973))) (-2635 (*1 *1) (-5 *1 (-973))) (-4094 (*1 *1 *1) (-5 *1 (-973))) (-3614 (*1 *1 *1) (-5 *1 (-973))) (-2537 (*1 *1 *1) (-5 *1 (-973))) (-3921 (*1 *1 *1) (-5 *1 (-973))) (-3117 (*1 *1 *1) (-5 *1 (-973))) (-1284 (*1 *1 *1) (-5 *1 (-973))) (-2881 (*1 *1 *1) (-5 *1 (-973))) (-2958 (*1 *1 *1) (-5 *1 (-973))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-349)) (-5 *1 (-973)))) (-2151 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-349)) (-5 *1 (-973)))) (-1678 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-349)) (-5 *1 (-973)))) (-2429 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-973)) (-5 *3 (-1057)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-973)))) (-2185 (*1 *1) (-5 *1 (-973))) (-3019 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-973)))))
+(-13 (-1086 (-1074) (-51)) (-10 -8 (-15 -2337 ($ $ $)) (-15 -2635 ($)) (-15 -4094 ($ $)) (-15 -3614 ($ $)) (-15 -2537 ($ $)) (-15 -3921 ($ $)) (-15 -3117 ($ $)) (-15 -1284 ($ $)) (-15 -2881 ($ $)) (-15 -2958 ($ $)) (-15 -2686 ($ $ (-1074) (-349))) (-15 -2151 ($ $ (-1074) (-349))) (-15 -1678 ((-349) $ (-1074))) (-15 -2429 ((-583 (-1057)) $ (-1057))) (-15 -2452 ($ $ (-1074))) (-15 -2185 ($)) (-15 -3019 ((-3 (-1057) "failed") $ (-1057) (-517))) (-6 -4183)))
+((-2602 (($ $) 45)) (-2224 (((-107) $ $) 74)) (-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) 226) (((-3 $ "failed") (-874 (-517))) 225) (((-3 $ "failed") (-874 |#2|)) 228)) (-3076 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-874 (-377 (-517)))) 214) (($ (-874 (-517))) 210) (($ (-874 |#2|)) 230)) (-1217 (($ $) NIL) (($ $ |#4|) 43)) (-1584 (((-107) $ $) 111) (((-107) $ (-583 $)) 112)) (-1197 (((-107) $) 56)) (-1257 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 106)) (-3594 (($ $) 137)) (-4138 (($ $) 133)) (-3717 (($ $) 132)) (-2278 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1761 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2096 (((-107) $ $) 120) (((-107) $ (-583 $)) 121)) (-3377 ((|#4| $) 33)) (-2269 (($ $ $) 109)) (-2909 (((-107) $) 55)) (-2077 (((-703) $) 35)) (-3292 (($ $) 151)) (-4125 (($ $) 148)) (-2895 (((-583 $) $) 68)) (-2011 (($ $) 57)) (-1581 (($ $) 144)) (-4131 (((-583 $) $) 65)) (-2828 (($ $) 59)) (-1192 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1707 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2651 (-703))) $ $) 110)) (-2679 (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $) 107) (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $ |#4|) 108)) (-1463 (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3169 $)) $ $) 103) (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3169 $)) $ $ |#4|) 104)) (-4036 (($ $ $) 89) (($ $ $ |#4|) 94)) (-1547 (($ $ $) 90) (($ $ $ |#4|) 95)) (-3730 (((-583 $) $) 51)) (-2998 (((-107) $ $) 117) (((-107) $ (-583 $)) 118)) (-2946 (($ $ $) 102)) (-2663 (($ $) 37)) (-3196 (((-107) $ $) 72)) (-3201 (((-107) $ $) 113) (((-107) $ (-583 $)) 115)) (-3006 (($ $ $) 100)) (-3159 (($ $) 40)) (-1396 ((|#2| |#2| $) 141) (($ (-583 $)) NIL) (($ $ $) NIL)) (-1275 (($ $ |#2|) NIL) (($ $ $) 130)) (-3236 (($ $ |#2|) 125) (($ $ $) 128)) (-1430 (($ $) 48)) (-3506 (($ $) 52)) (-3582 (((-814 (-349)) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (($ (-874 (-377 (-517)))) 216) (($ (-874 (-517))) 212) (($ (-874 |#2|)) 227) (((-1057) $) 249) (((-874 |#2|) $) 161)) (-2182 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-874 |#2|) $) 162) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2533 (((-3 (-107) "failed") $ $) 71)))
+(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2182 (|#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -1396 (|#1| (-583 |#1|))) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 ((-874 |#2|) |#1|)) (-15 -3582 ((-874 |#2|) |#1|)) (-15 -3582 ((-1057) |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -4125 (|#1| |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -3594 (|#1| |#1|)) (-15 -1396 (|#2| |#2| |#1|)) (-15 -1275 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -1275 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -4138 (|#1| |#1|)) (-15 -3717 (|#1| |#1|)) (-15 -3582 (|#1| (-874 |#2|))) (-15 -3076 (|#1| (-874 |#2|))) (-15 -1759 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3582 (|#1| (-874 (-517)))) (-15 -3076 (|#1| (-874 (-517)))) (-15 -1759 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3582 (|#1| (-874 (-377 (-517))))) (-15 -3076 (|#1| (-874 (-377 (-517))))) (-15 -1759 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -2946 (|#1| |#1| |#1|)) (-15 -3006 (|#1| |#1| |#1|)) (-15 -1707 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2651 (-703))) |#1| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -1257 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -2679 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1| |#4|)) (-15 -2679 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -1463 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3169 |#1|)) |#1| |#1| |#4|)) (-15 -1463 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -1547 (|#1| |#1| |#1| |#4|)) (-15 -4036 (|#1| |#1| |#1| |#4|)) (-15 -1547 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -1761 (|#1| |#1| |#1| |#4|)) (-15 -2278 (|#1| |#1| |#1| |#4|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -2278 (|#1| |#1| |#1|)) (-15 -2096 ((-107) |#1| (-583 |#1|))) (-15 -2096 ((-107) |#1| |#1|)) (-15 -2998 ((-107) |#1| (-583 |#1|))) (-15 -2998 ((-107) |#1| |#1|)) (-15 -3201 ((-107) |#1| (-583 |#1|))) (-15 -3201 ((-107) |#1| |#1|)) (-15 -1584 ((-107) |#1| (-583 |#1|))) (-15 -1584 ((-107) |#1| |#1|)) (-15 -2224 ((-107) |#1| |#1|)) (-15 -3196 ((-107) |#1| |#1|)) (-15 -2533 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2895 ((-583 |#1|) |#1|)) (-15 -4131 ((-583 |#1|) |#1|)) (-15 -2828 (|#1| |#1|)) (-15 -2011 (|#1| |#1|)) (-15 -1197 ((-107) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1217 (|#1| |#1| |#4|)) (-15 -1192 (|#1| |#1| |#4|)) (-15 -3506 (|#1| |#1|)) (-15 -3730 ((-583 |#1|) |#1|)) (-15 -1430 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -3159 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 -2077 ((-703) |#1|)) (-15 -3377 (|#4| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3076 (|#4| |#1|)) (-15 -1759 ((-3 |#4| "failed") |#1|)) (-15 -2182 (|#1| |#4|)) (-15 -1192 (|#2| |#1|)) (-15 -1217 (|#1| |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|))) (-975 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -974))
+NIL
+(-10 -8 (-15 -2182 (|#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -1396 (|#1| (-583 |#1|))) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 ((-874 |#2|) |#1|)) (-15 -3582 ((-874 |#2|) |#1|)) (-15 -3582 ((-1057) |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -4125 (|#1| |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -3594 (|#1| |#1|)) (-15 -1396 (|#2| |#2| |#1|)) (-15 -1275 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -1275 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -4138 (|#1| |#1|)) (-15 -3717 (|#1| |#1|)) (-15 -3582 (|#1| (-874 |#2|))) (-15 -3076 (|#1| (-874 |#2|))) (-15 -1759 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3582 (|#1| (-874 (-517)))) (-15 -3076 (|#1| (-874 (-517)))) (-15 -1759 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3582 (|#1| (-874 (-377 (-517))))) (-15 -3076 (|#1| (-874 (-377 (-517))))) (-15 -1759 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -2946 (|#1| |#1| |#1|)) (-15 -3006 (|#1| |#1| |#1|)) (-15 -1707 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2651 (-703))) |#1| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -1257 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -2679 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1| |#4|)) (-15 -2679 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -1463 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3169 |#1|)) |#1| |#1| |#4|)) (-15 -1463 ((-2 (|:| -1883 |#1|) (|:| |gap| (-703)) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -1547 (|#1| |#1| |#1| |#4|)) (-15 -4036 (|#1| |#1| |#1| |#4|)) (-15 -1547 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -1761 (|#1| |#1| |#1| |#4|)) (-15 -2278 (|#1| |#1| |#1| |#4|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -2278 (|#1| |#1| |#1|)) (-15 -2096 ((-107) |#1| (-583 |#1|))) (-15 -2096 ((-107) |#1| |#1|)) (-15 -2998 ((-107) |#1| (-583 |#1|))) (-15 -2998 ((-107) |#1| |#1|)) (-15 -3201 ((-107) |#1| (-583 |#1|))) (-15 -3201 ((-107) |#1| |#1|)) (-15 -1584 ((-107) |#1| (-583 |#1|))) (-15 -1584 ((-107) |#1| |#1|)) (-15 -2224 ((-107) |#1| |#1|)) (-15 -3196 ((-107) |#1| |#1|)) (-15 -2533 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2895 ((-583 |#1|) |#1|)) (-15 -4131 ((-583 |#1|) |#1|)) (-15 -2828 (|#1| |#1|)) (-15 -2011 (|#1| |#1|)) (-15 -1197 ((-107) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1217 (|#1| |#1| |#4|)) (-15 -1192 (|#1| |#1| |#4|)) (-15 -3506 (|#1| |#1|)) (-15 -3730 ((-583 |#1|) |#1|)) (-15 -1430 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -3159 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 -2077 ((-703) |#1|)) (-15 -3377 (|#4| |#1|)) (-15 -3582 ((-493) |#1|)) (-15 -3582 ((-814 (-517)) |#1|)) (-15 -3582 ((-814 (-349)) |#1|)) (-15 -3076 (|#4| |#1|)) (-15 -1759 ((-3 |#4| "failed") |#1|)) (-15 -2182 (|#1| |#4|)) (-15 -1192 (|#2| |#1|)) (-15 -1217 (|#1| |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 |#3|) $) 110)) (-2255 (((-1070 $) $ |#3|) 125) (((-1070 |#1|) $) 124)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-3209 (($ $) 88 (|has| |#1| (-509)))) (-1452 (((-107) $) 90 (|has| |#1| (-509)))) (-3860 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2602 (($ $) 271)) (-2224 (((-107) $ $) 257)) (-1387 (((-3 $ "failed") $ $) 19)) (-3348 (($ $ $) 216 (|has| |#1| (-509)))) (-2512 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-2594 (((-388 (-1070 $)) (-1070 $)) 100 (|has| |#1| (-831)))) (-3938 (($ $) 98 (|has| |#1| (-421)))) (-3490 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-831)))) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-874 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))) (((-3 $ "failed") (-874 (-517))) 228 (-3763 (-12 (-2455 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074)))))) (((-3 $ "failed") (-874 |#1|)) 225 (-3763 (-12 (-2455 (|has| |#1| (-37 (-377 (-517))))) (-2455 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1074)))) (-12 (-2455 (|has| |#1| (-502))) (-2455 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (-2455 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))))) (-3076 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) (($ (-874 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))) (($ (-874 (-517))) 227 (-3763 (-12 (-2455 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074)))))) (($ (-874 |#1|)) 224 (-3763 (-12 (-2455 (|has| |#1| (-37 (-377 (-517))))) (-2455 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1074)))) (-12 (-2455 (|has| |#1| (-502))) (-2455 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (-2455 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))))) (-1309 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-1217 (($ $) 154) (($ $ |#3|) 266)) (-4012 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-1584 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-1568 (((-3 $ "failed") $) 34)) (-1197 (((-107) $) 264)) (-1257 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 236)) (-3594 (($ $) 205 (|has| |#1| (-421)))) (-3039 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1203 (((-583 $) $) 109)) (-2965 (((-107) $) 96 (|has| |#1| (-831)))) (-4138 (($ $) 221 (|has| |#1| (-509)))) (-3717 (($ $) 222 (|has| |#1| (-509)))) (-2278 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1761 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2253 (($ $ |#1| |#2| $) 172)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-2955 (((-107) $) 31)) (-2091 (((-703) $) 169)) (-2096 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-2271 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-3377 ((|#3| $) 275)) (-1352 (($ (-1070 |#1|) |#3|) 117) (($ (-1070 $) |#3|) 116)) (-3704 (((-583 $) $) 126)) (-1331 (((-107) $) 152)) (-1343 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2269 (($ $ $) 235)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ |#3|) 120)) (-2909 (((-107) $) 265)) (-2672 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-1575 (($ $ $) 79 (|has| |#1| (-779)))) (-2077 (((-703) $) 274)) (-2986 (($ $ $) 78 (|has| |#1| (-779)))) (-3751 (($ (-1 |#2| |#2|) $) 171)) (-1857 (($ (-1 |#1| |#1|) $) 151)) (-1954 (((-3 |#3| "failed") $) 123)) (-3292 (($ $) 202 (|has| |#1| (-421)))) (-4125 (($ $) 203 (|has| |#1| (-421)))) (-2895 (((-583 $) $) 260)) (-2011 (($ $) 263)) (-1581 (($ $) 204 (|has| |#1| (-421)))) (-4131 (((-583 $) $) 261)) (-2828 (($ $) 262)) (-4159 (($ $) 149)) (-1192 ((|#1| $) 148) (($ $ |#3|) 267)) (-1368 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1707 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2651 (-703))) $ $) 234)) (-2679 (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $) 238) (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $ |#3|) 237)) (-1463 (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3169 $)) $ $) 240) (((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3169 $)) $ $ |#3|) 239)) (-4036 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1547 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3865 (((-1057) $) 9)) (-4065 (($ $ $) 210 (|has| |#1| (-509)))) (-3730 (((-583 $) $) 269)) (-4128 (((-3 (-583 $) "failed") $) 114)) (-3116 (((-3 (-583 $) "failed") $) 115)) (-2911 (((-3 (-2 (|:| |var| |#3|) (|:| -2059 (-703))) "failed") $) 113)) (-2998 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-2946 (($ $ $) 232)) (-2663 (($ $) 273)) (-3196 (((-107) $ $) 258)) (-3201 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-3006 (($ $ $) 233)) (-3159 (($ $) 272)) (-3094 (((-1021) $) 10)) (-4137 (((-2 (|:| -1396 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-2175 (((-2 (|:| -1396 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-4134 (((-107) $) 166)) (-4144 ((|#1| $) 167)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 95 (|has| |#1| (-421)))) (-1396 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) 101 (|has| |#1| (-831)))) (-3693 (((-388 $) $) 99 (|has| |#1| (-831)))) (-3925 (((-2 (|:| -1396 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2349 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-1275 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-3236 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-4042 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-1699 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-4007 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-1430 (($ $) 270)) (-3506 (($ $) 268)) (-3582 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-874 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))) (($ (-874 (-517))) 226 (-3763 (-12 (-2455 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074)))))) (($ (-874 |#1|)) 223 (|has| |#3| (-558 (-1074)))) (((-1057) $) 201 (-12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1074))))) (((-874 |#1|) $) 200 (|has| |#3| (-558 (-1074))))) (-1423 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 104 (-1651 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-874 |#1|) $) 199 (|has| |#3| (-558 (-1074)))) (($ (-377 (-517))) 72 (-3763 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) 168)) (-3086 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1589 (((-3 $ "failed") $) 73 (-3763 (-1651 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) 29)) (-2962 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3767 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2533 (((-3 (-107) "failed") $ $) 259)) (-2306 (($) 30 T CONST)) (-2095 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-3102 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-2553 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1593 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1649 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-975 |#1| |#2| |#3|) (-1185) (-961) (-725) (-779)) (T -975))
+((-3377 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2663 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3159 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2602 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1430 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3730 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1192 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1217 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1197 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2011 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2828 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-4131 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-2895 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-2533 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3196 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2224 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1584 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1584 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3201 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-2998 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2998 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-2096 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2096 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-2278 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1761 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2278 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1761 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1547 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-4036 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1547 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1463 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1883 *1) (|:| |gap| (-703)) (|:| -3169 *1))) (-4 *1 (-975 *3 *4 *5)))) (-1463 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1883 *1) (|:| |gap| (-703)) (|:| -3169 *1))) (-4 *1 (-975 *4 *5 *3)))) (-2679 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1883 *1) (|:| |gap| (-703)) (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-975 *3 *4 *5)))) (-2679 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1883 *1) (|:| |gap| (-703)) (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-975 *4 *5 *3)))) (-1257 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-975 *3 *4 *5)))) (-2269 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1707 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2651 (-703)))) (-4 *1 (-975 *3 *4 *5)))) (-3006 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2946 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1759 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-1759 (*1 *1 *2) (|partial| -3763 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3076 (*1 *1 *2) (-3763 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3582 (*1 *1 *2) (-3763 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-1759 (*1 *1 *2) (|partial| -3763 (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-2455 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-502))) (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3076 (*1 *1 *2) (-3763 (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-2455 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-502))) (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1074))) (-4 *4 (-725)) (-4 *5 (-779)))) (-3717 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-4138 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3236 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1275 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1275 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3348 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3925 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1396 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-2175 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1396 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))) (-4137 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1396 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-1309 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2512 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-4065 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3102 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-2095 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-2271 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1396 (*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3594 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1581 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-4125 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(-13 (-871 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3377 (|t#3| $)) (-15 -2077 ((-703) $)) (-15 -2663 ($ $)) (-15 -3159 ($ $)) (-15 -2602 ($ $)) (-15 -1430 ($ $)) (-15 -3730 ((-583 $) $)) (-15 -3506 ($ $)) (-15 -1192 ($ $ |t#3|)) (-15 -1217 ($ $ |t#3|)) (-15 -2909 ((-107) $)) (-15 -1197 ((-107) $)) (-15 -2011 ($ $)) (-15 -2828 ($ $)) (-15 -4131 ((-583 $) $)) (-15 -2895 ((-583 $) $)) (-15 -2533 ((-3 (-107) "failed") $ $)) (-15 -3196 ((-107) $ $)) (-15 -2224 ((-107) $ $)) (-15 -1584 ((-107) $ $)) (-15 -1584 ((-107) $ (-583 $))) (-15 -3201 ((-107) $ $)) (-15 -3201 ((-107) $ (-583 $))) (-15 -2998 ((-107) $ $)) (-15 -2998 ((-107) $ (-583 $))) (-15 -2096 ((-107) $ $)) (-15 -2096 ((-107) $ (-583 $))) (-15 -2278 ($ $ $)) (-15 -1761 ($ $ $)) (-15 -2278 ($ $ $ |t#3|)) (-15 -1761 ($ $ $ |t#3|)) (-15 -4036 ($ $ $)) (-15 -1547 ($ $ $)) (-15 -4036 ($ $ $ |t#3|)) (-15 -1547 ($ $ $ |t#3|)) (-15 -1463 ((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3169 $)) $ $)) (-15 -1463 ((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3169 $)) $ $ |t#3|)) (-15 -2679 ((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -2679 ((-2 (|:| -1883 $) (|:| |gap| (-703)) (|:| -3319 $) (|:| -3169 $)) $ $ |t#3|)) (-15 -1257 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -2269 ($ $ $)) (-15 -1707 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2651 (-703))) $ $)) (-15 -3006 ($ $ $)) (-15 -2946 ($ $ $)) (IF (|has| |t#3| (-558 (-1074))) (PROGN (-6 (-557 (-874 |t#1|))) (-6 (-558 (-874 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1759 ((-3 $ "failed") (-874 (-377 (-517))))) (-15 -3076 ($ (-874 (-377 (-517))))) (-15 -3582 ($ (-874 (-377 (-517))))) (-15 -1759 ((-3 $ "failed") (-874 (-517)))) (-15 -3076 ($ (-874 (-517)))) (-15 -3582 ($ (-874 (-517)))) (IF (|has| |t#1| (-909 (-517))) |noBranch| (PROGN (-15 -1759 ((-3 $ "failed") (-874 |t#1|))) (-15 -3076 ($ (-874 |t#1|)))))) |noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |noBranch| (PROGN (-15 -1759 ((-3 $ "failed") (-874 (-517)))) (-15 -3076 ($ (-874 (-517)))) (-15 -3582 ($ (-874 (-517)))) (IF (|has| |t#1| (-502)) |noBranch| (PROGN (-15 -1759 ((-3 $ "failed") (-874 |t#1|))) (-15 -3076 ($ (-874 |t#1|))))))) |noBranch|) (IF (|has| |t#1| (-37 (-517))) |noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |noBranch| (PROGN (-15 -1759 ((-3 $ "failed") (-874 |t#1|))) (-15 -3076 ($ (-874 |t#1|)))))) (-15 -3582 ($ (-874 |t#1|))) (IF (|has| |t#1| (-952 (-517))) (-6 (-558 (-1057))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3717 ($ $)) (-15 -4138 ($ $)) (-15 -3236 ($ $ |t#1|)) (-15 -1275 ($ $ |t#1|)) (-15 -3236 ($ $ $)) (-15 -1275 ($ $ $)) (-15 -3348 ($ $ $)) (-15 -3925 ((-2 (|:| -1396 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2175 ((-2 (|:| -1396 $) (|:| |coef1| $)) $ $)) (-15 -4137 ((-2 (|:| -1396 $) (|:| |coef2| $)) $ $)) (-15 -1309 ($ $ $)) (-15 -2512 ((-583 $) $ $)) (-15 -4065 ($ $ $)) (-15 -3102 ($ $ $ (-703))) (-15 -2095 ($ $ $ $ (-703))) (-15 -2271 ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -1396 (|t#1| |t#1| $)) (-15 -3594 ($ $)) (-15 -1581 ($ $)) (-15 -4125 ($ $)) (-15 -3292 ($ $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-874 |#1|)) |has| |#3| (-558 (-1074))) ((-156) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-558 (-874 |#1|)) |has| |#3| (-558 (-1074))) ((-558 (-1057)) -12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1074)))) ((-262) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3763 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#2| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) |has| |#1| (-831)))
+((-2745 (((-107) |#3| $) 13)) (-1434 (((-3 $ "failed") |#3| (-843)) 23)) (-1568 (((-3 |#3| "failed") |#3| $) 37)) (-2099 (((-107) |#3| $) 16)) (-1624 (((-107) |#3| $) 14)))
+(((-976 |#1| |#2| |#3|) (-10 -8 (-15 -1434 ((-3 |#1| "failed") |#3| (-843))) (-15 -1568 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2099 ((-107) |#3| |#1|)) (-15 -1624 ((-107) |#3| |#1|)) (-15 -2745 ((-107) |#3| |#1|))) (-977 |#2| |#3|) (-13 (-777) (-333)) (-1131 |#2|)) (T -976))
+NIL
+(-10 -8 (-15 -1434 ((-3 |#1| "failed") |#3| (-843))) (-15 -1568 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2099 ((-107) |#3| |#1|)) (-15 -1624 ((-107) |#3| |#1|)) (-15 -2745 ((-107) |#3| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) |#2| $) 21)) (-1207 (((-517) |#2| $) 22)) (-1434 (((-3 $ "failed") |#2| (-843)) 15)) (-2439 ((|#1| |#2| $ |#1|) 13)) (-1568 (((-3 |#2| "failed") |#2| $) 18)) (-2099 (((-107) |#2| $) 19)) (-1624 (((-107) |#2| $) 20)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-1457 ((|#2| $) 17)) (-2182 (((-787) $) 11)) (-3284 ((|#1| |#2| $ |#1|) 14)) (-3964 (((-583 $) |#2|) 16)) (-1539 (((-107) $ $) 6)))
+(((-977 |#1| |#2|) (-1185) (-13 (-777) (-333)) (-1131 |t#1|)) (T -977))
+((-1207 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-517)))) (-2745 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))) (-1624 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))) (-2099 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))) (-1568 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1131 *3)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1131 *3)))) (-3964 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))) (-1434 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1131 *4)))) (-3284 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1131 *2)))) (-2439 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1131 *2)))))
+(-13 (-1003) (-10 -8 (-15 -1207 ((-517) |t#2| $)) (-15 -2745 ((-107) |t#2| $)) (-15 -1624 ((-107) |t#2| $)) (-15 -2099 ((-107) |t#2| $)) (-15 -1568 ((-3 |t#2| "failed") |t#2| $)) (-15 -1457 (|t#2| $)) (-15 -3964 ((-583 $) |t#2|)) (-15 -1434 ((-3 $ "failed") |t#2| (-843))) (-15 -3284 (|t#1| |t#2| $ |t#1|)) (-15 -2439 (|t#1| |t#2| $ |t#1|))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3047 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703)) 95)) (-1770 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 55)) (-3830 (((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)) 87)) (-2016 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2567 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-2132 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3645 (((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 82)) (-3282 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107)) 54)) (-3800 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
-(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -978))
-((-3830 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) (-2132 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-2132 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-2567 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2567 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2567 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3282 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703))))
-((-4063 (((-107) |#5| $) 20)) (-1829 (((-107) |#5| $) 23)) (-1538 (((-107) |#5| $) 16) (((-107) $) 44)) (-1812 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 76) (((-583 $) (-583 |#5|) (-583 $)) 74) (((-583 $) |#5| (-583 $)) 77)) (-1672 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 59) (((-583 $) (-583 |#5|) $) 61) (((-583 $) (-583 |#5|) (-583 $)) 63)) (-3596 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 53) (((-583 $) (-583 |#5|) $) 55) (((-583 $) (-583 |#5|) (-583 $)) 57)) (-2119 (((-107) |#5| $) 26)))
-(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1672 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1672 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1672 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1672 ((-583 |#1|) |#5| |#1|)) (-15 -3596 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3596 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3596 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3596 ((-583 |#1|) |#5| |#1|)) (-15 -1812 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1812 ((-583 |#1|) |#5| |#1|)) (-15 -1829 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#1|)) (-15 -2119 ((-107) |#5| |#1|)) (-15 -4063 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#5| |#1|)) (-15 -1672 (|#1| |#1| |#5|))) (-980 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -979))
-NIL
-(-10 -8 (-15 -1672 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1672 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1672 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1672 ((-583 |#1|) |#5| |#1|)) (-15 -3596 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3596 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3596 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3596 ((-583 |#1|) |#5| |#1|)) (-15 -1812 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1812 ((-583 |#1|) |#5| |#1|)) (-15 -1829 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#1|)) (-15 -2119 ((-107) |#5| |#1|)) (-15 -4063 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#5| |#1|)) (-15 -1672 (|#1| |#1| |#5|)))
-((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
-(((-980 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -980))
-((-1538 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-4063 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2119 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1829 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2834 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3802 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3802 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2117 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-3955 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-1855 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-2535 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-1812 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-1812 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-1812 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-1812 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-3596 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-3596 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-2474 (*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2474 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) (-1672 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-1672 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))))
-(-13 (-1102 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1538 ((-107) |t#4| $)) (-15 -4063 ((-107) |t#4| $)) (-15 -2119 ((-107) |t#4| $)) (-15 -1538 ((-107) $)) (-15 -1829 ((-107) |t#4| $)) (-15 -2834 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -3802 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |t#4| $)) (-15 -3802 ((-107) |t#4| $)) (-15 -2117 ((-583 $) |t#4| $)) (-15 -3955 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -1855 ((-583 (-2 (|:| |val| |t#4|) (|:| -3726 $))) |t#4| |t#4| $)) (-15 -2535 ((-583 (-2 (|:| |val| |t#4|) (|:| -3726 $))) |t#4| $)) (-15 -1812 ((-583 $) |t#4| $)) (-15 -1812 ((-583 $) (-583 |t#4|) $)) (-15 -1812 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -1812 ((-583 $) |t#4| (-583 $))) (-15 -3596 ((-583 $) |t#4| $)) (-15 -3596 ((-583 $) |t#4| (-583 $))) (-15 -3596 ((-583 $) (-583 |t#4|) $)) (-15 -3596 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2474 ($ |t#4| $)) (-15 -2474 ($ (-583 |t#4|) $)) (-15 -1672 ((-583 $) |t#4| $)) (-15 -1672 ((-583 $) |t#4| (-583 $))) (-15 -1672 ((-583 $) (-583 |t#4|) $)) (-15 -1672 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -4029 ((-583 $) (-583 |t#4|) (-107)))))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T))
-((-3932 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 81)) (-2193 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 112)) (-3135 (((-583 |#5|) |#4| |#5|) 70)) (-3770 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-1588 (((-1158)) 35)) (-3615 (((-1158)) 25)) (-1448 (((-1158) (-1056) (-1056) (-1056)) 31)) (-2183 (((-1158) (-1056) (-1056) (-1056)) 20)) (-2031 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|) 95)) (-1719 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107)) 106) (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3782 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 101)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -2031 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3782 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2193 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -3770 ((-107) |#4| |#5|)) (-15 -3770 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3135 ((-583 |#5|) |#4| |#5|)) (-15 -3932 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -981))
-((-3932 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3135 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2193 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3782 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))) (-1719 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2031 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1588 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1448 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-2183 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -2031 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3782 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2193 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -3770 ((-107) |#4| |#5|)) (-15 -3770 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3135 ((-583 |#5|) |#4| |#5|)) (-15 -3932 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)))
-((-2750 (((-107) $ $) NIL)) (-1207 (((-1073) $) 8)) (-3985 (((-1056) $) 16)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 13)))
-(((-982 |#1|) (-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $)))) (-1073)) (T -982))
-((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-982 *3)) (-14 *3 *2))))
-(-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $))))
-((-2750 (((-107) $ $) NIL)) (-3820 (($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|))) 29)) (-2631 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1073))) 19)) (-3616 ((|#3| $) 13)) (-1772 (((-3 (-265 |#3|) "failed") $) 56)) (-3189 (((-265 |#3|) $) NIL)) (-2876 (((-583 (-1073)) $) 15)) (-2185 (((-814 |#1|) $) 11)) (-3603 ((|#3| $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-843)) 36)) (-2256 (((-787) $) 84) (($ (-265 |#3|)) 20)) (-1547 (((-107) $ $) 33)))
-(((-983 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2631 ($ |#3| |#3|)) (-15 -2631 ($ |#3| |#3| (-583 (-1073)))) (-15 -3820 ($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|)))) (-15 -2185 ((-814 |#1|) $)) (-15 -3603 (|#3| $)) (-15 -3616 (|#3| $)) (-15 -1449 (|#3| $ |#3| (-843))) (-15 -2876 ((-583 (-1073)) $)))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -983))
-((-2631 (*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-2631 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-3820 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))) (-2185 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2))))) (-3603 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-3616 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-1449 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-2876 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1073))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
-(-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2631 ($ |#3| |#3|)) (-15 -2631 ($ |#3| |#3| (-583 (-1073)))) (-15 -3820 ($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|)))) (-15 -2185 ((-814 |#1|) $)) (-15 -3603 (|#3| $)) (-15 -3616 (|#3| $)) (-15 -1449 (|#3| $ |#3| (-843))) (-15 -2876 ((-583 (-1073)) $))))
-((-2750 (((-107) $ $) NIL)) (-3788 (($ (-583 (-983 |#1| |#2| |#3|))) 12)) (-3455 (((-583 (-983 |#1| |#2| |#3|)) $) 19)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-843)) 25)) (-2256 (((-787) $) 15)) (-1547 (((-107) $ $) 18)))
-(((-984 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -3788 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3455 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1449 (|#3| $ |#3| (-843))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -984))
-((-3788 (*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))) (-3455 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-1449 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))))
-(-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -3788 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3455 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1449 (|#3| $ |#3| (-843)))))
-((-4064 (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 73) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 75) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 74)))
-(((-985 |#1| |#2|) (-10 -7 (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1073))) (T -985))
-((-4064 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))) (-4064 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))))
-(-10 -7 (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))))
-((-3755 (((-388 |#3|) |#3|) 16)))
-(((-986 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3|))) (-1130 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1130 |#2|)) (T -986))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1130 *5)))))
-(-10 -7 (-15 -3755 ((-388 |#3|) |#3|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 125)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-1213 (($ $) NIL (|has| |#1| (-333)))) (-2454 (((-107) $) NIL (|has| |#1| (-333)))) (-3055 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) 115)) (-1472 ((|#1| $) 119)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1611 (((-703)) 40 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) 43)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-2410 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-3225 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-2261 (((-843)) 77)) (-3209 (($) 44 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3442 (($) NIL (|has| |#1| (-319)))) (-3391 (((-107) $) NIL (|has| |#1| (-319)))) (-2378 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3972 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-3848 (((-107) $) NIL)) (-1506 ((|#1| $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3777 ((|#2| $) 84 (|has| |#1| (-333)))) (-1549 (((-843) $) 129 (|has| |#1| (-338)))) (-3216 ((|#2| $) 58)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2836 (($) NIL (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 124 (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-3220 (($) 121)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-319)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3010 ((|#1| (-1153 $)) NIL) ((|#1|) 109)) (-1620 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-3127 (($ $) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2135 ((|#2|) 73)) (-1766 (($) NIL (|has| |#1| (-319)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 89) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) 71) (((-623 |#1|) (-1153 $)) 85)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2256 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3669 ((|#2| $) 82)) (-2961 (((-703)) 75)) (-1753 (((-1153 $)) 81)) (-3329 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 30 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1547 (((-107) $ $) 63)) (-1667 (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) 67) (($ $ $) NIL)) (-1642 (($ $ $) 65)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
-(((-987 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1130 |#1|) |#2|) (T -987))
+((-3067 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-703)) 95)) (-2518 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703)) 55)) (-1984 (((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-703)) 87)) (-2560 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-1276 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-1435 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3582 (((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) 82)) (-1572 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-107)) 54)) (-2472 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
+(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2472 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2560 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -1572 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-107))) (-15 -2518 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703))) (-15 -2518 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703))) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -1435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3067 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-703))) (-15 -3582 ((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) (-15 -1984 ((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -978))
+((-1984 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3656 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1159)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3656 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1057)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) (-3067 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3656 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3656 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) (-1435 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-1435 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-1276 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1276 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-1276 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) (-2518 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-1572 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2560 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2472 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2560 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -1572 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-107))) (-15 -2518 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703))) (-15 -2518 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703))) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -1435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3067 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-703))) (-15 -3582 ((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) (-15 -1984 ((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-703))))
+((-3357 (((-107) |#5| $) 20)) (-3862 (((-107) |#5| $) 23)) (-1442 (((-107) |#5| $) 16) (((-107) $) 44)) (-2551 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 76) (((-583 $) (-583 |#5|) (-583 $)) 74) (((-583 $) |#5| (-583 $)) 77)) (-3467 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 59) (((-583 $) (-583 |#5|) $) 61) (((-583 $) (-583 |#5|) (-583 $)) 63)) (-2401 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 53) (((-583 $) (-583 |#5|) $) 55) (((-583 $) (-583 |#5|) (-583 $)) 57)) (-2385 (((-107) |#5| $) 26)))
+(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3467 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3467 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3467 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3467 ((-583 |#1|) |#5| |#1|)) (-15 -2401 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2401 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2401 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2401 ((-583 |#1|) |#5| |#1|)) (-15 -2551 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2551 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2551 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2551 ((-583 |#1|) |#5| |#1|)) (-15 -3862 ((-107) |#5| |#1|)) (-15 -1442 ((-107) |#1|)) (-15 -2385 ((-107) |#5| |#1|)) (-15 -3357 ((-107) |#5| |#1|)) (-15 -1442 ((-107) |#5| |#1|)) (-15 -3467 (|#1| |#1| |#5|))) (-980 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -979))
+NIL
+(-10 -8 (-15 -3467 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3467 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3467 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3467 ((-583 |#1|) |#5| |#1|)) (-15 -2401 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2401 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2401 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2401 ((-583 |#1|) |#5| |#1|)) (-15 -2551 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2551 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2551 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2551 ((-583 |#1|) |#5| |#1|)) (-15 -3862 ((-107) |#5| |#1|)) (-15 -1442 ((-107) |#1|)) (-15 -2385 ((-107) |#5| |#1|)) (-15 -3357 ((-107) |#5| |#1|)) (-15 -1442 ((-107) |#5| |#1|)) (-15 -3467 (|#1| |#1| |#5|)))
+((-2571 (((-107) $ $) 7)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) 85)) (-1310 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1363 (((-583 |#3|) $) 33)) (-3521 (((-107) $) 26)) (-2320 (((-107) $) 17 (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) 101) (((-107) $) 97)) (-2356 ((|#4| |#4| $) 92)) (-3938 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| $) 126)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) 27)) (-1799 (((-107) $ (-703)) 44)) (-3451 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-3473 (($) 45 T CONST)) (-1216 (((-107) $) 22 (|has| |#1| (-509)))) (-1930 (((-107) $ $) 24 (|has| |#1| (-509)))) (-1660 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3045 (((-107) $) 25 (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3515 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) 36)) (-3076 (($ (-583 |#4|)) 35)) (-1644 (((-3 $ "failed") $) 82)) (-1907 ((|#4| |#4| $) 89)) (-1667 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3197 ((|#4| |#4| $) 87)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) 105)) (-3357 (((-107) |#4| $) 136)) (-3862 (((-107) |#4| $) 133)) (-1442 (((-107) |#4| $) 137) (((-107) $) 134)) (-3037 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) 104) (((-107) $) 103)) (-3377 ((|#3| $) 34)) (-4064 (((-107) $ (-703)) 43)) (-1196 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 47)) (-2434 (((-583 |#3|) $) 32)) (-2995 (((-107) |#3| $) 31)) (-2942 (((-107) $ (-703)) 42)) (-3865 (((-1057) $) 9)) (-1765 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-4065 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| |#4| $) 127)) (-1988 (((-3 |#4| "failed") $) 83)) (-2368 (((-583 $) |#4| $) 129)) (-1905 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2491 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2551 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-1615 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2425 (((-583 |#4|) $) 107)) (-2998 (((-107) |#4| $) 99) (((-107) $) 95)) (-2946 ((|#4| |#4| $) 90)) (-3196 (((-107) $ $) 110)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) 100) (((-107) $) 96)) (-3006 ((|#4| |#4| $) 91)) (-3094 (((-1021) $) 10)) (-1631 (((-3 |#4| "failed") $) 84)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3886 (((-3 $ "failed") $ |#4|) 78)) (-3467 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2925 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) 38)) (-1546 (((-107) $) 41)) (-1326 (($) 40)) (-4007 (((-703) $) 106)) (-3105 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2322 (($ $) 39)) (-3582 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 60)) (-2399 (($ $ |#3|) 28)) (-3339 (($ $ |#3|) 30)) (-3529 (($ $) 88)) (-4011 (($ $ |#3|) 29)) (-2182 (((-787) $) 11) (((-583 |#4|) $) 37)) (-4124 (((-703) $) 76 (|has| |#3| (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2401 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3883 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) 81)) (-2385 (((-107) |#4| $) 135)) (-1223 (((-107) |#3| $) 80)) (-1539 (((-107) $ $) 6)) (-2210 (((-703) $) 46 (|has| $ (-6 -4183)))))
+(((-980 |#1| |#2| |#3| |#4|) (-1185) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -980))
+((-1442 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3357 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2385 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1442 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3862 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1905 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-2491 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-2491 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2368 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-1765 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-4065 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3938 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-2551 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-2551 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-2401 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-2401 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-2401 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-2401 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-1615 (*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1615 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) (-3467 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-3467 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-3467 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-3467 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-1310 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))))
+(-13 (-1103 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1442 ((-107) |t#4| $)) (-15 -3357 ((-107) |t#4| $)) (-15 -2385 ((-107) |t#4| $)) (-15 -1442 ((-107) $)) (-15 -3862 ((-107) |t#4| $)) (-15 -1905 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -2491 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 $))) |t#4| $)) (-15 -2491 ((-107) |t#4| $)) (-15 -2368 ((-583 $) |t#4| $)) (-15 -1765 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -4065 ((-583 (-2 (|:| |val| |t#4|) (|:| -3656 $))) |t#4| |t#4| $)) (-15 -3938 ((-583 (-2 (|:| |val| |t#4|) (|:| -3656 $))) |t#4| $)) (-15 -2551 ((-583 $) |t#4| $)) (-15 -2551 ((-583 $) (-583 |t#4|) $)) (-15 -2551 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2551 ((-583 $) |t#4| (-583 $))) (-15 -2401 ((-583 $) |t#4| $)) (-15 -2401 ((-583 $) |t#4| (-583 $))) (-15 -2401 ((-583 $) (-583 |t#4|) $)) (-15 -2401 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -1615 ($ |t#4| $)) (-15 -1615 ($ (-583 |t#4|) $)) (-15 -3467 ((-583 $) |t#4| $)) (-15 -3467 ((-583 $) |t#4| (-583 $))) (-15 -3467 ((-583 $) (-583 |t#4|) $)) (-15 -3467 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -1310 ((-583 $) (-583 |t#4|) (-107)))))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1109) . T))
+((-1513 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|) 81)) (-3783 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|) 112)) (-2538 (((-583 |#5|) |#4| |#5|) 70)) (-3446 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-3400 (((-1159)) 35)) (-1517 (((-1159)) 25)) (-3667 (((-1159) (-1057) (-1057) (-1057)) 31)) (-1901 (((-1159) (-1057) (-1057) (-1057)) 20)) (-2703 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#4| |#4| |#5|) 95)) (-1630 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#3| (-107)) 106) (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3587 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|) 101)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1901 ((-1159) (-1057) (-1057) (-1057))) (-15 -1517 ((-1159))) (-15 -3667 ((-1159) (-1057) (-1057) (-1057))) (-15 -3400 ((-1159))) (-15 -2703 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -1630 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1630 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#3| (-107))) (-15 -3587 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -3783 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -3446 ((-107) |#4| |#5|)) (-15 -3446 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -2538 ((-583 |#5|) |#4| |#5|)) (-15 -1513 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -981))
+((-1513 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2538 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3446 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3446 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3783 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3587 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3656 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3656 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))) (-1630 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2703 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3400 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-3667 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1517 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1901 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1901 ((-1159) (-1057) (-1057) (-1057))) (-15 -1517 ((-1159))) (-15 -3667 ((-1159) (-1057) (-1057) (-1057))) (-15 -3400 ((-1159))) (-15 -2703 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -1630 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1630 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#3| (-107))) (-15 -3587 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -3783 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -3446 ((-107) |#4| |#5|)) (-15 -3446 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -2538 ((-583 |#5|) |#4| |#5|)) (-15 -1513 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|)))
+((-2571 (((-107) $ $) NIL)) (-1211 (((-1074) $) 8)) (-3865 (((-1057) $) 16)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 13)))
+(((-982 |#1|) (-13 (-1003) (-10 -8 (-15 -1211 ((-1074) $)))) (-1074)) (T -982))
+((-1211 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-982 *3)) (-14 *3 *2))))
+(-13 (-1003) (-10 -8 (-15 -1211 ((-1074) $))))
+((-2571 (((-107) $ $) NIL)) (-3781 (($ $ (-583 (-1074)) (-1 (-107) (-583 |#3|))) 29)) (-2464 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1074))) 19)) (-3548 ((|#3| $) 13)) (-1759 (((-3 (-265 |#3|) "failed") $) 56)) (-3076 (((-265 |#3|) $) NIL)) (-2215 (((-583 (-1074)) $) 15)) (-2128 (((-814 |#1|) $) 11)) (-3536 ((|#3| $) 12)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1986 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-843)) 36)) (-2182 (((-787) $) 84) (($ (-265 |#3|)) 20)) (-1539 (((-107) $ $) 33)))
+(((-983 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2464 ($ |#3| |#3|)) (-15 -2464 ($ |#3| |#3| (-583 (-1074)))) (-15 -3781 ($ $ (-583 (-1074)) (-1 (-107) (-583 |#3|)))) (-15 -2128 ((-814 |#1|) $)) (-15 -3536 (|#3| $)) (-15 -3548 (|#3| $)) (-15 -1986 (|#3| $ |#3| (-843))) (-15 -2215 ((-583 (-1074)) $)))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -983))
+((-2464 (*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-2464 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-3781 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))) (-2128 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2))))) (-3536 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-3548 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-1986 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-2215 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1074))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
+(-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2464 ($ |#3| |#3|)) (-15 -2464 ($ |#3| |#3| (-583 (-1074)))) (-15 -3781 ($ $ (-583 (-1074)) (-1 (-107) (-583 |#3|)))) (-15 -2128 ((-814 |#1|) $)) (-15 -3536 (|#3| $)) (-15 -3548 (|#3| $)) (-15 -1986 (|#3| $ |#3| (-843))) (-15 -2215 ((-583 (-1074)) $))))
+((-2571 (((-107) $ $) NIL)) (-3735 (($ (-583 (-983 |#1| |#2| |#3|))) 12)) (-3360 (((-583 (-983 |#1| |#2| |#3|)) $) 19)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1986 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-843)) 25)) (-2182 (((-787) $) 15)) (-1539 (((-107) $ $) 18)))
+(((-984 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -3735 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3360 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1986 (|#3| $ |#3| (-843))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -984))
+((-3735 (*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))) (-3360 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-1986 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))))
+(-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -3735 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3360 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1986 (|#3| $ |#3| (-843)))))
+((-3372 (((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 73) (((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 75) (((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 74)))
+(((-985 |#1| |#2|) (-10 -7 (-15 -3372 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -3372 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -3372 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1074))) (T -985))
+((-3372 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))))) (-3372 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *4)) (|:| -2575 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1074))))) (-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))))))
+(-10 -7 (-15 -3372 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -3372 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -3372 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))))
+((-3693 (((-388 |#3|) |#3|) 16)))
+(((-986 |#1| |#2| |#3|) (-10 -7 (-15 -3693 ((-388 |#3|) |#3|))) (-1131 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1131 |#2|)) (T -986))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1131 *5)))))
+(-10 -7 (-15 -3693 ((-388 |#3|) |#3|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 125)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-3209 (($ $) NIL (|has| |#1| (-333)))) (-1452 (((-107) $) NIL (|has| |#1| (-333)))) (-3129 (((-623 |#1|) (-1154 $)) NIL) (((-623 |#1|)) 115)) (-1470 ((|#1| $) 119)) (-4160 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1598 (((-703)) 40 (|has| |#1| (-338)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-3291 (($ (-1154 |#1|) (-1154 $)) NIL) (($ (-1154 |#1|)) 43)) (-1823 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2148 (((-623 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-2521 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-1568 (((-3 $ "failed") $) NIL)) (-3795 (((-843)) 77)) (-3098 (($) 44 (|has| |#1| (-338)))) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3493 (($) NIL (|has| |#1| (-319)))) (-1337 (((-107) $) NIL (|has| |#1| (-319)))) (-2990 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-1921 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-2955 (((-107) $) NIL)) (-2289 ((|#1| $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3523 ((|#2| $) 84 (|has| |#1| (-333)))) (-2903 (((-843) $) 129 (|has| |#1| (-338)))) (-2511 ((|#2| $) 58)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-2663 (($) NIL (|has| |#1| (-319)) CONST)) (-3353 (($ (-843)) 124 (|has| |#1| (-338)))) (-3094 (((-1021) $) NIL)) (-3107 (($) 121)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3430 (((-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))) NIL (|has| |#1| (-319)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-4042 ((|#1| (-1154 $)) NIL) ((|#1|) 109)) (-3654 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-1699 (($ $) NIL (-3763 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3763 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-3680 (((-623 |#1|) (-1154 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1457 ((|#2|) 73)) (-3788 (($) NIL (|has| |#1| (-319)))) (-2575 (((-1154 |#1|) $ (-1154 $)) 89) (((-623 |#1|) (-1154 $) (-1154 $)) NIL) (((-1154 |#1|) $) 71) (((-623 |#1|) (-1154 $)) 85)) (-3582 (((-1154 |#1|) $) NIL) (($ (-1154 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2182 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1589 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3804 ((|#2| $) 82)) (-1865 (((-703)) 75)) (-3809 (((-1154 $)) 81)) (-3767 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 30 T CONST)) (-2306 (($) 19 T CONST)) (-2553 (($ $) NIL (-3763 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3763 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1539 (((-107) $ $) 63)) (-1649 (($ $ $) NIL (|has| |#1| (-333)))) (-1637 (($ $) 67) (($ $ $) NIL)) (-1626 (($ $ $) 65)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
+(((-987 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1131 |#1|) |#2|) (T -987))
NIL
(-657 |#1| |#2|)
-((-3755 (((-388 |#3|) |#3|) 16)))
-(((-988 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3|))) (-1130 (-377 (-874 (-517)))) (-13 (-333) (-134) (-657 (-377 (-874 (-517))) |#1|)) (-1130 |#2|)) (T -988))
-((-3755 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1130 *5)))))
-(-10 -7 (-15 -3755 ((-388 |#3|) |#3|)))
-((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) 14)) (-3099 (($ $ $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3764 (($) 6)) (-3645 (((-1073) $) 18)) (-2256 (((-787) $) 12)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 13)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 8)))
-(((-989) (-13 (-779) (-10 -8 (-15 -3764 ($)) (-15 -3645 ((-1073) $))))) (T -989))
-((-3764 (*1 *1) (-5 *1 (-989))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-989)))))
-(-13 (-779) (-10 -8 (-15 -3764 ($)) (-15 -3645 ((-1073) $))))
-((-1599 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-107) |#1|)) 18)) (-1396 (((-1158)) 15)) (-2062 (((-583 |#1|)) 9)))
-(((-990 |#1|) (-10 -7 (-15 -1396 ((-1158))) (-15 -2062 ((-583 |#1|))) (-15 -1599 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1599 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -990))
-((-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-2062 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))) (-1396 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
-(-10 -7 (-15 -1396 ((-1158))) (-15 -2062 ((-583 |#1|))) (-15 -1599 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1599 (|#1| |#1| (-1 (-517) |#1| |#1|))))
-((-3533 (((-1153 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|))) 60) (((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|)))) 76)) (-4114 (((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35)))
-(((-991 |#1|) (-10 -7 (-15 -3533 ((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|))))) (-15 -3533 ((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|)))) (-15 -3533 ((-1153 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -4114 ((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -991))
-((-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1153 *5)) (-5 *1 (-991 *5)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-991 *4)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) (-3533 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
-(-10 -7 (-15 -3533 ((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|))))) (-15 -3533 ((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|)))) (-15 -3533 ((-1153 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -4114 ((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1073)) NIL)) (-2932 (((-703) $) NIL) (((-703) $ (-1073)) NIL)) (-1364 (((-583 (-993 (-1073))) $) NIL)) (-2352 (((-1069 $) $ (-993 (-1073))) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-993 (-1073)))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-993 (-1073)) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL) (((-3 (-1026 |#1| (-1073)) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-993 (-1073)) $) NIL) (((-1073) $) NIL) (((-1026 |#1| (-1073)) $) NIL)) (-3388 (($ $ $ (-993 (-1073))) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1073))) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-993 (-1073))) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-993 (-1073)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-993 (-1073)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-993 (-1073))) NIL) (($ (-1069 $) (-993 (-1073))) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-993 (-1073))) NIL)) (-2349 (((-489 (-993 (-1073))) $) NIL) (((-703) $ (-993 (-1073))) NIL) (((-583 (-703)) $ (-583 (-993 (-1073)))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-993 (-1073))) (-489 (-993 (-1073)))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) (-1073)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 (-993 (-1073)) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 (((-993 (-1073)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-993 (-1073))) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-993 (-1073)) |#1|) NIL) (($ $ (-583 (-993 (-1073))) (-583 |#1|)) NIL) (($ $ (-993 (-1073)) $) NIL) (($ $ (-583 (-993 (-1073))) (-583 $)) NIL) (($ $ (-1073) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ (-993 (-1073))) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-993 (-1073))) NIL) (($ $ (-583 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 (-1073)) $) NIL)) (-3688 (((-489 (-993 (-1073))) $) NIL) (((-703) $ (-993 (-1073))) NIL) (((-583 (-703)) $ (-583 (-993 (-1073)))) NIL) (((-703) $ (-1073)) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1073))) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-993 (-1073))) NIL) (($ (-1073)) NIL) (($ (-1026 |#1| (-1073))) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-993 (-1073))) NIL) (($ $ (-583 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-992 |#1|) (-13 (-226 |#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) (-952 (-1026 |#1| (-1073)))) (-961)) (T -992))
-NIL
-(-13 (-226 |#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) (-952 (-1026 |#1| (-1073))))
-((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) NIL)) (-1638 ((|#1| $) 10)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3972 (((-703) $) 11)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2656 (($ |#1| (-703)) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 15)))
+((-3693 (((-388 |#3|) |#3|) 16)))
+(((-988 |#1| |#2| |#3|) (-10 -7 (-15 -3693 ((-388 |#3|) |#3|))) (-1131 (-377 (-874 (-517)))) (-13 (-333) (-134) (-657 (-377 (-874 (-517))) |#1|)) (-1131 |#2|)) (T -988))
+((-3693 (*1 *2 *3) (-12 (-4 *4 (-1131 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1131 *5)))))
+(-10 -7 (-15 -3693 ((-388 |#3|) |#3|)))
+((-2571 (((-107) $ $) NIL)) (-1575 (($ $ $) 14)) (-2986 (($ $ $) 15)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-3391 (($) 6)) (-3582 (((-1074) $) 18)) (-2182 (((-787) $) 12)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 13)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 8)))
+(((-989) (-13 (-779) (-10 -8 (-15 -3391 ($)) (-15 -3582 ((-1074) $))))) (T -989))
+((-3391 (*1 *1) (-5 *1 (-989))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-989)))))
+(-13 (-779) (-10 -8 (-15 -3391 ($)) (-15 -3582 ((-1074) $))))
+((-4080 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-107) |#1|)) 18)) (-1390 (((-1159)) 15)) (-1990 (((-583 |#1|)) 9)))
+(((-990 |#1|) (-10 -7 (-15 -1390 ((-1159))) (-15 -1990 ((-583 |#1|))) (-15 -4080 (|#1| |#1| (-1 (-107) |#1|))) (-15 -4080 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -990))
+((-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-1990 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))) (-1390 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
+(-10 -7 (-15 -1390 ((-1159))) (-15 -1990 ((-583 |#1|))) (-15 -4080 (|#1| |#1| (-1 (-107) |#1|))) (-15 -4080 (|#1| |#1| (-1 (-517) |#1| |#1|))))
+((-3029 (((-1154 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1154 (-623 (-874 |#1|))) (-583 (-1074)) (-623 (-874 |#1|))) 60) (((-1154 (-623 (-377 (-874 |#1|)))) (-583 (-1074)) (-623 (-377 (-874 |#1|)))) 76)) (-2575 (((-1154 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35)))
+(((-991 |#1|) (-10 -7 (-15 -3029 ((-1154 (-623 (-377 (-874 |#1|)))) (-583 (-1074)) (-623 (-377 (-874 |#1|))))) (-15 -3029 ((-1154 (-623 (-874 |#1|))) (-583 (-1074)) (-623 (-874 |#1|)))) (-15 -3029 ((-1154 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -2575 ((-1154 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -991))
+((-2575 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1154 *5)) (-5 *1 (-991 *5)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-991 *4)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-4 *5 (-333)) (-5 *2 (-1154 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) (-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-4 *5 (-333)) (-5 *2 (-1154 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
+(-10 -7 (-15 -3029 ((-1154 (-623 (-377 (-874 |#1|)))) (-583 (-1074)) (-623 (-377 (-874 |#1|))))) (-15 -3029 ((-1154 (-623 (-874 |#1|))) (-583 (-1074)) (-623 (-874 |#1|)))) (-15 -3029 ((-1154 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -2575 ((-1154 |#1|) (-623 |#1|) (-583 (-623 |#1|)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2460 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1074)) NIL)) (-1587 (((-703) $) NIL) (((-703) $ (-1074)) NIL)) (-1363 (((-583 (-993 (-1074))) $) NIL)) (-2255 (((-1070 $) $ (-993 (-1074))) NIL) (((-1070 |#1|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-993 (-1074)))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1816 (($ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-993 (-1074)) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL) (((-3 (-1026 |#1| (-1074)) "failed") $) NIL)) (-3076 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-993 (-1074)) $) NIL) (((-1074) $) NIL) (((-1026 |#1| (-1074)) $) NIL)) (-1309 (($ $ $ (-993 (-1074))) NIL (|has| |#1| (-156)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1074))) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-2253 (($ $ |#1| (-489 (-993 (-1074))) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-993 (-1074)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-993 (-1074)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-1921 (((-703) $ (-1074)) NIL) (((-703) $) NIL)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-1352 (($ (-1070 |#1|) (-993 (-1074))) NIL) (($ (-1070 $) (-993 (-1074))) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-489 (-993 (-1074)))) NIL) (($ $ (-993 (-1074)) (-703)) NIL) (($ $ (-583 (-993 (-1074))) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-993 (-1074))) NIL)) (-2672 (((-489 (-993 (-1074))) $) NIL) (((-703) $ (-993 (-1074))) NIL) (((-583 (-703)) $ (-583 (-993 (-1074)))) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-489 (-993 (-1074))) (-489 (-993 (-1074)))) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2569 (((-1 $ (-703)) (-1074)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1954 (((-3 (-993 (-1074)) "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-2076 (((-993 (-1074)) $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3865 (((-1057) $) NIL)) (-3831 (((-107) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-993 (-1074))) (|:| -2059 (-703))) "failed") $) NIL)) (-2442 (($ $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-993 (-1074)) |#1|) NIL) (($ $ (-583 (-993 (-1074))) (-583 |#1|)) NIL) (($ $ (-993 (-1074)) $) NIL) (($ $ (-583 (-993 (-1074))) (-583 $)) NIL) (($ $ (-1074) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1074)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-4042 (($ $ (-993 (-1074))) NIL (|has| |#1| (-156)))) (-1699 (($ $ (-993 (-1074))) NIL) (($ $ (-583 (-993 (-1074)))) NIL) (($ $ (-993 (-1074)) (-703)) NIL) (($ $ (-583 (-993 (-1074))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3803 (((-583 (-1074)) $) NIL)) (-4007 (((-489 (-993 (-1074))) $) NIL) (((-703) $ (-993 (-1074))) NIL) (((-583 (-703)) $ (-583 (-993 (-1074)))) NIL) (((-703) $ (-1074)) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-993 (-1074)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-993 (-1074)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-993 (-1074)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1074))) NIL (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-993 (-1074))) NIL) (($ (-1074)) NIL) (($ (-1026 |#1| (-1074))) NIL) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-489 (-993 (-1074)))) NIL) (($ $ (-993 (-1074)) (-703)) NIL) (($ $ (-583 (-993 (-1074))) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-993 (-1074))) NIL) (($ $ (-583 (-993 (-1074)))) NIL) (($ $ (-993 (-1074)) (-703)) NIL) (($ $ (-583 (-993 (-1074))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-992 |#1|) (-13 (-226 |#1| (-1074) (-993 (-1074)) (-489 (-993 (-1074)))) (-952 (-1026 |#1| (-1074)))) (-961)) (T -992))
+NIL
+(-13 (-226 |#1| (-1074) (-993 (-1074)) (-489 (-993 (-1074)))) (-952 (-1026 |#1| (-1074))))
+((-2571 (((-107) $ $) NIL)) (-1587 (((-703) $) NIL)) (-1625 ((|#1| $) 10)) (-1759 (((-3 |#1| "failed") $) NIL)) (-3076 ((|#1| $) NIL)) (-1921 (((-703) $) 11)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-2569 (($ |#1| (-703)) 9)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-1699 (($ $) NIL) (($ $ (-703)) NIL)) (-2182 (((-787) $) NIL) (($ |#1|) NIL)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 15)))
(((-993 |#1|) (-239 |#1|) (-779)) (T -993))
NIL
(-239 |#1|)
-((-1893 (((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 23 (|has| |#1| (-777))) (((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 14)))
-(((-994 |#1| |#2|) (-10 -7 (-15 -1893 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |noBranch|)) (-1108) (-1108)) (T -994))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))))
-(-10 -7 (-15 -1893 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |noBranch|))
-((-1893 (((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)) 19)))
-(((-995 |#1| |#2|) (-10 -7 (-15 -1893 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)))) (-1108) (-1108)) (T -995))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))))
-(-10 -7 (-15 -1893 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1638 (((-1073) $) 11)) (-2515 (((-998 |#1|) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2126 (($ (-1073) (-998 |#1|)) 10)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1547 (((-107) $ $) 15 (|has| |#1| (-1003)))))
-(((-996 |#1|) (-13 (-1108) (-10 -8 (-15 -2126 ($ (-1073) (-998 |#1|))) (-15 -1638 ((-1073) $)) (-15 -2515 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -996))
-((-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-998 *4)) (-4 *4 (-1108)) (-5 *1 (-996 *4)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))))
-(-13 (-1108) (-10 -8 (-15 -2126 ($ (-1073) (-998 |#1|))) (-15 -1638 ((-1073) $)) (-15 -2515 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
-((-2515 (($ |#1| |#1|) 7)) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 12)) (-3320 (((-517) $) 8)) (-3521 ((|#1| $) 9)) (-3330 ((|#1| $) 11)) (-3645 (($ |#1|) 6)) (-2881 (($ |#1| |#1|) 14)) (-1321 (($ $ (-517)) 13)))
-(((-997 |#1|) (-1184) (-1108)) (T -997))
-((-2881 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1108)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))) (-2515 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
-(-13 (-1108) (-10 -8 (-15 -2881 ($ |t#1| |t#1|)) (-15 -1321 ($ $ (-517))) (-15 -3310 (|t#1| $)) (-15 -3330 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -3521 (|t#1| $)) (-15 -3320 ((-517) $)) (-15 -2515 ($ |t#1| |t#1|)) (-15 -3645 ($ |t#1|))))
-(((-1108) . T))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2515 (($ |#1| |#1|) 15)) (-1893 (((-583 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-777)))) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 9)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3320 (((-517) $) 14)) (-3521 ((|#1| $) 12)) (-3330 ((|#1| $) 11)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3502 (((-583 |#1|) $) 35 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 34 (|has| |#1| (-777)))) (-3645 (($ |#1|) 26)) (-2256 (((-787) $) 25 (|has| |#1| (-1003)))) (-2881 (($ |#1| |#1|) 8)) (-1321 (($ $ (-517)) 16)) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))))
-(((-998 |#1|) (-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |noBranch|))) (-1108)) (T -998))
+((-1857 (((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 23 (|has| |#1| (-777))) (((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 14)))
+(((-994 |#1| |#2|) (-10 -7 (-15 -1857 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1857 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |noBranch|)) (-1109) (-1109)) (T -994))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))))
+(-10 -7 (-15 -1857 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1857 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |noBranch|))
+((-1857 (((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)) 19)))
+(((-995 |#1| |#2|) (-10 -7 (-15 -1857 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)))) (-1109) (-1109)) (T -995))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))))
+(-10 -7 (-15 -1857 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1625 (((-1074) $) 11)) (-2391 (((-998 |#1|) $) 12)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2070 (($ (-1074) (-998 |#1|)) 10)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-1539 (((-107) $ $) 15 (|has| |#1| (-1003)))))
+(((-996 |#1|) (-13 (-1109) (-10 -8 (-15 -2070 ($ (-1074) (-998 |#1|))) (-15 -1625 ((-1074) $)) (-15 -2391 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1109)) (T -996))
+((-2070 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-998 *4)) (-4 *4 (-1109)) (-5 *1 (-996 *4)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-996 *3)) (-4 *3 (-1109)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1109)))))
+(-13 (-1109) (-10 -8 (-15 -2070 ($ (-1074) (-998 |#1|))) (-15 -1625 ((-1074) $)) (-15 -2391 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
+((-2391 (($ |#1| |#1|) 7)) (-3520 ((|#1| $) 10)) (-3205 ((|#1| $) 12)) (-3217 (((-517) $) 8)) (-2934 ((|#1| $) 9)) (-3228 ((|#1| $) 11)) (-3582 (($ |#1|) 6)) (-2725 (($ |#1| |#1|) 14)) (-1329 (($ $ (-517)) 13)))
+(((-997 |#1|) (-1185) (-1109)) (T -997))
+((-2725 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-1329 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1109)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1109)) (-5 *2 (-517)))) (-2391 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-3582 (*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
+(-13 (-1109) (-10 -8 (-15 -2725 ($ |t#1| |t#1|)) (-15 -1329 ($ $ (-517))) (-15 -3205 (|t#1| $)) (-15 -3228 (|t#1| $)) (-15 -3520 (|t#1| $)) (-15 -2934 (|t#1| $)) (-15 -3217 ((-517) $)) (-15 -2391 ($ |t#1| |t#1|)) (-15 -3582 ($ |t#1|))))
+(((-1109) . T))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2391 (($ |#1| |#1|) 15)) (-1857 (((-583 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-777)))) (-3520 ((|#1| $) 10)) (-3205 ((|#1| $) 9)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3217 (((-517) $) 14)) (-2934 ((|#1| $) 12)) (-3228 ((|#1| $) 11)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3408 (((-583 |#1|) $) 35 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 34 (|has| |#1| (-777)))) (-3582 (($ |#1|) 26)) (-2182 (((-787) $) 25 (|has| |#1| (-1003)))) (-2725 (($ |#1| |#1|) 8)) (-1329 (($ $ (-517)) 16)) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))))
+(((-998 |#1|) (-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |noBranch|))) (-1109)) (T -998))
NIL
(-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |noBranch|)))
-((-2515 (($ |#1| |#1|) 7)) (-1893 ((|#2| (-1 |#1| |#1|) $) 16)) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 12)) (-3320 (((-517) $) 8)) (-3521 ((|#1| $) 9)) (-3330 ((|#1| $) 11)) (-3502 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3645 (($ |#1|) 6)) (-2881 (($ |#1| |#1|) 14)) (-1321 (($ $ (-517)) 13)))
-(((-999 |#1| |#2|) (-1184) (-777) (-1047 |t#1|)) (T -999))
-((-3502 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1047 *3)))) (-1893 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))))
-(-13 (-997 |t#1|) (-10 -8 (-15 -3502 (|t#2| (-583 $))) (-15 -3502 (|t#2| $)) (-15 -1893 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-997 |#1|) . T) ((-1108) . T))
-((-1413 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3245 (($ $ $) 10)) (-3170 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1000 |#1| |#2|) (-10 -8 (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3170 (|#1| |#1| |#1|))) (-1001 |#2|) (-1003)) (T -1000))
-NIL
-(-10 -8 (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3170 (|#1| |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-1413 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3245 (($ $ $) 20)) (-3009 (((-107) $ $) 19)) (-2953 (((-107) $ (-703)) 35)) (-1362 (($) 25) (($ (-583 |#1|)) 24)) (-3536 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4180)))) (-3092 (($) 36 T CONST)) (-1679 (($ $) 59 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 43 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 34)) (-2560 (((-583 |#1|) $) 44 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 38)) (-3847 (((-107) $ (-703)) 33)) (-3985 (((-1056) $) 9)) (-1812 (($ $ $) 23)) (-3206 (((-1021) $) 10)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-2048 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 29)) (-3619 (((-107) $) 32)) (-1746 (($) 31)) (-3170 (($ $ $) 22) (($ $ |#1|) 21)) (-3217 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4180)))) (-2433 (($ $) 30)) (-3645 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 51)) (-2256 (((-787) $) 11)) (-3167 (($) 27) (($ (-583 |#1|)) 26)) (-3675 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 6)) (-1572 (((-107) $ $) 28)) (-2296 (((-703) $) 37 (|has| $ (-6 -4180)))))
-(((-1001 |#1|) (-1184) (-1003)) (T -1001))
-((-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3167 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-1362 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3170 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3170 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3245 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1413 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1413 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1413 (*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(-13 (-1003) (-138 |t#1|) (-10 -8 (-6 -4170) (-15 -1572 ((-107) $ $)) (-15 -3167 ($)) (-15 -3167 ($ (-583 |t#1|))) (-15 -1362 ($)) (-15 -1362 ($ (-583 |t#1|))) (-15 -1812 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -3170 ($ $ |t#1|)) (-15 -3245 ($ $ $)) (-15 -3009 ((-107) $ $)) (-15 -1413 ($ $ $)) (-15 -1413 ($ $ |t#1|)) (-15 -1413 ($ |t#1| $))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) . T) ((-1108) . T))
-((-3985 (((-1056) $) 10)) (-3206 (((-1021) $) 8)))
-(((-1002 |#1|) (-10 -8 (-15 -3985 ((-1056) |#1|)) (-15 -3206 ((-1021) |#1|))) (-1003)) (T -1002))
-NIL
-(-10 -8 (-15 -3985 ((-1056) |#1|)) (-15 -3206 ((-1021) |#1|)))
-((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
-(((-1003) (-1184)) (T -1003))
-((-3206 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1056)))))
-(-13 (-97) (-557 (-787)) (-10 -8 (-15 -3206 ((-1021) $)) (-15 -3985 ((-1056) $))))
+((-2391 (($ |#1| |#1|) 7)) (-1857 ((|#2| (-1 |#1| |#1|) $) 16)) (-3520 ((|#1| $) 10)) (-3205 ((|#1| $) 12)) (-3217 (((-517) $) 8)) (-2934 ((|#1| $) 9)) (-3228 ((|#1| $) 11)) (-3408 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3582 (($ |#1|) 6)) (-2725 (($ |#1| |#1|) 14)) (-1329 (($ $ (-517)) 13)))
+(((-999 |#1| |#2|) (-1185) (-777) (-1048 |t#1|)) (T -999))
+((-3408 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1048 *4)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1048 *3)))) (-1857 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1048 *4)))))
+(-13 (-997 |t#1|) (-10 -8 (-15 -3408 (|t#2| (-583 $))) (-15 -3408 (|t#2| $)) (-15 -1857 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-997 |#1|) . T) ((-1109) . T))
+((-1408 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2321 (($ $ $) 10)) (-2852 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1000 |#1| |#2|) (-10 -8 (-15 -1408 (|#1| |#2| |#1|)) (-15 -1408 (|#1| |#1| |#2|)) (-15 -1408 (|#1| |#1| |#1|)) (-15 -2321 (|#1| |#1| |#1|)) (-15 -2852 (|#1| |#1| |#2|)) (-15 -2852 (|#1| |#1| |#1|))) (-1001 |#2|) (-1003)) (T -1000))
+NIL
+(-10 -8 (-15 -1408 (|#1| |#2| |#1|)) (-15 -1408 (|#1| |#1| |#2|)) (-15 -1408 (|#1| |#1| |#1|)) (-15 -2321 (|#1| |#1| |#1|)) (-15 -2852 (|#1| |#1| |#2|)) (-15 -2852 (|#1| |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-1408 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2321 (($ $ $) 20)) (-4035 (((-107) $ $) 19)) (-1799 (((-107) $ (-703)) 35)) (-1361 (($) 25) (($ (-583 |#1|)) 24)) (-3451 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4183)))) (-3473 (($) 36 T CONST)) (-1667 (($ $) 59 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#1| $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4183)))) (-3037 (((-583 |#1|) $) 43 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 34)) (-1196 (((-583 |#1|) $) 44 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 38)) (-2942 (((-107) $ (-703)) 33)) (-3865 (((-1057) $) 9)) (-2551 (($ $ $) 23)) (-3094 (((-1021) $) 10)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-2925 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 29)) (-1546 (((-107) $) 32)) (-1326 (($) 31)) (-2852 (($ $ $) 22) (($ $ |#1|) 21)) (-3105 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4183)))) (-2322 (($ $) 30)) (-3582 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 51)) (-2182 (((-787) $) 11)) (-3055 (($) 27) (($ (-583 |#1|)) 26)) (-3883 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 6)) (-1560 (((-107) $ $) 28)) (-2210 (((-703) $) 37 (|has| $ (-6 -4183)))))
+(((-1001 |#1|) (-1185) (-1003)) (T -1001))
+((-1560 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3055 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3055 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-1361 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1361 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-2551 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-2852 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-2852 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-2321 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-4035 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1408 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1408 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1408 (*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(-13 (-1003) (-138 |t#1|) (-10 -8 (-6 -4173) (-15 -1560 ((-107) $ $)) (-15 -3055 ($)) (-15 -3055 ($ (-583 |t#1|))) (-15 -1361 ($)) (-15 -1361 ($ (-583 |t#1|))) (-15 -2551 ($ $ $)) (-15 -2852 ($ $ $)) (-15 -2852 ($ $ |t#1|)) (-15 -2321 ($ $ $)) (-15 -4035 ((-107) $ $)) (-15 -1408 ($ $ $)) (-15 -1408 ($ $ |t#1|)) (-15 -1408 ($ |t#1| $))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) . T) ((-1109) . T))
+((-3865 (((-1057) $) 10)) (-3094 (((-1021) $) 8)))
+(((-1002 |#1|) (-10 -8 (-15 -3865 ((-1057) |#1|)) (-15 -3094 ((-1021) |#1|))) (-1003)) (T -1002))
+NIL
+(-10 -8 (-15 -3865 ((-1057) |#1|)) (-15 -3094 ((-1021) |#1|)))
+((-2571 (((-107) $ $) 7)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)))
+(((-1003) (-1185)) (T -1003))
+((-3094 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1057)))))
+(-13 (-97) (-557 (-787)) (-10 -8 (-15 -3094 ((-1021) $)) (-15 -3865 ((-1057) $))))
(((-97) . T) ((-557 (-787)) . T))
-((-2750 (((-107) $ $) NIL)) (-1611 (((-703)) 30)) (-4126 (($ (-583 (-843))) 52)) (-1842 (((-3 $ "failed") $ (-843) (-843)) 57)) (-3209 (($) 32)) (-2787 (((-107) (-843) $) 35)) (-1549 (((-843) $) 50)) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 31)) (-4030 (((-3 $ "failed") $ (-843)) 55)) (-3206 (((-1021) $) NIL)) (-2260 (((-1153 $)) 40)) (-2175 (((-583 (-843)) $) 23)) (-1330 (((-703) $ (-843) (-843)) 56)) (-2256 (((-787) $) 29)) (-1547 (((-107) $ $) 21)))
-(((-1004 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -4030 ((-3 $ "failed") $ (-843))) (-15 -1842 ((-3 $ "failed") $ (-843) (-843))) (-15 -2175 ((-583 (-843)) $)) (-15 -4126 ($ (-583 (-843)))) (-15 -2260 ((-1153 $))) (-15 -2787 ((-107) (-843) $)) (-15 -1330 ((-703) $ (-843) (-843))))) (-843) (-843)) (T -1004))
-((-4030 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1842 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2260 (*1 *2) (-12 (-5 *2 (-1153 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2787 (*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-338) (-10 -8 (-15 -4030 ((-3 $ "failed") $ (-843))) (-15 -1842 ((-3 $ "failed") $ (-843) (-843))) (-15 -2175 ((-583 (-843)) $)) (-15 -4126 ($ (-583 (-843)))) (-15 -2260 ((-1153 $))) (-15 -2787 ((-107) (-843) $)) (-15 -1330 ((-703) $ (-843) (-843)))))
-((-2750 (((-107) $ $) NIL)) (-3416 (($) NIL (|has| |#1| (-338)))) (-1413 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-3245 (($ $ $) 71)) (-3009 (((-107) $ $) 72)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-1362 (($ (-583 |#1|)) NIL) (($) 13)) (-2337 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 67 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4180)))) (-3209 (($) NIL (|has| |#1| (-338)))) (-1536 (((-583 |#1|) $) 19 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2967 ((|#1| $) 57 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3099 ((|#1| $) 55 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 34)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 25)) (-1710 (($ |#1| $) 65)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-4006 ((|#1| $) 27)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 21)) (-1746 (($) 11)) (-3170 (($ $ |#1|) NIL) (($ $ $) 70)) (-3089 (($) NIL) (($ (-583 |#1|)) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 16)) (-3645 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 61)) (-1819 (($ $) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL)) (-2201 (((-703) $) NIL)) (-3167 (($ (-583 |#1|)) NIL) (($) 12)) (-1222 (($ (-583 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 54)) (-1572 (((-107) $ $) NIL)) (-2296 (((-703) $) 10 (|has| $ (-6 -4180)))))
+((-2571 (((-107) $ $) NIL)) (-1598 (((-703)) 30)) (-2662 (($ (-583 (-843))) 52)) (-3971 (((-3 $ "failed") $ (-843) (-843)) 57)) (-3098 (($) 32)) (-2502 (((-107) (-843) $) 35)) (-2903 (((-843) $) 50)) (-3865 (((-1057) $) NIL)) (-3353 (($ (-843)) 31)) (-1320 (((-3 $ "failed") $ (-843)) 55)) (-3094 (((-1021) $) NIL)) (-3097 (((-1154 $)) 40)) (-1836 (((-583 (-843)) $) 23)) (-2234 (((-703) $ (-843) (-843)) 56)) (-2182 (((-787) $) 29)) (-1539 (((-107) $ $) 21)))
+(((-1004 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -1320 ((-3 $ "failed") $ (-843))) (-15 -3971 ((-3 $ "failed") $ (-843) (-843))) (-15 -1836 ((-583 (-843)) $)) (-15 -2662 ($ (-583 (-843)))) (-15 -3097 ((-1154 $))) (-15 -2502 ((-107) (-843) $)) (-15 -2234 ((-703) $ (-843) (-843))))) (-843) (-843)) (T -1004))
+((-1320 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3971 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-3097 (*1 *2) (-12 (-5 *2 (-1154 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2502 (*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2234 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-338) (-10 -8 (-15 -1320 ((-3 $ "failed") $ (-843))) (-15 -3971 ((-3 $ "failed") $ (-843) (-843))) (-15 -1836 ((-583 (-843)) $)) (-15 -2662 ($ (-583 (-843)))) (-15 -3097 ((-1154 $))) (-15 -2502 ((-107) (-843) $)) (-15 -2234 ((-703) $ (-843) (-843)))))
+((-2571 (((-107) $ $) NIL)) (-3242 (($) NIL (|has| |#1| (-338)))) (-1408 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-2321 (($ $ $) 71)) (-4035 (((-107) $ $) 72)) (-1799 (((-107) $ (-703)) NIL)) (-1598 (((-703)) NIL (|has| |#1| (-338)))) (-1361 (($ (-583 |#1|)) NIL) (($) 13)) (-2582 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2111 (($ |#1| $) 67 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4183)))) (-3098 (($) NIL (|has| |#1| (-338)))) (-3037 (((-583 |#1|) $) 19 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-1575 ((|#1| $) 57 (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2986 ((|#1| $) 55 (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 34)) (-2903 (((-843) $) NIL (|has| |#1| (-338)))) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-2551 (($ $ $) 69)) (-1835 ((|#1| $) 25)) (-3816 (($ |#1| $) 65)) (-3353 (($ (-843)) NIL (|has| |#1| (-338)))) (-3094 (((-1021) $) NIL)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-4049 ((|#1| $) 27)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 21)) (-1326 (($) 11)) (-2852 (($ $ |#1|) NIL) (($ $ $) 70)) (-3429 (($) NIL) (($ (-583 |#1|)) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) 16)) (-3582 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 61)) (-3750 (($ $) NIL (|has| |#1| (-338)))) (-2182 (((-787) $) NIL)) (-3863 (((-703) $) NIL)) (-3055 (($ (-583 |#1|)) NIL) (($) 12)) (-2373 (($ (-583 |#1|)) NIL)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 54)) (-1560 (((-107) $ $) NIL)) (-2210 (((-703) $) 10 (|has| $ (-6 -4183)))))
(((-1005 |#1|) (-395 |#1|) (-1003)) (T -1005))
NIL
(-395 |#1|)
-((-2750 (((-107) $ $) 7)) (-2710 (((-107) $) 32)) (-3881 ((|#2| $) 27)) (-2347 (((-107) $) 33)) (-3890 ((|#1| $) 28)) (-1533 (((-107) $) 35)) (-2636 (((-107) $) 37)) (-3567 (((-107) $) 34)) (-3985 (((-1056) $) 9)) (-1973 (((-107) $) 31)) (-3912 ((|#3| $) 26)) (-3206 (((-1021) $) 10)) (-2056 (((-107) $) 30)) (-4005 ((|#4| $) 25)) (-1556 ((|#5| $) 24)) (-2131 (((-107) $ $) 38)) (-1449 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-3814 (((-583 $) $) 29)) (-3645 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2256 (((-787) $) 11)) (-2705 (($ $) 16)) (-2694 (($ $) 17)) (-1491 (((-107) $) 36)) (-1547 (((-107) $ $) 6)) (-2296 (((-517) $) 15)))
-(((-1006 |#1| |#2| |#3| |#4| |#5|) (-1184) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1006))
-((-2131 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3814 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-2694 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -2131 ((-107) $ $)) (-15 -2636 ((-107) $)) (-15 -1491 ((-107) $)) (-15 -1533 ((-107) $)) (-15 -3567 ((-107) $)) (-15 -2347 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -2056 ((-107) $)) (-15 -3814 ((-583 $) $)) (-15 -3890 (|t#1| $)) (-15 -3881 (|t#2| $)) (-15 -3912 (|t#3| $)) (-15 -4005 (|t#4| $)) (-15 -1556 (|t#5| $)) (-15 -3645 ($ (-583 $))) (-15 -3645 ($ |t#1|)) (-15 -3645 ($ |t#2|)) (-15 -3645 ($ |t#3|)) (-15 -3645 ($ |t#4|)) (-15 -3645 ($ |t#5|)) (-15 -2694 ($ $)) (-15 -2705 ($ $)) (-15 -2296 ((-517) $)) (-15 -1449 ($ $ (-517))) (-15 -1449 ($ $ (-583 (-517))))))
+((-2571 (((-107) $ $) 7)) (-2999 (((-107) $) 32)) (-3873 ((|#2| $) 27)) (-2649 (((-107) $) 33)) (-3887 ((|#1| $) 28)) (-1394 (((-107) $) 35)) (-3649 (((-107) $) 37)) (-2179 (((-107) $) 34)) (-3865 (((-1057) $) 9)) (-3337 (((-107) $) 31)) (-3910 ((|#3| $) 26)) (-3094 (((-1021) $) 10)) (-2996 (((-107) $) 30)) (-4009 ((|#4| $) 25)) (-1549 ((|#5| $) 24)) (-2075 (((-107) $ $) 38)) (-1986 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-3775 (((-583 $) $) 29)) (-3582 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2182 (((-787) $) 11)) (-2048 (($ $) 16)) (-2036 (($ $) 17)) (-2041 (((-107) $) 36)) (-1539 (((-107) $ $) 6)) (-2210 (((-517) $) 15)))
+(((-1006 |#1| |#2| |#3| |#4| |#5|) (-1185) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1006))
+((-2075 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3775 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-3582 (*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3582 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3582 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3582 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) (-3582 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-2036 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -2075 ((-107) $ $)) (-15 -3649 ((-107) $)) (-15 -2041 ((-107) $)) (-15 -1394 ((-107) $)) (-15 -2179 ((-107) $)) (-15 -2649 ((-107) $)) (-15 -2999 ((-107) $)) (-15 -3337 ((-107) $)) (-15 -2996 ((-107) $)) (-15 -3775 ((-583 $) $)) (-15 -3887 (|t#1| $)) (-15 -3873 (|t#2| $)) (-15 -3910 (|t#3| $)) (-15 -4009 (|t#4| $)) (-15 -1549 (|t#5| $)) (-15 -3582 ($ (-583 $))) (-15 -3582 ($ |t#1|)) (-15 -3582 ($ |t#2|)) (-15 -3582 ($ |t#3|)) (-15 -3582 ($ |t#4|)) (-15 -3582 ($ |t#5|)) (-15 -2036 ($ $)) (-15 -2048 ($ $)) (-15 -2210 ((-517) $)) (-15 -1986 ($ $ (-517))) (-15 -1986 ($ $ (-583 (-517))))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2710 (((-107) $) NIL)) (-3881 (((-1073) $) NIL)) (-2347 (((-107) $) NIL)) (-3890 (((-1056) $) NIL)) (-1533 (((-107) $) NIL)) (-2636 (((-107) $) NIL)) (-3567 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-1973 (((-107) $) NIL)) (-3912 (((-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-2056 (((-107) $) NIL)) (-4005 (((-199) $) NIL)) (-1556 (((-787) $) NIL)) (-2131 (((-107) $ $) NIL)) (-1449 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3814 (((-583 $) $) NIL)) (-3645 (($ (-583 $)) NIL) (($ (-1056)) NIL) (($ (-1073)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2256 (((-787) $) NIL)) (-2705 (($ $) NIL)) (-2694 (($ $) NIL)) (-1491 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-517) $) NIL)))
-(((-1007) (-1006 (-1056) (-1073) (-517) (-199) (-787))) (T -1007))
+((-2571 (((-107) $ $) NIL)) (-2999 (((-107) $) NIL)) (-3873 (((-1074) $) NIL)) (-2649 (((-107) $) NIL)) (-3887 (((-1057) $) NIL)) (-1394 (((-107) $) NIL)) (-3649 (((-107) $) NIL)) (-2179 (((-107) $) NIL)) (-3865 (((-1057) $) NIL)) (-3337 (((-107) $) NIL)) (-3910 (((-517) $) NIL)) (-3094 (((-1021) $) NIL)) (-2996 (((-107) $) NIL)) (-4009 (((-199) $) NIL)) (-1549 (((-787) $) NIL)) (-2075 (((-107) $ $) NIL)) (-1986 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3775 (((-583 $) $) NIL)) (-3582 (($ (-583 $)) NIL) (($ (-1057)) NIL) (($ (-1074)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2182 (((-787) $) NIL)) (-2048 (($ $) NIL)) (-2036 (($ $) NIL)) (-2041 (((-107) $) NIL)) (-1539 (((-107) $ $) NIL)) (-2210 (((-517) $) NIL)))
+(((-1007) (-1006 (-1057) (-1074) (-517) (-199) (-787))) (T -1007))
NIL
-(-1006 (-1056) (-1073) (-517) (-199) (-787))
-((-2750 (((-107) $ $) NIL)) (-2710 (((-107) $) 37)) (-3881 ((|#2| $) 41)) (-2347 (((-107) $) 36)) (-3890 ((|#1| $) 40)) (-1533 (((-107) $) 34)) (-2636 (((-107) $) 14)) (-3567 (((-107) $) 35)) (-3985 (((-1056) $) NIL)) (-1973 (((-107) $) 38)) (-3912 ((|#3| $) 43)) (-3206 (((-1021) $) NIL)) (-2056 (((-107) $) 39)) (-4005 ((|#4| $) 42)) (-1556 ((|#5| $) 44)) (-2131 (((-107) $ $) 33)) (-1449 (($ $ (-517)) 55) (($ $ (-583 (-517))) 57)) (-3814 (((-583 $) $) 21)) (-3645 (($ (-583 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-2256 (((-787) $) 22)) (-2705 (($ $) 20)) (-2694 (($ $) 51)) (-1491 (((-107) $) 18)) (-1547 (((-107) $ $) 32)) (-2296 (((-517) $) 53)))
+(-1006 (-1057) (-1074) (-517) (-199) (-787))
+((-2571 (((-107) $ $) NIL)) (-2999 (((-107) $) 37)) (-3873 ((|#2| $) 41)) (-2649 (((-107) $) 36)) (-3887 ((|#1| $) 40)) (-1394 (((-107) $) 34)) (-3649 (((-107) $) 14)) (-2179 (((-107) $) 35)) (-3865 (((-1057) $) NIL)) (-3337 (((-107) $) 38)) (-3910 ((|#3| $) 43)) (-3094 (((-1021) $) NIL)) (-2996 (((-107) $) 39)) (-4009 ((|#4| $) 42)) (-1549 ((|#5| $) 44)) (-2075 (((-107) $ $) 33)) (-1986 (($ $ (-517)) 55) (($ $ (-583 (-517))) 57)) (-3775 (((-583 $) $) 21)) (-3582 (($ (-583 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-2182 (((-787) $) 22)) (-2048 (($ $) 20)) (-2036 (($ $) 51)) (-2041 (((-107) $) 18)) (-1539 (((-107) $ $) 32)) (-2210 (((-517) $) 53)))
(((-1008 |#1| |#2| |#3| |#4| |#5|) (-1006 |#1| |#2| |#3| |#4| |#5|) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1008))
NIL
(-1006 |#1| |#2| |#3| |#4| |#5|)
-((-4155 (((-1158) $) 23)) (-2231 (($ (-1073) (-404) |#2|) 11)) (-2256 (((-787) $) 16)))
-(((-1009 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2231 ($ (-1073) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1009))
-((-2231 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5)))))
-(-13 (-365) (-10 -8 (-15 -2231 ($ (-1073) (-404) |#2|))))
-((-3471 (((-107) |#5| |#5|) 37)) (-1331 (((-107) |#5| |#5|) 51)) (-3499 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 60)) (-2254 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-1837 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 62)) (-4034 (((-1158)) 33)) (-1882 (((-1158) (-1056) (-1056) (-1056)) 29)) (-3694 (((-583 |#5|) (-583 |#5|)) 81)) (-2197 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) 79)) (-2871 (((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-3576 (((-107) |#5| |#5|) 46)) (-2954 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3506 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-1451 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3411 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3444 (((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-1634 (((-583 |#5|) (-583 |#5|)) 42)))
-(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1010))
-((-3444 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-2871 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) (-3499 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2954 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-2254 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3576 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-4034 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1882 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
-((-3990 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 94)) (-3305 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|) 70)) (-1806 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 88)) (-1824 (((-583 |#5|) |#4| |#5|) 109)) (-3575 (((-583 |#5|) |#4| |#5|) 116)) (-2290 (((-583 |#5|) |#4| |#5|) 117)) (-2487 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 95)) (-1258 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 115)) (-1517 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2395 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107)) 82) (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3918 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 77)) (-1588 (((-1158)) 35)) (-3615 (((-1158)) 25)) (-1448 (((-1158) (-1056) (-1056) (-1056)) 31)) (-2183 (((-1158) (-1056) (-1056) (-1056)) 20)))
-(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -3305 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3918 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1806 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1517 ((-107) |#4| |#5|)) (-15 -2487 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -1824 ((-583 |#5|) |#4| |#5|)) (-15 -1258 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3575 ((-583 |#5|) |#4| |#5|)) (-15 -1517 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -2290 ((-583 |#5|) |#4| |#5|)) (-15 -3990 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1011))
-((-3990 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2290 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1517 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3575 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1258 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1824 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2487 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1517 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1806 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3918 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2395 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))) (-2395 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3305 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1588 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1448 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-2183 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -3305 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3918 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1806 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1517 ((-107) |#4| |#5|)) (-15 -2487 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -1824 ((-583 |#5|) |#4| |#5|)) (-15 -1258 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3575 ((-583 |#5|) |#4| |#5|)) (-15 -1517 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -2290 ((-583 |#5|) |#4| |#5|)) (-15 -3990 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)))
-((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
-(((-1012 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1012))
+((-3215 (((-1159) $) 23)) (-2162 (($ (-1074) (-404) |#2|) 11)) (-2182 (((-787) $) 16)))
+(((-1009 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2162 ($ (-1074) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1009))
+((-2162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5)))))
+(-13 (-365) (-10 -8 (-15 -2162 ($ (-1074) (-404) |#2|))))
+((-2477 (((-107) |#5| |#5|) 37)) (-1612 (((-107) |#5| |#5|) 51)) (-2709 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 60)) (-3054 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-3941 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) 62)) (-1360 (((-1159)) 33)) (-3707 (((-1159) (-1057) (-1057) (-1057)) 29)) (-4053 (((-583 |#5|) (-583 |#5|)) 81)) (-3813 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) 79)) (-2177 (((-583 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-2235 (((-107) |#5| |#5|) 46)) (-1809 (((-3 (-107) "failed") |#5| |#5|) 70)) (-2773 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-3690 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3196 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3517 (((-3 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-1714 (((-583 |#5|) (-583 |#5|)) 42)))
+(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3707 ((-1159) (-1057) (-1057) (-1057))) (-15 -1360 ((-1159))) (-15 -2477 ((-107) |#5| |#5|)) (-15 -1714 ((-583 |#5|) (-583 |#5|))) (-15 -2235 ((-107) |#5| |#5|)) (-15 -1612 ((-107) |#5| |#5|)) (-15 -3054 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2773 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3690 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3196 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1809 ((-3 (-107) "failed") |#5| |#5|)) (-15 -2709 ((-107) |#5| |#5|)) (-15 -2709 ((-107) |#5| (-583 |#5|))) (-15 -4053 ((-583 |#5|) (-583 |#5|))) (-15 -3941 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) (-15 -3813 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-15 -2177 ((-583 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3517 ((-3 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1010))
+((-3517 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2075 (-583 *9)) (|:| -3656 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-2177 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2075 (-583 *9)) (|:| -3656 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3656 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3941 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3656 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) (-2709 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1809 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3196 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3690 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-2773 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3054 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1612 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2235 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1360 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3707 ((-1159) (-1057) (-1057) (-1057))) (-15 -1360 ((-1159))) (-15 -2477 ((-107) |#5| |#5|)) (-15 -1714 ((-583 |#5|) (-583 |#5|))) (-15 -2235 ((-107) |#5| |#5|)) (-15 -1612 ((-107) |#5| |#5|)) (-15 -3054 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2773 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3690 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3196 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1809 ((-3 (-107) "failed") |#5| |#5|)) (-15 -2709 ((-107) |#5| |#5|)) (-15 -2709 ((-107) |#5| (-583 |#5|))) (-15 -4053 ((-583 |#5|) (-583 |#5|))) (-15 -3941 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) (-15 -3813 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-15 -2177 ((-583 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3517 ((-3 (-2 (|:| -2075 (-583 |#4|)) (|:| -3656 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
+((-3924 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|) 94)) (-1796 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#4| |#4| |#5|) 70)) (-3173 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|) 88)) (-3811 (((-583 |#5|) |#4| |#5|) 109)) (-2225 (((-583 |#5|) |#4| |#5|) 116)) (-3382 (((-583 |#5|) |#4| |#5|) 117)) (-1740 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|) 95)) (-1432 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|) 115)) (-1285 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2034 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#3| (-107)) 82) (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-2417 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|) 77)) (-3400 (((-1159)) 35)) (-1517 (((-1159)) 25)) (-3667 (((-1159) (-1057) (-1057) (-1057)) 31)) (-1901 (((-1159) (-1057) (-1057) (-1057)) 20)))
+(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1901 ((-1159) (-1057) (-1057) (-1057))) (-15 -1517 ((-1159))) (-15 -3667 ((-1159) (-1057) (-1057) (-1057))) (-15 -3400 ((-1159))) (-15 -1796 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -2034 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2034 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#3| (-107))) (-15 -2417 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -3173 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -1285 ((-107) |#4| |#5|)) (-15 -1740 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -3811 ((-583 |#5|) |#4| |#5|)) (-15 -1432 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -2225 ((-583 |#5|) |#4| |#5|)) (-15 -1285 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -3382 ((-583 |#5|) |#4| |#5|)) (-15 -3924 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1011))
+((-3924 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3382 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1285 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2225 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1432 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3811 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1740 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1285 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3173 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2417 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3656 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3656 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))) (-2034 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-1796 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3400 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-3667 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1517 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1901 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1901 ((-1159) (-1057) (-1057) (-1057))) (-15 -1517 ((-1159))) (-15 -3667 ((-1159) (-1057) (-1057) (-1057))) (-15 -3400 ((-1159))) (-15 -1796 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -2034 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2034 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) |#3| (-107))) (-15 -2417 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -3173 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#4| |#5|)) (-15 -1285 ((-107) |#4| |#5|)) (-15 -1740 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -3811 ((-583 |#5|) |#4| |#5|)) (-15 -1432 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -2225 ((-583 |#5|) |#4| |#5|)) (-15 -1285 ((-583 (-2 (|:| |val| (-107)) (|:| -3656 |#5|))) |#4| |#5|)) (-15 -3382 ((-583 |#5|) |#4| |#5|)) (-15 -3924 ((-583 (-2 (|:| |val| |#4|) (|:| -3656 |#5|))) |#4| |#5|)))
+((-2571 (((-107) $ $) 7)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) 85)) (-1310 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1363 (((-583 |#3|) $) 33)) (-3521 (((-107) $) 26)) (-2320 (((-107) $) 17 (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) 101) (((-107) $) 97)) (-2356 ((|#4| |#4| $) 92)) (-3938 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| $) 126)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) 27)) (-1799 (((-107) $ (-703)) 44)) (-3451 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-3473 (($) 45 T CONST)) (-1216 (((-107) $) 22 (|has| |#1| (-509)))) (-1930 (((-107) $ $) 24 (|has| |#1| (-509)))) (-1660 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3045 (((-107) $) 25 (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3515 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) 36)) (-3076 (($ (-583 |#4|)) 35)) (-1644 (((-3 $ "failed") $) 82)) (-1907 ((|#4| |#4| $) 89)) (-1667 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3197 ((|#4| |#4| $) 87)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) 105)) (-3357 (((-107) |#4| $) 136)) (-3862 (((-107) |#4| $) 133)) (-1442 (((-107) |#4| $) 137) (((-107) $) 134)) (-3037 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) 104) (((-107) $) 103)) (-3377 ((|#3| $) 34)) (-4064 (((-107) $ (-703)) 43)) (-1196 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 47)) (-2434 (((-583 |#3|) $) 32)) (-2995 (((-107) |#3| $) 31)) (-2942 (((-107) $ (-703)) 42)) (-3865 (((-1057) $) 9)) (-1765 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-4065 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| |#4| $) 127)) (-1988 (((-3 |#4| "failed") $) 83)) (-2368 (((-583 $) |#4| $) 129)) (-1905 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2491 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2551 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-1615 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2425 (((-583 |#4|) $) 107)) (-2998 (((-107) |#4| $) 99) (((-107) $) 95)) (-2946 ((|#4| |#4| $) 90)) (-3196 (((-107) $ $) 110)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) 100) (((-107) $) 96)) (-3006 ((|#4| |#4| $) 91)) (-3094 (((-1021) $) 10)) (-1631 (((-3 |#4| "failed") $) 84)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3886 (((-3 $ "failed") $ |#4|) 78)) (-3467 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2925 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) 38)) (-1546 (((-107) $) 41)) (-1326 (($) 40)) (-4007 (((-703) $) 106)) (-3105 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2322 (($ $) 39)) (-3582 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 60)) (-2399 (($ $ |#3|) 28)) (-3339 (($ $ |#3|) 30)) (-3529 (($ $) 88)) (-4011 (($ $ |#3|) 29)) (-2182 (((-787) $) 11) (((-583 |#4|) $) 37)) (-4124 (((-703) $) 76 (|has| |#3| (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2401 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3883 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) 81)) (-2385 (((-107) |#4| $) 135)) (-1223 (((-107) |#3| $) 80)) (-1539 (((-107) $ $) 6)) (-2210 (((-703) $) 46 (|has| $ (-6 -4183)))))
+(((-1012 |#1| |#2| |#3| |#4|) (-1185) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1012))
NIL
(-13 (-980 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T))
-((-2291 (((-583 (-517)) (-517) (-517) (-517)) 20)) (-2080 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-1762 (((-583 (-517)) (-517) (-517) (-517)) 16)) (-3031 (((-517) (-517) (-517)) 9)) (-3235 (((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517)) 44) (((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517)) 39)) (-2772 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 26)) (-3431 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 43)) (-3101 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 31)) (-2893 (((-583 (-623 (-517))) (-583 (-517))) 33)) (-2004 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 46)) (-3763 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 54)))
-(((-1013) (-10 -7 (-15 -3763 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2004 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2893 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3101 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3431 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2772 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3235 ((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517))) (-15 -3235 ((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517))) (-15 -3031 ((-517) (-517) (-517))) (-15 -1762 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2080 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2291 ((-583 (-517)) (-517) (-517) (-517))))) (T -1013))
-((-2291 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-2080 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-1762 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))) (-3235 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))) (-3235 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) (-2772 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))) (-3431 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))) (-3101 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))) (-2004 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))) (-3763 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
-(-10 -7 (-15 -3763 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2004 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2893 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3101 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3431 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2772 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3235 ((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517))) (-15 -3235 ((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517))) (-15 -3031 ((-517) (-517) (-517))) (-15 -1762 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2080 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2291 ((-583 (-517)) (-517) (-517) (-517))))
-((-2207 (($ $ (-843)) 12)) (** (($ $ (-843)) 10)))
-(((-1014 |#1|) (-10 -8 (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-1015)) (T -1014))
-NIL
-(-10 -8 (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
-((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 14)) (* (($ $ $) 15)))
-(((-1015) (-1184)) (T -1015))
-((* (*1 *1 *1 *1) (-4 *1 (-1015))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))))
-(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-843))) (-15 -2207 ($ $ (-843)))))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1109) . T))
+((-3396 (((-583 (-517)) (-517) (-517) (-517)) 20)) (-2093 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-2112 (((-583 (-517)) (-517) (-517) (-517)) 16)) (-1240 (((-517) (-517) (-517)) 9)) (-2248 (((-1154 (-517)) (-583 (-517)) (-1154 (-517)) (-517)) 44) (((-1154 (-517)) (-1154 (-517)) (-1154 (-517)) (-517)) 39)) (-2412 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 26)) (-3383 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 43)) (-3533 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 31)) (-2326 (((-583 (-623 (-517))) (-583 (-517))) 33)) (-2457 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 46)) (-3378 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 54)))
+(((-1013) (-10 -7 (-15 -3378 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2457 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2326 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3533 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3383 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2412 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -2248 ((-1154 (-517)) (-1154 (-517)) (-1154 (-517)) (-517))) (-15 -2248 ((-1154 (-517)) (-583 (-517)) (-1154 (-517)) (-517))) (-15 -1240 ((-517) (-517) (-517))) (-15 -2112 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2093 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3396 ((-583 (-517)) (-517) (-517) (-517))))) (T -1013))
+((-3396 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-2093 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-2112 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-1240 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))) (-2248 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1154 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))) (-2248 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1154 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) (-2412 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))) (-3383 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))) (-3533 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))) (-2457 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))) (-3378 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
+(-10 -7 (-15 -3378 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2457 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2326 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3533 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3383 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2412 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -2248 ((-1154 (-517)) (-1154 (-517)) (-1154 (-517)) (-517))) (-15 -2248 ((-1154 (-517)) (-583 (-517)) (-1154 (-517)) (-517))) (-15 -1240 ((-517) (-517) (-517))) (-15 -2112 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2093 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3396 ((-583 (-517)) (-517) (-517) (-517))))
+((-2146 (($ $ (-843)) 12)) (** (($ $ (-843)) 10)))
+(((-1014 |#1|) (-10 -8 (-15 -2146 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-1015)) (T -1014))
+NIL
+(-10 -8 (-15 -2146 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
+((-2571 (((-107) $ $) 7)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-2146 (($ $ (-843)) 13)) (-1539 (((-107) $ $) 6)) (** (($ $ (-843)) 14)) (* (($ $ $) 15)))
+(((-1015) (-1185)) (T -1015))
+((* (*1 *1 *1 *1) (-4 *1 (-1015))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) (-2146 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))))
+(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-843))) (-15 -2146 ($ $ (-843)))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-2814 (((-107) $) NIL (|has| |#3| (-123)))) (-2847 (($ (-843)) NIL (|has| |#3| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#3| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#3| (-338)))) (-3709 (((-517) $) NIL (|has| |#3| (-777)))) (-2411 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) ((|#3| $) NIL (|has| |#3| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-3209 (($) NIL (|has| |#3| (-338)))) (-1445 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#3| $ (-517)) 12)) (-3556 (((-107) $) NIL (|has| |#3| (-777)))) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#3| (-961)))) (-2475 (((-107) $) NIL (|has| |#3| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#3| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#3| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#3| (-338)))) (-3206 (((-1021) $) NIL (|has| |#3| (-1003)))) (-1647 ((|#3| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#3|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-1941 (((-583 |#3|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-3501 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-3794 (($ (-1153 |#3|)) NIL)) (-3141 (((-125)) NIL (|has| |#3| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-3217 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (((-787) $) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (($ |#3|) NIL (|has| |#3| (-1003)))) (-2961 (((-703)) NIL (|has| |#3| (-961)))) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#3| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2396 (($) NIL (|has| |#3| (-123)) CONST)) (-2409 (($) NIL (|has| |#3| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) 17 (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $ $) NIL (|has| |#3| (-961))) (($ $) NIL (|has| |#3| (-961)))) (-1642 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ $ $) NIL (|has| |#3| (-961))) (($ (-517) $) NIL (|has| |#3| (-961))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-843) $) NIL (|has| |#3| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+((-2571 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-2745 (((-107) $) NIL (|has| |#3| (-123)))) (-1991 (($ (-843)) NIL (|has| |#3| (-961)))) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1754 (($ $ $) NIL (|has| |#3| (-725)))) (-1387 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-1799 (((-107) $ (-703)) NIL)) (-1598 (((-703)) NIL (|has| |#3| (-338)))) (-1207 (((-517) $) NIL (|has| |#3| (-777)))) (-2307 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003)))) (-3076 (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) ((|#3| $) NIL (|has| |#3| (-1003)))) (-4012 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -2522 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 $) (-1154 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961)))) (-1568 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-3098 (($) NIL (|has| |#3| (-338)))) (-1226 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#3| $ (-517)) 12)) (-2099 (((-107) $) NIL (|has| |#3| (-777)))) (-3037 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-2955 (((-107) $) NIL (|has| |#3| (-961)))) (-1624 (((-107) $) NIL (|has| |#3| (-777)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1196 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1213 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#3| |#3|) $) NIL)) (-2903 (((-843) $) NIL (|has| |#3| (-338)))) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#3| (-1003)))) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3353 (($ (-843)) NIL (|has| |#3| (-338)))) (-3094 (((-1021) $) NIL (|has| |#3| (-1003)))) (-1631 ((|#3| $) NIL (|has| (-517) (-779)))) (-1254 (($ $ |#3|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-3042 (((-583 |#3|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-2736 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-3739 (($ (-1154 |#3|)) NIL)) (-2586 (((-125)) NIL (|has| |#3| (-333)))) (-1699 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-3105 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-2322 (($ $) NIL)) (-2182 (((-1154 |#3|) $) NIL) (((-787) $) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3763 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (($ |#3|) NIL (|has| |#3| (-1003)))) (-1865 (((-703)) NIL (|has| |#3| (-961)))) (-3883 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-1221 (($ $) NIL (|has| |#3| (-777)))) (-2146 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2297 (($) NIL (|has| |#3| (-123)) CONST)) (-2306 (($) NIL (|has| |#3| (-961)) CONST)) (-2553 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-1593 (((-107) $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1570 (((-107) $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1539 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-1582 (((-107) $ $) NIL (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1560 (((-107) $ $) 17 (-3763 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1649 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1637 (($ $ $) NIL (|has| |#3| (-961))) (($ $) NIL (|has| |#3| (-961)))) (-1626 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ $ $) NIL (|has| |#3| (-961))) (($ (-517) $) NIL (|has| |#3| (-961))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-843) $) NIL (|has| |#3| (-25)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
(((-1016 |#1| |#2| |#3|) (-212 |#1| |#3|) (-703) (-703) (-725)) (T -1016))
NIL
(-212 |#1| |#3|)
-((-2384 (((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 36)) (-3279 (((-517) (-1127 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-2653 (((-517) (-1127 |#2| |#1|)) 53)) (-1715 (((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 44)) (-3207 (((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 67 (|has| |#1| (-421)))) (-1262 (((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 47)) (-2938 (((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 52)))
-(((-1017 |#1| |#2|) (-10 -7 (-15 -2384 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1715 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1262 ((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2938 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2653 ((-517) (-1127 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3207 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -3279 ((-517) (-1127 |#2| |#1|)))) |noBranch|)) (-752) (-1073)) (T -1017))
-((-3279 (*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-3207 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2938 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-1262 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))) (-1715 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))) (-2384 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))))
-(-10 -7 (-15 -2384 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1715 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1262 ((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2938 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2653 ((-517) (-1127 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3207 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -3279 ((-517) (-1127 |#2| |#1|)))) |noBranch|))
-((-3709 (((-3 (-517) "failed") |#2| (-1073) |#2| (-1056)) 16) (((-3 (-517) "failed") |#2| (-1073) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51)))
-(((-1018 |#1| |#2|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") |#2|)) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) (-772 |#2|))) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) |#2| (-1056)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|))) (T -1018))
-((-3709 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))))) (-3709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) (-3709 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))))
-(-10 -7 (-15 -3709 ((-3 (-517) "failed") |#2|)) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) (-772 |#2|))) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) |#2| (-1056))))
-((-3709 (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056)) 34) (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-874 |#1|))) 12)))
-(((-1019 |#1|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|))))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056)))) (-421)) (T -1019))
-((-3709 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-3709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))))
-(-10 -7 (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|))))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056))))
-((-3670 (((-286 (-517)) (-47)) 11)))
-(((-1020) (-10 -7 (-15 -3670 ((-286 (-517)) (-47))))) (T -1020))
-((-3670 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))))
-(-10 -7 (-15 -3670 ((-286 (-517)) (-47))))
-((-2750 (((-107) $ $) NIL)) (-1460 (($ $) 41)) (-2814 (((-107) $) 65)) (-2775 (($ $ $) 48)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 84)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) 74)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) 71)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) 59)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) 81) (($ $) 82)) (-2497 (($ $ $) 58)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) 79)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) 66)) (-1769 (((-107) $) 64)) (-2630 (($ $) 42)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) 75)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) 72)) (-2967 (($ $ $) 68) (($) 39)) (-3099 (($ $ $) 67) (($) 38)) (-1522 (($ $) NIL)) (-2195 (($ $) 70)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) 50)) (-3206 (((-1021) $) NIL) (($ $) 69)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) 62) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 61)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) 51)) (-2433 (($ $) NIL)) (-3645 (((-517) $) 32) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2256 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) 37)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) 73)) (-3710 (($ $) 63)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2391 (($ $ $) 44)) (-2396 (($) 35 T CONST)) (-3555 (($ $ $) 47)) (-2409 (($) 36 T CONST)) (-2482 (((-1056) $) 21) (((-1056) $ (-107)) 23) (((-1158) (-754) $) 24) (((-1158) (-754) $ (-107)) 25)) (-3563 (($ $) 45)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-3545 (($ $ $) 46)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 40)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 49)) (-2382 (($ $ $) 43)) (-1654 (($ $) 52) (($ $ $) 54)) (-1642 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55)))
-(((-1021) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3099 ($)) (-15 -2967 ($)) (-15 -2630 ($ $)) (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -3563 ($ $)) (-15 -3545 ($ $ $)) (-15 -3555 ($ $ $))))) (T -1021))
-((-2391 (*1 *1 *1 *1) (-5 *1 (-1021))) (-2382 (*1 *1 *1 *1) (-5 *1 (-1021))) (-1460 (*1 *1 *1) (-5 *1 (-1021))) (-3099 (*1 *1) (-5 *1 (-1021))) (-2967 (*1 *1) (-5 *1 (-1021))) (-2630 (*1 *1 *1) (-5 *1 (-1021))) (-2775 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3563 (*1 *1 *1) (-5 *1 (-1021))) (-3545 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3555 (*1 *1 *1 *1) (-5 *1 (-1021))))
-(-13 (-502) (-598) (-760) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3099 ($)) (-15 -2967 ($)) (-15 -2630 ($ $)) (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -3563 ($ $)) (-15 -3545 ($ $ $)) (-15 -3555 ($ $ $))))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-4139 ((|#1| $) 44)) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-2886 ((|#1| |#1| $) 46)) (-1200 ((|#1| $) 45)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1694 (((-703) $) 43)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-1022 |#1|) (-1184) (-1108)) (T -1022))
-((-2886 (*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-1200 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -2886 (|t#1| |t#1| $)) (-15 -1200 (|t#1| $)) (-15 -4139 (|t#1| $)) (-15 -1694 ((-703) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-1472 ((|#3| $) 76)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-3127 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2671 ((|#3| $) 78)) (-2803 ((|#4| $) 32)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82)))
-(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2671 (|#3| |#1|)) (-15 -1472 (|#3| |#1|)) (-15 -2803 (|#4| |#1|)) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2256 ((-787) |#1|))) (-1024 |#2| |#3| |#4| |#5|) (-703) (-961) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1023))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2671 (|#3| |#1|)) (-15 -1472 (|#3| |#1|)) (-15 -2803 (|#4| |#1|)) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1472 ((|#2| $) 72)) (-2818 (((-107) $) 112)) (-4038 (((-3 $ "failed") $ $) 19)) (-3213 (((-107) $) 110)) (-2953 (((-107) $ (-703)) 102)) (-3487 (($ |#2|) 75)) (-3092 (($) 17 T CONST)) (-2468 (($ $) 129 (|has| |#2| (-278)))) (-1939 ((|#3| $ (-517)) 124)) (-1772 (((-3 (-517) "failed") $) 86 (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3189 (((-517) $) 87 (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) 80)) (-3355 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-703) $) 130 (|has| |#2| (-509)))) (-1377 ((|#2| $ (-517) (-517)) 122)) (-1536 (((-583 |#2|) $) 95 (|has| $ (-6 -4180)))) (-3848 (((-107) $) 31)) (-1948 (((-703) $) 131 (|has| |#2| (-509)))) (-3706 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-1477 (((-703) $) 118)) (-1486 (((-703) $) 119)) (-2550 (((-107) $ (-703)) 103)) (-2757 ((|#2| $) 67 (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) 114)) (-1338 (((-517) $) 116)) (-2560 (((-583 |#2|) $) 94 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 115)) (-1307 (((-517) $) 117)) (-1840 (($ (-583 (-583 |#2|))) 109)) (-1433 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3035 (((-583 (-583 |#2|)) $) 120)) (-3847 (((-107) $ (-703)) 104)) (-3985 (((-1056) $) 9)) (-2104 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 108)) (-3619 (((-107) $) 105)) (-1746 (($) 106)) (-1449 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-3127 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1073)) (-583 (-703))) 44 (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) 43 (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) 42 (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) 41 (|has| |#2| (-822 (-1073)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-2671 ((|#2| $) 71)) (-1879 (($ (-583 |#2|)) 74)) (-1516 (((-107) $) 111)) (-2803 ((|#3| $) 73)) (-3057 ((|#2| $) 68 (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4180))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 107)) (-3728 ((|#4| $ (-517)) 125)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) 82)) (-2961 (((-703)) 29)) (-3675 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 113)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1073)) (-583 (-703))) 48 (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) 47 (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) 46 (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) 45 (|has| |#2| (-822 (-1073)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2296 (((-703) $) 101 (|has| $ (-6 -4180)))))
-(((-1024 |#1| |#2| |#3| |#4|) (-1184) (-703) (-961) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1024))
-((-3487 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2104 (*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))))
-(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-964 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |noBranch|) (-15 -3487 ($ |t#2|)) (-15 -1879 ($ (-583 |t#2|))) (-15 -2803 (|t#3| $)) (-15 -1472 (|t#2| $)) (-15 -2671 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4182 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3057 (|t#2| $)) (-15 -2757 (|t#2| $))) |noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -2104 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4182 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-6 (-4182 "*")))) ((-659) . T) ((-822 (-1073)) |has| |#2| (-822 (-1073))) ((-964 |#1| |#1| |#2| |#3| |#4|) . T) ((-952 (-377 (-517))) |has| |#2| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#2| (-952 (-517))) ((-952 |#2|) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1108) . T))
-((-3458 ((|#4| |#4|) 67)) (-3682 ((|#4| |#4|) 62)) (-1194 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|) 75)) (-2165 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-3145 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64)))
-(((-1025 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3682 (|#4| |#4|)) (-15 -3145 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3458 (|#4| |#4|)) (-15 -2165 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1194 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1025))
-((-1194 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2165 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3145 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3682 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -3682 (|#4| |#4|)) (-15 -3145 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3458 (|#4| |#4|)) (-15 -2165 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1194 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 17)) (-1364 (((-583 |#2|) $) 160)) (-2352 (((-1069 $) $ |#2|) 54) (((-1069 |#1|) $) 43)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 110 (|has| |#1| (-509)))) (-1213 (($ $) 112 (|has| |#1| (-509)))) (-2454 (((-107) $) 114 (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 157) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3189 ((|#1| $) 155) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-1212 (($ $) 197)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 82)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 |#2|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) 19)) (-1577 (((-703) $) 26)) (-1350 (($ (-1069 |#1|) |#2|) 48) (($ (-1069 $) |#2|) 64)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) 31)) (-1339 (($ |#1| (-489 |#2|)) 71) (($ $ |#2| (-703)) 52) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-2349 (((-489 |#2|) $) 187) (((-703) $ |#2|) 188) (((-583 (-703)) $ (-583 |#2|)) 189)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 122)) (-1409 (((-3 |#2| "failed") $) 162)) (-4152 (($ $) 196)) (-1191 ((|#1| $) 37)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 32)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 140 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 145 (|has| |#1| (-421))) (($ $ $) 132 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-583 |#2|) (-583 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-583 |#2|) (-583 $)) 177)) (-3010 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) 183) (((-703) $ |#2|) 179) (((-583 (-703)) $ (-583 |#2|)) 181)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#1| $) 128 (|has| |#1| (-421))) (($ $ |#2|) 131 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 151) (($ (-517)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 154)) (-2720 ((|#1| $ (-489 |#2|)) 73) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 79)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) 117 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 102) (($ $ (-703)) 104)) (-2396 (($) 12 T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 97)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 126 (|has| |#1| (-333)))) (-1654 (($ $) 85) (($ $ $) 95)) (-1642 (($ $ $) 49)) (** (($ $ (-843)) 103) (($ $ (-703)) 100)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 88) (($ $ $) 65) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+((-3038 (((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 36)) (-1540 (((-517) (-1128 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-2540 (((-517) (-1128 |#2| |#1|)) 53)) (-1596 (((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 44)) (-2081 (((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 67 (|has| |#1| (-421)))) (-1413 (((-583 |#1|) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 47)) (-1646 (((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 52)))
+(((-1017 |#1| |#2|) (-10 -7 (-15 -3038 ((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1596 ((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1413 ((-583 |#1|) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1646 ((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -2540 ((-517) (-1128 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2081 ((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1540 ((-517) (-1128 |#2| |#1|)))) |noBranch|)) (-752) (-1074)) (T -1017))
+((-1540 (*1 *2 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2081 (*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2540 (*1 *2 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-1646 (*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-1413 (*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))) (-1596 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 (-1128 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1128 *5 *4)))) (-3038 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 (-1128 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1128 *5 *4)))))
+(-10 -7 (-15 -3038 ((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1596 ((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1413 ((-583 |#1|) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1646 ((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -2540 ((-517) (-1128 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2081 ((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1540 ((-517) (-1128 |#2| |#1|)))) |noBranch|))
+((-1207 (((-3 (-517) "failed") |#2| (-1074) |#2| (-1057)) 16) (((-3 (-517) "failed") |#2| (-1074) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -1207 ((-3 (-517) "failed") |#2|)) (-15 -1207 ((-3 (-517) "failed") |#2| (-1074) (-772 |#2|))) (-15 -1207 ((-3 (-517) "failed") |#2| (-1074) |#2| (-1057)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1095) (-400 |#1|))) (T -1018))
+((-1207 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-1057)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))))) (-1207 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) (-1207 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))))
+(-10 -7 (-15 -1207 ((-3 (-517) "failed") |#2|)) (-15 -1207 ((-3 (-517) "failed") |#2| (-1074) (-772 |#2|))) (-15 -1207 ((-3 (-517) "failed") |#2| (-1074) |#2| (-1057))))
+((-1207 (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)) (-1057)) 34) (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-772 (-377 (-874 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-874 |#1|))) 12)))
+(((-1019 |#1|) (-10 -7 (-15 -1207 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -1207 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-772 (-377 (-874 |#1|))))) (-15 -1207 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)) (-1057)))) (-421)) (T -1019))
+((-1207 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1074)) (-5 *5 (-1057)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-1207 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-1207 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))))
+(-10 -7 (-15 -1207 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -1207 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-772 (-377 (-874 |#1|))))) (-15 -1207 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)) (-1057))))
+((-3822 (((-286 (-517)) (-47)) 11)))
+(((-1020) (-10 -7 (-15 -3822 ((-286 (-517)) (-47))))) (T -1020))
+((-3822 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))))
+(-10 -7 (-15 -3822 ((-286 (-517)) (-47))))
+((-2571 (((-107) $ $) NIL)) (-1458 (($ $) 41)) (-2745 (((-107) $) 65)) (-3805 (($ $ $) 48)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 84)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-3641 (($ $ $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2044 (($ $ $ $) 74)) (-3938 (($ $) NIL)) (-3490 (((-388 $) $) NIL)) (-3765 (((-107) $ $) NIL)) (-1207 (((-517) $) NIL)) (-1362 (($ $ $) 71)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL)) (-3076 (((-517) $) NIL)) (-2383 (($ $ $) 59)) (-4012 (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-1568 (((-3 $ "failed") $) NIL)) (-1422 (((-3 (-377 (-517)) "failed") $) NIL)) (-2712 (((-107) $) NIL)) (-4078 (((-377 (-517)) $) NIL)) (-3098 (($) 81) (($ $) 82)) (-2366 (($ $ $) 58)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL)) (-2965 (((-107) $) NIL)) (-2566 (($ $ $ $) NIL)) (-3837 (($ $ $) 79)) (-2099 (((-107) $) NIL)) (-1808 (($ $ $) NIL)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-2955 (((-107) $) 66)) (-2393 (((-107) $) 64)) (-2455 (($ $) 42)) (-3744 (((-3 $ "failed") $) NIL)) (-1624 (((-107) $) 75)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3601 (($ $ $ $) 72)) (-1575 (($ $ $) 68) (($) 39)) (-2986 (($ $ $) 67) (($) 38)) (-1520 (($ $) NIL)) (-2542 (($ $) 70)) (-1368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3865 (((-1057) $) NIL)) (-3638 (($ $ $) NIL)) (-2663 (($) NIL T CONST)) (-3143 (($ $) 50)) (-3094 (((-1021) $) NIL) (($ $) 69)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1396 (($ $ $) 62) (($ (-583 $)) NIL)) (-1938 (($ $) NIL)) (-3693 (((-388 $) $) NIL)) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL)) (-2349 (((-3 $ "failed") $ $) NIL)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3994 (((-107) $) NIL)) (-2623 (((-703) $) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 61)) (-1699 (($ $ (-703)) NIL) (($ $) NIL)) (-1347 (($ $) 51)) (-2322 (($ $) NIL)) (-3582 (((-517) $) 32) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2182 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-1865 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-1679 (($ $ $) NIL)) (-4103 (($) 37)) (-3767 (((-107) $ $) NIL)) (-4061 (($ $ $ $) 73)) (-1221 (($ $) 63)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2291 (($ $ $) 44)) (-2297 (($) 35 T CONST)) (-3479 (($ $ $) 47)) (-2306 (($) 36 T CONST)) (-1693 (((-1057) $) 21) (((-1057) $ (-107)) 23) (((-1159) (-754) $) 24) (((-1159) (-754) $ (-107)) 25)) (-3491 (($ $) 45)) (-2553 (($ $ (-703)) NIL) (($ $) NIL)) (-3465 (($ $ $) 46)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 40)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 49)) (-2283 (($ $ $) 43)) (-1637 (($ $) 52) (($ $ $) 54)) (-1626 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55)))
+(((-1021) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4170) (-6 -4175) (-6 -4171) (-15 -2986 ($)) (-15 -1575 ($)) (-15 -2455 ($ $)) (-15 -1458 ($ $)) (-15 -2283 ($ $ $)) (-15 -2291 ($ $ $)) (-15 -3805 ($ $ $)) (-15 -3491 ($ $)) (-15 -3465 ($ $ $)) (-15 -3479 ($ $ $))))) (T -1021))
+((-2291 (*1 *1 *1 *1) (-5 *1 (-1021))) (-2283 (*1 *1 *1 *1) (-5 *1 (-1021))) (-1458 (*1 *1 *1) (-5 *1 (-1021))) (-2986 (*1 *1) (-5 *1 (-1021))) (-1575 (*1 *1) (-5 *1 (-1021))) (-2455 (*1 *1 *1) (-5 *1 (-1021))) (-3805 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3491 (*1 *1 *1) (-5 *1 (-1021))) (-3465 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3479 (*1 *1 *1 *1) (-5 *1 (-1021))))
+(-13 (-502) (-598) (-760) (-10 -8 (-6 -4170) (-6 -4175) (-6 -4171) (-15 -2986 ($)) (-15 -1575 ($)) (-15 -2455 ($ $)) (-15 -1458 ($ $)) (-15 -2283 ($ $ $)) (-15 -2291 ($ $ $)) (-15 -3805 ($ $ $)) (-15 -3491 ($ $)) (-15 -3465 ($ $ $)) (-15 -3479 ($ $ $))))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-4143 ((|#1| $) 44)) (-1799 (((-107) $ (-703)) 8)) (-3473 (($) 7 T CONST)) (-2284 ((|#1| |#1| $) 46)) (-2646 ((|#1| $) 45)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1835 ((|#1| $) 39)) (-3816 (($ |#1| $) 40)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4049 ((|#1| $) 41)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-2824 (((-703) $) 43)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) 42)) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-1022 |#1|) (-1185) (-1109)) (T -1022))
+((-2284 (*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4183) (-15 -2284 (|t#1| |t#1| $)) (-15 -2646 (|t#1| $)) (-15 -4143 (|t#1| $)) (-15 -2824 ((-703) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-1470 ((|#3| $) 76)) (-1759 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3076 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-4012 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -2522 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 $) (-1154 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-1699 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2705 ((|#3| $) 78)) (-2637 ((|#4| $) 32)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82)))
+(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2705 (|#3| |#1|)) (-15 -1470 (|#3| |#1|)) (-15 -2637 (|#4| |#1|)) (-15 -4012 ((-623 |#3|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -3076 (|#3| |#1|)) (-15 -1759 ((-3 |#3| "failed") |#1|)) (-15 -2182 (|#1| |#3|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2182 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2182 ((-787) |#1|))) (-1024 |#2| |#3| |#4| |#5|) (-703) (-961) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1023))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2705 (|#3| |#1|)) (-15 -1470 (|#3| |#1|)) (-15 -2637 (|#4| |#1|)) (-15 -4012 ((-623 |#3|) (-623 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -4012 ((-623 (-517)) (-623 |#1|))) (-15 -3076 (|#3| |#1|)) (-15 -1759 ((-3 |#3| "failed") |#1|)) (-15 -2182 (|#1| |#3|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-517) |#1|)) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -1699 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2182 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1470 ((|#2| $) 72)) (-2794 (((-107) $) 112)) (-1387 (((-3 $ "failed") $ $) 19)) (-2119 (((-107) $) 110)) (-1799 (((-107) $ (-703)) 102)) (-2609 (($ |#2|) 75)) (-3473 (($) 17 T CONST)) (-1558 (($ $) 129 (|has| |#2| (-278)))) (-3023 ((|#3| $ (-517)) 124)) (-1759 (((-3 (-517) "failed") $) 86 (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3076 (((-517) $) 87 (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) 80)) (-4012 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-1568 (((-3 $ "failed") $) 34)) (-3795 (((-703) $) 130 (|has| |#2| (-509)))) (-4020 ((|#2| $ (-517) (-517)) 122)) (-3037 (((-583 |#2|) $) 95 (|has| $ (-6 -4183)))) (-2955 (((-107) $) 31)) (-3101 (((-703) $) 131 (|has| |#2| (-509)))) (-4163 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-4122 (((-703) $) 118)) (-1875 (((-703) $) 119)) (-4064 (((-107) $ (-703)) 103)) (-3464 ((|#2| $) 67 (|has| |#2| (-6 (-4185 "*"))))) (-2734 (((-517) $) 114)) (-2397 (((-517) $) 116)) (-1196 (((-583 |#2|) $) 94 (|has| $ (-6 -4183)))) (-2502 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-3070 (((-517) $) 115)) (-2820 (((-517) $) 117)) (-1813 (($ (-583 (-583 |#2|))) 109)) (-1213 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-1263 (((-583 (-583 |#2|)) $) 120)) (-2942 (((-107) $ (-703)) 104)) (-3865 (((-1057) $) 9)) (-2263 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-3094 (((-1021) $) 10)) (-2349 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-2925 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) 108)) (-1546 (((-107) $) 105)) (-1326 (($) 106)) (-1986 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-1699 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1074)) (-583 (-703))) 44 (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) 43 (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) 42 (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) 41 (|has| |#2| (-822 (-1074)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-2705 ((|#2| $) 71)) (-3681 (($ (-583 |#2|)) 74)) (-1274 (((-107) $) 111)) (-2637 ((|#3| $) 73)) (-3139 ((|#2| $) 68 (|has| |#2| (-6 (-4185 "*"))))) (-3105 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4183))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 107)) (-1377 ((|#4| $ (-517)) 125)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) 82)) (-1865 (((-703)) 29)) (-3883 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4183)))) (-3565 (((-107) $) 113)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1074)) (-583 (-703))) 48 (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) 47 (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) 46 (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) 45 (|has| |#2| (-822 (-1074)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2210 (((-703) $) 101 (|has| $ (-6 -4183)))))
+(((-1024 |#1| |#2| |#3| |#4|) (-1185) (-703) (-961) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1024))
+((-2609 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-3681 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) (-2263 (*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))))
+(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-964 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |noBranch|) (-15 -2609 ($ |t#2|)) (-15 -3681 ($ (-583 |t#2|))) (-15 -2637 (|t#3| $)) (-15 -1470 (|t#2| $)) (-15 -2705 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4185 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3139 (|t#2| $)) (-15 -3464 (|t#2| $))) |noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -2263 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4185 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3763 (|has| |#2| (-156)) (|has| |#2| (-6 (-4185 "*")))) ((-659) . T) ((-822 (-1074)) |has| |#2| (-822 (-1074))) ((-964 |#1| |#1| |#2| |#3| |#4|) . T) ((-952 (-377 (-517))) |has| |#2| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#2| (-952 (-517))) ((-952 |#2|) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1109) . T))
+((-3645 ((|#4| |#4|) 67)) (-3959 ((|#4| |#4|) 62)) (-3872 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|))) |#4| |#3|) 75)) (-1753 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-2614 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64)))
+(((-1025 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| |#4|)) (-15 -2614 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3645 (|#4| |#4|)) (-15 -1753 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3872 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1025))
+((-3872 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-1753 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2614 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -3959 (|#4| |#4|)) (-15 -2614 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3645 (|#4| |#4|)) (-15 -1753 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3872 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3809 (-583 |#3|))) |#4| |#3|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 17)) (-1363 (((-583 |#2|) $) 160)) (-2255 (((-1070 $) $ |#2|) 54) (((-1070 |#1|) $) 43)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 110 (|has| |#1| (-509)))) (-3209 (($ $) 112 (|has| |#1| (-509)))) (-1452 (((-107) $) 114 (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) 157) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3076 ((|#1| $) 155) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL)) (-1309 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-1217 (($ $) 197)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) 82)) (-3039 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-2253 (($ $ |#1| (-489 |#2|) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-2955 (((-107) $) 19)) (-2091 (((-703) $) 26)) (-1352 (($ (-1070 |#1|) |#2|) 48) (($ (-1070 $) |#2|) 64)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) 31)) (-1343 (($ |#1| (-489 |#2|)) 71) (($ $ |#2| (-703)) 52) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ |#2|) NIL)) (-2672 (((-489 |#2|) $) 187) (((-703) $ |#2|) 188) (((-583 (-703)) $ (-583 |#2|)) 189)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) 122)) (-1954 (((-3 |#2| "failed") $) 162)) (-4159 (($ $) 196)) (-1192 ((|#1| $) 37)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3865 (((-1057) $) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| |#2|) (|:| -2059 (-703))) "failed") $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) 32)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 140 (|has| |#1| (-421)))) (-1396 (($ (-583 $)) 145 (|has| |#1| (-421))) (($ $ $) 132 (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2349 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-509)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-583 |#2|) (-583 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-583 |#2|) (-583 $)) 177)) (-4042 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-1699 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-4007 (((-489 |#2|) $) 183) (((-703) $ |#2|) 179) (((-583 (-703)) $ (-583 |#2|)) 181)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-1423 ((|#1| $) 128 (|has| |#1| (-421))) (($ $ |#2|) 131 (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2182 (((-787) $) 151) (($ (-517)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2834 (((-583 |#1|) $) 154)) (-3086 ((|#1| $ (-489 |#2|)) 73) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) 79)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) 117 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 102) (($ $ (-703)) 104)) (-2297 (($) 12 T CONST)) (-2306 (($) 14 T CONST)) (-2553 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) 97)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) 126 (|has| |#1| (-333)))) (-1637 (($ $) 85) (($ $ $) 95)) (-1626 (($ $ $) 49)) (** (($ $ (-843)) 103) (($ $ (-703)) 100)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 88) (($ $ $) 65) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
(((-1026 |#1| |#2|) (-871 |#1| (-489 |#2|) |#2|) (-961) (-779)) (T -1026))
NIL
(-871 |#1| (-489 |#2|) |#2|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1865 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3520 (((-874 |#1|) $ (-703)) NIL) (((-874 |#1|) $ (-703) (-703)) NIL)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) NIL)) (-1339 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 57) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3352 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1672 (($ $ (-703)) 15)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ |#2| $) 95) (($ $ (-583 |#2|) (-583 $)) 88) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-3127 (($ $ |#2|) 98) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) NIL)) (-2265 (((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|))) 78)) (-1898 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 17)) (-2256 (((-787) $) 179) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 64) (($ |#3|) 62)) (-2720 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3707 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 18 T CONST)) (-2409 (($) 10 T CONST)) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) 181 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 60)) (** (($ $ (-843)) NIL) (($ $ (-703)) 69) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 101 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) 106 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 104 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1027 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -2720 (|#3| $ (-703))) (-15 -2256 ($ |#2|)) (-15 -2256 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2265 ((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |#2| |#1|)) (-15 -3352 ($ (-1 $) |#2| |#1|))) |noBranch|))) (-961) (-779) (-871 |#1| (-489 |#2|) |#2|)) (T -1027))
-((-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1054 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1054 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))) (-4151 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-3352 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))))
-(-13 (-673 |#1| |#2|) (-10 -8 (-15 -2720 (|#3| $ (-703))) (-15 -2256 ($ |#2|)) (-15 -2256 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2265 ((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |#2| |#1|)) (-15 -3352 ($ (-1 $) |#2| |#1|))) |noBranch|)))
-((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
-(((-1028 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1028))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 |#2|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-1834 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1812 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1851 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-1989 (((-874 |#1|) $ (-703)) NIL) (((-874 |#1|) $ (-703) (-703)) NIL)) (-2029 (((-107) $) NIL)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1331 (((-107) $) NIL)) (-1343 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 57) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1826 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-2863 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) NIL)) (-3992 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3467 (($ $ (-703)) 15)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2459 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (($ $ |#2| $) 95) (($ $ (-583 |#2|) (-583 $)) 88) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-1699 (($ $ |#2|) 98) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-4007 (((-489 |#2|) $) NIL)) (-3134 (((-1 (-1055 |#3|) |#3|) (-583 |#2|) (-583 (-1055 |#3|))) 78)) (-1860 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 17)) (-2182 (((-787) $) 179) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 64) (($ |#3|) 62)) (-3086 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-3642 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1279 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 18 T CONST)) (-2306 (($) 10 T CONST)) (-2553 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#1|) 181 (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 60)) (** (($ $ (-843)) NIL) (($ $ (-703)) 69) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 101 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) 106 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 104 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1027 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -3086 (|#3| $ (-703))) (-15 -2182 ($ |#2|)) (-15 -2182 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3134 ((-1 (-1055 |#3|) |#3|) (-583 |#2|) (-583 (-1055 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $ |#2| |#1|)) (-15 -3992 ($ (-1 $) |#2| |#1|))) |noBranch|))) (-961) (-779) (-871 |#1| (-489 |#2|) |#2|)) (T -1027))
+((-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) (-2182 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-2182 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1055 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1055 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))) (-2863 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-3992 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))))
+(-13 (-673 |#1| |#2|) (-10 -8 (-15 -3086 (|#3| $ (-703))) (-15 -2182 ($ |#2|)) (-15 -2182 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3134 ((-1 (-1055 |#3|) |#3|) (-583 |#2|) (-583 (-1055 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $ |#2| |#1|)) (-15 -3992 ($ (-1 $) |#2| |#1|))) |noBranch|)))
+((-2571 (((-107) $ $) 7)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) 85)) (-1310 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1363 (((-583 |#3|) $) 33)) (-3521 (((-107) $) 26)) (-2320 (((-107) $) 17 (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) 101) (((-107) $) 97)) (-2356 ((|#4| |#4| $) 92)) (-3938 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| $) 126)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) 27)) (-1799 (((-107) $ (-703)) 44)) (-3451 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-3473 (($) 45 T CONST)) (-1216 (((-107) $) 22 (|has| |#1| (-509)))) (-1930 (((-107) $ $) 24 (|has| |#1| (-509)))) (-1660 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3045 (((-107) $) 25 (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3515 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) 36)) (-3076 (($ (-583 |#4|)) 35)) (-1644 (((-3 $ "failed") $) 82)) (-1907 ((|#4| |#4| $) 89)) (-1667 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3197 ((|#4| |#4| $) 87)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) 105)) (-3357 (((-107) |#4| $) 136)) (-3862 (((-107) |#4| $) 133)) (-1442 (((-107) |#4| $) 137) (((-107) $) 134)) (-3037 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) 104) (((-107) $) 103)) (-3377 ((|#3| $) 34)) (-4064 (((-107) $ (-703)) 43)) (-1196 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 47)) (-2434 (((-583 |#3|) $) 32)) (-2995 (((-107) |#3| $) 31)) (-2942 (((-107) $ (-703)) 42)) (-3865 (((-1057) $) 9)) (-1765 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-4065 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| |#4| $) 127)) (-1988 (((-3 |#4| "failed") $) 83)) (-2368 (((-583 $) |#4| $) 129)) (-1905 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2491 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2551 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-1615 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2425 (((-583 |#4|) $) 107)) (-2998 (((-107) |#4| $) 99) (((-107) $) 95)) (-2946 ((|#4| |#4| $) 90)) (-3196 (((-107) $ $) 110)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) 100) (((-107) $) 96)) (-3006 ((|#4| |#4| $) 91)) (-3094 (((-1021) $) 10)) (-1631 (((-3 |#4| "failed") $) 84)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3886 (((-3 $ "failed") $ |#4|) 78)) (-3467 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2925 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) 38)) (-1546 (((-107) $) 41)) (-1326 (($) 40)) (-4007 (((-703) $) 106)) (-3105 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2322 (($ $) 39)) (-3582 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 60)) (-2399 (($ $ |#3|) 28)) (-3339 (($ $ |#3|) 30)) (-3529 (($ $) 88)) (-4011 (($ $ |#3|) 29)) (-2182 (((-787) $) 11) (((-583 |#4|) $) 37)) (-4124 (((-703) $) 76 (|has| |#3| (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2401 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3883 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) 81)) (-2385 (((-107) |#4| $) 135)) (-1223 (((-107) |#3| $) 80)) (-1539 (((-107) $ $) 6)) (-2210 (((-703) $) 46 (|has| $ (-6 -4183)))))
+(((-1028 |#1| |#2| |#3| |#4|) (-1185) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1028))
NIL
(-13 (-1012 |t#1| |t#2| |t#3| |t#4|) (-716 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1012 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T))
-((-1674 (((-583 |#2|) |#1|) 12)) (-2573 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-3334 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-2679 ((|#2| |#1|) 42)) (-2934 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-3497 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-1190 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-1989 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-2049 ((|#2| |#2| |#2| |#2|) 39)) (-2416 ((|#2| |#2| |#2|) 38)) (-3635 ((|#2| |#2| |#2| |#2| |#2|) 40)))
-(((-1029 |#1| |#2|) (-10 -7 (-15 -1674 ((-583 |#2|) |#1|)) (-15 -2679 (|#2| |#1|)) (-15 -2934 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3497 ((-583 |#2|) |#1|)) (-15 -3334 ((-583 |#2|) |#1|)) (-15 -1190 ((-583 |#2|) |#1|)) (-15 -2573 ((-583 |#2|) |#1|)) (-15 -3497 ((-583 |#2|) |#2| |#2|)) (-15 -3334 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -1190 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2573 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -2049 (|#2| |#2| |#2| |#2|)) (-15 -3635 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1989 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1130 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1029))
-((-1989 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-3635 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2049 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2416 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2573 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-1190 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-3334 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-3497 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-2573 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-1190 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-3497 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-2934 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1130 *5)))) (-2679 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -1674 ((-583 |#2|) |#1|)) (-15 -2679 (|#2| |#1|)) (-15 -2934 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3497 ((-583 |#2|) |#1|)) (-15 -3334 ((-583 |#2|) |#1|)) (-15 -1190 ((-583 |#2|) |#1|)) (-15 -2573 ((-583 |#2|) |#1|)) (-15 -3497 ((-583 |#2|) |#2| |#2|)) (-15 -3334 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -1190 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2573 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -2049 (|#2| |#2| |#2| |#2|)) (-15 -3635 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1989 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2501 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|))))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073))) 93) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|)))) 91) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 89) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|)))) 75) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073)) 76) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|))) 70) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073)) 59)) (-2606 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 87) (((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073)) 43)) (-1483 (((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073)) 97) (((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073)) 96)))
-(((-1030 |#1|) (-10 -7 (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2606 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2606 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073)))) (-13 (-278) (-779) (-134))) (T -1030))
-((-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))))
-(-10 -7 (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2606 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2606 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073))))
-((-2464 (((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517)) 27)) (-3249 (((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|)))) 39)))
-(((-1031 |#1|) (-10 -7 (-15 -3249 ((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))))) (-15 -2464 ((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1031))
-((-2464 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1069 (-286 *5)))) (-5 *3 (-1153 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))) (-3249 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1069 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3)))))
-(-10 -7 (-15 -3249 ((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))))) (-15 -2464 ((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517))))
-((-1674 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073))) 216) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21)))
-(((-1032 |#1|) (-10 -7 (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073))) (-15 -1674 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073))))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (T -1032))
-((-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))))
-(-10 -7 (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073))) (-15 -1674 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073)))))
-((-2891 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-1318 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15)))
-(((-1033 |#1| |#2|) (-10 -7 (-15 -1318 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2891 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -1318 (|#2| |#2|)) (-15 -2891 (|#2| |#2|))) |noBranch|)) (-1108) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4180) (-6 -4181)))) (T -1033))
-((-2891 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))) (-1318 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))) (-2891 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) (-1318 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))))
-(-10 -7 (-15 -1318 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2891 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -1318 (|#2| |#2|)) (-15 -2891 (|#2| |#2|))) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-2467 (((-1062 3 |#1|) $) 105)) (-4061 (((-107) $) 72)) (-1347 (($ $ (-583 (-865 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-865 |#1|))) 74) (((-583 (-865 |#1|)) $) 73)) (-2178 (((-107) $) 41)) (-2889 (($ $ (-865 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-865 |#1|)) 47) (((-865 |#1|) $) 45)) (-2364 (((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 103)) (-1592 (((-703) $) 26)) (-1790 (((-703) $) 25)) (-3347 (($ $ (-703) (-865 |#1|)) 39)) (-1818 (((-107) $) 82)) (-1552 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-865 |#1|)))) 86) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-865 |#1|))) $) 84)) (-3237 (($ (-583 $)) 28) (($ $ $) 29)) (-3215 (((-583 (-155)) $) 101)) (-2927 (((-583 (-865 |#1|)) $) 96)) (-2830 (((-583 (-583 (-155))) $) 100)) (-2266 (((-583 (-583 (-583 (-865 |#1|)))) $) NIL)) (-1767 (((-583 (-583 (-583 (-703)))) $) 98)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2334 (((-703) $ (-583 (-865 |#1|))) 37)) (-2681 (((-107) $) 54)) (-2689 (($ $ (-583 (-865 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-865 |#1|))) 57) (((-583 (-865 |#1|)) $) 55)) (-2734 (($) 23) (($ (-1062 3 |#1|)) 24)) (-2433 (($ $) 35)) (-3547 (((-583 $) $) 34)) (-3793 (($ (-583 $)) 31)) (-2146 (((-583 $) $) 33)) (-2256 (((-787) $) 109)) (-2067 (((-107) $) 64)) (-2243 (($ $ (-583 (-865 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-865 |#1|))) 67) (((-583 (-865 |#1|)) $) 65)) (-3823 (($ $) 104)) (-1547 (((-107) $ $) NIL)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1012 |#1| |#2| |#3| |#4|) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1109) . T))
+((-3480 (((-583 |#2|) |#1|) 12)) (-1324 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-3814 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-2781 ((|#2| |#1|) 42)) (-1613 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-1973 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-3849 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-3545 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-2941 ((|#2| |#2| |#2| |#2|) 39)) (-2187 ((|#2| |#2| |#2|) 38)) (-1719 ((|#2| |#2| |#2| |#2| |#2|) 40)))
+(((-1029 |#1| |#2|) (-10 -7 (-15 -3480 ((-583 |#2|) |#1|)) (-15 -2781 (|#2| |#1|)) (-15 -1613 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1973 ((-583 |#2|) |#1|)) (-15 -3814 ((-583 |#2|) |#1|)) (-15 -3849 ((-583 |#2|) |#1|)) (-15 -1324 ((-583 |#2|) |#1|)) (-15 -1973 ((-583 |#2|) |#2| |#2|)) (-15 -3814 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3849 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1324 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2187 (|#2| |#2| |#2|)) (-15 -2941 (|#2| |#2| |#2| |#2|)) (-15 -1719 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1131 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1029))
+((-3545 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-1719 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-2941 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-2187 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-1324 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))) (-3849 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))) (-3814 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))) (-1973 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))) (-1324 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) (-3849 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) (-3814 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) (-1973 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1131 *5)))) (-2781 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -3480 ((-583 |#2|) |#1|)) (-15 -2781 (|#2| |#1|)) (-15 -1613 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1973 ((-583 |#2|) |#1|)) (-15 -3814 ((-583 |#2|) |#1|)) (-15 -3849 ((-583 |#2|) |#1|)) (-15 -1324 ((-583 |#2|) |#1|)) (-15 -1973 ((-583 |#2|) |#2| |#2|)) (-15 -3814 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3849 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1324 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2187 (|#2| |#2| |#2|)) (-15 -2941 (|#2| |#2| |#2| |#2|)) (-15 -1719 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-1858 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|))))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074))) 93) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|)))) 91) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1074))) 89) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|)))) 75) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1074)) 76) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|))) 70) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1074)) 59)) (-3351 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074))) 87) (((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1074)) 43)) (-3965 (((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1074)) 97) (((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074)) 96)))
+(((-1030 |#1|) (-10 -7 (-15 -1858 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -1858 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -1858 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -1858 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -1858 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -1858 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -1858 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074)))) (-15 -1858 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -3351 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1074))) (-15 -3351 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -3965 ((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -3965 ((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1074)))) (-13 (-278) (-779) (-134))) (T -1030))
+((-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1064 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1064 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))))
+(-10 -7 (-15 -1858 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -1858 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -1858 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -1858 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -1858 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -1858 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -1858 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074)))) (-15 -1858 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -3351 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1074))) (-15 -3351 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -3965 ((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -3965 ((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1074))))
+((-1518 (((-377 (-1070 (-286 |#1|))) (-1154 (-286 |#1|)) (-377 (-1070 (-286 |#1|))) (-517)) 27)) (-2351 (((-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|)))) 39)))
+(((-1031 |#1|) (-10 -7 (-15 -2351 ((-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))))) (-15 -1518 ((-377 (-1070 (-286 |#1|))) (-1154 (-286 |#1|)) (-377 (-1070 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1031))
+((-1518 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1070 (-286 *5)))) (-5 *3 (-1154 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))) (-2351 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1070 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3)))))
+(-10 -7 (-15 -2351 ((-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))))) (-15 -1518 ((-377 (-1070 (-286 |#1|))) (-1154 (-286 |#1|)) (-377 (-1070 (-286 |#1|))) (-517))))
+((-3480 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1074))) 216) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1074)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1074)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21)))
+(((-1032 |#1|) (-10 -7 (-15 -3480 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -3480 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -3480 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1074))) (-15 -3480 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1074))) (-15 -3480 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1074))))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (T -1032))
+((-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))))
+(-10 -7 (-15 -3480 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -3480 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -3480 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1074))) (-15 -3480 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1074))) (-15 -3480 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1074)))))
+((-2311 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-2935 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15)))
+(((-1033 |#1| |#2|) (-10 -7 (-15 -2935 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2311 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -2935 (|#2| |#2|)) (-15 -2311 (|#2| |#2|))) |noBranch|)) (-1109) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4183) (-6 -4184)))) (T -1033))
+((-2311 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1109)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4183) (-6 -4184)))))) (-2935 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1109)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4183) (-6 -4184)))))) (-2311 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4183) (-6 -4184)))))) (-2935 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4183) (-6 -4184)))))))
+(-10 -7 (-15 -2935 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2311 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -2935 (|#2| |#2|)) (-15 -2311 (|#2| |#2|))) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-1548 (((-1063 3 |#1|) $) 105)) (-3334 (((-107) $) 72)) (-2641 (($ $ (-583 (-865 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-865 |#1|))) 74) (((-583 (-865 |#1|)) $) 73)) (-1862 (((-107) $) 41)) (-1503 (($ $ (-865 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-865 |#1|)) 47) (((-865 |#1|) $) 45)) (-2218 (((-2 (|:| -1292 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 103)) (-3428 (((-703) $) 26)) (-2812 (((-703) $) 25)) (-3943 (($ $ (-703) (-865 |#1|)) 39)) (-3736 (((-107) $) 82)) (-2936 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-865 |#1|)))) 86) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-865 |#1|))) $) 84)) (-2262 (($ (-583 $)) 28) (($ $ $) 29)) (-2136 (((-583 (-155)) $) 101)) (-2771 (((-583 (-865 |#1|)) $) 96)) (-2945 (((-583 (-583 (-155))) $) 100)) (-3144 (((-583 (-583 (-583 (-865 |#1|)))) $) NIL)) (-3859 (((-583 (-583 (-583 (-703)))) $) 98)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2574 (((-703) $ (-583 (-865 |#1|))) 37)) (-2803 (((-107) $) 54)) (-2914 (($ $ (-583 (-865 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-865 |#1|))) 57) (((-583 (-865 |#1|)) $) 55)) (-3194 (($) 23) (($ (-1063 3 |#1|)) 24)) (-2322 (($ $) 35)) (-2035 (((-583 $) $) 34)) (-3684 (($ (-583 $)) 31)) (-1551 (((-583 $) $) 33)) (-2182 (((-787) $) 109)) (-1995 (((-107) $) 64)) (-1237 (($ $ (-583 (-865 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-865 |#1|))) 67) (((-583 (-865 |#1|)) $) 65)) (-2655 (($ $) 104)) (-1539 (((-107) $ $) NIL)))
(((-1034 |#1|) (-1035 |#1|) (-961)) (T -1034))
NIL
(-1035 |#1|)
-((-2750 (((-107) $ $) 7)) (-2467 (((-1062 3 |#1|) $) 13)) (-4061 (((-107) $) 29)) (-1347 (($ $ (-583 (-865 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-865 |#1|))) 31) (((-583 (-865 |#1|)) $) 30)) (-2178 (((-107) $) 44)) (-2889 (($ $ (-865 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-865 |#1|)) 46) (((-865 |#1|) $) 45)) (-2364 (((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-1592 (((-703) $) 58)) (-1790 (((-703) $) 59)) (-3347 (($ $ (-703) (-865 |#1|)) 50)) (-1818 (((-107) $) 21)) (-1552 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-865 |#1|)))) 24) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-865 |#1|))) $) 22)) (-3237 (($ (-583 $)) 57) (($ $ $) 56)) (-3215 (((-583 (-155)) $) 16)) (-2927 (((-583 (-865 |#1|)) $) 20)) (-2830 (((-583 (-583 (-155))) $) 17)) (-2266 (((-583 (-583 (-583 (-865 |#1|)))) $) 18)) (-1767 (((-583 (-583 (-583 (-703)))) $) 19)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2334 (((-703) $ (-583 (-865 |#1|))) 51)) (-2681 (((-107) $) 39)) (-2689 (($ $ (-583 (-865 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-865 |#1|))) 41) (((-583 (-865 |#1|)) $) 40)) (-2734 (($) 61) (($ (-1062 3 |#1|)) 60)) (-2433 (($ $) 52)) (-3547 (((-583 $) $) 53)) (-3793 (($ (-583 $)) 55)) (-2146 (((-583 $) $) 54)) (-2256 (((-787) $) 11)) (-2067 (((-107) $) 34)) (-2243 (($ $ (-583 (-865 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-865 |#1|))) 36) (((-583 (-865 |#1|)) $) 35)) (-3823 (($ $) 14)) (-1547 (((-107) $ $) 6)))
-(((-1035 |#1|) (-1184) (-961)) (T -1035))
-((-2256 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) (-2734 (*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-1062 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2146 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-3547 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-2433 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2334 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))) (-3347 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2689 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2689 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2243 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2243 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2243 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-1552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-1552 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1552 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1552 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-3823 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1062 3 *3)))))
-(-13 (-1003) (-10 -8 (-15 -2734 ($)) (-15 -2734 ($ (-1062 3 |t#1|))) (-15 -1790 ((-703) $)) (-15 -1592 ((-703) $)) (-15 -3237 ($ (-583 $))) (-15 -3237 ($ $ $)) (-15 -3793 ($ (-583 $))) (-15 -2146 ((-583 $) $)) (-15 -3547 ((-583 $) $)) (-15 -2433 ($ $)) (-15 -2334 ((-703) $ (-583 (-865 |t#1|)))) (-15 -3347 ($ $ (-703) (-865 |t#1|))) (-15 -2889 ($ $ (-865 |t#1|))) (-15 -2889 ($ $ (-583 |t#1|))) (-15 -2889 ($ $ (-703))) (-15 -2889 ($ (-865 |t#1|))) (-15 -2889 ((-865 |t#1|) $)) (-15 -2178 ((-107) $)) (-15 -2689 ($ $ (-583 (-865 |t#1|)))) (-15 -2689 ($ $ (-583 (-583 |t#1|)))) (-15 -2689 ($ (-583 (-865 |t#1|)))) (-15 -2689 ((-583 (-865 |t#1|)) $)) (-15 -2681 ((-107) $)) (-15 -2243 ($ $ (-583 (-865 |t#1|)))) (-15 -2243 ($ $ (-583 (-583 |t#1|)))) (-15 -2243 ($ (-583 (-865 |t#1|)))) (-15 -2243 ((-583 (-865 |t#1|)) $)) (-15 -2067 ((-107) $)) (-15 -1347 ($ $ (-583 (-865 |t#1|)))) (-15 -1347 ($ $ (-583 (-583 |t#1|)))) (-15 -1347 ($ (-583 (-865 |t#1|)))) (-15 -1347 ((-583 (-865 |t#1|)) $)) (-15 -4061 ((-107) $)) (-15 -1552 ($ $ (-583 (-583 (-865 |t#1|))) (-583 (-155)) (-155))) (-15 -1552 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -1552 ($ $ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -1552 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -1552 ($ (-583 (-583 (-865 |t#1|))))) (-15 -1552 ($ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -1552 ((-583 (-583 (-865 |t#1|))) $)) (-15 -1818 ((-107) $)) (-15 -2927 ((-583 (-865 |t#1|)) $)) (-15 -1767 ((-583 (-583 (-583 (-703)))) $)) (-15 -2266 ((-583 (-583 (-583 (-865 |t#1|)))) $)) (-15 -2830 ((-583 (-583 (-155))) $)) (-15 -3215 ((-583 (-155)) $)) (-15 -2364 ((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -3823 ($ $)) (-15 -2467 ((-1062 3 |t#1|) $)) (-15 -2256 ((-787) $))))
+((-2571 (((-107) $ $) 7)) (-1548 (((-1063 3 |#1|) $) 13)) (-3334 (((-107) $) 29)) (-2641 (($ $ (-583 (-865 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-865 |#1|))) 31) (((-583 (-865 |#1|)) $) 30)) (-1862 (((-107) $) 44)) (-1503 (($ $ (-865 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-865 |#1|)) 46) (((-865 |#1|) $) 45)) (-2218 (((-2 (|:| -1292 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-3428 (((-703) $) 58)) (-2812 (((-703) $) 59)) (-3943 (($ $ (-703) (-865 |#1|)) 50)) (-3736 (((-107) $) 21)) (-2936 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-865 |#1|)))) 24) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-865 |#1|))) $) 22)) (-2262 (($ (-583 $)) 57) (($ $ $) 56)) (-2136 (((-583 (-155)) $) 16)) (-2771 (((-583 (-865 |#1|)) $) 20)) (-2945 (((-583 (-583 (-155))) $) 17)) (-3144 (((-583 (-583 (-583 (-865 |#1|)))) $) 18)) (-3859 (((-583 (-583 (-583 (-703)))) $) 19)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2574 (((-703) $ (-583 (-865 |#1|))) 51)) (-2803 (((-107) $) 39)) (-2914 (($ $ (-583 (-865 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-865 |#1|))) 41) (((-583 (-865 |#1|)) $) 40)) (-3194 (($) 61) (($ (-1063 3 |#1|)) 60)) (-2322 (($ $) 52)) (-2035 (((-583 $) $) 53)) (-3684 (($ (-583 $)) 55)) (-1551 (((-583 $) $) 54)) (-2182 (((-787) $) 11)) (-1995 (((-107) $) 34)) (-1237 (($ $ (-583 (-865 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-865 |#1|))) 36) (((-583 (-865 |#1|)) $) 35)) (-2655 (($ $) 14)) (-1539 (((-107) $ $) 6)))
+(((-1035 |#1|) (-1185) (-961)) (T -1035))
+((-2182 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) (-3194 (*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-1063 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2262 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-3684 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1551 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-2035 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-2322 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2574 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))) (-3943 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1503 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1503 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1503 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1237 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1237 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1237 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1237 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2641 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2936 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-2936 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-2936 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-2936 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-2936 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2936 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2771 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1292 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-2655 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1063 3 *3)))))
+(-13 (-1003) (-10 -8 (-15 -3194 ($)) (-15 -3194 ($ (-1063 3 |t#1|))) (-15 -2812 ((-703) $)) (-15 -3428 ((-703) $)) (-15 -2262 ($ (-583 $))) (-15 -2262 ($ $ $)) (-15 -3684 ($ (-583 $))) (-15 -1551 ((-583 $) $)) (-15 -2035 ((-583 $) $)) (-15 -2322 ($ $)) (-15 -2574 ((-703) $ (-583 (-865 |t#1|)))) (-15 -3943 ($ $ (-703) (-865 |t#1|))) (-15 -1503 ($ $ (-865 |t#1|))) (-15 -1503 ($ $ (-583 |t#1|))) (-15 -1503 ($ $ (-703))) (-15 -1503 ($ (-865 |t#1|))) (-15 -1503 ((-865 |t#1|) $)) (-15 -1862 ((-107) $)) (-15 -2914 ($ $ (-583 (-865 |t#1|)))) (-15 -2914 ($ $ (-583 (-583 |t#1|)))) (-15 -2914 ($ (-583 (-865 |t#1|)))) (-15 -2914 ((-583 (-865 |t#1|)) $)) (-15 -2803 ((-107) $)) (-15 -1237 ($ $ (-583 (-865 |t#1|)))) (-15 -1237 ($ $ (-583 (-583 |t#1|)))) (-15 -1237 ($ (-583 (-865 |t#1|)))) (-15 -1237 ((-583 (-865 |t#1|)) $)) (-15 -1995 ((-107) $)) (-15 -2641 ($ $ (-583 (-865 |t#1|)))) (-15 -2641 ($ $ (-583 (-583 |t#1|)))) (-15 -2641 ($ (-583 (-865 |t#1|)))) (-15 -2641 ((-583 (-865 |t#1|)) $)) (-15 -3334 ((-107) $)) (-15 -2936 ($ $ (-583 (-583 (-865 |t#1|))) (-583 (-155)) (-155))) (-15 -2936 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -2936 ($ $ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -2936 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -2936 ($ (-583 (-583 (-865 |t#1|))))) (-15 -2936 ($ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -2936 ((-583 (-583 (-865 |t#1|))) $)) (-15 -3736 ((-107) $)) (-15 -2771 ((-583 (-865 |t#1|)) $)) (-15 -3859 ((-583 (-583 (-583 (-703)))) $)) (-15 -3144 ((-583 (-583 (-583 (-865 |t#1|)))) $)) (-15 -2945 ((-583 (-583 (-155))) $)) (-15 -2136 ((-583 (-155)) $)) (-15 -2218 ((-2 (|:| -1292 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -2655 ($ $)) (-15 -1548 ((-1063 3 |t#1|) $)) (-15 -2182 ((-787) $))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2766 (((-1158) (-583 (-787))) 23) (((-1158) (-787)) 22)) (-3111 (((-1158) (-583 (-787))) 21) (((-1158) (-787)) 20)) (-4155 (((-1158) (-583 (-787))) 19) (((-1158) (-787)) 11) (((-1158) (-1056) (-787)) 17)))
-(((-1036) (-10 -7 (-15 -4155 ((-1158) (-1056) (-787))) (-15 -4155 ((-1158) (-787))) (-15 -3111 ((-1158) (-787))) (-15 -2766 ((-1158) (-787))) (-15 -4155 ((-1158) (-583 (-787)))) (-15 -3111 ((-1158) (-583 (-787)))) (-15 -2766 ((-1158) (-583 (-787)))))) (T -1036))
-((-2766 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))))
-(-10 -7 (-15 -4155 ((-1158) (-1056) (-787))) (-15 -4155 ((-1158) (-787))) (-15 -3111 ((-1158) (-787))) (-15 -2766 ((-1158) (-787))) (-15 -4155 ((-1158) (-583 (-787)))) (-15 -3111 ((-1158) (-583 (-787)))) (-15 -2766 ((-1158) (-583 (-787)))))
-((-1264 (($ $ $) 10)) (-2150 (($ $) 9)) (-2570 (($ $ $) 13)) (-2480 (($ $ $) 15)) (-3233 (($ $ $) 12)) (-1324 (($ $ $) 14)) (-3312 (($ $) 17)) (-1730 (($ $) 16)) (-3710 (($ $) 6)) (-1564 (($ $ $) 11) (($ $) 7)) (-2350 (($ $ $) 8)))
-(((-1037) (-1184)) (T -1037))
-((-3312 (*1 *1 *1) (-4 *1 (-1037))) (-1730 (*1 *1 *1) (-4 *1 (-1037))) (-2480 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1324 (*1 *1 *1 *1) (-4 *1 (-1037))) (-2570 (*1 *1 *1 *1) (-4 *1 (-1037))) (-3233 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1564 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1264 (*1 *1 *1 *1) (-4 *1 (-1037))) (-2150 (*1 *1 *1) (-4 *1 (-1037))) (-2350 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1564 (*1 *1 *1) (-4 *1 (-1037))) (-3710 (*1 *1 *1) (-4 *1 (-1037))))
-(-13 (-10 -8 (-15 -3710 ($ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -2150 ($ $)) (-15 -1264 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -3233 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -1324 ($ $ $)) (-15 -2480 ($ $ $)) (-15 -1730 ($ $)) (-15 -3312 ($ $))))
-((-2750 (((-107) $ $) 41)) (-3199 ((|#1| $) 15)) (-2670 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-2324 (((-107) $) 17)) (-3948 (($ $ |#1|) 28)) (-1799 (($ $ (-107)) 30)) (-1617 (($ $) 31)) (-1961 (($ $ |#2|) 29)) (-3985 (((-1056) $) NIL)) (-2130 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-3206 (((-1021) $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 10)) (-2433 (($ $) 27)) (-2276 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-3476 ((|#2| $) 16)) (-2256 (((-787) $) 50)) (-1547 (((-107) $ $) 39)))
-(((-1038 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3199 (|#1| $)) (-15 -3476 (|#2| $)) (-15 -2324 ((-107) $)) (-15 -2276 ($ |#1| |#2| (-107))) (-15 -2276 ($ |#1| |#2|)) (-15 -2276 ($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) (-15 -2276 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))))) (-15 -2276 ((-583 $) |#1| (-583 |#2|))) (-15 -2433 ($ $)) (-15 -3948 ($ $ |#1|)) (-15 -1961 ($ $ |#2|)) (-15 -1799 ($ $ (-107))) (-15 -1617 ($ $)) (-15 -2130 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2670 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1038))
-((-1746 (*1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3199 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-13 (-1003) (-33))))) (-3476 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3726 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *4)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3726 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *4 *5))) (-5 *1 (-1038 *4 *5)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *3 *5))) (-5 *1 (-1038 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) (-2433 (*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3948 (*1 *1 *1 *2) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-1961 (*1 *1 *1 *2) (-12 (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))) (-1799 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-1617 (*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2130 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *5 *6)))) (-2670 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))))))
-(-13 (-1003) (-10 -8 (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3199 (|#1| $)) (-15 -3476 (|#2| $)) (-15 -2324 ((-107) $)) (-15 -2276 ($ |#1| |#2| (-107))) (-15 -2276 ($ |#1| |#2|)) (-15 -2276 ($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) (-15 -2276 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))))) (-15 -2276 ((-583 $) |#1| (-583 |#2|))) (-15 -2433 ($ $)) (-15 -3948 ($ $ |#1|)) (-15 -1961 ($ $ |#2|)) (-15 -1799 ($ $ (-107))) (-15 -1617 ($ $)) (-15 -2130 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2670 ((-107) $ $ (-1 (-107) |#2| |#2|)))))
-((-2750 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3199 (((-1038 |#1| |#2|) $) 25)) (-3585 (($ $) 75)) (-1958 (((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 84)) (-3294 (($ $ $ (-583 (-1038 |#1| |#2|))) 89) (($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 90)) (-2953 (((-107) $ (-703)) NIL)) (-1918 (((-1038 |#1| |#2|) $ (-1038 |#1| |#2|)) 42 (|has| $ (-6 -4181)))) (-2411 (((-1038 |#1| |#2|) $ "value" (-1038 |#1| |#2|)) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 40 (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3569 (((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $) 79)) (-3212 (($ (-1038 |#1| |#2|) $) 38)) (-2052 (($ (-1038 |#1| |#2|) $) 30)) (-1536 (((-583 (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1894 (((-107) (-1038 |#1| |#2|) $) 81)) (-1272 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 (-1038 |#1| |#2|)) $) 54 (|has| $ (-6 -4180)))) (-2787 (((-107) (-1038 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-1038 |#1| |#2|) (-1003))))) (-1433 (($ (-1 (-1038 |#1| |#2|) (-1038 |#1| |#2|)) $) 46 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-1038 |#1| |#2|) (-1038 |#1| |#2|)) $) 45)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 (-1038 |#1| |#2|)) $) 52)) (-1763 (((-107) $) 41)) (-3985 (((-1056) $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3206 (((-1021) $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-1290 (((-3 $ "failed") $) 74)) (-2048 (((-107) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-1038 |#1| |#2|)))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-265 (-1038 |#1| |#2|))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-1038 |#1| |#2|) (-1038 |#1| |#2|)) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-583 (-1038 |#1| |#2|)) (-583 (-1038 |#1| |#2|))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003))))) (-3792 (((-107) $ $) 49)) (-3619 (((-107) $) 22)) (-1746 (($) 24)) (-1449 (((-1038 |#1| |#2|) $ "value") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) 43)) (-3217 (((-703) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180))) (((-703) (-1038 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-1038 |#1| |#2|) (-1003))))) (-2433 (($ $) 48)) (-2276 (($ (-1038 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1038 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-2225 (((-583 |#2|) $) 80)) (-2256 (((-787) $) 72 (|has| (-1038 |#1| |#2|) (-1003)))) (-1479 (((-583 $) $) 28)) (-2732 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3675 (((-107) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 63 (|has| (-1038 |#1| |#2|) (-1003)))) (-2296 (((-703) $) 57 (|has| $ (-6 -4180)))))
-(((-1039 |#1| |#2|) (-13 (-926 (-1038 |#1| |#2|)) (-10 -8 (-6 -4181) (-6 -4180) (-15 -1290 ((-3 $ "failed") $)) (-15 -3585 ($ $)) (-15 -2276 ($ (-1038 |#1| |#2|))) (-15 -2276 ($ |#1| |#2| (-583 $))) (-15 -2276 ($ |#1| |#2| (-583 (-1038 |#1| |#2|)))) (-15 -2276 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2225 ((-583 |#2|) $)) (-15 -3569 ((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $)) (-15 -1894 ((-107) (-1038 |#1| |#2|) $)) (-15 -1958 ((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -2052 ($ (-1038 |#1| |#2|) $)) (-15 -3212 ($ (-1038 |#1| |#2|) $)) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)))) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1039))
-((-1290 (*1 *1 *1) (|partial| -12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3585 (*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1038 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)))) (-2276 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-1894 (*1 *2 *3 *1) (-12 (-5 *3 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)))) (-1958 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1038 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))) (-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3294 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1038 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3294 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1038 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1039 *4 *5)))))
-(-13 (-926 (-1038 |#1| |#2|)) (-10 -8 (-6 -4181) (-6 -4180) (-15 -1290 ((-3 $ "failed") $)) (-15 -3585 ($ $)) (-15 -2276 ($ (-1038 |#1| |#2|))) (-15 -2276 ($ |#1| |#2| (-583 $))) (-15 -2276 ($ |#1| |#2| (-583 (-1038 |#1| |#2|)))) (-15 -2276 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2225 ((-583 |#2|) $)) (-15 -3569 ((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $)) (-15 -1894 ((-107) (-1038 |#1| |#2|) $)) (-15 -1958 ((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -2052 ($ (-1038 |#1| |#2|) $)) (-15 -3212 ($ (-1038 |#1| |#2|) $)) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)))) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2033 (($ $) NIL)) (-1472 ((|#2| $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2461 (($ (-623 |#2|)) 45)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3487 (($ |#2|) 9)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 58 (|has| |#2| (-278)))) (-1939 (((-214 |#1| |#2|) $ (-517)) 31)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 72)) (-2261 (((-703) $) 60 (|has| |#2| (-509)))) (-1377 ((|#2| $ (-517) (-517)) NIL)) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL)) (-1948 (((-703) $) 62 (|has| |#2| (-509)))) (-3706 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-1477 (((-703) $) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#2| $) 56 (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#2|))) 26)) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3035 (((-583 (-583 |#2|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2104 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2671 ((|#2| $) NIL)) (-1879 (($ (-583 |#2|)) 40)) (-1516 (((-107) $) NIL)) (-2803 (((-214 |#1| |#2|) $) NIL)) (-3057 ((|#2| $) 54 (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-3728 (((-214 |#1| |#2|) $ (-517)) 33)) (-2256 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-2961 (((-703)) 17)) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 11 T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1040 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -2033 ($ $)) (-15 -2461 ($ (-623 |#2|))) (-15 -2256 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4182 "*"))) (-6 -4169) |noBranch|) (IF (|has| |#2| (-6 (-4182 "*"))) (IF (|has| |#2| (-6 -4177)) (-6 -4177) |noBranch|) |noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) (-703) (-961)) (T -1040))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) (-2033 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)))))
-(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -2033 ($ $)) (-15 -2461 ($ (-623 |#2|))) (-15 -2256 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4182 "*"))) (-6 -4169) |noBranch|) (IF (|has| |#2| (-6 (-4182 "*"))) (IF (|has| |#2| (-6 -4177)) (-6 -4177) |noBranch|) |noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
-((-3132 (($ $) 19)) (-3672 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-1459 (((-107) $ $) 24)) (-1285 (($ $) 17)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (($ $ $) 29)) (-2256 (($ (-131)) 27) (((-787) $) NIL)))
-(((-1041 |#1|) (-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -3672 (|#1| |#1| (-128))) (-15 -3672 (|#1| |#1| (-131))) (-15 -2256 (|#1| (-131))) (-15 -1459 ((-107) |#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1449 ((-131) |#1| (-517))) (-15 -1449 ((-131) |#1| (-517) (-131)))) (-1042)) (T -1041))
-NIL
-(-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -3672 (|#1| |#1| (-128))) (-15 -3672 (|#1| |#1| (-131))) (-15 -2256 (|#1| (-131))) (-15 -1459 ((-107) |#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1449 ((-131) |#1| (-517))) (-15 -1449 ((-131) |#1| (-517) (-131))))
-((-2750 (((-107) $ $) 18 (|has| (-131) (-1003)))) (-3880 (($ $) 120)) (-3132 (($ $) 121)) (-3672 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 118)) (-1414 (((-107) $ $ (-517)) 117)) (-1313 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3346 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-3610 (($ $ (-1121 (-517)) $) 114)) (-1679 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) 51)) (-1459 (((-107) $ $) 119)) (-2607 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1536 (((-583 (-131)) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 115)) (-2237 (((-703) $ $ (-131)) 116)) (-1433 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3006 (($ $) 122)) (-1285 (($ $) 123)) (-3847 (((-107) $ (-703)) 10)) (-3359 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3985 (((-1056) $) 22 (|has| (-131) (-1003)))) (-2620 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| (-131) (-1003)))) (-1647 (((-131) $) 42 (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2565 (($ $ (-131)) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1121 (-517))) 63) (($ $ $) 102)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4180))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) 70)) (-2452 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (($ (-131)) 111) (((-787) $) 20 (|has| (-131) (-1003)))) (-3675 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1583 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1547 (((-107) $ $) 19 (|has| (-131) (-1003)))) (-1595 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-1042) (-1184)) (T -1042))
-((-1285 (*1 *1 *1) (-4 *1 (-1042))) (-3006 (*1 *1 *1) (-4 *1 (-1042))) (-3132 (*1 *1 *1) (-4 *1 (-1042))) (-3880 (*1 *1 *1) (-4 *1 (-1042))) (-1459 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))) (-1437 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))) (-1414 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-517)) (-5 *2 (-107)))) (-2237 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1309 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3610 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1121 (-517))))) (-2607 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1042)))) (-1313 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) (-1313 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) (-3672 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3672 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-3359 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3359 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-3346 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3346 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-1449 (*1 *1 *1 *1) (-4 *1 (-1042))))
-(-13 (-19 (-131)) (-10 -8 (-15 -1285 ($ $)) (-15 -3006 ($ $)) (-15 -3132 ($ $)) (-15 -3880 ($ $)) (-15 -1459 ((-107) $ $)) (-15 -1437 ((-107) $ $)) (-15 -1414 ((-107) $ $ (-517))) (-15 -2237 ((-703) $ $ (-131))) (-15 -1309 ((-107) $ $ (-131))) (-15 -3610 ($ $ (-1121 (-517)) $)) (-15 -2607 ((-517) $ $ (-517))) (-15 -2607 ((-517) (-128) $ (-517))) (-15 -2256 ($ (-131))) (-15 -1313 ((-583 $) $ (-131))) (-15 -1313 ((-583 $) $ (-128))) (-15 -3672 ($ $ (-131))) (-15 -3672 ($ $ (-128))) (-15 -3359 ($ $ (-131))) (-15 -3359 ($ $ (-128))) (-15 -3346 ($ $ (-131))) (-15 -3346 ($ $ (-128))) (-15 -1449 ($ $ $))))
-(((-33) . T) ((-97) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-557 (-787)) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-779) |has| (-131) (-779)) ((-1003) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-1108) . T))
-((-3047 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703)) 93)) (-1770 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 53)) (-3830 (((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)) 85)) (-2016 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2567 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-2132 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3645 (((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 80)) (-3282 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 52)) (-3800 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
-(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -1043))
-((-3830 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))) (-2132 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-2132 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-2567 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-2567 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-2567 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-3282 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703))))
-((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 109) (((-583 $) (-583 |#4|) (-107)) 110) (((-583 $) (-583 |#4|) (-107) (-107)) 108) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 111)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 83)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 61)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) 64)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-4063 (((-107) |#4| $) NIL)) (-1829 (((-107) |#4| $) NIL)) (-1538 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2865 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 123)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 102)) (-2068 (((-3 |#4| "failed") $) 37)) (-2117 (((-583 $) |#4| $) 87)) (-2834 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 97) (((-107) |#4| $) 52)) (-1812 (((-583 $) |#4| $) 106) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 107) (((-583 $) |#4| (-583 $)) NIL)) (-3160 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 118)) (-2474 (($ |#4| $) 74) (($ (-583 |#4|) $) 75) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 73)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 47)) (-1672 (($ $ |#4|) NIL) (((-583 $) |#4| $) 89) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 85)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3596 (((-583 $) |#4| $) 53) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-2119 (((-107) |#4| $) NIL)) (-1871 (((-107) |#3| $) 60)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1044 |#1| |#2| |#3| |#4|) (-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1044))
-((-2474 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-4029 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-2865 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1044 *5 *6 *7 *8))))) (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4139 ((|#1| $) 28)) (-2335 (($ (-583 |#1|)) 33)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2886 ((|#1| |#1| $) 30)) (-1200 ((|#1| $) 26)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 29)) (-1710 (($ |#1| $) 31)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 27)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 24)) (-1746 (($) 32)) (-1694 (((-703) $) 22)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 20)) (-2256 (((-787) $) 17 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 12 (|has| |#1| (-1003)))) (-2296 (((-703) $) 23 (|has| $ (-6 -4180)))))
-(((-1045 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -2335 ($ (-583 |#1|))))) (-1003)) (T -1045))
-((-2335 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1045 *3)))))
-(-13 (-1022 |#1|) (-10 -8 (-15 -2335 ($ (-583 |#1|)))))
-((-2411 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1121 (-517)) |#2|) 43) ((|#2| $ (-517) |#2|) 40)) (-3811 (((-107) $) 11)) (-1433 (($ (-1 |#2| |#2|) $) 38)) (-1647 ((|#2| $) NIL) (($ $ (-703)) 16)) (-2565 (($ $ |#2|) 39)) (-2348 (((-107) $) 10)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1121 (-517))) 30) ((|#2| $ (-517)) 22) ((|#2| $ (-517) |#2|) NIL)) (-2568 (($ $ $) 46) (($ $ |#2|) NIL)) (-2452 (($ $ $) 32) (($ |#2| $) NIL) (($ (-583 $)) 35) (($ $ |#2|) NIL)))
-(((-1046 |#1| |#2|) (-10 -8 (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| "last")) (-15 -1449 (|#1| |#1| "rest")) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|))) (-1047 |#2|) (-1108)) (T -1046))
-NIL
-(-10 -8 (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| "last")) (-15 -1449 (|#1| |#1| "rest")) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4180)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4180))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-2348 (((-107) $) 84)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-1047 |#1|) (-1184) (-1108)) (T -1047))
-((-2348 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
-(-13 (-1142 |t#1|) (-588 |t#1|) (-10 -8 (-15 -2348 ((-107) $)) (-15 -3811 ((-107) $))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T) ((-1142 |#1|) . T))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1048 |#1| |#2| |#3|) (-1085 |#1| |#2|) (-1003) (-1003) |#2|) (T -1048))
-NIL
-(-1085 |#1| |#2|)
-((-2750 (((-107) $ $) 7)) (-1319 (((-3 $ "failed") $) 13)) (-3985 (((-1056) $) 9)) (-2836 (($) 14 T CONST)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
-(((-1049) (-1184)) (T -1049))
-((-2836 (*1 *1) (-4 *1 (-1049))) (-1319 (*1 *1 *1) (|partial| -4 *1 (-1049))))
-(-13 (-1003) (-10 -8 (-15 -2836 ($) -1619) (-15 -1319 ((-3 $ "failed") $))))
+((-2009 (((-583 (-1079)) (-1057)) 8)))
+(((-1036) (-10 -7 (-15 -2009 ((-583 (-1079)) (-1057))))) (T -1036))
+((-2009 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-583 (-1079))) (-5 *1 (-1036)))))
+(-10 -7 (-15 -2009 ((-583 (-1079)) (-1057))))
+((-3576 (((-1159) (-583 (-787))) 23) (((-1159) (-787)) 22)) (-3619 (((-1159) (-583 (-787))) 21) (((-1159) (-787)) 20)) (-3215 (((-1159) (-583 (-787))) 19) (((-1159) (-787)) 11) (((-1159) (-1057) (-787)) 17)))
+(((-1037) (-10 -7 (-15 -3215 ((-1159) (-1057) (-787))) (-15 -3215 ((-1159) (-787))) (-15 -3619 ((-1159) (-787))) (-15 -3576 ((-1159) (-787))) (-15 -3215 ((-1159) (-583 (-787)))) (-15 -3619 ((-1159) (-583 (-787)))) (-15 -3576 ((-1159) (-583 (-787)))))) (T -1037))
+((-3576 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))))
+(-10 -7 (-15 -3215 ((-1159) (-1057) (-787))) (-15 -3215 ((-1159) (-787))) (-15 -3619 ((-1159) (-787))) (-15 -3576 ((-1159) (-787))) (-15 -3215 ((-1159) (-583 (-787)))) (-15 -3619 ((-1159) (-583 (-787)))) (-15 -3576 ((-1159) (-583 (-787)))))
+((-1425 (($ $ $) 10)) (-1583 (($ $) 9)) (-1294 (($ $ $) 13)) (-1672 (($ $ $) 15)) (-2228 (($ $ $) 12)) (-1555 (($ $ $) 14)) (-1853 (($ $) 17)) (-2940 (($ $) 16)) (-1221 (($ $) 6)) (-3030 (($ $ $) 11) (($ $) 7)) (-2685 (($ $ $) 8)))
+(((-1038) (-1185)) (T -1038))
+((-1853 (*1 *1 *1) (-4 *1 (-1038))) (-2940 (*1 *1 *1) (-4 *1 (-1038))) (-1672 (*1 *1 *1 *1) (-4 *1 (-1038))) (-1555 (*1 *1 *1 *1) (-4 *1 (-1038))) (-1294 (*1 *1 *1 *1) (-4 *1 (-1038))) (-2228 (*1 *1 *1 *1) (-4 *1 (-1038))) (-3030 (*1 *1 *1 *1) (-4 *1 (-1038))) (-1425 (*1 *1 *1 *1) (-4 *1 (-1038))) (-1583 (*1 *1 *1) (-4 *1 (-1038))) (-2685 (*1 *1 *1 *1) (-4 *1 (-1038))) (-3030 (*1 *1 *1) (-4 *1 (-1038))) (-1221 (*1 *1 *1) (-4 *1 (-1038))))
+(-13 (-10 -8 (-15 -1221 ($ $)) (-15 -3030 ($ $)) (-15 -2685 ($ $ $)) (-15 -1583 ($ $)) (-15 -1425 ($ $ $)) (-15 -3030 ($ $ $)) (-15 -2228 ($ $ $)) (-15 -1294 ($ $ $)) (-15 -1555 ($ $ $)) (-15 -1672 ($ $ $)) (-15 -2940 ($ $)) (-15 -1853 ($ $))))
+((-2571 (((-107) $ $) 41)) (-3088 ((|#1| $) 15)) (-2692 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-2233 (((-107) $) 17)) (-1689 (($ $ |#1|) 28)) (-2859 (($ $ (-107)) 30)) (-3636 (($ $) 31)) (-3223 (($ $ |#2|) 29)) (-3865 (((-1057) $) NIL)) (-1424 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-3094 (((-1021) $) NIL)) (-1546 (((-107) $) 14)) (-1326 (($) 10)) (-2322 (($ $) 27)) (-2197 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3656 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3656 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-3384 ((|#2| $) 16)) (-2182 (((-787) $) 50)) (-1539 (((-107) $ $) 39)))
+(((-1039 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1326 ($)) (-15 -1546 ((-107) $)) (-15 -3088 (|#1| $)) (-15 -3384 (|#2| $)) (-15 -2233 ((-107) $)) (-15 -2197 ($ |#1| |#2| (-107))) (-15 -2197 ($ |#1| |#2|)) (-15 -2197 ($ (-2 (|:| |val| |#1|) (|:| -3656 |#2|)))) (-15 -2197 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3656 |#2|))))) (-15 -2197 ((-583 $) |#1| (-583 |#2|))) (-15 -2322 ($ $)) (-15 -1689 ($ $ |#1|)) (-15 -3223 ($ $ |#2|)) (-15 -2859 ($ $ (-107))) (-15 -3636 ($ $)) (-15 -1424 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2692 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1039))
+((-1326 (*1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3088 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *3 (-13 (-1003) (-33))))) (-3384 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-13 (-1003) (-33))))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-2197 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2197 (*1 *1 *2 *3) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2197 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3656 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-2197 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3656 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1039 *4 *5))) (-5 *1 (-1039 *4 *5)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1039 *3 *5))) (-5 *1 (-1039 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) (-2322 (*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-1689 (*1 *1 *1 *2) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3223 (*1 *1 *1 *2) (-12 (-5 *1 (-1039 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))) (-2859 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3636 (*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-1424 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))) (-2692 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)) (-4 *4 (-13 (-1003) (-33))))))
+(-13 (-1003) (-10 -8 (-15 -1326 ($)) (-15 -1546 ((-107) $)) (-15 -3088 (|#1| $)) (-15 -3384 (|#2| $)) (-15 -2233 ((-107) $)) (-15 -2197 ($ |#1| |#2| (-107))) (-15 -2197 ($ |#1| |#2|)) (-15 -2197 ($ (-2 (|:| |val| |#1|) (|:| -3656 |#2|)))) (-15 -2197 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3656 |#2|))))) (-15 -2197 ((-583 $) |#1| (-583 |#2|))) (-15 -2322 ($ $)) (-15 -1689 ($ $ |#1|)) (-15 -3223 ($ $ |#2|)) (-15 -2859 ($ $ (-107))) (-15 -3636 ($ $)) (-15 -1424 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2692 ((-107) $ $ (-1 (-107) |#2| |#2|)))))
+((-2571 (((-107) $ $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-3088 (((-1039 |#1| |#2|) $) 25)) (-2313 (($ $) 75)) (-3191 (((-107) (-1039 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 84)) (-1687 (($ $ $ (-583 (-1039 |#1| |#2|))) 89) (($ $ $ (-583 (-1039 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 90)) (-1799 (((-107) $ (-703)) NIL)) (-4072 (((-1039 |#1| |#2|) $ (-1039 |#1| |#2|)) 42 (|has| $ (-6 -4184)))) (-2307 (((-1039 |#1| |#2|) $ "value" (-1039 |#1| |#2|)) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 40 (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-3498 (((-583 (-2 (|:| |val| |#1|) (|:| -3656 |#2|))) $) 79)) (-2111 (($ (-1039 |#1| |#2|) $) 38)) (-1971 (($ (-1039 |#1| |#2|) $) 30)) (-3037 (((-583 (-1039 |#1| |#2|)) $) NIL (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 50)) (-3846 (((-107) (-1039 |#1| |#2|) $) 81)) (-1703 (((-107) $ $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 (-1039 |#1| |#2|)) $) 54 (|has| $ (-6 -4183)))) (-2502 (((-107) (-1039 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-1039 |#1| |#2|) (-1003))))) (-1213 (($ (-1 (-1039 |#1| |#2|) (-1039 |#1| |#2|)) $) 46 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-1039 |#1| |#2|) (-1039 |#1| |#2|)) $) 45)) (-2942 (((-107) $ (-703)) NIL)) (-3617 (((-583 (-1039 |#1| |#2|)) $) 52)) (-3762 (((-107) $) 41)) (-3865 (((-1057) $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-3094 (((-1021) $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-2727 (((-3 $ "failed") $) 74)) (-2925 (((-107) (-1 (-107) (-1039 |#1| |#2|)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-1039 |#1| |#2|)))) NIL (-12 (|has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))) (|has| (-1039 |#1| |#2|) (-1003)))) (($ $ (-265 (-1039 |#1| |#2|))) NIL (-12 (|has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))) (|has| (-1039 |#1| |#2|) (-1003)))) (($ $ (-1039 |#1| |#2|) (-1039 |#1| |#2|)) NIL (-12 (|has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))) (|has| (-1039 |#1| |#2|) (-1003)))) (($ $ (-583 (-1039 |#1| |#2|)) (-583 (-1039 |#1| |#2|))) NIL (-12 (|has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))) (|has| (-1039 |#1| |#2|) (-1003))))) (-3670 (((-107) $ $) 49)) (-1546 (((-107) $) 22)) (-1326 (($) 24)) (-1986 (((-1039 |#1| |#2|) $ "value") NIL)) (-1482 (((-517) $ $) NIL)) (-2562 (((-107) $) 43)) (-3105 (((-703) (-1 (-107) (-1039 |#1| |#2|)) $) NIL (|has| $ (-6 -4183))) (((-703) (-1039 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-1039 |#1| |#2|) (-1003))))) (-2322 (($ $) 48)) (-2197 (($ (-1039 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1039 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-2158 (((-583 |#2|) $) 80)) (-2182 (((-787) $) 72 (|has| (-1039 |#1| |#2|) (-1003)))) (-3935 (((-583 $) $) 28)) (-3172 (((-107) $ $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-3883 (((-107) (-1 (-107) (-1039 |#1| |#2|)) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 63 (|has| (-1039 |#1| |#2|) (-1003)))) (-2210 (((-703) $) 57 (|has| $ (-6 -4183)))))
+(((-1040 |#1| |#2|) (-13 (-926 (-1039 |#1| |#2|)) (-10 -8 (-6 -4184) (-6 -4183) (-15 -2727 ((-3 $ "failed") $)) (-15 -2313 ($ $)) (-15 -2197 ($ (-1039 |#1| |#2|))) (-15 -2197 ($ |#1| |#2| (-583 $))) (-15 -2197 ($ |#1| |#2| (-583 (-1039 |#1| |#2|)))) (-15 -2197 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2158 ((-583 |#2|) $)) (-15 -3498 ((-583 (-2 (|:| |val| |#1|) (|:| -3656 |#2|))) $)) (-15 -3846 ((-107) (-1039 |#1| |#2|) $)) (-15 -3191 ((-107) (-1039 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1971 ($ (-1039 |#1| |#2|) $)) (-15 -2111 ($ (-1039 |#1| |#2|) $)) (-15 -1687 ($ $ $ (-583 (-1039 |#1| |#2|)))) (-15 -1687 ($ $ $ (-583 (-1039 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1040))
+((-2727 (*1 *1 *1) (|partial| -12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2197 (*1 *1 *2) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) (-2197 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1040 *2 *3))) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2197 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1040 *2 *3)))) (-2197 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3846 (*1 *2 *3 *1) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *4 *5)))) (-3191 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1039 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *5 *6)))) (-1971 (*1 *1 *2 *1) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) (-2111 (*1 *1 *2 *1) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) (-1687 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1039 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) (-1687 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1039 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1040 *4 *5)))))
+(-13 (-926 (-1039 |#1| |#2|)) (-10 -8 (-6 -4184) (-6 -4183) (-15 -2727 ((-3 $ "failed") $)) (-15 -2313 ($ $)) (-15 -2197 ($ (-1039 |#1| |#2|))) (-15 -2197 ($ |#1| |#2| (-583 $))) (-15 -2197 ($ |#1| |#2| (-583 (-1039 |#1| |#2|)))) (-15 -2197 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2158 ((-583 |#2|) $)) (-15 -3498 ((-583 (-2 (|:| |val| |#1|) (|:| -3656 |#2|))) $)) (-15 -3846 ((-107) (-1039 |#1| |#2|) $)) (-15 -3191 ((-107) (-1039 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1971 ($ (-1039 |#1| |#2|) $)) (-15 -2111 ($ (-1039 |#1| |#2|) $)) (-15 -1687 ($ $ $ (-583 (-1039 |#1| |#2|)))) (-15 -1687 ($ $ $ (-583 (-1039 |#1| |#2|)) (-1 (-107) |#2| |#2|)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2729 (($ $) NIL)) (-1470 ((|#2| $) NIL)) (-2794 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-1498 (($ (-623 |#2|)) 45)) (-2119 (((-107) $) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-2609 (($ |#2|) 9)) (-3473 (($) NIL T CONST)) (-1558 (($ $) 58 (|has| |#2| (-278)))) (-3023 (((-214 |#1| |#2|) $ (-517)) 31)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) 72)) (-3795 (((-703) $) 60 (|has| |#2| (-509)))) (-4020 ((|#2| $ (-517) (-517)) NIL)) (-3037 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2955 (((-107) $) NIL)) (-3101 (((-703) $) 62 (|has| |#2| (-509)))) (-4163 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-4122 (((-703) $) NIL)) (-1875 (((-703) $) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-3464 ((|#2| $) 56 (|has| |#2| (-6 (-4185 "*"))))) (-2734 (((-517) $) NIL)) (-2397 (((-517) $) NIL)) (-1196 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3070 (((-517) $) NIL)) (-2820 (((-517) $) NIL)) (-1813 (($ (-583 (-583 |#2|))) 26)) (-1213 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1263 (((-583 (-583 |#2|)) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-2263 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-3094 (((-1021) $) NIL)) (-2349 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2925 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-1699 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2705 ((|#2| $) NIL)) (-3681 (($ (-583 |#2|)) 40)) (-1274 (((-107) $) NIL)) (-2637 (((-214 |#1| |#2|) $) NIL)) (-3139 ((|#2| $) 54 (|has| |#2| (-6 (-4185 "*"))))) (-3105 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2322 (($ $) NIL)) (-3582 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-1377 (((-214 |#1| |#2|) $ (-517)) 33)) (-2182 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-1865 (((-703)) 17)) (-3883 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-3565 (((-107) $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 11 T CONST)) (-2306 (($) 14 T CONST)) (-2553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1041 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -2729 ($ $)) (-15 -1498 ($ (-623 |#2|))) (-15 -2182 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4185 "*"))) (-6 -4172) |noBranch|) (IF (|has| |#2| (-6 (-4185 "*"))) (IF (|has| |#2| (-6 -4180)) (-6 -4180) |noBranch|) |noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) (-703) (-961)) (T -1041))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1041 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) (-2729 (*1 *1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))) (-1498 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1041 *3 *4)) (-14 *3 (-703)))))
+(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -2729 ($ $)) (-15 -1498 ($ (-623 |#2|))) (-15 -2182 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4185 "*"))) (-6 -4172) |noBranch|) (IF (|has| |#2| (-6 (-4185 "*"))) (IF (|has| |#2| (-6 -4180)) (-6 -4180) |noBranch|) |noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
+((-2517 (($ $) 19)) (-3847 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-1456 (((-107) $ $) 24)) (-2676 (($ $) 17)) (-1986 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1122 (-517))) NIL) (($ $ $) 29)) (-2182 (($ (-131)) 27) (((-787) $) NIL)))
+(((-1042 |#1|) (-10 -8 (-15 -2182 ((-787) |#1|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -3847 (|#1| |#1| (-128))) (-15 -3847 (|#1| |#1| (-131))) (-15 -2182 (|#1| (-131))) (-15 -1456 ((-107) |#1| |#1|)) (-15 -2517 (|#1| |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -1986 (|#1| |#1| (-1122 (-517)))) (-15 -1986 ((-131) |#1| (-517))) (-15 -1986 ((-131) |#1| (-517) (-131)))) (-1043)) (T -1042))
+NIL
+(-10 -8 (-15 -2182 ((-787) |#1|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -3847 (|#1| |#1| (-128))) (-15 -3847 (|#1| |#1| (-131))) (-15 -2182 (|#1| (-131))) (-15 -1456 ((-107) |#1| |#1|)) (-15 -2517 (|#1| |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -1986 (|#1| |#1| (-1122 (-517)))) (-15 -1986 ((-131) |#1| (-517))) (-15 -1986 ((-131) |#1| (-517) (-131))))
+((-2571 (((-107) $ $) 18 (|has| (-131) (-1003)))) (-2160 (($ $) 120)) (-2517 (($ $) 121)) (-3847 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-1433 (((-107) $ $) 118)) (-1409 (((-107) $ $ (-517)) 117)) (-2861 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2866 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-2740 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4184))))) (-3056 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-1799 (((-107) $ (-703)) 8)) (-2307 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4184))) (((-131) $ (-1122 (-517)) (-131)) 58 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-3246 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-1227 (($ $) 90 (|has| $ (-6 -4184)))) (-2979 (($ $) 100)) (-2191 (($ $ (-1122 (-517)) $) 114)) (-1667 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4183)))) (-2521 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4183)))) (-1226 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4184)))) (-4020 (((-131) $ (-517)) 51)) (-1456 (((-107) $ $) 119)) (-2446 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-3037 (((-583 (-131)) $) 30 (|has| $ (-6 -4183)))) (-3366 (($ (-703) (-131)) 69)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-1575 (($ $ $) 87 (|has| (-131) (-779)))) (-2262 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-1196 (((-583 (-131)) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-2986 (($ $ $) 86 (|has| (-131) (-779)))) (-1317 (((-107) $ $ (-131)) 115)) (-2167 (((-703) $ $ (-131)) 116)) (-1213 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-4006 (($ $) 122)) (-2676 (($ $) 123)) (-2942 (((-107) $ (-703)) 10)) (-3259 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3865 (((-1057) $) 22 (|has| (-131) (-1003)))) (-2454 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3094 (((-1021) $) 21 (|has| (-131) (-1003)))) (-1631 (((-131) $) 42 (|has| (-517) (-779)))) (-2293 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-1254 (($ $ (-131)) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3042 (((-583 (-131)) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1122 (-517))) 63) (($ $ $) 102)) (-3685 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3105 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4183))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-3966 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2197 (($ (-583 (-131))) 70)) (-2337 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2182 (($ (-131)) 111) (((-787) $) 20 (|has| (-131) (-1003)))) (-3883 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1570 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1539 (((-107) $ $) 19 (|has| (-131) (-1003)))) (-1582 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1560 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-1043) (-1185)) (T -1043))
+((-2676 (*1 *1 *1) (-4 *1 (-1043))) (-4006 (*1 *1 *1) (-4 *1 (-1043))) (-2517 (*1 *1 *1) (-4 *1 (-1043))) (-2160 (*1 *1 *1) (-4 *1 (-1043))) (-1456 (*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-107)))) (-1433 (*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-107)))) (-1409 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-517)) (-5 *2 (-107)))) (-2167 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1317 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-131)) (-5 *2 (-107)))) (-2191 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-1122 (-517))))) (-2446 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-517)))) (-2446 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1043)))) (-2861 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1043)))) (-2861 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1043)))) (-3847 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))) (-3847 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) (-3259 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))) (-3259 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) (-3246 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))) (-3246 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) (-1986 (*1 *1 *1 *1) (-4 *1 (-1043))))
+(-13 (-19 (-131)) (-10 -8 (-15 -2676 ($ $)) (-15 -4006 ($ $)) (-15 -2517 ($ $)) (-15 -2160 ($ $)) (-15 -1456 ((-107) $ $)) (-15 -1433 ((-107) $ $)) (-15 -1409 ((-107) $ $ (-517))) (-15 -2167 ((-703) $ $ (-131))) (-15 -1317 ((-107) $ $ (-131))) (-15 -2191 ($ $ (-1122 (-517)) $)) (-15 -2446 ((-517) $ $ (-517))) (-15 -2446 ((-517) (-128) $ (-517))) (-15 -2182 ($ (-131))) (-15 -2861 ((-583 $) $ (-131))) (-15 -2861 ((-583 $) $ (-128))) (-15 -3847 ($ $ (-131))) (-15 -3847 ($ $ (-128))) (-15 -3259 ($ $ (-131))) (-15 -3259 ($ $ (-128))) (-15 -3246 ($ $ (-131))) (-15 -3246 ($ $ (-128))) (-15 -1986 ($ $ $))))
+(((-33) . T) ((-97) -3763 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-557 (-787)) -3763 (|has| (-131) (-1003)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-779) |has| (-131) (-779)) ((-1003) -3763 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-1109) . T))
+((-3067 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-703)) 93)) (-2518 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703)) 53)) (-1984 (((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-703)) 85)) (-2560 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-1276 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-1435 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3582 (((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) 80)) (-1572 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|) 52)) (-2472 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
+(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2472 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2560 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -1572 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -2518 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703))) (-15 -2518 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703))) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -1435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3067 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-703))) (-15 -3582 ((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) (-15 -1984 ((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -1044))
+((-1984 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3656 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1159)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3656 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1057)) (-5 *1 (-1044 *4 *5 *6 *7 *8)))) (-3067 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3656 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3656 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1044 *7 *8 *9 *10 *11)))) (-1435 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) (-1435 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) (-1276 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-1276 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-1276 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) (-2518 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-1572 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-2560 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2472 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2560 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -1572 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -2518 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703))) (-15 -2518 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5| (-703))) (-15 -1276 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) |#4| |#5|)) (-15 -1435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3067 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))))) (-703))) (-15 -3582 ((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|)))) (-15 -1984 ((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3656 |#5|))) (-703))))
+((-2571 (((-107) $ $) NIL)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) NIL)) (-1310 (((-583 $) (-583 |#4|)) 109) (((-583 $) (-583 |#4|) (-107)) 110) (((-583 $) (-583 |#4|) (-107) (-107)) 108) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 111)) (-1363 (((-583 |#3|) $) NIL)) (-3521 (((-107) $) NIL)) (-2320 (((-107) $) NIL (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2356 ((|#4| |#4| $) NIL)) (-3938 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| $) 83)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-3451 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 61)) (-3473 (($) NIL T CONST)) (-1216 (((-107) $) 26 (|has| |#1| (-509)))) (-1930 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1660 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3045 (((-107) $) NIL (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3515 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3076 (($ (-583 |#4|)) NIL)) (-1644 (((-3 $ "failed") $) 39)) (-1907 ((|#4| |#4| $) 64)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1971 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-3197 ((|#4| |#4| $) NIL)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) NIL)) (-3357 (((-107) |#4| $) NIL)) (-3862 (((-107) |#4| $) NIL)) (-1442 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2139 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 123)) (-3037 (((-583 |#4|) $) 16 (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3377 ((|#3| $) 33)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#4|) $) 17 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1213 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 21)) (-2434 (((-583 |#3|) $) NIL)) (-2995 (((-107) |#3| $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-1765 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-4065 (((-583 (-2 (|:| |val| |#4|) (|:| -3656 $))) |#4| |#4| $) 102)) (-1988 (((-3 |#4| "failed") $) 37)) (-2368 (((-583 $) |#4| $) 87)) (-1905 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-2491 (((-583 (-2 (|:| |val| (-107)) (|:| -3656 $))) |#4| $) 97) (((-107) |#4| $) 52)) (-2551 (((-583 $) |#4| $) 106) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 107) (((-583 $) |#4| (-583 $)) NIL)) (-2764 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 118)) (-1615 (($ |#4| $) 74) (($ (-583 |#4|) $) 75) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 73)) (-2425 (((-583 |#4|) $) NIL)) (-2998 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2946 ((|#4| |#4| $) NIL)) (-3196 (((-107) $ $) NIL)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3006 ((|#4| |#4| $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-3 |#4| "failed") $) 35)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3886 (((-3 $ "failed") $ |#4|) 47)) (-3467 (($ $ |#4|) NIL) (((-583 $) |#4| $) 89) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 85)) (-2925 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 15)) (-1326 (($) 13)) (-4007 (((-703) $) NIL)) (-3105 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) 12)) (-3582 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 20)) (-2399 (($ $ |#3|) 42)) (-3339 (($ $ |#3|) 43)) (-3529 (($ $) NIL)) (-4011 (($ $ |#3|) NIL)) (-2182 (((-787) $) 31) (((-583 |#4|) $) 40)) (-4124 (((-703) $) NIL (|has| |#3| (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2401 (((-583 $) |#4| $) 53) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3883 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) NIL)) (-2385 (((-107) |#4| $) NIL)) (-1223 (((-107) |#3| $) 60)) (-1539 (((-107) $ $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1045 |#1| |#2| |#3| |#4|) (-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1615 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -1310 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -1310 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -2764 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2139 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1045))
+((-1615 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *3))) (-5 *1 (-1045 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-1310 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-1310 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-2764 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-2139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1045 *5 *6 *7 *8))))) (-5 *1 (-1045 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1615 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -1310 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -1310 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -2764 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2139 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4143 ((|#1| $) 28)) (-2239 (($ (-583 |#1|)) 33)) (-1799 (((-107) $ (-703)) NIL)) (-3473 (($) NIL T CONST)) (-2284 ((|#1| |#1| $) 30)) (-2646 ((|#1| $) 26)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1835 ((|#1| $) 29)) (-3816 (($ |#1| $) 31)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4049 ((|#1| $) 27)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 24)) (-1326 (($) 32)) (-2824 (((-703) $) 22)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) 20)) (-2182 (((-787) $) 17 (|has| |#1| (-1003)))) (-2373 (($ (-583 |#1|)) NIL)) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 12 (|has| |#1| (-1003)))) (-2210 (((-703) $) 23 (|has| $ (-6 -4183)))))
+(((-1046 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -2239 ($ (-583 |#1|))))) (-1003)) (T -1046))
+((-2239 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1046 *3)))))
+(-13 (-1022 |#1|) (-10 -8 (-15 -2239 ($ (-583 |#1|)))))
+((-2307 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1122 (-517)) |#2|) 43) ((|#2| $ (-517) |#2|) 40)) (-2570 (((-107) $) 11)) (-1213 (($ (-1 |#2| |#2|) $) 38)) (-1631 ((|#2| $) NIL) (($ $ (-703)) 16)) (-1254 (($ $ |#2|) 39)) (-2660 (((-107) $) 10)) (-1986 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1122 (-517))) 30) ((|#2| $ (-517)) 22) ((|#2| $ (-517) |#2|) NIL)) (-1286 (($ $ $) 46) (($ $ |#2|) NIL)) (-2337 (($ $ $) 32) (($ |#2| $) NIL) (($ (-583 $)) 35) (($ $ |#2|) NIL)))
+(((-1047 |#1| |#2|) (-10 -8 (-15 -2570 ((-107) |#1|)) (-15 -2660 ((-107) |#1|)) (-15 -2307 (|#2| |#1| (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517))) (-15 -1254 (|#1| |#1| |#2|)) (-15 -2337 (|#1| |#1| |#2|)) (-15 -2337 (|#1| (-583 |#1|))) (-15 -1986 (|#1| |#1| (-1122 (-517)))) (-15 -2307 (|#2| |#1| (-1122 (-517)) |#2|)) (-15 -2307 (|#2| |#1| "last" |#2|)) (-15 -2307 (|#1| |#1| "rest" |#1|)) (-15 -2307 (|#2| |#1| "first" |#2|)) (-15 -1286 (|#1| |#1| |#2|)) (-15 -1286 (|#1| |#1| |#1|)) (-15 -1986 (|#2| |#1| "last")) (-15 -1986 (|#1| |#1| "rest")) (-15 -1631 (|#1| |#1| (-703))) (-15 -1986 (|#2| |#1| "first")) (-15 -1631 (|#2| |#1|)) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2307 (|#2| |#1| "value" |#2|)) (-15 -1986 (|#2| |#1| "value")) (-15 -1213 (|#1| (-1 |#2| |#2|) |#1|))) (-1048 |#2|) (-1109)) (T -1047))
+NIL
+(-10 -8 (-15 -2570 ((-107) |#1|)) (-15 -2660 ((-107) |#1|)) (-15 -2307 (|#2| |#1| (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517) |#2|)) (-15 -1986 (|#2| |#1| (-517))) (-15 -1254 (|#1| |#1| |#2|)) (-15 -2337 (|#1| |#1| |#2|)) (-15 -2337 (|#1| (-583 |#1|))) (-15 -1986 (|#1| |#1| (-1122 (-517)))) (-15 -2307 (|#2| |#1| (-1122 (-517)) |#2|)) (-15 -2307 (|#2| |#1| "last" |#2|)) (-15 -2307 (|#1| |#1| "rest" |#1|)) (-15 -2307 (|#2| |#1| "first" |#2|)) (-15 -1286 (|#1| |#1| |#2|)) (-15 -1286 (|#1| |#1| |#1|)) (-15 -1986 (|#2| |#1| "last")) (-15 -1986 (|#1| |#1| "rest")) (-15 -1631 (|#1| |#1| (-703))) (-15 -1986 (|#2| |#1| "first")) (-15 -1631 (|#2| |#1|)) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2307 (|#2| |#1| "value" |#2|)) (-15 -1986 (|#2| |#1| "value")) (-15 -1213 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2571 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3088 ((|#1| $) 48)) (-2864 ((|#1| $) 65)) (-2602 (($ $) 67)) (-3423 (((-1159) $ (-517) (-517)) 97 (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) 52 (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) 8)) (-4072 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3499 (($ $ $) 56 (|has| $ (-6 -4184)))) (-3573 ((|#1| $ |#1|) 54 (|has| $ (-6 -4184)))) (-3043 ((|#1| $ |#1|) 58 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4184))) (($ $ "rest" $) 55 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 117 (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4183)))) (-2849 ((|#1| $) 66)) (-3473 (($) 7 T CONST)) (-1644 (($ $) 73) (($ $ (-703)) 71)) (-1667 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4183))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1226 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 87)) (-2570 (((-107) $) 83)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 50)) (-1703 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3366 (($ (-703) |#1|) 108)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 95 (|has| (-517) (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 94 (|has| (-517) (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2942 (((-107) $ (-703)) 10)) (-3617 (((-583 |#1|) $) 45)) (-3762 (((-107) $) 49)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1988 ((|#1| $) 70) (($ $ (-703)) 68)) (-2454 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-4086 (((-583 (-517)) $) 92)) (-3646 (((-107) (-517) $) 91)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 76) (($ $ (-703)) 74)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-1254 (($ $ |#1|) 96 (|has| $ (-6 -4184)))) (-2660 (((-107) $) 84)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 90)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1122 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-1482 (((-517) $ $) 44)) (-3685 (($ $ (-1122 (-517))) 114) (($ $ (-517)) 113)) (-2562 (((-107) $) 46)) (-4084 (($ $) 62)) (-3145 (($ $) 59 (|has| $ (-6 -4184)))) (-2943 (((-703) $) 63)) (-2103 (($ $) 64)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-3582 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 107)) (-1286 (($ $ $) 61 (|has| $ (-6 -4184))) (($ $ |#1|) 60 (|has| $ (-6 -4184)))) (-2337 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2182 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3935 (((-583 $) $) 51)) (-3172 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-1048 |#1|) (-1185) (-1109)) (T -1048))
+((-2660 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
+(-13 (-1143 |t#1|) (-588 |t#1|) (-10 -8 (-15 -2660 ((-107) $)) (-15 -2570 ((-107) $))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T) ((-1143 |#1|) . T))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3423 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 |#2| "failed") |#1| $) NIL)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) NIL)) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) NIL)) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 ((|#1| $) NIL (|has| |#1| (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 ((|#1| $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3799 (((-583 |#1|) $) NIL)) (-2555 (((-107) |#1| $) NIL)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-4086 (((-583 |#1|) $) NIL)) (-3646 (((-107) |#1| $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1631 ((|#2| $) NIL (|has| |#1| (-779)))) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1049 |#1| |#2| |#3|) (-1086 |#1| |#2|) (-1003) (-1003) |#2|) (T -1049))
+NIL
+(-1086 |#1| |#2|)
+((-2571 (((-107) $ $) 7)) (-3744 (((-3 $ "failed") $) 13)) (-3865 (((-1057) $) 9)) (-2663 (($) 14 T CONST)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11)) (-1539 (((-107) $ $) 6)))
+(((-1050) (-1185)) (T -1050))
+((-2663 (*1 *1) (-4 *1 (-1050))) (-3744 (*1 *1 *1) (|partial| -4 *1 (-1050))))
+(-13 (-1003) (-10 -8 (-15 -2663 ($) -1605) (-15 -3744 ((-3 $ "failed") $))))
(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-4076 (((-1054 |#1|) (-1054 |#1|)) 17)) (-3599 (((-1054 |#1|) (-1054 |#1|)) 13)) (-2667 (((-1054 |#1|) (-1054 |#1|) (-517) (-517)) 20)) (-2825 (((-1054 |#1|) (-1054 |#1|)) 15)))
-(((-1050 |#1|) (-10 -7 (-15 -3599 ((-1054 |#1|) (-1054 |#1|))) (-15 -2825 ((-1054 |#1|) (-1054 |#1|))) (-15 -4076 ((-1054 |#1|) (-1054 |#1|))) (-15 -2667 ((-1054 |#1|) (-1054 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1050))
-((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1050 *4)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))))
-(-10 -7 (-15 -3599 ((-1054 |#1|) (-1054 |#1|))) (-15 -2825 ((-1054 |#1|) (-1054 |#1|))) (-15 -4076 ((-1054 |#1|) (-1054 |#1|))) (-15 -2667 ((-1054 |#1|) (-1054 |#1|) (-517) (-517))))
-((-2452 (((-1054 |#1|) (-1054 (-1054 |#1|))) 15)))
-(((-1051 |#1|) (-10 -7 (-15 -2452 ((-1054 |#1|) (-1054 (-1054 |#1|))))) (-1108)) (T -1051))
-((-2452 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-1108)))))
-(-10 -7 (-15 -2452 ((-1054 |#1|) (-1054 (-1054 |#1|)))))
-((-3905 (((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)) 25)) (-3225 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)) 26)) (-1893 (((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|)) 16)))
-(((-1052 |#1| |#2|) (-10 -7 (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|))) (-15 -3905 ((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|))) (-15 -3225 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)))) (-1108) (-1108)) (T -1052))
-((-3225 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1052 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1054 *6)) (-4 *6 (-1108)) (-4 *3 (-1108)) (-5 *2 (-1054 *3)) (-5 *1 (-1052 *6 *3)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1052 *5 *6)))))
-(-10 -7 (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|))) (-15 -3905 ((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|))) (-15 -3225 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|))))
-((-1893 (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|)) 21)))
-(((-1053 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|)))) (-1108) (-1108) (-1108)) (T -1053))
-((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-1053 *6 *7 *8)))))
-(-10 -7 (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) 50)) (-1668 (((-1158) $ (-517) (-517)) 75 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 109 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-1268 (((-787) $) 40 (|has| |#1| (-1003)))) (-2253 (((-107)) 39 (|has| |#1| (-1003)))) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 97 (|has| $ (-6 -4181))) (($ $ (-517) $) 120)) (-3781 ((|#1| $ |#1|) 106 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 101 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 103 (|has| $ (-6 -4181))) (($ $ "rest" $) 105 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 108 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 88 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 54 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 57)) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-3861 (($ $) 14)) (-1660 (($ $) 28) (($ $ (-703)) 87)) (-2192 (((-107) (-583 |#1|) $) 114 (|has| |#1| (-1003)))) (-2566 (($ (-583 |#1|)) 111)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) 56)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2088 (((-1158) (-517) $) 119 (|has| |#1| (-1003)))) (-4097 (((-703) $) 116)) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 72 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 62) (($ (-1 |#1| |#1| |#1|) $ $) 66)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3258 (($ $) 89)) (-2202 (((-107) $) 13)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) 73)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3464 (($ (-1 |#1|)) 122) (($ (-1 |#1| |#1|) |#1|) 123)) (-2279 ((|#1| $) 10)) (-1647 ((|#1| $) 27) (($ $ (-703)) 48)) (-4130 (((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $) 24)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3513 (($ (-1 (-107) |#1|) $) 124)) (-3525 (($ (-1 (-107) |#1|) $) 125)) (-2565 (($ $ |#1|) 67 (|has| $ (-6 -4181)))) (-1672 (($ $ (-517)) 31)) (-2348 (((-107) $) 71)) (-3980 (((-107) $) 12)) (-3660 (((-107) $) 115)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 20)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 42)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) 53) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) 47)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2640 (($ (-1 $)) 46)) (-2655 (((-107) $) 68)) (-2552 (($ $) 69)) (-3406 (($ $) 98 (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 43)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 52)) (-1540 (($ |#1| $) 96)) (-2568 (($ $ $) 99 (|has| $ (-6 -4181))) (($ $ |#1|) 100 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 77) (($ |#1| $) 44) (($ (-583 $)) 82) (($ $ |#1|) 76)) (-1545 (($ $) 49)) (-2256 (((-787) $) 41 (|has| |#1| (-1003))) (($ (-583 |#1|)) 110)) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 113 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1054 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4181) (-15 -2256 ($ (-583 |#1|))) (-15 -2566 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -2192 ((-107) (-583 |#1|) $)) |noBranch|) (-15 -4130 ((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -2640 ($ (-1 $))) (-15 -1540 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2088 ((-1158) (-517) $)) (-15 -1268 ((-787) $)) (-15 -2253 ((-107)))) |noBranch|) (-15 -3096 ($ $ (-517) $)) (-15 -3464 ($ (-1 |#1|))) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)))) (-1108)) (T -1054))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-2192 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)) (-5 *1 (-1054 *4)))) (-4130 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703)))) (-5 *1 (-1054 *4)) (-4 *4 (-1108)) (-5 *3 (-703)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-1 (-1054 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *1 (-1054 *2)) (-4 *2 (-1108)))) (-2088 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1054 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))) (-2253 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))) (-3096 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
-(-13 (-610 |#1|) (-10 -8 (-6 -4181) (-15 -2256 ($ (-583 |#1|))) (-15 -2566 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -2192 ((-107) (-583 |#1|) $)) |noBranch|) (-15 -4130 ((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -2640 ($ (-1 $))) (-15 -1540 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2088 ((-1158) (-517) $)) (-15 -1268 ((-787) $)) (-15 -2253 ((-107)))) |noBranch|) (-15 -3096 ($ $ (-517) $)) (-15 -3464 ($ (-1 |#1|))) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $))))
-((-2750 (((-107) $ $) 18)) (-3880 (($ $) 120)) (-3132 (($ $) 121)) (-3672 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 118)) (-1414 (((-107) $ $ (-517)) 117)) (-3890 (($ (-517)) 127)) (-1313 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3346 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-3610 (($ $ (-1121 (-517)) $) 114)) (-1679 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) 51)) (-1459 (((-107) $ $) 119)) (-2607 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1536 (((-583 (-131)) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 115)) (-2237 (((-703) $ $ (-131)) 116)) (-1433 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3006 (($ $) 122)) (-1285 (($ $) 123)) (-3847 (((-107) $ (-703)) 10)) (-3359 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3985 (((-1056) $) 22)) (-2620 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21)) (-1647 (((-131) $) 42 (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2565 (($ $ (-131)) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1121 (-517))) 63) (($ $ $) 102)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4180))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) 70)) (-2452 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (($ (-131)) 111) (((-787) $) 20)) (-3675 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 131) (((-1056) $ (-107)) 130) (((-1158) (-754) $) 129) (((-1158) (-754) $ (-107)) 128)) (-1606 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1583 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1547 (((-107) $ $) 19)) (-1595 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-1055) (-1184)) (T -1055))
-((-3890 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1055)))))
-(-13 (-1042) (-1003) (-760) (-10 -8 (-15 -3890 ($ (-517)))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1003) . T) ((-1042) . T) ((-1108) . T))
-((-2750 (((-107) $ $) NIL)) (-3880 (($ $) NIL)) (-3132 (($ $) NIL)) (-3672 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) NIL)) (-1414 (((-107) $ $ (-517)) NIL)) (-3890 (($ (-517)) 7)) (-1313 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-131) (-779))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3346 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3610 (($ $ (-1121 (-517)) $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-2052 (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) NIL)) (-1459 (((-107) $ $) NIL)) (-2607 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1003))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-1536 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) NIL)) (-2237 (((-703) $ $ (-131)) NIL)) (-1433 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3006 (($ $) NIL)) (-1285 (($ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3359 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-131) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2565 (($ $ (-131)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (($ $ $) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) NIL)) (-2452 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (($ (-131)) NIL) (((-787) $) NIL)) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 18) (((-1056) $ (-107)) 20) (((-1158) (-754) $) 21) (((-1158) (-754) $ (-107)) 22)) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-131) (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1056) (-1055)) (T -1056))
-NIL
-(-1055)
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-1056) |#1|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#1| "failed") (-1056) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#1| "failed") (-1056) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-1056) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-1056)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2274 (((-583 (-1056)) $) NIL)) (-2793 (((-107) (-1056) $) NIL)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-1647 ((|#1| $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-1056)) NIL) ((|#1| $ (-1056) |#1|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1057 |#1|) (-13 (-1085 (-1056) |#1|) (-10 -7 (-6 -4180))) (-1003)) (T -1057))
-NIL
-(-13 (-1085 (-1056) |#1|) (-10 -7 (-6 -4180)))
-((-2600 (((-1054 |#1|) (-1054 |#1|)) 77)) (-3621 (((-3 (-1054 |#1|) "failed") (-1054 |#1|)) 37)) (-1831 (((-1054 |#1|) (-377 (-517)) (-1054 |#1|)) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1349 (((-1054 |#1|) |#1| (-1054 |#1|)) 123 (|has| |#1| (-333)))) (-3821 (((-1054 |#1|) (-1054 |#1|)) 90)) (-1277 (((-1054 (-517)) (-517)) 57)) (-1937 (((-1054 |#1|) (-1054 (-1054 |#1|))) 109 (|has| |#1| (-37 (-377 (-517)))))) (-2161 (((-1054 |#1|) (-517) (-517) (-1054 |#1|)) 95)) (-3419 (((-1054 |#1|) |#1| (-517)) 45)) (-3325 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 60)) (-4105 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 121 (|has| |#1| (-333)))) (-3459 (((-1054 |#1|) |#1| (-1 (-1054 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-1473 (((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|))) 122 (|has| |#1| (-333)))) (-1641 (((-1054 |#1|) (-1054 |#1|)) 89)) (-2533 (((-1054 |#1|) (-1054 |#1|)) 76)) (-3804 (((-1054 |#1|) (-517) (-517) (-1054 |#1|)) 96)) (-4151 (((-1054 |#1|) |#1| (-1054 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1666 (((-1054 (-517)) (-517)) 56)) (-2612 (((-1054 |#1|) |#1|) 59)) (-3926 (((-1054 |#1|) (-1054 |#1|) (-517) (-517)) 92)) (-2912 (((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|)) 66)) (-2476 (((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|)) 35)) (-3515 (((-1054 |#1|) (-1054 |#1|)) 91)) (-2051 (((-1054 |#1|) (-1054 |#1|) |#1|) 71)) (-2643 (((-1054 |#1|) (-1054 |#1|)) 62)) (-1775 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 72)) (-2256 (((-1054 |#1|) |#1|) 67)) (-1501 (((-1054 |#1|) (-1054 (-1054 |#1|))) 82)) (-1667 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 36)) (-1654 (((-1054 |#1|) (-1054 |#1|)) 21) (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 23)) (-1642 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 17)) (* (((-1054 |#1|) (-1054 |#1|) |#1|) 29) (((-1054 |#1|) |#1| (-1054 |#1|)) 26) (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 27)))
-(((-1058 |#1|) (-10 -7 (-15 -1642 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -2476 ((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|))) (-15 -1667 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3621 ((-3 (-1054 |#1|) "failed") (-1054 |#1|))) (-15 -3419 ((-1054 |#1|) |#1| (-517))) (-15 -1666 ((-1054 (-517)) (-517))) (-15 -1277 ((-1054 (-517)) (-517))) (-15 -2612 ((-1054 |#1|) |#1|)) (-15 -3325 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2643 ((-1054 |#1|) (-1054 |#1|))) (-15 -2912 ((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|))) (-15 -2256 ((-1054 |#1|) |#1|)) (-15 -2051 ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -1775 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2533 ((-1054 |#1|) (-1054 |#1|))) (-15 -2600 ((-1054 |#1|) (-1054 |#1|))) (-15 -1501 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1641 ((-1054 |#1|) (-1054 |#1|))) (-15 -3821 ((-1054 |#1|) (-1054 |#1|))) (-15 -3515 ((-1054 |#1|) (-1054 |#1|))) (-15 -3926 ((-1054 |#1|) (-1054 |#1|) (-517) (-517))) (-15 -2161 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (-15 -3804 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 -3459 ((-1054 |#1|) |#1| (-1 (-1054 |#1|)))) (-15 -1937 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1831 ((-1054 |#1|) (-377 (-517)) (-1054 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -4105 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1473 ((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|)))) (-15 -1349 ((-1054 |#1|) |#1| (-1054 |#1|)))) |noBranch|)) (-961)) (T -1058))
-((-1349 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1473 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1054 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)))) (-4105 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1831 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1058 *4)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1054 *3))) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-4151 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3804 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-2161 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-3926 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-961)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1775 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-2912 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2612 (*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-1277 (*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-1666 (*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-3621 (*1 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1667 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2476 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1654 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
-(-10 -7 (-15 -1642 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -2476 ((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|))) (-15 -1667 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3621 ((-3 (-1054 |#1|) "failed") (-1054 |#1|))) (-15 -3419 ((-1054 |#1|) |#1| (-517))) (-15 -1666 ((-1054 (-517)) (-517))) (-15 -1277 ((-1054 (-517)) (-517))) (-15 -2612 ((-1054 |#1|) |#1|)) (-15 -3325 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2643 ((-1054 |#1|) (-1054 |#1|))) (-15 -2912 ((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|))) (-15 -2256 ((-1054 |#1|) |#1|)) (-15 -2051 ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -1775 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2533 ((-1054 |#1|) (-1054 |#1|))) (-15 -2600 ((-1054 |#1|) (-1054 |#1|))) (-15 -1501 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1641 ((-1054 |#1|) (-1054 |#1|))) (-15 -3821 ((-1054 |#1|) (-1054 |#1|))) (-15 -3515 ((-1054 |#1|) (-1054 |#1|))) (-15 -3926 ((-1054 |#1|) (-1054 |#1|) (-517) (-517))) (-15 -2161 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (-15 -3804 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 -3459 ((-1054 |#1|) |#1| (-1 (-1054 |#1|)))) (-15 -1937 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1831 ((-1054 |#1|) (-377 (-517)) (-1054 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -4105 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1473 ((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|)))) (-15 -1349 ((-1054 |#1|) |#1| (-1054 |#1|)))) |noBranch|))
-((-1865 (((-1054 |#1|) (-1054 |#1|)) 57)) (-1721 (((-1054 |#1|) (-1054 |#1|)) 39)) (-1839 (((-1054 |#1|) (-1054 |#1|)) 53)) (-1701 (((-1054 |#1|) (-1054 |#1|)) 35)) (-1887 (((-1054 |#1|) (-1054 |#1|)) 60)) (-1743 (((-1054 |#1|) (-1054 |#1|)) 42)) (-1867 (((-1054 |#1|) (-1054 |#1|)) 31)) (-2624 (((-1054 |#1|) (-1054 |#1|)) 27)) (-1898 (((-1054 |#1|) (-1054 |#1|)) 61)) (-1754 (((-1054 |#1|) (-1054 |#1|)) 43)) (-1876 (((-1054 |#1|) (-1054 |#1|)) 58)) (-1732 (((-1054 |#1|) (-1054 |#1|)) 40)) (-1853 (((-1054 |#1|) (-1054 |#1|)) 55)) (-1711 (((-1054 |#1|) (-1054 |#1|)) 37)) (-3707 (((-1054 |#1|) (-1054 |#1|)) 65)) (-1788 (((-1054 |#1|) (-1054 |#1|)) 47)) (-3683 (((-1054 |#1|) (-1054 |#1|)) 63)) (-1765 (((-1054 |#1|) (-1054 |#1|)) 45)) (-3731 (((-1054 |#1|) (-1054 |#1|)) 68)) (-1814 (((-1054 |#1|) (-1054 |#1|)) 50)) (-1492 (((-1054 |#1|) (-1054 |#1|)) 69)) (-1827 (((-1054 |#1|) (-1054 |#1|)) 51)) (-3719 (((-1054 |#1|) (-1054 |#1|)) 67)) (-1802 (((-1054 |#1|) (-1054 |#1|)) 49)) (-3695 (((-1054 |#1|) (-1054 |#1|)) 66)) (-1777 (((-1054 |#1|) (-1054 |#1|)) 48)) (** (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 33)))
-(((-1059 |#1|) (-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|)))) (-37 (-377 (-517)))) (T -1059))
-((-1492 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3731 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1898 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))))
-(-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|))))
-((-1865 (((-1054 |#1|) (-1054 |#1|)) 100)) (-1721 (((-1054 |#1|) (-1054 |#1|)) 64)) (-3460 (((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|)) 96)) (-1839 (((-1054 |#1|) (-1054 |#1|)) 97)) (-3423 (((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|)) 53)) (-1701 (((-1054 |#1|) (-1054 |#1|)) 54)) (-1887 (((-1054 |#1|) (-1054 |#1|)) 102)) (-1743 (((-1054 |#1|) (-1054 |#1|)) 71)) (-1867 (((-1054 |#1|) (-1054 |#1|)) 39)) (-2624 (((-1054 |#1|) (-1054 |#1|)) 36)) (-1898 (((-1054 |#1|) (-1054 |#1|)) 103)) (-1754 (((-1054 |#1|) (-1054 |#1|)) 72)) (-1876 (((-1054 |#1|) (-1054 |#1|)) 101)) (-1732 (((-1054 |#1|) (-1054 |#1|)) 67)) (-1853 (((-1054 |#1|) (-1054 |#1|)) 98)) (-1711 (((-1054 |#1|) (-1054 |#1|)) 55)) (-3707 (((-1054 |#1|) (-1054 |#1|)) 111)) (-1788 (((-1054 |#1|) (-1054 |#1|)) 86)) (-3683 (((-1054 |#1|) (-1054 |#1|)) 105)) (-1765 (((-1054 |#1|) (-1054 |#1|)) 82)) (-3731 (((-1054 |#1|) (-1054 |#1|)) 115)) (-1814 (((-1054 |#1|) (-1054 |#1|)) 90)) (-1492 (((-1054 |#1|) (-1054 |#1|)) 117)) (-1827 (((-1054 |#1|) (-1054 |#1|)) 92)) (-3719 (((-1054 |#1|) (-1054 |#1|)) 113)) (-1802 (((-1054 |#1|) (-1054 |#1|)) 88)) (-3695 (((-1054 |#1|) (-1054 |#1|)) 107)) (-1777 (((-1054 |#1|) (-1054 |#1|)) 84)) (** (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 40)))
-(((-1060 |#1|) (-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3423 ((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -3460 ((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|)))) (-37 (-377 (-517)))) (T -1060))
-((-1492 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3731 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1898 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1839 (-1054 *4)) (|:| -1853 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1701 (-1054 *4)) (|:| -1711 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3423 ((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -3460 ((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|))))
-((-2310 (((-879 |#2|) |#2| |#2|) 35)) (-3534 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278)))))
-(((-1061 |#1| |#2|) (-10 -7 (-15 -2310 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -3534 (|#2| |#2| |#1|)) |noBranch|)) (-509) (-1130 |#1|)) (T -1061))
-((-3534 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-1130 *3)))) (-2310 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1061 *4 *3)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -2310 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -3534 (|#2| |#2| |#1|)) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-2144 (($ $ (-583 (-703))) 66)) (-2467 (($) 25)) (-3500 (($ $) 41)) (-2316 (((-583 $) $) 50)) (-2950 (((-107) $) 16)) (-3014 (((-583 (-865 |#2|)) $) 73)) (-2248 (($ $) 67)) (-4160 (((-703) $) 36)) (-3462 (($) 24)) (-3061 (($ $ (-583 (-703)) (-865 |#2|)) 59) (($ $ (-583 (-703)) (-703)) 60) (($ $ (-703) (-865 |#2|)) 62)) (-3237 (($ $ $) 47) (($ (-583 $)) 49)) (-2926 (((-703) $) 74)) (-1763 (((-107) $) 15)) (-3985 (((-1056) $) NIL)) (-3842 (((-107) $) 17)) (-3206 (((-1021) $) NIL)) (-2264 (((-155) $) 72)) (-3287 (((-865 |#2|) $) 68)) (-1900 (((-703) $) 69)) (-2682 (((-107) $) 71)) (-2294 (($ $ (-583 (-703)) (-155)) 65)) (-3557 (($ $) 42)) (-2256 (((-787) $) 84)) (-1733 (($ $ (-583 (-703)) (-107)) 64)) (-1479 (((-583 $) $) 11)) (-2571 (($ $ (-703)) 35)) (-2353 (($ $) 31)) (-1508 (($ $ $ (-865 |#2|) (-703)) 55)) (-2741 (($ $ (-865 |#2|)) 54)) (-2393 (($ $ (-583 (-703)) (-865 |#2|)) 53) (($ $ (-583 (-703)) (-703)) 57) (((-703) $ (-865 |#2|)) 58)) (-1547 (((-107) $ $) 78)))
-(((-1062 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1763 ((-107) $)) (-15 -2950 ((-107) $)) (-15 -3842 ((-107) $)) (-15 -3462 ($)) (-15 -2467 ($)) (-15 -2353 ($ $)) (-15 -2571 ($ $ (-703))) (-15 -1479 ((-583 $) $)) (-15 -4160 ((-703) $)) (-15 -3500 ($ $)) (-15 -3557 ($ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ (-583 $))) (-15 -2316 ((-583 $) $)) (-15 -2393 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2741 ($ $ (-865 |#2|))) (-15 -1508 ($ $ $ (-865 |#2|) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2393 ($ $ (-583 (-703)) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-703))) (-15 -2393 ((-703) $ (-865 |#2|))) (-15 -3061 ($ $ (-703) (-865 |#2|))) (-15 -1733 ($ $ (-583 (-703)) (-107))) (-15 -2294 ($ $ (-583 (-703)) (-155))) (-15 -2144 ($ $ (-583 (-703)))) (-15 -3287 ((-865 |#2|) $)) (-15 -1900 ((-703) $)) (-15 -2682 ((-107) $)) (-15 -2264 ((-155) $)) (-15 -2926 ((-703) $)) (-15 -2248 ($ $)) (-15 -3014 ((-583 (-865 |#2|)) $)))) (-843) (-961)) (T -1062))
-((-1763 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3462 (*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2467 (*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2571 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3500 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3237 (*1 *1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)))) (-1508 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-1733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2144 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(-13 (-1003) (-10 -8 (-15 -1763 ((-107) $)) (-15 -2950 ((-107) $)) (-15 -3842 ((-107) $)) (-15 -3462 ($)) (-15 -2467 ($)) (-15 -2353 ($ $)) (-15 -2571 ($ $ (-703))) (-15 -1479 ((-583 $) $)) (-15 -4160 ((-703) $)) (-15 -3500 ($ $)) (-15 -3557 ($ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ (-583 $))) (-15 -2316 ((-583 $) $)) (-15 -2393 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2741 ($ $ (-865 |#2|))) (-15 -1508 ($ $ $ (-865 |#2|) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2393 ($ $ (-583 (-703)) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-703))) (-15 -2393 ((-703) $ (-865 |#2|))) (-15 -3061 ($ $ (-703) (-865 |#2|))) (-15 -1733 ($ $ (-583 (-703)) (-107))) (-15 -2294 ($ $ (-583 (-703)) (-155))) (-15 -2144 ($ $ (-583 (-703)))) (-15 -3287 ((-865 |#2|) $)) (-15 -1900 ((-703) $)) (-15 -2682 ((-107) $)) (-15 -2264 ((-155) $)) (-15 -2926 ((-703) $)) (-15 -2248 ($ $)) (-15 -3014 ((-583 (-865 |#2|)) $))))
-((-2750 (((-107) $ $) NIL)) (-3616 ((|#2| $) 11)) (-3603 ((|#1| $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2276 (($ |#1| |#2|) 9)) (-2256 (((-787) $) 16)) (-1547 (((-107) $ $) NIL)))
-(((-1063 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2276 ($ |#1| |#2|)) (-15 -3603 (|#1| $)) (-15 -3616 (|#2| $)))) (-1003) (-1003)) (T -1063))
-((-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3603 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1003)))) (-3616 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *3 *2)) (-4 *3 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -2276 ($ |#1| |#2|)) (-15 -3603 (|#1| $)) (-15 -3616 (|#2| $))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1974 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1880 (((-1071 |#1| |#2| |#3|) $) 36)) (-2477 (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 29)) (-1590 (((-1071 |#1| |#2| |#3|) $) 30)) (-1865 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1073) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3189 (((-1071 |#1| |#2| |#3|) $) 131) (((-1073) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2869 (($ $) 34) (($ (-517) $) 35)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-1071 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-1071 |#1| |#2| |#3|))) (|:| |vec| (-1153 (-1071 |#1| |#2| |#3|)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 48)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 25)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-3972 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 (((-1071 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 18) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) (-1071 |#1| |#2| |#3|)) 33)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2597 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 145)) (-2476 (((-3 $ "failed") $ $) 49 (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1071 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1071 |#1| |#2| |#3|)) (-583 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1015))) (($ $ (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-258 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1149 |#2|)) 51) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 (((-1071 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-3688 (((-517) $) 37)) (-1898 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-493) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1071 |#1| |#2| |#3|)) 27) (($ (-1149 |#2|)) 23) (($ (-1073)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-2720 ((|#1| $ (-517)) 68)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-1949 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3683 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 20 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 21)) (** (($ $ (-843)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1071 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1071 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1064 |#1| |#2| |#3|) (-13 (-1116 |#1| (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1064))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1116 |#1| (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
-((-2541 ((|#2| |#2| (-996 |#2|)) 26) ((|#2| |#2| (-1073)) 28)))
-(((-1065 |#1| |#2|) (-10 -7 (-15 -2541 (|#2| |#2| (-1073))) (-15 -2541 (|#2| |#2| (-996 |#2|)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1094))) (T -1065))
-((-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)))) (-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))))))
-(-10 -7 (-15 -2541 (|#2| |#2| (-1073))) (-15 -2541 (|#2| |#2| (-996 |#2|))))
-((-2541 (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))) 30) (((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|))) 44) (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073)) 32) (((-377 (-874 |#1|)) (-874 |#1|) (-1073)) 36)))
-(((-1066 |#1|) (-10 -7 (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-1073))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))))) (-13 (-509) (-779) (-952 (-517)))) (T -1066))
-((-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1066 *5)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1066 *5)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-377 (-874 *5))))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-874 *5)))))
-(-10 -7 (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-1073))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|))))))
-((-1893 (((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)) 13)))
-(((-1067 |#1| |#2|) (-10 -7 (-15 -1893 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)))) (-961) (-961)) (T -1067))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-1067 *5 *6)))))
-(-10 -7 (-15 -1893 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|))))
-((-2759 (((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))) 50)) (-3755 (((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))) 51)))
-(((-1068 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|)))) (-15 -2759 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))))) (-725) (-779) (-421) (-871 |#3| |#1| |#2|)) (T -1068))
-((-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))))
-(-10 -7 (-15 -3755 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|)))) (-15 -2759 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|)))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 30)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) 59) (((-1069 |#1|) $) 48)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) 132 (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) 126 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 72 (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 92 (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2241 (($ $ (-703)) 42)) (-2882 (($ $ (-703)) 43)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 128 (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 57)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) 104)) (-4080 (($ $ $) NIL (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) 133 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) 46)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3078 (((-787) $ (-787)) 117)) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) 32)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) 50) (($ (-1069 $) (-989)) 66)) (-3430 (($ $ (-703)) 34)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 64) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 121)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) 53)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 41)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 33)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 80 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 135 (|has| |#1| (-421)))) (-1953 (($ $ (-703) |#1| $) 99)) (-2561 (((-388 (-1069 $)) (-1069 $)) 78 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 77 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 85 (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) 37)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 137 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) 124 (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) 55) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 130 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) 118) (($ (-517)) NIL) (($ |#1|) 54) (($ (-989)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 15) (($ $ (-703)) 16)) (-2396 (($) 17 T CONST)) (-2409 (($) 18 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 97)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 138 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 67)) (** (($ $ (-843)) 14) (($ $ (-703)) 12)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1069 |#1|) (-13 (-1130 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))) (-15 -1953 ($ $ (-703) |#1| $)))) (-961)) (T -1069))
-((-3078 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))) (-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))))
-(-13 (-1130 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))) (-15 -1953 ($ $ (-703) |#1| $))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1064 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 35)) (-3189 (((-1064 |#1| |#2| |#3|) $) NIL) (((-1071 |#1| |#2| |#3|) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3598 (((-377 (-517)) $) 55)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) (-1064 |#1| |#2| |#3|)) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 19) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 (((-1064 |#1| |#2| |#3|) $) 40)) (-2354 (((-3 (-1064 |#1| |#2| |#3|) "failed") $) NIL)) (-1601 (((-1064 |#1| |#2| |#3|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 37)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1064 |#1| |#2| |#3|)) 29) (($ (-1071 |#1| |#2| |#3|)) 30) (($ (-1149 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 21 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 23)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1070 |#1| |#2| |#3|) (-13 (-1137 |#1| (-1064 |#1| |#2| |#3|)) (-952 (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1070))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1137 |#1| (-1064 |#1| |#2| |#3|)) (-952 (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 124)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 115)) (-2784 (((-1127 |#2| |#1|) $ (-703)) 62)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 78) (($ $ (-703) (-703)) 75)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 101)) (-1865 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 114) (($ (-1054 |#1|)) 109)) (-1887 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 23)) (-2328 (($ $) 26)) (-3520 (((-874 |#1|) $ (-703)) 74) (((-874 |#1|) $ (-703) (-703)) 76)) (-3201 (((-107) $) 119)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) 121) (((-703) $ (-703)) 123)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 13) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1672 (($ $ (-703)) 15)) (-2476 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-2624 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 118) (($ $ $) 127 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1149 |#2|)) 29)) (-3688 (((-703) $) NIL)) (-1898 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 200) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 125 (|has| |#1| (-156))) (($ (-1127 |#2| |#1|)) 50) (($ (-1149 |#2|)) 32)) (-1311 (((-1054 |#1|) $) 97)) (-2720 ((|#1| $ (-703)) 117)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 53)) (-3707 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 17 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 193)) (-1642 (($ $ $) 31)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 197 (|has| |#1| (-333))) (($ $ $) 133 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 136 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1071 |#1| |#2| |#3|) (-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1071))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1071 *3 *4 *5)))) (-2784 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1071 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
-((-2256 (((-787) $) 22) (($ (-1073)) 24)) (-3807 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3797 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-4111 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-4100 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-4089 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-4079 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3128 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34)))
-(((-1072) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -4111 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4089 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4100 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4079 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3807 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3128 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ $))))) (T -1072))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1072)))) (-4111 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4089 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4100 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4079 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3807 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3128 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3797 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3797 (*1 *1 *1) (-5 *1 (-1072))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -4111 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4089 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4100 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4079 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3807 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3128 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ $))))
-((-2750 (((-107) $ $) NIL)) (-3718 (($ $ (-583 (-787))) 58)) (-3975 (($ $ (-583 (-787))) 56)) (-3890 (((-1056) $) 82)) (-2206 (((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-2213 (((-107) $) 21)) (-3736 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-3092 (($) 122 T CONST)) (-1302 (((-1158)) 103)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 65) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 71)) (-3462 (($) 92) (($ $) 98)) (-1207 (($ $) 81)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1529 (((-583 $) $) 104)) (-3985 (((-1056) $) 87)) (-3206 (((-1021) $) NIL)) (-1449 (($ $ (-583 (-787))) 57)) (-3645 (((-493) $) 45) (((-1073) $) 46) (((-814 (-517)) $) 75) (((-814 (-349)) $) 73)) (-2256 (((-787) $) 52) (($ (-1056)) 47)) (-2712 (($ $ (-583 (-787))) 59)) (-2482 (((-1056) $) 33) (((-1056) $ (-107)) 34) (((-1158) (-754) $) 35) (((-1158) (-754) $ (-107)) 36)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 48)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 49)))
-(((-1073) (-13 (-779) (-558 (-493)) (-760) (-558 (-1073)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3462 ($)) (-15 -3462 ($ $)) (-15 -1302 ((-1158))) (-15 -2256 ($ (-1056))) (-15 -1207 ($ $)) (-15 -2213 ((-107) $)) (-15 -2206 ((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -3736 ($ $ (-583 (-583 (-787))))) (-15 -3736 ($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -3975 ($ $ (-583 (-787)))) (-15 -3718 ($ $ (-583 (-787)))) (-15 -2712 ($ $ (-583 (-787)))) (-15 -1449 ($ $ (-583 (-787)))) (-15 -3890 ((-1056) $)) (-15 -1529 ((-583 $) $)) (-15 -3092 ($) -1619)))) (T -1073))
-((-3462 (*1 *1) (-5 *1 (-1073))) (-3462 (*1 *1 *1) (-5 *1 (-1073))) (-1302 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1073)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) (-1207 (*1 *1 *1) (-5 *1 (-1073))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1073)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) (-3736 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1073)))) (-3736 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1073)))) (-3092 (*1 *1) (-5 *1 (-1073))))
-(-13 (-779) (-558 (-493)) (-760) (-558 (-1073)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3462 ($)) (-15 -3462 ($ $)) (-15 -1302 ((-1158))) (-15 -2256 ($ (-1056))) (-15 -1207 ($ $)) (-15 -2213 ((-107) $)) (-15 -2206 ((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -3736 ($ $ (-583 (-583 (-787))))) (-15 -3736 ($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -3975 ($ $ (-583 (-787)))) (-15 -3718 ($ $ (-583 (-787)))) (-15 -2712 ($ $ (-583 (-787)))) (-15 -1449 ($ $ (-583 (-787)))) (-15 -3890 ((-1056) $)) (-15 -1529 ((-583 $) $)) (-15 -3092 ($) -1619)))
-((-1463 (((-1153 |#1|) |#1| (-843)) 16) (((-1153 |#1|) (-583 |#1|)) 20)))
-(((-1074 |#1|) (-10 -7 (-15 -1463 ((-1153 |#1|) (-583 |#1|))) (-15 -1463 ((-1153 |#1|) |#1| (-843)))) (-961)) (T -1074))
-((-1463 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1153 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)) (-5 *1 (-1074 *4)))))
-(-10 -7 (-15 -1463 ((-1153 |#1|) (-583 |#1|))) (-15 -1463 ((-1153 |#1|) |#1| (-843))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-1436 (($ $ |#1| (-888) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-888)) NIL)) (-2349 (((-888) $) NIL)) (-3328 (($ (-1 (-888) (-888)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1953 (($ $ (-888) |#1| $) NIL (-12 (|has| (-888) (-123)) (|has| |#1| (-509))))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3688 (((-888) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-888)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) 16)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1075 |#1|) (-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -1953 ($ $ (-888) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961)) (T -1075))
-((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1075 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -1953 ($ $ (-888) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|)))
-((-3542 (((-1077) (-1073) $) 24)) (-1676 (($) 28)) (-1999 (((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $) 21)) (-2588 (((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $) 40) (((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) 41) (((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) 42)) (-3410 (((-1158) (-1073)) 57)) (-4022 (((-1158) (-1073) $) 54) (((-1158) (-1073)) 55) (((-1158)) 56)) (-2929 (((-1158) (-1073)) 36)) (-1629 (((-1073)) 35)) (-1746 (($) 33)) (-2373 (((-407) (-1073) (-407) (-1073) $) 44) (((-407) (-583 (-1073)) (-407) (-1073) $) 48) (((-407) (-1073) (-407)) 45) (((-407) (-1073) (-407) (-1073)) 49)) (-1233 (((-1073)) 34)) (-2256 (((-787) $) 27)) (-3108 (((-1158)) 29) (((-1158) (-1073)) 32)) (-3558 (((-583 (-1073)) (-1073) $) 23)) (-2940 (((-1158) (-1073) (-583 (-1073)) $) 37) (((-1158) (-1073) (-583 (-1073))) 38) (((-1158) (-583 (-1073))) 39)))
-(((-1076) (-13 (-557 (-787)) (-10 -8 (-15 -1676 ($)) (-15 -3108 ((-1158))) (-15 -3108 ((-1158) (-1073))) (-15 -2373 ((-407) (-1073) (-407) (-1073) $)) (-15 -2373 ((-407) (-583 (-1073)) (-407) (-1073) $)) (-15 -2373 ((-407) (-1073) (-407))) (-15 -2373 ((-407) (-1073) (-407) (-1073))) (-15 -2929 ((-1158) (-1073))) (-15 -1233 ((-1073))) (-15 -1629 ((-1073))) (-15 -2940 ((-1158) (-1073) (-583 (-1073)) $)) (-15 -2940 ((-1158) (-1073) (-583 (-1073)))) (-15 -2940 ((-1158) (-583 (-1073)))) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -2588 ((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -4022 ((-1158) (-1073) $)) (-15 -4022 ((-1158) (-1073))) (-15 -4022 ((-1158))) (-15 -3410 ((-1158) (-1073))) (-15 -1746 ($)) (-15 -1999 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $)) (-15 -3558 ((-583 (-1073)) (-1073) $)) (-15 -3542 ((-1077) (-1073) $))))) (T -1076))
-((-1676 (*1 *1) (-5 *1 (-1076))) (-3108 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *4 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-1233 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))) (-1629 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-1746 (*1 *1) (-5 *1 (-1076))) (-1999 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-1076)))) (-3558 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1076)) (-5 *3 (-1073)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1077)) (-5 *1 (-1076)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -1676 ($)) (-15 -3108 ((-1158))) (-15 -3108 ((-1158) (-1073))) (-15 -2373 ((-407) (-1073) (-407) (-1073) $)) (-15 -2373 ((-407) (-583 (-1073)) (-407) (-1073) $)) (-15 -2373 ((-407) (-1073) (-407))) (-15 -2373 ((-407) (-1073) (-407) (-1073))) (-15 -2929 ((-1158) (-1073))) (-15 -1233 ((-1073))) (-15 -1629 ((-1073))) (-15 -2940 ((-1158) (-1073) (-583 (-1073)) $)) (-15 -2940 ((-1158) (-1073) (-583 (-1073)))) (-15 -2940 ((-1158) (-583 (-1073)))) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -2588 ((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -4022 ((-1158) (-1073) $)) (-15 -4022 ((-1158) (-1073))) (-15 -4022 ((-1158))) (-15 -3410 ((-1158) (-1073))) (-15 -1746 ($)) (-15 -1999 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $)) (-15 -3558 ((-583 (-1073)) (-1073) $)) (-15 -3542 ((-1077) (-1073) $))))
-((-4000 (((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $) 57)) (-2832 (((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $) 40)) (-4107 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) 15)) (-3410 (((-1158) $) 65)) (-3067 (((-583 (-1073)) $) 20)) (-1274 (((-1007) $) 53)) (-2815 (((-407) (-1073) $) 27)) (-2500 (((-583 (-1073)) $) 30)) (-1746 (($) 17)) (-2373 (((-407) (-583 (-1073)) (-407) $) 25) (((-407) (-1073) (-407) $) 24)) (-2256 (((-787) $) 9) (((-1082 (-1073) (-407)) $) 11)))
-(((-1077) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ((-1082 (-1073) (-407)) $)) (-15 -1746 ($)) (-15 -2373 ((-407) (-583 (-1073)) (-407) $)) (-15 -2373 ((-407) (-1073) (-407) $)) (-15 -2815 ((-407) (-1073) $)) (-15 -3067 ((-583 (-1073)) $)) (-15 -2832 ((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -2500 ((-583 (-1073)) $)) (-15 -4000 ((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $)) (-15 -1274 ((-1007) $)) (-15 -3410 ((-1158) $)) (-15 -4107 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))))))) (T -1077))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-1082 (-1073) (-407))) (-5 *1 (-1077)))) (-1746 (*1 *1) (-5 *1 (-1077))) (-2373 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *1 (-1077)))) (-2373 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1077)))) (-2815 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-407)) (-5 *1 (-1077)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))) (-2832 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) (-5 *1 (-1077)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1077)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1077)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1077)))) (-4107 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) (-5 *1 (-1077)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2256 ((-1082 (-1073) (-407)) $)) (-15 -1746 ($)) (-15 -2373 ((-407) (-583 (-1073)) (-407) $)) (-15 -2373 ((-407) (-1073) (-407) $)) (-15 -2815 ((-407) (-1073) $)) (-15 -3067 ((-583 (-1073)) $)) (-15 -2832 ((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -2500 ((-583 (-1073)) $)) (-15 -4000 ((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $)) (-15 -1274 ((-1007) $)) (-15 -3410 ((-1158) $)) (-15 -4107 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))))))
-((-3341 (((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $) 36)) (-3354 (((-583 $) $) 39)) (-3645 (((-1007) $) 6) (($ (-1007)) 7) (($ (-517)) 10) (($ (-199)) 13) (($ (-1073)) 16) (($ (-1056)) 19)) (-2256 (((-787) $) NIL)) (-3365 (($ (-1073) (-583 $)) 23)))
-(((-1078) (-13 (-557 (-787)) (-10 -8 (-15 -3645 ((-1007) $)) (-15 -3645 ($ (-1007))) (-15 -3645 ($ (-517))) (-15 -3645 ($ (-199))) (-15 -3645 ($ (-1073))) (-15 -3645 ($ (-1056))) (-15 -3365 ($ (-1073) (-583 $))) (-15 -3341 ((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $)) (-15 -3354 ((-583 $) $))))) (T -1078))
-((-3645 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1078)))) (-3365 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-1078))) (-5 *1 (-1078)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1073) (-1056) (-583 (-1078)))) (-5 *1 (-1078)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-583 (-1078))) (-5 *1 (-1078)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -3645 ((-1007) $)) (-15 -3645 ($ (-1007))) (-15 -3645 ($ (-517))) (-15 -3645 ($ (-199))) (-15 -3645 ($ (-1073))) (-15 -3645 ($ (-1056))) (-15 -3365 ($ (-1073) (-583 $))) (-15 -3341 ((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $)) (-15 -3354 ((-583 $) $))))
-((-1663 (((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 55)) (-1674 (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|)))) 66) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|))) 62) (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073)) 67) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073)) 61) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|))))) 91) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|)))) 90) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073))) 92) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 89)))
-(((-1079 |#1|) (-10 -7 (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -1663 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))))) (-509)) (T -1079))
-((-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1079 *5)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-265 (-377 (-874 *4)))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-377 (-874 *4))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-377 (-874 *5))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)))))
-(-10 -7 (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -1663 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))))
-((-1197 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-2090 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-2910 (((-1081 (-583 |#1|)) (-583 |#1|)) 34)) (-3360 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-2589 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-4016 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-2103 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-2104 (((-583 |#1|) (-583 |#1|)) 31)) (-3873 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-2244 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-1856 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-3964 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-2469 (((-583 (-583 |#1|)) (-1081 (-583 |#1|))) 41)))
-(((-1080 |#1|) (-10 -7 (-15 -1856 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2244 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3873 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1197 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3964 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2469 ((-583 (-583 |#1|)) (-1081 (-583 |#1|)))) (-15 -2090 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -2910 ((-1081 (-583 |#1|)) (-583 |#1|))) (-15 -2103 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3360 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2104 ((-583 |#1|) (-583 |#1|))) (-15 -4016 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2589 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1080))
-((-2589 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-4016 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1080 *6)) (-5 *4 (-583 *5)))) (-2104 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1080 *3)))) (-3360 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1080 *3)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1081 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 *4))))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1081 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-4 *4 (-779)))) (-1197 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1080 *4)))) (-3873 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1080 *4)))) (-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1080 *5)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1080 *6)) (-5 *5 (-583 *4)))))
-(-10 -7 (-15 -1856 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2244 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3873 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1197 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3964 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2469 ((-583 (-583 |#1|)) (-1081 (-583 |#1|)))) (-15 -2090 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -2910 ((-1081 (-583 |#1|)) (-583 |#1|))) (-15 -2103 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3360 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2104 ((-583 |#1|) (-583 |#1|))) (-15 -4016 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2589 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|))))))
-((-1241 (($ (-583 (-583 |#1|))) 9)) (-3035 (((-583 (-583 |#1|)) $) 10)) (-2256 (((-787) $) 25)))
-(((-1081 |#1|) (-10 -8 (-15 -1241 ($ (-583 (-583 |#1|)))) (-15 -3035 ((-583 (-583 |#1|)) $)) (-15 -2256 ((-787) $))) (-1003)) (T -1081))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) (-1241 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1081 *3)))))
-(-10 -8 (-15 -1241 ($ (-583 (-583 |#1|)))) (-15 -3035 ((-583 (-583 |#1|)) $)) (-15 -2256 ((-787) $)))
-((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1082 |#1| |#2|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003)) (T -1082))
-NIL
-(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))
-((-2333 ((|#1| (-583 |#1|)) 32)) (-1994 ((|#1| |#1| (-517)) 18)) (-1940 (((-1069 |#1|) |#1| (-843)) 15)))
-(((-1083 |#1|) (-10 -7 (-15 -2333 (|#1| (-583 |#1|))) (-15 -1940 ((-1069 |#1|) |#1| (-843))) (-15 -1994 (|#1| |#1| (-517)))) (-333)) (T -1083))
-((-1994 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1069 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-333)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))))
-(-10 -7 (-15 -2333 (|#1| (-583 |#1|))) (-15 -1940 ((-1069 |#1|) |#1| (-843))) (-15 -1994 (|#1| |#1| (-517))))
-((-3422 (($) 10) (($ (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)))) 14)) (-3212 (($ (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-1433 (($ (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1893 (($ (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3309 (((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 53)) (-1710 (($ (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 16)) (-1857 (((-583 |#2|) $) 19)) (-4088 (((-107) |#2| $) 58)) (-2887 (((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 57)) (-4006 (((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 62)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 65)) (-1941 (((-583 |#3|) $) 43)) (-1449 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 66)) (-2256 (((-787) $) 27)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1547 (((-107) $ $) 48)))
-(((-1084 |#1| |#2| |#3|) (-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3422 (|#1| (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))))) (-15 -3422 (|#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1536 ((-583 |#3|) |#1|)) (-15 -3217 ((-703) |#3| |#1|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -4088 ((-107) |#2| |#1|)) (-15 -1857 ((-583 |#2|) |#1|)) (-15 -3212 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3212 (|#1| (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3212 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -2887 ((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3309 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1710 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -4006 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -3217 ((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1536 ((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3217 ((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -2048 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3675 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1433 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1893 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|))) (-1085 |#2| |#3|) (-1003) (-1003)) (T -1084))
-NIL
-(-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3422 (|#1| (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))))) (-15 -3422 (|#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1536 ((-583 |#3|) |#1|)) (-15 -3217 ((-703) |#3| |#1|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -4088 ((-107) |#2| |#1|)) (-15 -1857 ((-583 |#2|) |#1|)) (-15 -3212 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3212 (|#1| (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3212 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -2887 ((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3309 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1710 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -4006 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -3217 ((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1536 ((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3217 ((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -2048 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3675 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1433 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1893 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)))
-((-2750 (((-107) $ $) 18 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3422 (($) 72) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 71)) (-1668 (((-1158) $ |#1| |#1|) 99 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#2| $ |#1| |#2|) 73)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 88)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180))) (((-583 |#2|) $) 79 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 96 (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180))) (((-583 |#2|) $) 80 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 95 (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40)) (-1857 (((-583 |#1|) $) 93)) (-4088 (((-107) |#1| $) 92)) (-3206 (((-1021) $) 21 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1647 ((|#2| $) 97 (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51)) (-2565 (($ $ |#2|) 98 (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 91)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4180)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50)) (-2256 (((-787) $) 20 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-1085 |#1| |#2|) (-1184) (-1003) (-1003)) (T -1085))
-((-2411 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3422 (*1 *1) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 *3) (|:| -1257 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1085 *3 *4)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1085 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2411 (|t#2| $ |t#1| |t#2|)) (-15 -3422 ($)) (-15 -3422 ($ (-583 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))))) (-15 -1893 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-1003) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-1108) . T))
-((-2272 (((-107)) 24)) (-3304 (((-1158) (-1056)) 26)) (-2181 (((-107)) 36)) (-3967 (((-1158)) 34)) (-4086 (((-1158) (-1056) (-1056)) 25)) (-3367 (((-107)) 37)) (-1710 (((-1158) |#1| |#2|) 44)) (-2770 (((-1158)) 20)) (-2495 (((-3 |#2| "failed") |#1|) 42)) (-2036 (((-1158)) 35)))
-(((-1086 |#1| |#2|) (-10 -7 (-15 -2770 ((-1158))) (-15 -4086 ((-1158) (-1056) (-1056))) (-15 -3304 ((-1158) (-1056))) (-15 -3967 ((-1158))) (-15 -2036 ((-1158))) (-15 -2272 ((-107))) (-15 -2181 ((-107))) (-15 -3367 ((-107))) (-15 -2495 ((-3 |#2| "failed") |#1|)) (-15 -1710 ((-1158) |#1| |#2|))) (-1003) (-1003)) (T -1086))
-((-1710 (*1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2495 (*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1086 *3 *2)) (-4 *3 (-1003)))) (-3367 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2181 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2272 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2036 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3967 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-4086 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-2770 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(-10 -7 (-15 -2770 ((-1158))) (-15 -4086 ((-1158) (-1056) (-1056))) (-15 -3304 ((-1158) (-1056))) (-15 -3967 ((-1158))) (-15 -2036 ((-1158))) (-15 -2272 ((-107))) (-15 -2181 ((-107))) (-15 -3367 ((-107))) (-15 -2495 ((-3 |#2| "failed") |#1|)) (-15 -1710 ((-1158) |#1| |#2|)))
-((-1604 (((-1056) (-1056)) 18)) (-2644 (((-51) (-1056)) 21)))
-(((-1087) (-10 -7 (-15 -2644 ((-51) (-1056))) (-15 -1604 ((-1056) (-1056))))) (T -1087))
-((-1604 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1087)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-1087)))))
-(-10 -7 (-15 -2644 ((-51) (-1056))) (-15 -1604 ((-1056) (-1056))))
-((-2256 (((-1089) |#1|) 11)))
-(((-1088 |#1|) (-10 -7 (-15 -2256 ((-1089) |#1|))) (-1003)) (T -1088))
-((-2256 (*1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1088 *3)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -2256 ((-1089) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-3765 (((-583 (-1056)) $) 33)) (-1963 (((-583 (-1056)) $ (-583 (-1056))) 36)) (-1594 (((-583 (-1056)) $ (-583 (-1056))) 35)) (-3385 (((-583 (-1056)) $ (-583 (-1056))) 37)) (-3157 (((-583 (-1056)) $) 32)) (-3462 (($) 22)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2054 (((-583 (-1056)) $) 34)) (-1242 (((-1158) $ (-517)) 29) (((-1158) $) 30)) (-3645 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2256 (((-787) $) 39) (($ (-787)) 24)) (-1547 (((-107) $ $) NIL)))
-(((-1089) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -3645 ($ (-787) (-517) (-787))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -3765 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1963 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))) (T -1089))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1089)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) (-3645 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) (-1242 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1089)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1089)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3462 (*1 *1) (-5 *1 (-1089))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3385 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-1963 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-1594 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
-(-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -3645 ($ (-787) (-517) (-787))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -3765 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1963 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))
-((-2750 (((-107) $ $) NIL)) (-1801 (((-1056) $ (-1056)) 15) (((-1056) $) 14)) (-3733 (((-1056) $ (-1056)) 13)) (-1723 (($ $ (-1056)) NIL)) (-2863 (((-3 (-1056) "failed") $) 11)) (-3446 (((-1056) $) 8)) (-2595 (((-3 (-1056) "failed") $) 12)) (-1457 (((-1056) $) 9)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) NIL)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3900 (((-107) $) 17)) (-2256 (((-787) $) NIL)) (-2463 (($ $) NIL)) (-1547 (((-107) $ $) NIL)))
-(((-1090) (-13 (-334 (-358) (-1056)) (-10 -8 (-15 -1801 ((-1056) $ (-1056))) (-15 -1801 ((-1056) $)) (-15 -3446 ((-1056) $)) (-15 -2863 ((-3 (-1056) "failed") $)) (-15 -2595 ((-3 (-1056) "failed") $)) (-15 -3900 ((-107) $))))) (T -1090))
-((-1801 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-2863 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-2595 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1090)))))
-(-13 (-334 (-358) (-1056)) (-10 -8 (-15 -1801 ((-1056) $ (-1056))) (-15 -1801 ((-1056) $)) (-15 -3446 ((-1056) $)) (-15 -2863 ((-3 (-1056) "failed") $)) (-15 -2595 ((-3 (-1056) "failed") $)) (-15 -3900 ((-107) $))))
-((-3709 (((-3 (-517) "failed") |#1|) 19)) (-2092 (((-3 (-517) "failed") |#1|) 13)) (-2448 (((-517) (-1056)) 28)))
-(((-1091 |#1|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") |#1|)) (-15 -2092 ((-3 (-517) "failed") |#1|)) (-15 -2448 ((-517) (-1056)))) (-961)) (T -1091))
-((-2448 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-1091 *4)) (-4 *4 (-961)))) (-2092 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))))
-(-10 -7 (-15 -3709 ((-3 (-517) "failed") |#1|)) (-15 -2092 ((-3 (-517) "failed") |#1|)) (-15 -2448 ((-517) (-1056))))
-((-2502 (((-1034 (-199))) 8)))
-(((-1092) (-10 -7 (-15 -2502 ((-1034 (-199)))))) (T -1092))
-((-2502 (*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1092)))))
-(-10 -7 (-15 -2502 ((-1034 (-199)))))
-((-2645 (($) 11)) (-3707 (($ $) 35)) (-3683 (($ $) 33)) (-1765 (($ $) 25)) (-3731 (($ $) 17)) (-1492 (($ $) 15)) (-3719 (($ $) 19)) (-1802 (($ $) 30)) (-3695 (($ $) 34)) (-1777 (($ $) 29)))
-(((-1093 |#1|) (-10 -8 (-15 -2645 (|#1|)) (-15 -3707 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1777 (|#1| |#1|))) (-1094)) (T -1093))
-NIL
-(-10 -8 (-15 -2645 (|#1|)) (-15 -3707 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)))
-((-1865 (($ $) 26)) (-1721 (($ $) 11)) (-1839 (($ $) 27)) (-1701 (($ $) 10)) (-1887 (($ $) 28)) (-1743 (($ $) 9)) (-2645 (($) 16)) (-1867 (($ $) 19)) (-2624 (($ $) 18)) (-1898 (($ $) 29)) (-1754 (($ $) 8)) (-1876 (($ $) 30)) (-1732 (($ $) 7)) (-1853 (($ $) 31)) (-1711 (($ $) 6)) (-3707 (($ $) 20)) (-1788 (($ $) 32)) (-3683 (($ $) 21)) (-1765 (($ $) 33)) (-3731 (($ $) 22)) (-1814 (($ $) 34)) (-1492 (($ $) 23)) (-1827 (($ $) 35)) (-3719 (($ $) 24)) (-1802 (($ $) 36)) (-3695 (($ $) 25)) (-1777 (($ $) 37)) (** (($ $ $) 17)))
-(((-1094) (-1184)) (T -1094))
-((-2645 (*1 *1) (-4 *1 (-1094))))
-(-13 (-1097) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2645 ($))))
-(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1097) . T))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 17)) (-3433 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-2953 (((-107) $ (-703)) 46)) (-1918 ((|#1| $ |#1|) 14 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 13 (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1536 (((-583 |#1|) $) 50 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 41)) (-1272 (((-107) $ $) 32 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 39)) (-2560 (((-583 |#1|) $) 51 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 49 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 22)) (-3847 (((-107) $ (-703)) 38)) (-3992 (((-583 |#1|) $) 36)) (-1763 (((-107) $) 35)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 73)) (-3619 (((-107) $) 9)) (-1746 (($) 10)) (-1449 ((|#1| $ "value") NIL)) (-2459 (((-517) $ $) 31)) (-2050 (((-583 $) $) 57)) (-3491 (((-107) $ $) 75)) (-1476 (((-583 $) $) 70)) (-3272 (($ $) 71)) (-2655 (((-107) $) 54)) (-3217 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4180))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 56)) (-2256 (((-787) $) 59 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 12)) (-2732 (((-107) $ $) 29 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 47 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 28 (|has| |#1| (-1003)))) (-2296 (((-703) $) 37 (|has| $ (-6 -4180)))))
-(((-1095 |#1|) (-13 (-926 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3433 ($ |#1| (-583 $))) (-15 -3433 ($ (-583 |#1|))) (-15 -3433 ($ |#1|)) (-15 -2655 ((-107) $)) (-15 -3272 ($ $)) (-15 -1476 ((-583 $) $)) (-15 -3491 ((-107) $ $)) (-15 -2050 ((-583 $) $)))) (-1003)) (T -1095))
-((-2655 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-3433 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1095 *2))) (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1095 *3)))) (-3433 (*1 *1 *2) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-3272 (*1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-3491 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
-(-13 (-926 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3433 ($ |#1| (-583 $))) (-15 -3433 ($ (-583 |#1|))) (-15 -3433 ($ |#1|)) (-15 -2655 ((-107) $)) (-15 -3272 ($ $)) (-15 -1476 ((-583 $) $)) (-15 -3491 ((-107) $ $)) (-15 -2050 ((-583 $) $))))
-((-1721 (($ $) 15)) (-1743 (($ $) 12)) (-1754 (($ $) 10)) (-1732 (($ $) 17)))
-(((-1096 |#1|) (-10 -8 (-15 -1732 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1721 (|#1| |#1|))) (-1097)) (T -1096))
-NIL
-(-10 -8 (-15 -1732 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)))
-((-1721 (($ $) 11)) (-1701 (($ $) 10)) (-1743 (($ $) 9)) (-1754 (($ $) 8)) (-1732 (($ $) 7)) (-1711 (($ $) 6)))
-(((-1097) (-1184)) (T -1097))
-((-1721 (*1 *1 *1) (-4 *1 (-1097))) (-1701 (*1 *1 *1) (-4 *1 (-1097))) (-1743 (*1 *1 *1) (-4 *1 (-1097))) (-1754 (*1 *1 *1) (-4 *1 (-1097))) (-1732 (*1 *1 *1) (-4 *1 (-1097))) (-1711 (*1 *1 *1) (-4 *1 (-1097))))
-(-13 (-10 -8 (-15 -1711 ($ $)) (-15 -1732 ($ $)) (-15 -1754 ($ $)) (-15 -1743 ($ $)) (-15 -1701 ($ $)) (-15 -1721 ($ $))))
-((-4090 ((|#2| |#2|) 85)) (-1908 (((-107) |#2|) 25)) (-3775 ((|#2| |#2|) 29)) (-3785 ((|#2| |#2|) 31)) (-2769 ((|#2| |#2| (-1073)) 79) ((|#2| |#2|) 80)) (-2858 (((-153 |#2|) |#2|) 27)) (-2637 ((|#2| |#2| (-1073)) 81) ((|#2| |#2|) 82)))
-(((-1098 |#1| |#2|) (-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -4090 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -2858 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -1098))
-((-2858 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-2637 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-2769 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
-(-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -4090 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -2858 ((-153 |#2|) |#2|)))
-((-2948 ((|#4| |#4| |#1|) 27)) (-2904 ((|#4| |#4| |#1|) 28)))
-(((-1099 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2948 (|#4| |#4| |#1|)) (-15 -2904 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1099))
-((-2904 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2948 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -2948 (|#4| |#4| |#1|)) (-15 -2904 (|#4| |#4| |#1|)))
-((-3404 ((|#2| |#2|) 132)) (-3969 ((|#2| |#2|) 129)) (-3922 ((|#2| |#2|) 120)) (-3306 ((|#2| |#2|) 117)) (-3173 ((|#2| |#2|) 125)) (-1671 ((|#2| |#2|) 113)) (-4047 ((|#2| |#2|) 42)) (-2590 ((|#2| |#2|) 93)) (-3670 ((|#2| |#2|) 73)) (-1407 ((|#2| |#2|) 127)) (-3712 ((|#2| |#2|) 115)) (-3677 ((|#2| |#2|) 137)) (-1368 ((|#2| |#2|) 135)) (-3165 ((|#2| |#2|) 136)) (-3535 ((|#2| |#2|) 134)) (-2609 ((|#2| |#2|) 146)) (-2647 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-814 |#1|))) (|has| |#2| (-808 |#1|)) (|has| |#1| (-558 (-814 |#1|))) (|has| |#1| (-808 |#1|))))) (-3604 ((|#2| |#2|) 74)) (-1482 ((|#2| |#2|) 138)) (-3502 ((|#2| |#2|) 139)) (-2405 ((|#2| |#2|) 126)) (-4073 ((|#2| |#2|) 114)) (-1519 ((|#2| |#2|) 133)) (-2522 ((|#2| |#2|) 131)) (-1739 ((|#2| |#2|) 121)) (-1527 ((|#2| |#2|) 119)) (-1427 ((|#2| |#2|) 123)) (-3524 ((|#2| |#2|) 111)))
-(((-1100 |#1| |#2|) (-10 -7 (-15 -3502 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -2522 (|#2| |#2|)) (-15 -3535 (|#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -2647 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1094))) (T -1100))
-((-2647 (*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3677 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3535 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2522 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1407 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2405 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1739 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1427 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3524 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(-10 -7 (-15 -3502 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -2522 (|#2| |#2|)) (-15 -3535 (|#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -2647 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|))
-((-3939 (((-107) |#5| $) 59) (((-107) $) 101)) (-2437 ((|#5| |#5| $) 74)) (-3536 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-1700 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 72)) (-1772 (((-3 $ "failed") (-583 |#5|)) 125)) (-1660 (((-3 $ "failed") $) 111)) (-3659 ((|#5| |#5| $) 93)) (-3283 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 30)) (-4049 ((|#5| |#5| $) 97)) (-3225 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 68)) (-2901 (((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) $) 54)) (-1497 (((-107) |#5| $) 57) (((-107) $) 102)) (-1976 ((|#4| $) 107)) (-2068 (((-3 |#5| "failed") $) 109)) (-2774 (((-583 |#5|) $) 48)) (-3852 (((-107) |#5| $) 66) (((-107) $) 106)) (-3522 ((|#5| |#5| $) 80)) (-3411 (((-107) $ $) 26)) (-1959 (((-107) |#5| $) 62) (((-107) $) 104)) (-3183 ((|#5| |#5| $) 77)) (-1647 (((-3 |#5| "failed") $) 108)) (-1672 (($ $ |#5|) 126)) (-3688 (((-703) $) 51)) (-2276 (($ (-583 |#5|)) 123)) (-2442 (($ $ |#4|) 121)) (-3759 (($ $ |#4|) 120)) (-2303 (($ $) 119)) (-2256 (((-787) $) NIL) (((-583 |#5|) $) 112)) (-1605 (((-703) $) 129)) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 44)) (-2114 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 99)) (-2614 (((-583 |#4|) $) 114)) (-1871 (((-107) |#4| $) 117)) (-1547 (((-107) $ $) 19)))
-(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1605 ((-703) |#1|)) (-15 -1672 (|#1| |#1| |#5|)) (-15 -3536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1871 ((-107) |#4| |#1|)) (-15 -2614 ((-583 |#4|) |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2068 ((-3 |#5| "failed") |#1|)) (-15 -1647 ((-3 |#5| "failed") |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -3659 (|#5| |#5| |#1|)) (-15 -3522 (|#5| |#5| |#1|)) (-15 -3183 (|#5| |#5| |#1|)) (-15 -2437 (|#5| |#5| |#1|)) (-15 -1700 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3225 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3852 ((-107) |#1|)) (-15 -1959 ((-107) |#1|)) (-15 -3939 ((-107) |#1|)) (-15 -2114 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -3852 ((-107) |#5| |#1|)) (-15 -1959 ((-107) |#5| |#1|)) (-15 -3939 ((-107) |#5| |#1|)) (-15 -3283 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1497 ((-107) |#1|)) (-15 -1497 ((-107) |#5| |#1|)) (-15 -2901 ((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) |#1|)) (-15 -3688 ((-703) |#1|)) (-15 -2774 ((-583 |#5|) |#1|)) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1976 (|#4| |#1|)) (-15 -1772 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2256 ((-583 |#5|) |#1|)) (-15 -2276 (|#1| (-583 |#5|))) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3536 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-1102 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -1101))
-NIL
-(-10 -8 (-15 -1605 ((-703) |#1|)) (-15 -1672 (|#1| |#1| |#5|)) (-15 -3536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1871 ((-107) |#4| |#1|)) (-15 -2614 ((-583 |#4|) |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2068 ((-3 |#5| "failed") |#1|)) (-15 -1647 ((-3 |#5| "failed") |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -3659 (|#5| |#5| |#1|)) (-15 -3522 (|#5| |#5| |#1|)) (-15 -3183 (|#5| |#5| |#1|)) (-15 -2437 (|#5| |#5| |#1|)) (-15 -1700 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3225 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3852 ((-107) |#1|)) (-15 -1959 ((-107) |#1|)) (-15 -3939 ((-107) |#1|)) (-15 -2114 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -3852 ((-107) |#5| |#1|)) (-15 -1959 ((-107) |#5| |#1|)) (-15 -3939 ((-107) |#5| |#1|)) (-15 -3283 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1497 ((-107) |#1|)) (-15 -1497 ((-107) |#5| |#1|)) (-15 -2901 ((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) |#1|)) (-15 -3688 ((-703) |#1|)) (-15 -2774 ((-583 |#5|) |#1|)) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1976 (|#4| |#1|)) (-15 -1772 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2256 ((-583 |#5|) |#1|)) (-15 -2276 (|#1| (-583 |#5|))) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3536 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
-((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-2068 (((-3 |#4| "failed") $) 83)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
-(((-1102 |#1| |#2| |#3| |#4|) (-1184) (-509) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1102))
-((-3411 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1942 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1102 *5 *6 *7 *8)))) (-1942 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1102 *6 *7 *8 *9)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1210 (-583 *6)) (|:| -1513 (-583 *6)))))) (-1497 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3283 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1102 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))) (-3939 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1959 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3852 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3225 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1102 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) (-1700 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1102 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))) (-2437 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3183 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3522 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3659 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2303 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-4049 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-3120 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1210 *1) (|:| -1513 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-1647 (*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2068 (*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1660 (*1 *1 *1) (|partial| -12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1871 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3536 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1102 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) (-1195 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
-(-13 (-893 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3411 ((-107) $ $)) (-15 -1942 ((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1942 ((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2774 ((-583 |t#4|) $)) (-15 -3688 ((-703) $)) (-15 -2901 ((-2 (|:| -1210 (-583 |t#4|)) (|:| -1513 (-583 |t#4|))) $)) (-15 -1497 ((-107) |t#4| $)) (-15 -1497 ((-107) $)) (-15 -3283 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -3939 ((-107) |t#4| $)) (-15 -1959 ((-107) |t#4| $)) (-15 -3852 ((-107) |t#4| $)) (-15 -2114 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -3939 ((-107) $)) (-15 -1959 ((-107) $)) (-15 -3852 ((-107) $)) (-15 -3225 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1700 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2437 (|t#4| |t#4| $)) (-15 -3183 (|t#4| |t#4| $)) (-15 -3522 (|t#4| |t#4| $)) (-15 -3659 (|t#4| |t#4| $)) (-15 -2303 ($ $)) (-15 -4049 (|t#4| |t#4| $)) (-15 -4029 ((-583 $) (-583 |t#4|))) (-15 -3120 ((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |t#4|)))) (-583 |t#4|))) (-15 -1647 ((-3 |t#4| "failed") $)) (-15 -2068 ((-3 |t#4| "failed") $)) (-15 -1660 ((-3 $ "failed") $)) (-15 -2614 ((-583 |t#3|) $)) (-15 -1871 ((-107) |t#3| $)) (-15 -3536 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1195 ((-3 $ "failed") $ |t#4|)) (-15 -1672 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -1605 ((-703) $)) |noBranch|)))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1108) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3520 (((-874 |#1|) $ (-703)) 16) (((-874 |#1|) $ (-703) (-703)) NIL)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $ (-1073) (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) NIL)) (-1339 (($ $ (-583 (-1073)) (-583 (-489 (-1073)))) NIL) (($ $ (-1073) (-489 (-1073))) NIL) (($ |#1| (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $ (-1073)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3352 (($ (-1 $) (-1073) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1672 (($ $ (-703)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ (-1073) $) NIL) (($ $ (-583 (-1073)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-3127 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-3688 (((-489 (-1073)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1073)) NIL) (($ (-874 |#1|)) NIL)) (-2720 ((|#1| $ (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (((-874 |#1|) $ (-703)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1103 |#1|) (-13 (-673 |#1| (-1073)) (-10 -8 (-15 -2720 ((-874 |#1|) $ (-703))) (-15 -2256 ($ (-1073))) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ (-1073) |#1|)) (-15 -3352 ($ (-1 $) (-1073) |#1|))) |noBranch|))) (-961)) (T -1103))
-((-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1103 *4)) (-4 *4 (-961)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1103 *3)))) (-4151 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-3352 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1103 *4))) (-5 *3 (-1073)) (-5 *1 (-1103 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
-(-13 (-673 |#1| (-1073)) (-10 -8 (-15 -2720 ((-874 |#1|) $ (-703))) (-15 -2256 ($ (-1073))) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ (-1073) |#1|)) (-15 -3352 ($ (-1 $) (-1073) |#1|))) |noBranch|)))
-((-2018 (($ |#1| (-583 (-583 (-865 (-199)))) (-107)) 15)) (-4091 (((-107) $ (-107)) 14)) (-3738 (((-107) $) 13)) (-1750 (((-583 (-583 (-865 (-199)))) $) 10)) (-2586 ((|#1| $) 8)) (-2145 (((-107) $) 12)))
-(((-1104 |#1|) (-10 -8 (-15 -2586 (|#1| $)) (-15 -1750 ((-583 (-583 (-865 (-199)))) $)) (-15 -2145 ((-107) $)) (-15 -3738 ((-107) $)) (-15 -4091 ((-107) $ (-107))) (-15 -2018 ($ |#1| (-583 (-583 (-865 (-199)))) (-107)))) (-891)) (T -1104))
-((-2018 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1104 *2)) (-4 *2 (-891)))) (-4091 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-2586 (*1 *2 *1) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-891)))))
-(-10 -8 (-15 -2586 (|#1| $)) (-15 -1750 ((-583 (-583 (-865 (-199)))) $)) (-15 -2145 ((-107) $)) (-15 -3738 ((-107) $)) (-15 -4091 ((-107) $ (-107))) (-15 -2018 ($ |#1| (-583 (-583 (-865 (-199)))) (-107))))
-((-2847 (((-865 (-199)) (-865 (-199))) 25)) (-2889 (((-865 (-199)) (-199) (-199) (-199) (-199)) 10)) (-4138 (((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199)))) 35)) (-3501 (((-199) (-865 (-199)) (-865 (-199))) 21)) (-2862 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 22)) (-1381 (((-583 (-583 (-199))) (-517)) 31)) (-1654 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 20)) (-1642 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 19)) (* (((-865 (-199)) (-199) (-865 (-199))) 18)))
-(((-1105) (-10 -7 (-15 -2889 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1642 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1654 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -3501 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -2862 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -2847 ((-865 (-199)) (-865 (-199)))) (-15 -1381 ((-583 (-583 (-199))) (-517))) (-15 -4138 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))) (T -1105))
-((-4138 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1105)) (-5 *3 (-865 *4)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1105)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-2862 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-3501 (*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1105)))) (-1654 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1105)))) (-2889 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)) (-5 *3 (-199)))))
-(-10 -7 (-15 -2889 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1642 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1654 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -3501 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -2862 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -2847 ((-865 (-199)) (-865 (-199)))) (-15 -1381 ((-583 (-583 (-199))) (-517))) (-15 -4138 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3536 ((|#1| $ (-703)) 13)) (-2195 (((-703) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2256 (((-879 |#1|) $) 10) (($ (-879 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1547 (((-107) $ $) 16 (|has| |#1| (-1003)))))
-(((-1106 |#1|) (-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2256 ($ (-879 |#1|))) (-15 -3536 (|#1| $ (-703))) (-15 -2195 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -1106))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1108)) (-5 *1 (-1106 *3)))) (-3536 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1106 *3)) (-4 *3 (-1108)))))
-(-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2256 ($ (-879 |#1|))) (-15 -3536 (|#1| $ (-703))) (-15 -2195 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
-((-1886 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517)) 79)) (-3018 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|))) 73)) (-2545 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|))) 58)))
-(((-1107 |#1|) (-10 -7 (-15 -3018 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -2545 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -1886 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517)))) (-319)) (T -1107))
-((-1886 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1069 (-1069 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-1069 (-1069 *5))))) (-2545 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))))
-(-10 -7 (-15 -3018 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -2545 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -1886 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517))))
-NIL
-(((-1108) (-1184)) (T -1108))
-NIL
-(-13 (-10 -7 (-6 -3353)))
-((-2758 (((-107)) 14)) (-1523 (((-1158) (-583 |#1|) (-583 |#1|)) 18) (((-1158) (-583 |#1|)) 19)) (-2550 (((-107) |#1| |#1|) 30 (|has| |#1| (-779)))) (-3847 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 26) (((-3 (-107) "failed") |#1| |#1|) 24)) (-1996 ((|#1| (-583 |#1|)) 31 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 27)) (-3602 (((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|)))) 16)))
-(((-1109 |#1|) (-10 -7 (-15 -1523 ((-1158) (-583 |#1|))) (-15 -1523 ((-1158) (-583 |#1|) (-583 |#1|))) (-15 -3602 ((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|))))) (-15 -3847 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3847 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -1996 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2758 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -1996 (|#1| (-583 |#1|))) (-15 -2550 ((-107) |#1| |#1|))) |noBranch|)) (-1003)) (T -1109))
-((-2550 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1109 *2)))) (-2758 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-1003)))) (-3847 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1109 *3)))) (-3847 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-3602 (*1 *2) (-12 (-5 *2 (-2 (|:| -3100 (-583 *3)) (|:| -3521 (-583 *3)))) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-1523 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))))
-(-10 -7 (-15 -1523 ((-1158) (-583 |#1|))) (-15 -1523 ((-1158) (-583 |#1|) (-583 |#1|))) (-15 -3602 ((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|))))) (-15 -3847 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3847 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -1996 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2758 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -1996 (|#1| (-583 |#1|))) (-15 -2550 ((-107) |#1| |#1|))) |noBranch|))
-((-3957 (((-1158) (-583 (-1073)) (-583 (-1073))) 12) (((-1158) (-583 (-1073))) 10)) (-3510 (((-1158)) 13)) (-2946 (((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) 17)))
-(((-1110) (-10 -7 (-15 -3957 ((-1158) (-583 (-1073)))) (-15 -3957 ((-1158) (-583 (-1073)) (-583 (-1073)))) (-15 -2946 ((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073)))))) (-15 -3510 ((-1158))))) (T -1110))
-((-3510 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1110)))) (-2946 (*1 *2) (-12 (-5 *2 (-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) (-5 *1 (-1110)))) (-3957 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))))
-(-10 -7 (-15 -3957 ((-1158) (-583 (-1073)))) (-15 -3957 ((-1158) (-583 (-1073)) (-583 (-1073)))) (-15 -2946 ((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073)))))) (-15 -3510 ((-1158))))
-((-2535 (($ $) 16)) (-3849 (((-107) $) 23)))
-(((-1111 |#1|) (-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -3849 ((-107) |#1|))) (-1112)) (T -1111))
-NIL
-(-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -3849 ((-107) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3849 (((-107) $) 53)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 50)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-1112) (-1184)) (T -1112))
-((-3849 (*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-107)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) (-2535 (*1 *1 *1) (-4 *1 (-1112))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))))
-(-13 (-421) (-10 -8 (-15 -3849 ((-107) $)) (-15 -2759 ((-388 $) $)) (-15 -2535 ($ $)) (-15 -3755 ((-388 $) $))))
+((-3518 (((-1055 |#1|) (-1055 |#1|)) 17)) (-2420 (((-1055 |#1|) (-1055 |#1|)) 13)) (-2656 (((-1055 |#1|) (-1055 |#1|) (-517) (-517)) 20)) (-2872 (((-1055 |#1|) (-1055 |#1|)) 15)))
+(((-1051 |#1|) (-10 -7 (-15 -2420 ((-1055 |#1|) (-1055 |#1|))) (-15 -2872 ((-1055 |#1|) (-1055 |#1|))) (-15 -3518 ((-1055 |#1|) (-1055 |#1|))) (-15 -2656 ((-1055 |#1|) (-1055 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1051))
+((-2656 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1051 *4)))) (-3518 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))) (-2420 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))))
+(-10 -7 (-15 -2420 ((-1055 |#1|) (-1055 |#1|))) (-15 -2872 ((-1055 |#1|) (-1055 |#1|))) (-15 -3518 ((-1055 |#1|) (-1055 |#1|))) (-15 -2656 ((-1055 |#1|) (-1055 |#1|) (-517) (-517))))
+((-2337 (((-1055 |#1|) (-1055 (-1055 |#1|))) 15)))
+(((-1052 |#1|) (-10 -7 (-15 -2337 ((-1055 |#1|) (-1055 (-1055 |#1|))))) (-1109)) (T -1052))
+((-2337 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1052 *4)) (-4 *4 (-1109)))))
+(-10 -7 (-15 -2337 ((-1055 |#1|) (-1055 (-1055 |#1|)))))
+((-2325 (((-1055 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)) 25)) (-2521 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)) 26)) (-1857 (((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|)) 16)))
+(((-1053 |#1| |#2|) (-10 -7 (-15 -1857 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (-15 -2325 ((-1055 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|))) (-15 -2521 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)))) (-1109) (-1109)) (T -1053))
+((-2521 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1055 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-1053 *5 *2)))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1055 *6)) (-4 *6 (-1109)) (-4 *3 (-1109)) (-5 *2 (-1055 *3)) (-5 *1 (-1053 *6 *3)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1055 *6)) (-5 *1 (-1053 *5 *6)))))
+(-10 -7 (-15 -1857 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (-15 -2325 ((-1055 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|))) (-15 -2521 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|))))
+((-1857 (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-1055 |#2|)) 21)))
+(((-1054 |#1| |#2| |#3|) (-10 -7 (-15 -1857 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-1055 |#2|)))) (-1109) (-1109) (-1109)) (T -1054))
+((-1857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-1054 *6 *7 *8)))))
+(-10 -7 (-15 -1857 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-1055 |#2|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) NIL)) (-2864 ((|#1| $) NIL)) (-2602 (($ $) 50)) (-3423 (((-1159) $ (-517) (-517)) 75 (|has| $ (-6 -4184)))) (-2809 (($ $ (-517)) 109 (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-1668 (((-787) $) 40 (|has| |#1| (-1003)))) (-1338 (((-107)) 39 (|has| |#1| (-1003)))) (-4072 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3499 (($ $ $) 97 (|has| $ (-6 -4184))) (($ $ (-517) $) 120)) (-3573 ((|#1| $ |#1|) 106 (|has| $ (-6 -4184)))) (-3043 ((|#1| $ |#1|) 101 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 103 (|has| $ (-6 -4184))) (($ $ "rest" $) 105 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 108 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 88 (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) 54 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) 57)) (-2849 ((|#1| $) NIL)) (-3473 (($) NIL T CONST)) (-1987 (($ $) 14)) (-1644 (($ $) 28) (($ $ (-703)) 87)) (-3768 (((-107) (-583 |#1|) $) 114 (|has| |#1| (-1003)))) (-1265 (($ (-583 |#1|)) 111)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) 56)) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2570 (((-107) $) NIL)) (-3037 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2020 (((-1159) (-517) $) 119 (|has| |#1| (-1003)))) (-3742 (((-703) $) 116)) (-3200 (((-583 $) $) NIL)) (-1703 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3366 (($ (-703) |#1|) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 72 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 62) (($ (-1 |#1| |#1| |#1|) $ $) 66)) (-2942 (((-107) $ (-703)) NIL)) (-3617 (((-583 |#1|) $) NIL)) (-3762 (((-107) $) NIL)) (-2403 (($ $) 89)) (-3876 (((-107) $) 13)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1988 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2454 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) 73)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3368 (($ (-1 |#1|)) 122) (($ (-1 |#1| |#1|) |#1|) 123)) (-3265 ((|#1| $) 10)) (-1631 ((|#1| $) 27) (($ $ (-703)) 48)) (-2699 (((-2 (|:| |cycle?| (-107)) (|:| -1610 (-703)) (|:| |period| (-703))) (-703) $) 24)) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3422 (($ (-1 (-107) |#1|) $) 124)) (-3436 (($ (-1 (-107) |#1|) $) 125)) (-1254 (($ $ |#1|) 67 (|has| $ (-6 -4184)))) (-3467 (($ $ (-517)) 31)) (-2660 (((-107) $) 71)) (-3800 (((-107) $) 12)) (-1915 (((-107) $) 115)) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 20)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) 15)) (-1326 (($) 42)) (-1986 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1122 (-517))) NIL) ((|#1| $ (-517)) 53) ((|#1| $ (-517) |#1|) NIL)) (-1482 (((-517) $ $) 47)) (-3685 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3696 (($ (-1 $)) 46)) (-2562 (((-107) $) 68)) (-4084 (($ $) 69)) (-3145 (($ $) 98 (|has| $ (-6 -4184)))) (-2943 (((-703) $) NIL)) (-2103 (($ $) NIL)) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) 43)) (-3582 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 52)) (-1533 (($ |#1| $) 96)) (-1286 (($ $ $) 99 (|has| $ (-6 -4184))) (($ $ |#1|) 100 (|has| $ (-6 -4184)))) (-2337 (($ $ $) 77) (($ |#1| $) 44) (($ (-583 $)) 82) (($ $ |#1|) 76)) (-2860 (($ $) 49)) (-2182 (((-787) $) 41 (|has| |#1| (-1003))) (($ (-583 |#1|)) 110)) (-3935 (((-583 $) $) NIL)) (-3172 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 113 (|has| |#1| (-1003)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1055 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4184) (-15 -2182 ($ (-583 |#1|))) (-15 -1265 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -3768 ((-107) (-583 |#1|) $)) |noBranch|) (-15 -2699 ((-2 (|:| |cycle?| (-107)) (|:| -1610 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3696 ($ (-1 $))) (-15 -1533 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2020 ((-1159) (-517) $)) (-15 -1668 ((-787) $)) (-15 -1338 ((-107)))) |noBranch|) (-15 -3499 ($ $ (-517) $)) (-15 -3368 ($ (-1 |#1|))) (-15 -3368 ($ (-1 |#1| |#1|) |#1|)) (-15 -3422 ($ (-1 (-107) |#1|) $)) (-15 -3436 ($ (-1 (-107) |#1|) $)))) (-1109)) (T -1055))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-3768 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1109)) (-5 *2 (-107)) (-5 *1 (-1055 *4)))) (-2699 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1610 (-703)) (|:| |period| (-703)))) (-5 *1 (-1055 *4)) (-4 *4 (-1109)) (-5 *3 (-703)))) (-3696 (*1 *1 *2) (-12 (-5 *2 (-1 (-1055 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-1109)))) (-1533 (*1 *1 *2 *1) (-12 (-5 *1 (-1055 *2)) (-4 *2 (-1109)))) (-2020 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1055 *4)) (-4 *4 (-1003)) (-4 *4 (-1109)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)))) (-1338 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)))) (-3499 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1055 *3)) (-4 *3 (-1109)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-3368 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-3422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-3436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
+(-13 (-610 |#1|) (-10 -8 (-6 -4184) (-15 -2182 ($ (-583 |#1|))) (-15 -1265 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -3768 ((-107) (-583 |#1|) $)) |noBranch|) (-15 -2699 ((-2 (|:| |cycle?| (-107)) (|:| -1610 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3696 ($ (-1 $))) (-15 -1533 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2020 ((-1159) (-517) $)) (-15 -1668 ((-787) $)) (-15 -1338 ((-107)))) |noBranch|) (-15 -3499 ($ $ (-517) $)) (-15 -3368 ($ (-1 |#1|))) (-15 -3368 ($ (-1 |#1| |#1|) |#1|)) (-15 -3422 ($ (-1 (-107) |#1|) $)) (-15 -3436 ($ (-1 (-107) |#1|) $))))
+((-2571 (((-107) $ $) 18)) (-2160 (($ $) 120)) (-2517 (($ $) 121)) (-3847 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-1433 (((-107) $ $) 118)) (-1409 (((-107) $ $ (-517)) 117)) (-3887 (($ (-517)) 127)) (-2861 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2866 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-2740 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4184))))) (-3056 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-1799 (((-107) $ (-703)) 8)) (-2307 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4184))) (((-131) $ (-1122 (-517)) (-131)) 58 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-3246 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-1227 (($ $) 90 (|has| $ (-6 -4184)))) (-2979 (($ $) 100)) (-2191 (($ $ (-1122 (-517)) $) 114)) (-1667 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4183)))) (-2521 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4183)))) (-1226 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4184)))) (-4020 (((-131) $ (-517)) 51)) (-1456 (((-107) $ $) 119)) (-2446 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-3037 (((-583 (-131)) $) 30 (|has| $ (-6 -4183)))) (-3366 (($ (-703) (-131)) 69)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-1575 (($ $ $) 87 (|has| (-131) (-779)))) (-2262 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-1196 (((-583 (-131)) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-2986 (($ $ $) 86 (|has| (-131) (-779)))) (-1317 (((-107) $ $ (-131)) 115)) (-2167 (((-703) $ $ (-131)) 116)) (-1213 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-4006 (($ $) 122)) (-2676 (($ $) 123)) (-2942 (((-107) $ (-703)) 10)) (-3259 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3865 (((-1057) $) 22)) (-2454 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3094 (((-1021) $) 21)) (-1631 (((-131) $) 42 (|has| (-517) (-779)))) (-2293 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-1254 (($ $ (-131)) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3042 (((-583 (-131)) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1122 (-517))) 63) (($ $ $) 102)) (-3685 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3105 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4183))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-3966 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2197 (($ (-583 (-131))) 70)) (-2337 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2182 (($ (-131)) 111) (((-787) $) 20)) (-3883 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4183)))) (-1693 (((-1057) $) 131) (((-1057) $ (-107)) 130) (((-1159) (-754) $) 129) (((-1159) (-754) $ (-107)) 128)) (-1593 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1570 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1539 (((-107) $ $) 19)) (-1582 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1560 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-1056) (-1185)) (T -1056))
+((-3887 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1056)))))
+(-13 (-1043) (-1003) (-760) (-10 -8 (-15 -3887 ($ (-517)))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1003) . T) ((-1043) . T) ((-1109) . T))
+((-2571 (((-107) $ $) NIL)) (-2160 (($ $) NIL)) (-2517 (($ $) NIL)) (-3847 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1433 (((-107) $ $) NIL)) (-1409 (((-107) $ $ (-517)) NIL)) (-3887 (($ (-517)) 7)) (-2861 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-2866 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-2740 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-131) (-779))))) (-3056 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4184))) (((-131) $ (-1122 (-517)) (-131)) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-3246 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-2191 (($ $ (-1122 (-517)) $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-1971 (($ (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1226 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4184)))) (-4020 (((-131) $ (-517)) NIL)) (-1456 (((-107) $ $) NIL)) (-2446 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1003))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-3037 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-3366 (($ (-703) (-131)) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| (-131) (-779)))) (-2262 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-1196 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| (-131) (-779)))) (-1317 (((-107) $ $ (-131)) NIL)) (-2167 (((-703) $ $ (-131)) NIL)) (-1213 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-4006 (($ $) NIL)) (-2676 (($ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3259 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3865 (((-1057) $) NIL)) (-2454 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-131) $) NIL (|has| (-517) (-779)))) (-2293 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-1254 (($ $ (-131)) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3042 (((-583 (-131)) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1122 (-517))) NIL) (($ $ $) NIL)) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3105 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2197 (($ (-583 (-131))) NIL)) (-2337 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2182 (($ (-131)) NIL) (((-787) $) NIL)) (-3883 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1693 (((-1057) $) 18) (((-1057) $ (-107)) 20) (((-1159) (-754) $) 21) (((-1159) (-754) $ (-107)) 22)) (-1593 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1570 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1560 (((-107) $ $) NIL (|has| (-131) (-779)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1057) (-1056)) (T -1057))
+NIL
+(-1056)
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL)) (-3423 (((-1159) $ (-1057) (-1057)) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-1057) |#1|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 |#1| "failed") (-1057) $) NIL)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003))))) (-2111 (($ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#1| "failed") (-1057) $) NIL)) (-1971 (($ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-1057) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-1057)) NIL)) (-3037 (((-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-1057) $) NIL (|has| (-1057) (-779)))) (-1196 (((-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-1057) $) NIL (|has| (-1057) (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-3799 (((-583 (-1057)) $) NIL)) (-2555 (((-107) (-1057) $) NIL)) (-1835 (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL)) (-4086 (((-583 (-1057)) $) NIL)) (-3646 (((-107) (-1057) $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-1631 ((|#1| $) NIL (|has| (-1057) (-779)))) (-2293 (((-3 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) "failed") (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (($ $ (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL (-12 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-280 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-1057)) NIL) ((|#1| $ (-1057) |#1|) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 (-1057)) (|:| -1266 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1058 |#1|) (-13 (-1086 (-1057) |#1|) (-10 -7 (-6 -4183))) (-1003)) (T -1058))
+NIL
+(-13 (-1086 (-1057) |#1|) (-10 -7 (-6 -4183)))
+((-3294 (((-1055 |#1|) (-1055 |#1|)) 77)) (-1568 (((-3 (-1055 |#1|) "failed") (-1055 |#1|)) 37)) (-3888 (((-1055 |#1|) (-377 (-517)) (-1055 |#1|)) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (((-1055 |#1|) |#1| (-1055 |#1|)) 123 (|has| |#1| (-333)))) (-2636 (((-1055 |#1|) (-1055 |#1|)) 90)) (-3708 (((-1055 (-517)) (-517)) 57)) (-1291 (((-1055 |#1|) (-1055 (-1055 |#1|))) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1712 (((-1055 |#1|) (-517) (-517) (-1055 |#1|)) 95)) (-3327 (((-1055 |#1|) |#1| (-517)) 45)) (-3713 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 60)) (-2515 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 121 (|has| |#1| (-333)))) (-3653 (((-1055 |#1|) |#1| (-1 (-1055 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-3878 (((-1055 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1055 |#1|))) 122 (|has| |#1| (-333)))) (-1766 (((-1055 |#1|) (-1055 |#1|)) 89)) (-3919 (((-1055 |#1|) (-1055 |#1|)) 76)) (-2509 (((-1055 |#1|) (-517) (-517) (-1055 |#1|)) 96)) (-2863 (((-1055 |#1|) |#1| (-1055 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-3410 (((-1055 (-517)) (-517)) 56)) (-3417 (((-1055 |#1|) |#1|) 59)) (-1460 (((-1055 |#1|) (-1055 |#1|) (-517) (-517)) 92)) (-1439 (((-1055 |#1|) (-1 |#1| (-517)) (-1055 |#1|)) 66)) (-2349 (((-3 (-1055 |#1|) "failed") (-1055 |#1|) (-1055 |#1|)) 35)) (-2871 (((-1055 |#1|) (-1055 |#1|)) 91)) (-1979 (((-1055 |#1|) (-1055 |#1|) |#1|) 71)) (-2466 (((-1055 |#1|) (-1055 |#1|)) 62)) (-2595 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 72)) (-2182 (((-1055 |#1|) |#1|) 67)) (-2121 (((-1055 |#1|) (-1055 (-1055 |#1|))) 82)) (-1649 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 36)) (-1637 (((-1055 |#1|) (-1055 |#1|)) 21) (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 23)) (-1626 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 17)) (* (((-1055 |#1|) (-1055 |#1|) |#1|) 29) (((-1055 |#1|) |#1| (-1055 |#1|)) 26) (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 27)))
+(((-1059 |#1|) (-10 -7 (-15 -1626 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1637 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1637 ((-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -2349 ((-3 (-1055 |#1|) "failed") (-1055 |#1|) (-1055 |#1|))) (-15 -1649 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1568 ((-3 (-1055 |#1|) "failed") (-1055 |#1|))) (-15 -3327 ((-1055 |#1|) |#1| (-517))) (-15 -3410 ((-1055 (-517)) (-517))) (-15 -3708 ((-1055 (-517)) (-517))) (-15 -3417 ((-1055 |#1|) |#1|)) (-15 -3713 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -2466 ((-1055 |#1|) (-1055 |#1|))) (-15 -1439 ((-1055 |#1|) (-1 |#1| (-517)) (-1055 |#1|))) (-15 -2182 ((-1055 |#1|) |#1|)) (-15 -1979 ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -2595 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3919 ((-1055 |#1|) (-1055 |#1|))) (-15 -3294 ((-1055 |#1|) (-1055 |#1|))) (-15 -2121 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -1766 ((-1055 |#1|) (-1055 |#1|))) (-15 -2636 ((-1055 |#1|) (-1055 |#1|))) (-15 -2871 ((-1055 |#1|) (-1055 |#1|))) (-15 -1460 ((-1055 |#1|) (-1055 |#1|) (-517) (-517))) (-15 -1712 ((-1055 |#1|) (-517) (-517) (-1055 |#1|))) (-15 -2509 ((-1055 |#1|) (-517) (-517) (-1055 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 -3653 ((-1055 |#1|) |#1| (-1 (-1055 |#1|)))) (-15 -1291 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -3888 ((-1055 |#1|) (-377 (-517)) (-1055 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2515 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3878 ((-1055 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1055 |#1|)))) (-15 -2651 ((-1055 |#1|) |#1| (-1055 |#1|)))) |noBranch|)) (-961)) (T -1059))
+((-2651 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-3878 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1055 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)))) (-2515 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1059 *4)))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))) (-3653 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1055 *3))) (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-2863 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2509 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) (-1712 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) (-1460 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) (-2871 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-961)))) (-3294 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2595 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1979 (*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) (-1439 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-3713 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-3417 (*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) (-3708 (*1 *2 *3) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-1059 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-3410 (*1 *2 *3) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-1059 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) (-1568 (*1 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1649 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2349 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1637 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1626 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
+(-10 -7 (-15 -1626 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1637 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1637 ((-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -2349 ((-3 (-1055 |#1|) "failed") (-1055 |#1|) (-1055 |#1|))) (-15 -1649 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1568 ((-3 (-1055 |#1|) "failed") (-1055 |#1|))) (-15 -3327 ((-1055 |#1|) |#1| (-517))) (-15 -3410 ((-1055 (-517)) (-517))) (-15 -3708 ((-1055 (-517)) (-517))) (-15 -3417 ((-1055 |#1|) |#1|)) (-15 -3713 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -2466 ((-1055 |#1|) (-1055 |#1|))) (-15 -1439 ((-1055 |#1|) (-1 |#1| (-517)) (-1055 |#1|))) (-15 -2182 ((-1055 |#1|) |#1|)) (-15 -1979 ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -2595 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3919 ((-1055 |#1|) (-1055 |#1|))) (-15 -3294 ((-1055 |#1|) (-1055 |#1|))) (-15 -2121 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -1766 ((-1055 |#1|) (-1055 |#1|))) (-15 -2636 ((-1055 |#1|) (-1055 |#1|))) (-15 -2871 ((-1055 |#1|) (-1055 |#1|))) (-15 -1460 ((-1055 |#1|) (-1055 |#1|) (-517) (-517))) (-15 -1712 ((-1055 |#1|) (-517) (-517) (-1055 |#1|))) (-15 -2509 ((-1055 |#1|) (-517) (-517) (-1055 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 -3653 ((-1055 |#1|) |#1| (-1 (-1055 |#1|)))) (-15 -1291 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -3888 ((-1055 |#1|) (-377 (-517)) (-1055 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2515 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3878 ((-1055 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1055 |#1|)))) (-15 -2651 ((-1055 |#1|) |#1| (-1055 |#1|)))) |noBranch|))
+((-1834 (((-1055 |#1|) (-1055 |#1|)) 57)) (-1710 (((-1055 |#1|) (-1055 |#1|)) 39)) (-1812 (((-1055 |#1|) (-1055 |#1|)) 53)) (-1685 (((-1055 |#1|) (-1055 |#1|)) 35)) (-1851 (((-1055 |#1|) (-1055 |#1|)) 60)) (-1731 (((-1055 |#1|) (-1055 |#1|)) 42)) (-1826 (((-1055 |#1|) (-1055 |#1|)) 31)) (-2459 (((-1055 |#1|) (-1055 |#1|)) 27)) (-1860 (((-1055 |#1|) (-1055 |#1|)) 61)) (-1741 (((-1055 |#1|) (-1055 |#1|)) 43)) (-1842 (((-1055 |#1|) (-1055 |#1|)) 58)) (-1722 (((-1055 |#1|) (-1055 |#1|)) 40)) (-1824 (((-1055 |#1|) (-1055 |#1|)) 55)) (-1698 (((-1055 |#1|) (-1055 |#1|)) 37)) (-3642 (((-1055 |#1|) (-1055 |#1|)) 65)) (-1773 (((-1055 |#1|) (-1055 |#1|)) 47)) (-3622 (((-1055 |#1|) (-1055 |#1|)) 63)) (-1751 (((-1055 |#1|) (-1055 |#1|)) 45)) (-3661 (((-1055 |#1|) (-1055 |#1|)) 68)) (-1794 (((-1055 |#1|) (-1055 |#1|)) 50)) (-1279 (((-1055 |#1|) (-1055 |#1|)) 69)) (-1803 (((-1055 |#1|) (-1055 |#1|)) 51)) (-3650 (((-1055 |#1|) (-1055 |#1|)) 67)) (-1784 (((-1055 |#1|) (-1055 |#1|)) 49)) (-3631 (((-1055 |#1|) (-1055 |#1|)) 66)) (-1762 (((-1055 |#1|) (-1055 |#1|)) 48)) (** (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 33)))
+(((-1060 |#1|) (-10 -7 (-15 -2459 ((-1055 |#1|) (-1055 |#1|))) (-15 -1826 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1685 ((-1055 |#1|) (-1055 |#1|))) (-15 -1698 ((-1055 |#1|) (-1055 |#1|))) (-15 -1710 ((-1055 |#1|) (-1055 |#1|))) (-15 -1722 ((-1055 |#1|) (-1055 |#1|))) (-15 -1731 ((-1055 |#1|) (-1055 |#1|))) (-15 -1741 ((-1055 |#1|) (-1055 |#1|))) (-15 -1751 ((-1055 |#1|) (-1055 |#1|))) (-15 -1762 ((-1055 |#1|) (-1055 |#1|))) (-15 -1773 ((-1055 |#1|) (-1055 |#1|))) (-15 -1784 ((-1055 |#1|) (-1055 |#1|))) (-15 -1794 ((-1055 |#1|) (-1055 |#1|))) (-15 -1803 ((-1055 |#1|) (-1055 |#1|))) (-15 -1812 ((-1055 |#1|) (-1055 |#1|))) (-15 -1824 ((-1055 |#1|) (-1055 |#1|))) (-15 -1834 ((-1055 |#1|) (-1055 |#1|))) (-15 -1842 ((-1055 |#1|) (-1055 |#1|))) (-15 -1851 ((-1055 |#1|) (-1055 |#1|))) (-15 -1860 ((-1055 |#1|) (-1055 |#1|))) (-15 -3622 ((-1055 |#1|) (-1055 |#1|))) (-15 -3631 ((-1055 |#1|) (-1055 |#1|))) (-15 -3642 ((-1055 |#1|) (-1055 |#1|))) (-15 -3650 ((-1055 |#1|) (-1055 |#1|))) (-15 -3661 ((-1055 |#1|) (-1055 |#1|))) (-15 -1279 ((-1055 |#1|) (-1055 |#1|)))) (-37 (-377 (-517)))) (T -1060))
+((-1279 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3661 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1812 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(-10 -7 (-15 -2459 ((-1055 |#1|) (-1055 |#1|))) (-15 -1826 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1685 ((-1055 |#1|) (-1055 |#1|))) (-15 -1698 ((-1055 |#1|) (-1055 |#1|))) (-15 -1710 ((-1055 |#1|) (-1055 |#1|))) (-15 -1722 ((-1055 |#1|) (-1055 |#1|))) (-15 -1731 ((-1055 |#1|) (-1055 |#1|))) (-15 -1741 ((-1055 |#1|) (-1055 |#1|))) (-15 -1751 ((-1055 |#1|) (-1055 |#1|))) (-15 -1762 ((-1055 |#1|) (-1055 |#1|))) (-15 -1773 ((-1055 |#1|) (-1055 |#1|))) (-15 -1784 ((-1055 |#1|) (-1055 |#1|))) (-15 -1794 ((-1055 |#1|) (-1055 |#1|))) (-15 -1803 ((-1055 |#1|) (-1055 |#1|))) (-15 -1812 ((-1055 |#1|) (-1055 |#1|))) (-15 -1824 ((-1055 |#1|) (-1055 |#1|))) (-15 -1834 ((-1055 |#1|) (-1055 |#1|))) (-15 -1842 ((-1055 |#1|) (-1055 |#1|))) (-15 -1851 ((-1055 |#1|) (-1055 |#1|))) (-15 -1860 ((-1055 |#1|) (-1055 |#1|))) (-15 -3622 ((-1055 |#1|) (-1055 |#1|))) (-15 -3631 ((-1055 |#1|) (-1055 |#1|))) (-15 -3642 ((-1055 |#1|) (-1055 |#1|))) (-15 -3650 ((-1055 |#1|) (-1055 |#1|))) (-15 -3661 ((-1055 |#1|) (-1055 |#1|))) (-15 -1279 ((-1055 |#1|) (-1055 |#1|))))
+((-1834 (((-1055 |#1|) (-1055 |#1|)) 100)) (-1710 (((-1055 |#1|) (-1055 |#1|)) 64)) (-3665 (((-2 (|:| -1812 (-1055 |#1|)) (|:| -1824 (-1055 |#1|))) (-1055 |#1|)) 96)) (-1812 (((-1055 |#1|) (-1055 |#1|)) 97)) (-3299 (((-2 (|:| -1685 (-1055 |#1|)) (|:| -1698 (-1055 |#1|))) (-1055 |#1|)) 53)) (-1685 (((-1055 |#1|) (-1055 |#1|)) 54)) (-1851 (((-1055 |#1|) (-1055 |#1|)) 102)) (-1731 (((-1055 |#1|) (-1055 |#1|)) 71)) (-1826 (((-1055 |#1|) (-1055 |#1|)) 39)) (-2459 (((-1055 |#1|) (-1055 |#1|)) 36)) (-1860 (((-1055 |#1|) (-1055 |#1|)) 103)) (-1741 (((-1055 |#1|) (-1055 |#1|)) 72)) (-1842 (((-1055 |#1|) (-1055 |#1|)) 101)) (-1722 (((-1055 |#1|) (-1055 |#1|)) 67)) (-1824 (((-1055 |#1|) (-1055 |#1|)) 98)) (-1698 (((-1055 |#1|) (-1055 |#1|)) 55)) (-3642 (((-1055 |#1|) (-1055 |#1|)) 111)) (-1773 (((-1055 |#1|) (-1055 |#1|)) 86)) (-3622 (((-1055 |#1|) (-1055 |#1|)) 105)) (-1751 (((-1055 |#1|) (-1055 |#1|)) 82)) (-3661 (((-1055 |#1|) (-1055 |#1|)) 115)) (-1794 (((-1055 |#1|) (-1055 |#1|)) 90)) (-1279 (((-1055 |#1|) (-1055 |#1|)) 117)) (-1803 (((-1055 |#1|) (-1055 |#1|)) 92)) (-3650 (((-1055 |#1|) (-1055 |#1|)) 113)) (-1784 (((-1055 |#1|) (-1055 |#1|)) 88)) (-3631 (((-1055 |#1|) (-1055 |#1|)) 107)) (-1762 (((-1055 |#1|) (-1055 |#1|)) 84)) (** (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 40)))
+(((-1061 |#1|) (-10 -7 (-15 -2459 ((-1055 |#1|) (-1055 |#1|))) (-15 -1826 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3299 ((-2 (|:| -1685 (-1055 |#1|)) (|:| -1698 (-1055 |#1|))) (-1055 |#1|))) (-15 -1685 ((-1055 |#1|) (-1055 |#1|))) (-15 -1698 ((-1055 |#1|) (-1055 |#1|))) (-15 -1710 ((-1055 |#1|) (-1055 |#1|))) (-15 -1722 ((-1055 |#1|) (-1055 |#1|))) (-15 -1731 ((-1055 |#1|) (-1055 |#1|))) (-15 -1741 ((-1055 |#1|) (-1055 |#1|))) (-15 -1751 ((-1055 |#1|) (-1055 |#1|))) (-15 -1762 ((-1055 |#1|) (-1055 |#1|))) (-15 -1773 ((-1055 |#1|) (-1055 |#1|))) (-15 -1784 ((-1055 |#1|) (-1055 |#1|))) (-15 -1794 ((-1055 |#1|) (-1055 |#1|))) (-15 -1803 ((-1055 |#1|) (-1055 |#1|))) (-15 -3665 ((-2 (|:| -1812 (-1055 |#1|)) (|:| -1824 (-1055 |#1|))) (-1055 |#1|))) (-15 -1812 ((-1055 |#1|) (-1055 |#1|))) (-15 -1824 ((-1055 |#1|) (-1055 |#1|))) (-15 -1834 ((-1055 |#1|) (-1055 |#1|))) (-15 -1842 ((-1055 |#1|) (-1055 |#1|))) (-15 -1851 ((-1055 |#1|) (-1055 |#1|))) (-15 -1860 ((-1055 |#1|) (-1055 |#1|))) (-15 -3622 ((-1055 |#1|) (-1055 |#1|))) (-15 -3631 ((-1055 |#1|) (-1055 |#1|))) (-15 -3642 ((-1055 |#1|) (-1055 |#1|))) (-15 -3650 ((-1055 |#1|) (-1055 |#1|))) (-15 -3661 ((-1055 |#1|) (-1055 |#1|))) (-15 -1279 ((-1055 |#1|) (-1055 |#1|)))) (-37 (-377 (-517)))) (T -1061))
+((-1279 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3661 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1812 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3665 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1812 (-1055 *4)) (|:| -1824 (-1055 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-1055 *4)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3299 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1685 (-1055 *4)) (|:| -1698 (-1055 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-1055 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(-10 -7 (-15 -2459 ((-1055 |#1|) (-1055 |#1|))) (-15 -1826 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3299 ((-2 (|:| -1685 (-1055 |#1|)) (|:| -1698 (-1055 |#1|))) (-1055 |#1|))) (-15 -1685 ((-1055 |#1|) (-1055 |#1|))) (-15 -1698 ((-1055 |#1|) (-1055 |#1|))) (-15 -1710 ((-1055 |#1|) (-1055 |#1|))) (-15 -1722 ((-1055 |#1|) (-1055 |#1|))) (-15 -1731 ((-1055 |#1|) (-1055 |#1|))) (-15 -1741 ((-1055 |#1|) (-1055 |#1|))) (-15 -1751 ((-1055 |#1|) (-1055 |#1|))) (-15 -1762 ((-1055 |#1|) (-1055 |#1|))) (-15 -1773 ((-1055 |#1|) (-1055 |#1|))) (-15 -1784 ((-1055 |#1|) (-1055 |#1|))) (-15 -1794 ((-1055 |#1|) (-1055 |#1|))) (-15 -1803 ((-1055 |#1|) (-1055 |#1|))) (-15 -3665 ((-2 (|:| -1812 (-1055 |#1|)) (|:| -1824 (-1055 |#1|))) (-1055 |#1|))) (-15 -1812 ((-1055 |#1|) (-1055 |#1|))) (-15 -1824 ((-1055 |#1|) (-1055 |#1|))) (-15 -1834 ((-1055 |#1|) (-1055 |#1|))) (-15 -1842 ((-1055 |#1|) (-1055 |#1|))) (-15 -1851 ((-1055 |#1|) (-1055 |#1|))) (-15 -1860 ((-1055 |#1|) (-1055 |#1|))) (-15 -3622 ((-1055 |#1|) (-1055 |#1|))) (-15 -3631 ((-1055 |#1|) (-1055 |#1|))) (-15 -3642 ((-1055 |#1|) (-1055 |#1|))) (-15 -3650 ((-1055 |#1|) (-1055 |#1|))) (-15 -3661 ((-1055 |#1|) (-1055 |#1|))) (-15 -1279 ((-1055 |#1|) (-1055 |#1|))))
+((-3615 (((-879 |#2|) |#2| |#2|) 35)) (-3039 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278)))))
+(((-1062 |#1| |#2|) (-10 -7 (-15 -3615 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -3039 (|#2| |#2| |#1|)) |noBranch|)) (-509) (-1131 |#1|)) (T -1062))
+((-3039 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1062 *3 *2)) (-4 *2 (-1131 *3)))) (-3615 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1062 *4 *3)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -3615 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -3039 (|#2| |#2| |#1|)) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-1531 (($ $ (-583 (-703))) 66)) (-1548 (($) 25)) (-2722 (($ $) 41)) (-3677 (((-583 $) $) 50)) (-1769 (((-107) $) 16)) (-4062 (((-583 (-865 |#2|)) $) 73)) (-1287 (($ $) 67)) (-2949 (((-703) $) 36)) (-3366 (($) 24)) (-3181 (($ $ (-583 (-703)) (-865 |#2|)) 59) (($ $ (-583 (-703)) (-703)) 60) (($ $ (-703) (-865 |#2|)) 62)) (-2262 (($ $ $) 47) (($ (-583 $)) 49)) (-2769 (((-703) $) 74)) (-3762 (((-107) $) 15)) (-3865 (((-1057) $) NIL)) (-2868 (((-107) $) 17)) (-3094 (((-1021) $) NIL)) (-3126 (((-155) $) 72)) (-1617 (((-865 |#2|) $) 68)) (-3906 (((-703) $) 69)) (-2814 (((-107) $) 71)) (-3439 (($ $ (-583 (-703)) (-155)) 65)) (-2108 (($ $) 42)) (-2182 (((-787) $) 84)) (-3953 (($ $ (-583 (-703)) (-107)) 64)) (-3935 (((-583 $) $) 11)) (-1306 (($ $ (-703)) 35)) (-2710 (($ $) 31)) (-2301 (($ $ $ (-865 |#2|) (-703)) 55)) (-3275 (($ $ (-865 |#2|)) 54)) (-2016 (($ $ (-583 (-703)) (-865 |#2|)) 53) (($ $ (-583 (-703)) (-703)) 57) (((-703) $ (-865 |#2|)) 58)) (-1539 (((-107) $ $) 78)))
+(((-1063 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -3762 ((-107) $)) (-15 -1769 ((-107) $)) (-15 -2868 ((-107) $)) (-15 -3366 ($)) (-15 -1548 ($)) (-15 -2710 ($ $)) (-15 -1306 ($ $ (-703))) (-15 -3935 ((-583 $) $)) (-15 -2949 ((-703) $)) (-15 -2722 ($ $)) (-15 -2108 ($ $)) (-15 -2262 ($ $ $)) (-15 -2262 ($ (-583 $))) (-15 -3677 ((-583 $) $)) (-15 -2016 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -3275 ($ $ (-865 |#2|))) (-15 -2301 ($ $ $ (-865 |#2|) (-703))) (-15 -3181 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2016 ($ $ (-583 (-703)) (-703))) (-15 -3181 ($ $ (-583 (-703)) (-703))) (-15 -2016 ((-703) $ (-865 |#2|))) (-15 -3181 ($ $ (-703) (-865 |#2|))) (-15 -3953 ($ $ (-583 (-703)) (-107))) (-15 -3439 ($ $ (-583 (-703)) (-155))) (-15 -1531 ($ $ (-583 (-703)))) (-15 -1617 ((-865 |#2|) $)) (-15 -3906 ((-703) $)) (-15 -2814 ((-107) $)) (-15 -3126 ((-155) $)) (-15 -2769 ((-703) $)) (-15 -1287 ($ $)) (-15 -4062 ((-583 (-865 |#2|)) $)))) (-843) (-961)) (T -1063))
+((-3762 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3366 (*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-1548 (*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2710 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-1306 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2722 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2108 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2262 (*1 *1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2016 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)))) (-2301 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-3181 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-2016 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-3181 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-3181 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-3953 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-3439 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1287 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(-13 (-1003) (-10 -8 (-15 -3762 ((-107) $)) (-15 -1769 ((-107) $)) (-15 -2868 ((-107) $)) (-15 -3366 ($)) (-15 -1548 ($)) (-15 -2710 ($ $)) (-15 -1306 ($ $ (-703))) (-15 -3935 ((-583 $) $)) (-15 -2949 ((-703) $)) (-15 -2722 ($ $)) (-15 -2108 ($ $)) (-15 -2262 ($ $ $)) (-15 -2262 ($ (-583 $))) (-15 -3677 ((-583 $) $)) (-15 -2016 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -3275 ($ $ (-865 |#2|))) (-15 -2301 ($ $ $ (-865 |#2|) (-703))) (-15 -3181 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2016 ($ $ (-583 (-703)) (-703))) (-15 -3181 ($ $ (-583 (-703)) (-703))) (-15 -2016 ((-703) $ (-865 |#2|))) (-15 -3181 ($ $ (-703) (-865 |#2|))) (-15 -3953 ($ $ (-583 (-703)) (-107))) (-15 -3439 ($ $ (-583 (-703)) (-155))) (-15 -1531 ($ $ (-583 (-703)))) (-15 -1617 ((-865 |#2|) $)) (-15 -3906 ((-703) $)) (-15 -2814 ((-107) $)) (-15 -3126 ((-155) $)) (-15 -2769 ((-703) $)) (-15 -1287 ($ $)) (-15 -4062 ((-583 (-865 |#2|)) $))))
+((-2571 (((-107) $ $) NIL)) (-3548 ((|#2| $) 11)) (-3536 ((|#1| $) 10)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2197 (($ |#1| |#2|) 9)) (-2182 (((-787) $) 16)) (-1539 (((-107) $ $) NIL)))
+(((-1064 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2197 ($ |#1| |#2|)) (-15 -3536 (|#1| $)) (-15 -3548 (|#2| $)))) (-1003) (-1003)) (T -1064))
+((-2197 (*1 *1 *2 *3) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3536 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1003)))) (-3548 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1064 *3 *2)) (-4 *3 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -2197 ($ |#1| |#2|)) (-15 -3536 (|#1| $)) (-15 -3548 (|#2| $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 (((-1072 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 11)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3209 (($ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1452 (((-107) $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3349 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-4040 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-3692 (((-1072 |#1| |#2| |#3|) $) 36)) (-1636 (((-3 (-1072 |#1| |#2| |#3|) "failed") $) 29)) (-1579 (((-1072 |#1| |#2| |#3|) $) 30)) (-1834 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1812 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-1207 (((-517) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-1534 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1851 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-1072 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1074) "failed") $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3076 (((-1072 |#1| |#2| |#3|) $) 131) (((-1074) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2163 (($ $) 34) (($ (-517) $) 35)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-1072 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2522 (-623 (-1072 |#1| |#2| |#3|))) (|:| |vec| (-1154 (-1072 |#1| |#2| |#3|)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-1568 (((-3 $ "failed") $) 48)) (-2323 (((-377 (-874 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-3098 (($) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-2099 (((-107) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2029 (((-107) $) 25)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-1921 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL (|has| |#1| (-333)))) (-1772 (((-1072 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3744 (((-3 $ "failed") $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-333))))) (-1624 (((-107) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3371 (($ $ (-843)) NIL)) (-3558 (($ (-1 |#1| (-517)) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-517)) 18) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-1575 (($ $ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-2986 (($ $ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1826 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1590 (($ (-517) (-1072 |#1| |#2| |#3|)) 33)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-2863 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2663 (($) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-333))) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1194 (($ $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-3263 (((-1072 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ (-517)) 145)) (-2349 (((-3 $ "failed") $ $) 49 (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2459 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1074) (-1072 |#1| |#2| |#3|)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-478 (-1074) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 (-1072 |#1| |#2| |#3|))) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-478 (-1074) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1072 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1072 |#1| |#2| |#3|))) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1072 |#1| |#2| |#3|)) (-583 (-1072 |#1| |#2| |#3|))) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1015))) (($ $ (-1072 |#1| |#2| |#3|)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-258 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1699 (($ $ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1150 |#2|)) 51) (($ $ (-703)) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-3691 (($ $) NIL (|has| |#1| (-333)))) (-1783 (((-1072 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-4007 (((-517) $) 37)) (-1860 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3582 (((-493) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2860 (($ $) NIL)) (-2182 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1072 |#1| |#2| |#3|)) 27) (($ (-1150 |#2|)) 23) (($ (-1074)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (($ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-3086 ((|#1| $ (-517)) 68)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2840 ((|#1| $) 12)) (-3112 (((-1072 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3642 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3622 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-1221 (($ $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 20 T CONST)) (-2306 (($) 16 T CONST)) (-2553 (($ $ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1593 (((-107) $ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1570 (((-107) $ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1560 (((-107) $ $) NIL (-3763 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 21)) (** (($ $ (-843)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1072 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1072 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1065 |#1| |#2| |#3|) (-13 (-1117 |#1| (-1072 |#1| |#2| |#3|)) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|))) (-961) (-1074) |#1|) (T -1065))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1117 |#1| (-1072 |#1| |#2| |#3|)) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|)))
+((-2410 ((|#2| |#2| (-996 |#2|)) 26) ((|#2| |#2| (-1074)) 28)))
+(((-1066 |#1| |#2|) (-10 -7 (-15 -2410 (|#2| |#2| (-1074))) (-15 -2410 (|#2| |#2| (-996 |#2|)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1095))) (T -1066))
+((-2410 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1095))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1066 *4 *2)))) (-2410 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1066 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1095))))))
+(-10 -7 (-15 -2410 (|#2| |#2| (-1074))) (-15 -2410 (|#2| |#2| (-996 |#2|))))
+((-2410 (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))) 30) (((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|))) 44) (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1074)) 32) (((-377 (-874 |#1|)) (-874 |#1|) (-1074)) 36)))
+(((-1067 |#1|) (-10 -7 (-15 -2410 ((-377 (-874 |#1|)) (-874 |#1|) (-1074))) (-15 -2410 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1074))) (-15 -2410 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -2410 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))))) (-13 (-509) (-779) (-952 (-517)))) (T -1067))
+((-2410 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1067 *5)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1067 *5)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1067 *5)) (-5 *3 (-377 (-874 *5))))) (-2410 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1067 *5)) (-5 *3 (-874 *5)))))
+(-10 -7 (-15 -2410 ((-377 (-874 |#1|)) (-874 |#1|) (-1074))) (-15 -2410 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1074))) (-15 -2410 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -2410 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|))))))
+((-1857 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 13)))
+(((-1068 |#1| |#2|) (-10 -7 (-15 -1857 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)))) (-961) (-961)) (T -1068))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1070 *6)) (-5 *1 (-1068 *5 *6)))))
+(-10 -7 (-15 -1857 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))))
+((-3490 (((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|))) 50)) (-3693 (((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|))) 51)))
+(((-1069 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 ((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|)))) (-15 -3490 ((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|))))) (-725) (-779) (-421) (-871 |#3| |#1| |#2|)) (T -1069))
+((-3490 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 (-377 *7)))) (-5 *1 (-1069 *4 *5 *6 *7)) (-5 *3 (-1070 (-377 *7))))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 (-377 *7)))) (-5 *1 (-1069 *4 *5 *6 *7)) (-5 *3 (-1070 (-377 *7))))))
+(-10 -7 (-15 -3693 ((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|)))) (-15 -3490 ((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|)))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 30)) (-1770 (((-1154 |#1|) $ (-703)) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-3908 (($ (-1070 |#1|)) NIL)) (-2255 (((-1070 $) $ (-989)) 59) (((-1070 |#1|) $) 48)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) 132 (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) 126 (|has| |#1| (-509)))) (-2594 (((-388 (-1070 $)) (-1070 $)) 72 (|has| |#1| (-831)))) (-3938 (($ $) NIL (|has| |#1| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 92 (|has| |#1| (-831)))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $ (-703)) 42)) (-2250 (($ $ (-703)) 43)) (-3677 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3076 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-1309 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 128 (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) 57)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-3051 (($ $ $) 104)) (-3555 (($ $ $) NIL (|has| |#1| (-509)))) (-1257 (((-2 (|:| -1883 |#1|) (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-509)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3039 (($ $) 133 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#1| (-831)))) (-2253 (($ $ |#1| (-703) $) 46)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3314 (((-787) $ (-787)) 117)) (-1921 (((-703) $ $) NIL (|has| |#1| (-509)))) (-2955 (((-107) $) 32)) (-2091 (((-703) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| |#1| (-1050)))) (-1352 (($ (-1070 |#1|) (-989)) 50) (($ (-1070 $) (-989)) 66)) (-3371 (($ $ (-703)) 34)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) 64) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-989)) NIL) (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 121)) (-2672 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-3751 (($ (-1 (-703) (-703)) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2891 (((-1070 |#1|) $) NIL)) (-1954 (((-3 (-989) "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) 53)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3865 (((-1057) $) NIL)) (-3267 (((-2 (|:| -3319 $) (|:| -3169 $)) $ (-703)) 41)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-989)) (|:| -2059 (-703))) "failed") $) NIL)) (-2863 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2663 (($) NIL (|has| |#1| (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) 33)) (-4144 ((|#1| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 80 (|has| |#1| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 135 (|has| |#1| (-421)))) (-3150 (($ $ (-703) |#1| $) 99)) (-1206 (((-388 (-1070 $)) (-1070 $)) 78 (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) 77 (|has| |#1| (-831)))) (-3693 (((-388 $) $) 85 (|has| |#1| (-831)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-2349 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-2759 (((-3 $ "failed") $ (-703)) 37)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 137 (|has| |#1| (-333)))) (-4042 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) 124 (|has| |#1| (-156)))) (-1699 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4007 (((-703) $) 55) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) 130 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-3684 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2182 (((-787) $) 118) (($ (-517)) NIL) (($ |#1|) 54) (($ (-989)) NIL) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 15) (($ $ (-703)) 16)) (-2297 (($) 17 T CONST)) (-2306 (($) 18 T CONST)) (-2553 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) 97)) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1649 (($ $ |#1|) 138 (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 67)) (** (($ $ (-843)) 14) (($ $ (-703)) 12)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1070 |#1|) (-13 (-1131 |#1|) (-10 -8 (-15 -3314 ((-787) $ (-787))) (-15 -3150 ($ $ (-703) |#1| $)))) (-961)) (T -1070))
+((-3314 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1070 *3)) (-4 *3 (-961)))) (-3150 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1070 *3)) (-4 *3 (-961)))))
+(-13 (-1131 |#1|) (-10 -8 (-15 -3314 ((-787) $ (-787))) (-15 -3150 ($ $ (-703) |#1| $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 11)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3349 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-4040 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1834 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1812 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1851 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-1065 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1072 |#1| |#2| |#3|) "failed") $) 35)) (-3076 (((-1065 |#1| |#2| |#3|) $) NIL) (((-1072 |#1| |#2| |#3|) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2414 (((-377 (-517)) $) 55)) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-1602 (($ (-377 (-517)) (-1065 |#1| |#2| |#3|)) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-377 (-517))) 19) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1826 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1315 (((-1065 |#1| |#2| |#3|) $) 40)) (-2723 (((-3 (-1065 |#1| |#2| |#3|) "failed") $) NIL)) (-1590 (((-1065 |#1| |#2| |#3|) $) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-2863 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ (-377 (-517))) NIL)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1150 |#2|)) 37)) (-4007 (((-377 (-517)) $) NIL)) (-1860 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) NIL)) (-2182 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1065 |#1| |#2| |#3|)) 29) (($ (-1072 |#1| |#2| |#3|)) 30) (($ (-1150 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3086 ((|#1| $ (-377 (-517))) NIL)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-2840 ((|#1| $) 12)) (-3642 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 21 T CONST)) (-2306 (($) 16 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 23)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1071 |#1| |#2| |#3|) (-13 (-1138 |#1| (-1065 |#1| |#2| |#3|)) (-952 (-1072 |#1| |#2| |#3|)) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|))) (-961) (-1074) |#1|) (T -1071))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1138 |#1| (-1065 |#1| |#2| |#3|)) (-952 (-1072 |#1| |#2| |#3|)) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 124)) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 115)) (-2484 (((-1128 |#2| |#1|) $ (-703)) 62)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3349 (($ $ (-703)) 78) (($ $ (-703) (-703)) 75)) (-4040 (((-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 101)) (-1834 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1812 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 114) (($ (-1055 |#1|)) 109)) (-1851 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) 23)) (-2514 (($ $) 26)) (-1989 (((-874 |#1|) $ (-703)) 74) (((-874 |#1|) $ (-703) (-703)) 76)) (-2029 (((-107) $) 119)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-703) $) 121) (((-703) $ (-703)) 123)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) NIL)) (-3558 (($ (-1 |#1| (-517)) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) 13) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1826 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-2863 (($ $) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) NIL)) (-3467 (($ $ (-703)) 15)) (-2349 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-2459 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1986 ((|#1| $ (-703)) 118) (($ $ $) 127 (|has| (-703) (-1015)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1150 |#2|)) 29)) (-4007 (((-703) $) NIL)) (-1860 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) NIL)) (-2182 (((-787) $) 200) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 125 (|has| |#1| (-156))) (($ (-1128 |#2| |#1|)) 50) (($ (-1150 |#2|)) 32)) (-2834 (((-1055 |#1|) $) 97)) (-3086 ((|#1| $ (-703)) 117)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-2840 ((|#1| $) 53)) (-3642 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 17 T CONST)) (-2306 (($) 19 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) 193)) (-1626 (($ $ $) 31)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 197 (|has| |#1| (-333))) (($ $ $) 133 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 136 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1072 |#1| |#2| |#3|) (-13 (-1146 |#1|) (-10 -8 (-15 -2182 ($ (-1128 |#2| |#1|))) (-15 -2484 ((-1128 |#2| |#1|) $ (-703))) (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|))) (-961) (-1074) |#1|) (T -1072))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1128 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-1072 *3 *4 *5)))) (-2484 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1128 *5 *4)) (-5 *1 (-1072 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1074)) (-14 *6 *4))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1146 |#1|) (-10 -8 (-15 -2182 ($ (-1128 |#2| |#1|))) (-15 -2484 ((-1128 |#2| |#1|) $ (-703))) (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|)))
+((-2182 (((-787) $) 22) (($ (-1074)) 24)) (-3763 (($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3749 (($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-4117 (($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-4106 (($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-4095 (($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-4085 (($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3015 (($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34)))
+(((-1073) (-13 (-557 (-787)) (-10 -8 (-15 -2182 ($ (-1074))) (-15 -4117 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4095 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4106 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4085 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3763 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3015 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3749 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3749 ($ $))))) (T -1073))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1073)))) (-4117 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-4095 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-4106 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-4085 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-3763 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-3015 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-3749 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-3749 (*1 *1 *1) (-5 *1 (-1073))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2182 ($ (-1074))) (-15 -4117 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4095 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4106 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4085 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3763 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3015 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3749 ($ (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3749 ($ $))))
+((-2571 (((-107) $ $) NIL)) (-1295 (($ $ (-583 (-787))) 58)) (-1945 (($ $ (-583 (-787))) 56)) (-3887 (((-1057) $) 82)) (-2554 (((-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-3963 (((-107) $) 21)) (-3676 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-3473 (($) 122 T CONST)) (-1381 (((-1159)) 103)) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 65) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 71)) (-3366 (($) 92) (($ $) 98)) (-1211 (($ $) 81)) (-1575 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1524 (((-583 $) $) 104)) (-3865 (((-1057) $) 87)) (-3094 (((-1021) $) NIL)) (-1986 (($ $ (-583 (-787))) 57)) (-3582 (((-493) $) 45) (((-1074) $) 46) (((-814 (-517)) $) 75) (((-814 (-349)) $) 73)) (-2182 (((-787) $) 52) (($ (-1057)) 47)) (-3017 (($ $ (-583 (-787))) 59)) (-1693 (((-1057) $) 33) (((-1057) $ (-107)) 34) (((-1159) (-754) $) 35) (((-1159) (-754) $ (-107)) 36)) (-1593 (((-107) $ $) NIL)) (-1570 (((-107) $ $) NIL)) (-1539 (((-107) $ $) 48)) (-1582 (((-107) $ $) NIL)) (-1560 (((-107) $ $) 49)))
+(((-1074) (-13 (-779) (-558 (-493)) (-760) (-558 (-1074)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3366 ($)) (-15 -3366 ($ $)) (-15 -1381 ((-1159))) (-15 -2182 ($ (-1057))) (-15 -1211 ($ $)) (-15 -3963 ((-107) $)) (-15 -2554 ((-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -3676 ($ $ (-583 (-583 (-787))))) (-15 -3676 ($ $ (-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -1945 ($ $ (-583 (-787)))) (-15 -1295 ($ $ (-583 (-787)))) (-15 -3017 ($ $ (-583 (-787)))) (-15 -1986 ($ $ (-583 (-787)))) (-15 -3887 ((-1057) $)) (-15 -1524 ((-583 $) $)) (-15 -3473 ($) -1605)))) (T -1074))
+((-3366 (*1 *1) (-5 *1 (-1074))) (-3366 (*1 *1 *1) (-5 *1 (-1074))) (-1381 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1074)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1074)))) (-1211 (*1 *1 *1) (-5 *1 (-1074))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1074)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1074)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1074)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1074)))) (-1945 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) (-1295 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) (-3017 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1074)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1074)))) (-3473 (*1 *1) (-5 *1 (-1074))))
+(-13 (-779) (-558 (-493)) (-760) (-558 (-1074)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3366 ($)) (-15 -3366 ($ $)) (-15 -1381 ((-1159))) (-15 -2182 ($ (-1057))) (-15 -1211 ($ $)) (-15 -3963 ((-107) $)) (-15 -2554 ((-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -3676 ($ $ (-583 (-583 (-787))))) (-15 -3676 ($ $ (-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -1945 ($ $ (-583 (-787)))) (-15 -1295 ($ $ (-583 (-787)))) (-15 -3017 ($ $ (-583 (-787)))) (-15 -1986 ($ $ (-583 (-787)))) (-15 -3887 ((-1057) $)) (-15 -1524 ((-583 $) $)) (-15 -3473 ($) -1605)))
+((-3787 (((-1154 |#1|) |#1| (-843)) 16) (((-1154 |#1|) (-583 |#1|)) 20)))
+(((-1075 |#1|) (-10 -7 (-15 -3787 ((-1154 |#1|) (-583 |#1|))) (-15 -3787 ((-1154 |#1|) |#1| (-843)))) (-961)) (T -1075))
+((-3787 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1154 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1154 *4)) (-5 *1 (-1075 *4)))))
+(-10 -7 (-15 -3787 ((-1154 |#1|) (-583 |#1|))) (-15 -3787 ((-1154 |#1|) |#1| (-843))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3076 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3039 (($ $) NIL (|has| |#1| (-421)))) (-2253 (($ $ |#1| (-888) $) NIL)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-888)) NIL)) (-2672 (((-888) $) NIL)) (-3751 (($ (-1 (-888) (-888)) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#1| $) NIL)) (-3150 (($ $ (-888) |#1| $) NIL (-12 (|has| (-888) (-123)) (|has| |#1| (-509))))) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-4007 (((-888) $) NIL)) (-1423 ((|#1| $) NIL (|has| |#1| (-421)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3763 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ (-888)) NIL)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 9 T CONST)) (-2306 (($) 14 T CONST)) (-1539 (((-107) $ $) 16)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1076 |#1|) (-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -3150 ($ $ (-888) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |noBranch|))) (-961)) (T -1076))
+((-3150 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1076 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -3150 ($ $ (-888) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |noBranch|)))
+((-2000 (((-1078) (-1074) $) 24)) (-3505 (($) 28)) (-2421 (((-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-1074) $) 21)) (-3170 (((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2503 "void")) $) 40) (((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) 41) (((-1159) (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) 42)) (-3186 (((-1159) (-1074)) 57)) (-1248 (((-1159) (-1074) $) 54) (((-1159) (-1074)) 55) (((-1159)) 56)) (-1556 (((-1159) (-1074)) 36)) (-1655 (((-1074)) 35)) (-1326 (($) 33)) (-2277 (((-407) (-1074) (-407) (-1074) $) 44) (((-407) (-583 (-1074)) (-407) (-1074) $) 48) (((-407) (-1074) (-407)) 45) (((-407) (-1074) (-407) (-1074)) 49)) (-3510 (((-1074)) 34)) (-2182 (((-787) $) 27)) (-3585 (((-1159)) 29) (((-1159) (-1074)) 32)) (-2116 (((-583 (-1074)) (-1074) $) 23)) (-1670 (((-1159) (-1074) (-583 (-1074)) $) 37) (((-1159) (-1074) (-583 (-1074))) 38) (((-1159) (-583 (-1074))) 39)))
+(((-1077) (-13 (-557 (-787)) (-10 -8 (-15 -3505 ($)) (-15 -3585 ((-1159))) (-15 -3585 ((-1159) (-1074))) (-15 -2277 ((-407) (-1074) (-407) (-1074) $)) (-15 -2277 ((-407) (-583 (-1074)) (-407) (-1074) $)) (-15 -2277 ((-407) (-1074) (-407))) (-15 -2277 ((-407) (-1074) (-407) (-1074))) (-15 -1556 ((-1159) (-1074))) (-15 -3510 ((-1074))) (-15 -1655 ((-1074))) (-15 -1670 ((-1159) (-1074) (-583 (-1074)) $)) (-15 -1670 ((-1159) (-1074) (-583 (-1074)))) (-15 -1670 ((-1159) (-583 (-1074)))) (-15 -3170 ((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2503 "void")) $)) (-15 -3170 ((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2503 "void")))) (-15 -3170 ((-1159) (-3 (|:| |fst| (-404)) (|:| -2503 "void")))) (-15 -1248 ((-1159) (-1074) $)) (-15 -1248 ((-1159) (-1074))) (-15 -1248 ((-1159))) (-15 -3186 ((-1159) (-1074))) (-15 -1326 ($)) (-15 -2421 ((-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-1074) $)) (-15 -2116 ((-583 (-1074)) (-1074) $)) (-15 -2000 ((-1078) (-1074) $))))) (T -1077))
+((-3505 (*1 *1) (-5 *1 (-1077))) (-3585 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-2277 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) (-2277 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1074))) (-5 *4 (-1074)) (-5 *1 (-1077)))) (-2277 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) (-2277 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3510 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1077)))) (-1655 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1077)))) (-1670 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-1670 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3170 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1074)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-1248 (*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-1248 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-1326 (*1 *1) (-5 *1 (-1077))) (-2421 (*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *1 (-1077)))) (-2116 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1077)) (-5 *3 (-1074)))) (-2000 (*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-1078)) (-5 *1 (-1077)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -3505 ($)) (-15 -3585 ((-1159))) (-15 -3585 ((-1159) (-1074))) (-15 -2277 ((-407) (-1074) (-407) (-1074) $)) (-15 -2277 ((-407) (-583 (-1074)) (-407) (-1074) $)) (-15 -2277 ((-407) (-1074) (-407))) (-15 -2277 ((-407) (-1074) (-407) (-1074))) (-15 -1556 ((-1159) (-1074))) (-15 -3510 ((-1074))) (-15 -1655 ((-1074))) (-15 -1670 ((-1159) (-1074) (-583 (-1074)) $)) (-15 -1670 ((-1159) (-1074) (-583 (-1074)))) (-15 -1670 ((-1159) (-583 (-1074)))) (-15 -3170 ((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2503 "void")) $)) (-15 -3170 ((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2503 "void")))) (-15 -3170 ((-1159) (-3 (|:| |fst| (-404)) (|:| -2503 "void")))) (-15 -1248 ((-1159) (-1074) $)) (-15 -1248 ((-1159) (-1074))) (-15 -1248 ((-1159))) (-15 -3186 ((-1159) (-1074))) (-15 -1326 ($)) (-15 -2421 ((-3 (|:| |fst| (-404)) (|:| -2503 "void")) (-1074) $)) (-15 -2116 ((-583 (-1074)) (-1074) $)) (-15 -2000 ((-1078) (-1074) $))))
+((-4014 (((-583 (-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) $) 57)) (-2957 (((-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))) (-404) $) 40)) (-3171 (($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-407))))) 15)) (-3186 (((-1159) $) 65)) (-3224 (((-583 (-1074)) $) 20)) (-3682 (((-1007) $) 53)) (-2758 (((-407) (-1074) $) 27)) (-1849 (((-583 (-1074)) $) 30)) (-1326 (($) 17)) (-2277 (((-407) (-583 (-1074)) (-407) $) 25) (((-407) (-1074) (-407) $) 24)) (-2182 (((-787) $) 9) (((-1083 (-1074) (-407)) $) 11)))
+(((-1078) (-13 (-557 (-787)) (-10 -8 (-15 -2182 ((-1083 (-1074) (-407)) $)) (-15 -1326 ($)) (-15 -2277 ((-407) (-583 (-1074)) (-407) $)) (-15 -2277 ((-407) (-1074) (-407) $)) (-15 -2758 ((-407) (-1074) $)) (-15 -3224 ((-583 (-1074)) $)) (-15 -2957 ((-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -1849 ((-583 (-1074)) $)) (-15 -4014 ((-583 (-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) $)) (-15 -3682 ((-1007) $)) (-15 -3186 ((-1159) $)) (-15 -3171 ($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-407))))))))) (T -1078))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-1083 (-1074) (-407))) (-5 *1 (-1078)))) (-1326 (*1 *1) (-5 *1 (-1078))) (-2277 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1074))) (-5 *1 (-1078)))) (-2277 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1078)))) (-2758 (*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-407)) (-5 *1 (-1078)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1078)))) (-2957 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) (-5 *1 (-1078)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1078)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1078)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1078)))) (-3171 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-407))))) (-5 *1 (-1078)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2182 ((-1083 (-1074) (-407)) $)) (-15 -1326 ($)) (-15 -2277 ((-407) (-583 (-1074)) (-407) $)) (-15 -2277 ((-407) (-1074) (-407) $)) (-15 -2758 ((-407) (-1074) $)) (-15 -3224 ((-583 (-1074)) $)) (-15 -2957 ((-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -1849 ((-583 (-1074)) $)) (-15 -4014 ((-583 (-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) $)) (-15 -3682 ((-1007) $)) (-15 -3186 ((-1159) $)) (-15 -3171 ($ (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-407))))))))
+((-3901 (((-3 (-517) (-199) (-1074) (-1057) $) $) 35)) (-4001 (((-583 $) $) 39)) (-3582 (((-1007) $) 6) (($ (-1007)) 7) (($ (-517)) 10) (($ (-199)) 13) (($ (-1074)) 16) (($ (-1057)) 19)) (-2182 (((-787) $) NIL)) (-4088 (($ (-1074) (-583 $)) 23)))
+(((-1079) (-13 (-557 (-787)) (-10 -8 (-15 -3582 ((-1007) $)) (-15 -3582 ($ (-1007))) (-15 -3582 ($ (-517))) (-15 -3582 ($ (-199))) (-15 -3582 ($ (-1074))) (-15 -3582 ($ (-1057))) (-15 -4088 ($ (-1074) (-583 $))) (-15 -3901 ((-3 (-517) (-199) (-1074) (-1057) $) $)) (-15 -4001 ((-583 $) $))))) (T -1079))
+((-3582 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1079)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1079)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1079)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1079)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1079)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1079)))) (-4088 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-1079))) (-5 *1 (-1079)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1074) (-1057) (-1079))) (-5 *1 (-1079)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-583 (-1079))) (-5 *1 (-1079)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -3582 ((-1007) $)) (-15 -3582 ($ (-1007))) (-15 -3582 ($ (-517))) (-15 -3582 ($ (-199))) (-15 -3582 ($ (-1074))) (-15 -3582 ($ (-1057))) (-15 -4088 ($ (-1074) (-583 $))) (-15 -3901 ((-3 (-517) (-199) (-1074) (-1057) $) $)) (-15 -4001 ((-583 $) $))))
+((-2921 (((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074))) 55)) (-3480 (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|)))) 66) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|))) 62) (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074)) 67) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074)) 61) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|))))) 91) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|)))) 90) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074))) 92) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1074))) 89)))
+(((-1080 |#1|) (-10 -7 (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074)))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -3480 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074))) (-15 -3480 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -3480 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -3480 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -2921 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074))))) (-509)) (T -1080))
+((-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1080 *5)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1080 *4)) (-5 *3 (-265 (-377 (-874 *4)))))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1080 *4)) (-5 *3 (-377 (-874 *4))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1080 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1080 *5)) (-5 *3 (-377 (-874 *5))))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1080 *4)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1080 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1080 *5)))))
+(-10 -7 (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074)))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -3480 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -3480 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074))) (-15 -3480 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -3480 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -3480 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -2921 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))))
+((-3909 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-2168 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-1428 (((-1082 (-583 |#1|)) (-583 |#1|)) 34)) (-4039 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-2435 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-4155 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-2256 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-2263 (((-583 |#1|) (-583 |#1|)) 31)) (-2104 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-1247 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-4076 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-1854 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-1569 (((-583 (-583 |#1|)) (-1082 (-583 |#1|))) 41)))
+(((-1081 |#1|) (-10 -7 (-15 -4076 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -1247 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2104 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3909 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1854 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1569 ((-583 (-583 |#1|)) (-1082 (-583 |#1|)))) (-15 -2168 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -1428 ((-1082 (-583 |#1|)) (-583 |#1|))) (-15 -2256 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -4039 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2263 ((-583 |#1|) (-583 |#1|))) (-15 -4155 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2435 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1081))
+((-2435 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-4155 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1081 *6)) (-5 *4 (-583 *5)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1081 *3)))) (-4039 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)) (-5 *3 (-583 *4)))) (-2256 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1081 *3)))) (-1428 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1082 (-583 *4))) (-5 *1 (-1081 *4)) (-5 *3 (-583 *4)))) (-2168 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-583 *4))))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-1082 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)) (-4 *4 (-779)))) (-3909 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1081 *4)))) (-2104 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1081 *4)))) (-1247 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1081 *5)))) (-4076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1081 *6)) (-5 *5 (-583 *4)))))
+(-10 -7 (-15 -4076 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -1247 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2104 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3909 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1854 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1569 ((-583 (-583 |#1|)) (-1082 (-583 |#1|)))) (-15 -2168 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -1428 ((-1082 (-583 |#1|)) (-583 |#1|))) (-15 -2256 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -4039 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2263 ((-583 |#1|) (-583 |#1|))) (-15 -4155 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2435 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|))))))
+((-2122 (($ (-583 (-583 |#1|))) 9)) (-1263 (((-583 (-583 |#1|)) $) 10)) (-2182 (((-787) $) 25)))
+(((-1082 |#1|) (-10 -8 (-15 -2122 ($ (-583 (-583 |#1|)))) (-15 -1263 ((-583 (-583 |#1|)) $)) (-15 -2182 ((-787) $))) (-1003)) (T -1082))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1082 *3)) (-4 *3 (-1003)))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1082 *3)) (-4 *3 (-1003)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1082 *3)))))
+(-10 -8 (-15 -2122 ($ (-583 (-583 |#1|)))) (-15 -1263 ((-583 (-583 |#1|)) $)) (-15 -2182 ((-787) $)))
+((-2571 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3331 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3423 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3147 (((-3 |#2| "failed") |#1| $) NIL)) (-3473 (($) NIL T CONST)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) NIL)) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) NIL)) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) NIL)) (-2305 ((|#1| $) NIL (|has| |#1| (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2564 ((|#1| $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3799 (((-583 |#1|) $) NIL)) (-2555 (((-107) |#1| $) NIL)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-4086 (((-583 |#1|) $) NIL)) (-3646 (((-107) |#1| $) NIL)) (-3094 (((-1021) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1631 ((|#2| $) NIL (|has| |#1| (-779)))) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL)) (-1254 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3429 (($) NIL) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-2182 (((-787) $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) NIL)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) NIL (-3763 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1083 |#1| |#2|) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183))) (-1003) (-1003)) (T -1083))
+NIL
+(-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))
+((-2565 ((|#1| (-583 |#1|)) 32)) (-3609 ((|#1| |#1| (-517)) 18)) (-3033 (((-1070 |#1|) |#1| (-843)) 15)))
+(((-1084 |#1|) (-10 -7 (-15 -2565 (|#1| (-583 |#1|))) (-15 -3033 ((-1070 |#1|) |#1| (-843))) (-15 -3609 (|#1| |#1| (-517)))) (-333)) (T -1084))
+((-3609 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1084 *2)) (-4 *2 (-333)))) (-3033 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1070 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-333)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1084 *2)) (-4 *2 (-333)))))
+(-10 -7 (-15 -2565 (|#1| (-583 |#1|))) (-15 -3033 ((-1070 |#1|) |#1| (-843))) (-15 -3609 (|#1| |#1| (-517))))
+((-3331 (($) 10) (($ (-583 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)))) 14)) (-2111 (($ (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3037 (((-583 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-1213 (($ (-1 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1857 (($ (-1 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1835 (((-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) $) 53)) (-3816 (($ (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) $) 16)) (-4086 (((-583 |#2|) $) 19)) (-3646 (((-107) |#2| $) 58)) (-2293 (((-3 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) "failed") (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) $) 57)) (-4049 (((-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) $) 62)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 65)) (-3042 (((-583 |#3|) $) 43)) (-1986 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) $) NIL) (((-703) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 66)) (-2182 (((-787) $) 27)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1539 (((-107) $ $) 48)))
+(((-1085 |#1| |#2| |#3|) (-10 -8 (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1857 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3331 (|#1| (-583 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))))) (-15 -3331 (|#1|)) (-15 -1857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1213 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3105 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -3037 ((-583 |#3|) |#1|)) (-15 -3105 ((-703) |#3| |#1|)) (-15 -1986 (|#3| |#1| |#2| |#3|)) (-15 -1986 (|#3| |#1| |#2|)) (-15 -3042 ((-583 |#3|) |#1|)) (-15 -3646 ((-107) |#2| |#1|)) (-15 -4086 ((-583 |#2|) |#1|)) (-15 -2111 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2111 (|#1| (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -2111 (|#1| (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -2293 ((-3 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) "failed") (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -1835 ((-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -3816 (|#1| (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -4049 ((-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -3105 ((-703) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -3037 ((-583 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -3105 ((-703) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -2925 ((-107) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -3883 ((-107) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -1213 (|#1| (-1 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -1857 (|#1| (-1 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|))) (-1086 |#2| |#3|) (-1003) (-1003)) (T -1085))
+NIL
+(-10 -8 (-15 -1539 ((-107) |#1| |#1|)) (-15 -2182 ((-787) |#1|)) (-15 -1857 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3331 (|#1| (-583 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))))) (-15 -3331 (|#1|)) (-15 -1857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1213 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3883 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2925 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3105 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -3037 ((-583 |#3|) |#1|)) (-15 -3105 ((-703) |#3| |#1|)) (-15 -1986 (|#3| |#1| |#2| |#3|)) (-15 -1986 (|#3| |#1| |#2|)) (-15 -3042 ((-583 |#3|) |#1|)) (-15 -3646 ((-107) |#2| |#1|)) (-15 -4086 ((-583 |#2|) |#1|)) (-15 -2111 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2111 (|#1| (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -2111 (|#1| (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -2293 ((-3 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) "failed") (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -1835 ((-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -3816 (|#1| (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -4049 ((-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -3105 ((-703) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) |#1|)) (-15 -3037 ((-583 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -3105 ((-703) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -2925 ((-107) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -3883 ((-107) (-1 (-107) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -1213 (|#1| (-1 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)) (-15 -1857 (|#1| (-1 (-2 (|:| -3342 |#2|) (|:| -1266 |#3|)) (-2 (|:| -3342 |#2|) (|:| -1266 |#3|))) |#1|)))
+((-2571 (((-107) $ $) 18 (-3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3331 (($) 72) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 71)) (-3423 (((-1159) $ |#1| |#1|) 99 (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#2| $ |#1| |#2|) 73)) (-2582 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 45 (|has| $ (-6 -4183)))) (-3451 (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 55 (|has| $ (-6 -4183)))) (-3147 (((-3 |#2| "failed") |#1| $) 61)) (-3473 (($) 7 T CONST)) (-1667 (($ $) 58 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-2111 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 46 (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 62)) (-1971 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 54 (|has| $ (-6 -4183)))) (-2521 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 56 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 53 (|has| $ (-6 -4183))) (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 52 (|has| $ (-6 -4183)))) (-1226 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4184)))) (-4020 ((|#2| $ |#1|) 88)) (-3037 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 30 (|has| $ (-6 -4183))) (((-583 |#2|) $) 79 (|has| $ (-6 -4183)))) (-4064 (((-107) $ (-703)) 9)) (-2305 ((|#1| $) 96 (|has| |#1| (-779)))) (-1196 (((-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 29 (|has| $ (-6 -4183))) (((-583 |#2|) $) 80 (|has| $ (-6 -4183)))) (-2502 (((-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2564 ((|#1| $) 95 (|has| |#1| (-779)))) (-1213 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 34 (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4184)))) (-1857 (($ (-1 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2942 (((-107) $ (-703)) 10)) (-3865 (((-1057) $) 22 (-3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-3799 (((-583 |#1|) $) 63)) (-2555 (((-107) |#1| $) 64)) (-1835 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 39)) (-3816 (($ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 40)) (-4086 (((-583 |#1|) $) 93)) (-3646 (((-107) |#1| $) 92)) (-3094 (((-1021) $) 21 (-3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-1631 ((|#2| $) 97 (|has| |#1| (-779)))) (-2293 (((-3 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) "failed") (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 51)) (-1254 (($ $ |#2|) 98 (|has| $ (-6 -4184)))) (-4049 (((-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 41)) (-2925 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 32 (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))))) 26 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 25 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) 24 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 23 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3042 (((-583 |#2|) $) 91)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3429 (($) 49) (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 48)) (-3105 (((-703) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 31 (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4183)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 59 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))))) (-2197 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 50)) (-2182 (((-787) $) 20 (-3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2373 (($ (-583 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) 42)) (-3883 (((-107) (-1 (-107) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) $) 33 (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 19 (-3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-1086 |#1| |#2|) (-1185) (-1003) (-1003)) (T -1086))
+((-2307 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3331 (*1 *1) (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 *3) (|:| -1266 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1086 *3 *4)))) (-1857 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2307 (|t#2| $ |t#1| |t#2|)) (-15 -3331 ($)) (-15 -3331 ($ (-583 (-2 (|:| -3342 |t#1|) (|:| -1266 |t#2|))))) (-15 -1857 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-102 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-97) -3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) ((-557 (-787)) -3763 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-209 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) -12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-2 (|:| -3342 |#1|) (|:| -1266 |#2|))) -12 (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-280 (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)))) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-1003) -3763 (|has| |#2| (-1003)) (|has| (-2 (|:| -3342 |#1|) (|:| -1266 |#2|)) (-1003))) ((-1109) . T))
+((-3207 (((-107)) 24)) (-1786 (((-1159) (-1057)) 26)) (-1884 (((-107)) 36)) (-1878 (((-1159)) 34)) (-3626 (((-1159) (-1057) (-1057)) 25)) (-4109 (((-107)) 37)) (-3816 (((-1159) |#1| |#2|) 44)) (-2398 (((-1159)) 20)) (-1810 (((-3 |#2| "failed") |#1|) 42)) (-2765 (((-1159)) 35)))
+(((-1087 |#1| |#2|) (-10 -7 (-15 -2398 ((-1159))) (-15 -3626 ((-1159) (-1057) (-1057))) (-15 -1786 ((-1159) (-1057))) (-15 -1878 ((-1159))) (-15 -2765 ((-1159))) (-15 -3207 ((-107))) (-15 -1884 ((-107))) (-15 -4109 ((-107))) (-15 -1810 ((-3 |#2| "failed") |#1|)) (-15 -3816 ((-1159) |#1| |#2|))) (-1003) (-1003)) (T -1087))
+((-3816 (*1 *2 *3 *4) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-1810 (*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1087 *3 *2)) (-4 *3 (-1003)))) (-4109 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-1884 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3207 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2765 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-1878 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1087 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1087 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-2398 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(-10 -7 (-15 -2398 ((-1159))) (-15 -3626 ((-1159) (-1057) (-1057))) (-15 -1786 ((-1159) (-1057))) (-15 -1878 ((-1159))) (-15 -2765 ((-1159))) (-15 -3207 ((-107))) (-15 -1884 ((-107))) (-15 -4109 ((-107))) (-15 -1810 ((-3 |#2| "failed") |#1|)) (-15 -3816 ((-1159) |#1| |#2|)))
+((-4112 (((-1057) (-1057)) 18)) (-2473 (((-51) (-1057)) 21)))
+(((-1088) (-10 -7 (-15 -2473 ((-51) (-1057))) (-15 -4112 ((-1057) (-1057))))) (T -1088))
+((-4112 (*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1088)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-1088)))))
+(-10 -7 (-15 -2473 ((-51) (-1057))) (-15 -4112 ((-1057) (-1057))))
+((-2182 (((-1090) |#1|) 11)))
+(((-1089 |#1|) (-10 -7 (-15 -2182 ((-1090) |#1|))) (-1003)) (T -1089))
+((-2182 (*1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1089 *3)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -2182 ((-1090) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-3103 (((-583 (-1057)) $) 33)) (-3249 (((-583 (-1057)) $ (-583 (-1057))) 36)) (-3457 (((-583 (-1057)) $ (-583 (-1057))) 35)) (-1288 (((-583 (-1057)) $ (-583 (-1057))) 37)) (-2741 (((-583 (-1057)) $) 32)) (-3366 (($) 22)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2973 (((-583 (-1057)) $) 34)) (-1250 (((-1159) $ (-517)) 29) (((-1159) $) 30)) (-3582 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2182 (((-787) $) 39) (($ (-787)) 24)) (-1539 (((-107) $ $) NIL)))
+(((-1090) (-13 (-1003) (-10 -8 (-15 -2182 ($ (-787))) (-15 -3582 ($ (-787) (-517))) (-15 -3582 ($ (-787) (-517) (-787))) (-15 -1250 ((-1159) $ (-517))) (-15 -1250 ((-1159) $)) (-15 -2973 ((-583 (-1057)) $)) (-15 -3103 ((-583 (-1057)) $)) (-15 -3366 ($)) (-15 -2741 ((-583 (-1057)) $)) (-15 -1288 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3249 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3457 ((-583 (-1057)) $ (-583 (-1057))))))) (T -1090))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1090)))) (-3582 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1090)))) (-3582 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1090)))) (-1250 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1090)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1090)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-3366 (*1 *1) (-5 *1 (-1090))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-1288 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-3249 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-3457 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
+(-13 (-1003) (-10 -8 (-15 -2182 ($ (-787))) (-15 -3582 ($ (-787) (-517))) (-15 -3582 ($ (-787) (-517) (-787))) (-15 -1250 ((-1159) $ (-517))) (-15 -1250 ((-1159) $)) (-15 -2973 ((-583 (-1057)) $)) (-15 -3103 ((-583 (-1057)) $)) (-15 -3366 ($)) (-15 -2741 ((-583 (-1057)) $)) (-15 -1288 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3249 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3457 ((-583 (-1057)) $ (-583 (-1057))))))
+((-2571 (((-107) $ $) NIL)) (-2873 (((-1057) $ (-1057)) 15) (((-1057) $) 14)) (-3113 (((-1057) $ (-1057)) 13)) (-1665 (($ $ (-1057)) NIL)) (-2123 (((-3 (-1057) "failed") $) 11)) (-3541 (((-1057) $) 8)) (-3238 (((-3 (-1057) "failed") $) 12)) (-3741 (((-1057) $) 9)) (-1511 (($ (-358)) NIL) (($ (-358) (-1057)) NIL)) (-1211 (((-358) $) NIL)) (-3865 (((-1057) $) NIL)) (-1974 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2290 (((-107) $) 17)) (-2182 (((-787) $) NIL)) (-1505 (($ $) NIL)) (-1539 (((-107) $ $) NIL)))
+(((-1091) (-13 (-334 (-358) (-1057)) (-10 -8 (-15 -2873 ((-1057) $ (-1057))) (-15 -2873 ((-1057) $)) (-15 -3541 ((-1057) $)) (-15 -2123 ((-3 (-1057) "failed") $)) (-15 -3238 ((-3 (-1057) "failed") $)) (-15 -2290 ((-107) $))))) (T -1091))
+((-2873 (*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-2123 (*1 *2 *1) (|partial| -12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-3238 (*1 *2 *1) (|partial| -12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091)))))
+(-13 (-334 (-358) (-1057)) (-10 -8 (-15 -2873 ((-1057) $ (-1057))) (-15 -2873 ((-1057) $)) (-15 -3541 ((-1057) $)) (-15 -2123 ((-3 (-1057) "failed") $)) (-15 -3238 ((-3 (-1057) "failed") $)) (-15 -2290 ((-107) $))))
+((-1207 (((-3 (-517) "failed") |#1|) 19)) (-2181 (((-3 (-517) "failed") |#1|) 13)) (-1393 (((-517) (-1057)) 28)))
+(((-1092 |#1|) (-10 -7 (-15 -1207 ((-3 (-517) "failed") |#1|)) (-15 -2181 ((-3 (-517) "failed") |#1|)) (-15 -1393 ((-517) (-1057)))) (-961)) (T -1092))
+((-1393 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-517)) (-5 *1 (-1092 *4)) (-4 *4 (-961)))) (-2181 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1092 *3)) (-4 *3 (-961)))) (-1207 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1092 *3)) (-4 *3 (-961)))))
+(-10 -7 (-15 -1207 ((-3 (-517) "failed") |#1|)) (-15 -2181 ((-3 (-517) "failed") |#1|)) (-15 -1393 ((-517) (-1057))))
+((-1867 (((-1034 (-199))) 8)))
+(((-1093) (-10 -7 (-15 -1867 ((-1034 (-199)))))) (T -1093))
+((-1867 (*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1093)))))
+(-10 -7 (-15 -1867 ((-1034 (-199)))))
+((-2475 (($) 11)) (-3642 (($ $) 35)) (-3622 (($ $) 33)) (-1751 (($ $) 25)) (-3661 (($ $) 17)) (-1279 (($ $) 15)) (-3650 (($ $) 19)) (-1784 (($ $) 30)) (-3631 (($ $) 34)) (-1762 (($ $) 29)))
+(((-1094 |#1|) (-10 -8 (-15 -2475 (|#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1762 (|#1| |#1|))) (-1095)) (T -1094))
+NIL
+(-10 -8 (-15 -2475 (|#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1762 (|#1| |#1|)))
+((-1834 (($ $) 26)) (-1710 (($ $) 11)) (-1812 (($ $) 27)) (-1685 (($ $) 10)) (-1851 (($ $) 28)) (-1731 (($ $) 9)) (-2475 (($) 16)) (-1826 (($ $) 19)) (-2459 (($ $) 18)) (-1860 (($ $) 29)) (-1741 (($ $) 8)) (-1842 (($ $) 30)) (-1722 (($ $) 7)) (-1824 (($ $) 31)) (-1698 (($ $) 6)) (-3642 (($ $) 20)) (-1773 (($ $) 32)) (-3622 (($ $) 21)) (-1751 (($ $) 33)) (-3661 (($ $) 22)) (-1794 (($ $) 34)) (-1279 (($ $) 23)) (-1803 (($ $) 35)) (-3650 (($ $) 24)) (-1784 (($ $) 36)) (-3631 (($ $) 25)) (-1762 (($ $) 37)) (** (($ $ $) 17)))
+(((-1095) (-1185)) (T -1095))
+((-2475 (*1 *1) (-4 *1 (-1095))))
+(-13 (-1098) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2475 ($))))
+(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1098) . T))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3088 ((|#1| $) 17)) (-3341 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-1799 (((-107) $ (-703)) 46)) (-4072 ((|#1| $ |#1|) 14 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 13 (|has| $ (-6 -4184)))) (-3473 (($) NIL T CONST)) (-3037 (((-583 |#1|) $) 50 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 41)) (-1703 (((-107) $ $) 32 (|has| |#1| (-1003)))) (-4064 (((-107) $ (-703)) 39)) (-1196 (((-583 |#1|) $) 51 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 49 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1213 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 22)) (-2942 (((-107) $ (-703)) 38)) (-3617 (((-583 |#1|) $) 36)) (-3762 (((-107) $) 35)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2925 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 73)) (-1546 (((-107) $) 9)) (-1326 (($) 10)) (-1986 ((|#1| $ "value") NIL)) (-1482 (((-517) $ $) 31)) (-2953 (((-583 $) $) 57)) (-2639 (((-107) $ $) 75)) (-3915 (((-583 $) $) 70)) (-1484 (($ $) 71)) (-2562 (((-107) $) 54)) (-3105 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4183))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2322 (($ $) 56)) (-2182 (((-787) $) 59 (|has| |#1| (-1003)))) (-3935 (((-583 $) $) 12)) (-3172 (((-107) $ $) 29 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 47 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 28 (|has| |#1| (-1003)))) (-2210 (((-703) $) 37 (|has| $ (-6 -4183)))))
+(((-1096 |#1|) (-13 (-926 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3341 ($ |#1| (-583 $))) (-15 -3341 ($ (-583 |#1|))) (-15 -3341 ($ |#1|)) (-15 -2562 ((-107) $)) (-15 -1484 ($ $)) (-15 -3915 ((-583 $) $)) (-15 -2639 ((-107) $ $)) (-15 -2953 ((-583 $) $)))) (-1003)) (T -1096))
+((-2562 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))) (-3341 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1096 *2))) (-5 *1 (-1096 *2)) (-4 *2 (-1003)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1096 *3)))) (-3341 (*1 *1 *2) (-12 (-5 *1 (-1096 *2)) (-4 *2 (-1003)))) (-1484 (*1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-4 *2 (-1003)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-583 (-1096 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))) (-2639 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-583 (-1096 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
+(-13 (-926 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3341 ($ |#1| (-583 $))) (-15 -3341 ($ (-583 |#1|))) (-15 -3341 ($ |#1|)) (-15 -2562 ((-107) $)) (-15 -1484 ($ $)) (-15 -3915 ((-583 $) $)) (-15 -2639 ((-107) $ $)) (-15 -2953 ((-583 $) $))))
+((-1710 (($ $) 15)) (-1731 (($ $) 12)) (-1741 (($ $) 10)) (-1722 (($ $) 17)))
+(((-1097 |#1|) (-10 -8 (-15 -1722 (|#1| |#1|)) (-15 -1741 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1710 (|#1| |#1|))) (-1098)) (T -1097))
+NIL
+(-10 -8 (-15 -1722 (|#1| |#1|)) (-15 -1741 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)))
+((-1710 (($ $) 11)) (-1685 (($ $) 10)) (-1731 (($ $) 9)) (-1741 (($ $) 8)) (-1722 (($ $) 7)) (-1698 (($ $) 6)))
+(((-1098) (-1185)) (T -1098))
+((-1710 (*1 *1 *1) (-4 *1 (-1098))) (-1685 (*1 *1 *1) (-4 *1 (-1098))) (-1731 (*1 *1 *1) (-4 *1 (-1098))) (-1741 (*1 *1 *1) (-4 *1 (-1098))) (-1722 (*1 *1 *1) (-4 *1 (-1098))) (-1698 (*1 *1 *1) (-4 *1 (-1098))))
+(-13 (-10 -8 (-15 -1698 ($ $)) (-15 -1722 ($ $)) (-15 -1741 ($ $)) (-15 -1731 ($ $)) (-15 -1685 ($ $)) (-15 -1710 ($ $))))
+((-3655 ((|#2| |#2|) 85)) (-3977 (((-107) |#2|) 25)) (-3720 ((|#2| |#2|) 29)) (-3732 ((|#2| |#2|) 31)) (-2388 ((|#2| |#2| (-1074)) 79) ((|#2| |#2|) 80)) (-2086 (((-153 |#2|) |#2|) 27)) (-3659 ((|#2| |#2| (-1074)) 81) ((|#2| |#2|) 82)))
+(((-1099 |#1| |#2|) (-10 -7 (-15 -2388 (|#2| |#2|)) (-15 -2388 (|#2| |#2| (-1074))) (-15 -3659 (|#2| |#2|)) (-15 -3659 (|#2| |#2| (-1074))) (-15 -3655 (|#2| |#2|)) (-15 -3720 (|#2| |#2|)) (-15 -3732 (|#2| |#2|)) (-15 -3977 ((-107) |#2|)) (-15 -2086 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -1099))
+((-2086 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1099 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1099 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-3732 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-3720 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-3659 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-2388 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
+(-10 -7 (-15 -2388 (|#2| |#2|)) (-15 -2388 (|#2| |#2| (-1074))) (-15 -3659 (|#2| |#2|)) (-15 -3659 (|#2| |#2| (-1074))) (-15 -3655 (|#2| |#2|)) (-15 -3720 (|#2| |#2|)) (-15 -3732 (|#2| |#2|)) (-15 -3977 ((-107) |#2|)) (-15 -2086 ((-153 |#2|) |#2|)))
+((-1748 ((|#4| |#4| |#1|) 27)) (-1364 ((|#4| |#4| |#1|) 28)))
+(((-1100 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1748 (|#4| |#4| |#1|)) (-15 -1364 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1100))
+((-1364 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1748 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -1748 (|#4| |#4| |#1|)) (-15 -1364 (|#4| |#4| |#1|)))
+((-3135 ((|#2| |#2|) 132)) (-1895 ((|#2| |#2|) 129)) (-2441 ((|#2| |#2|) 120)) (-1805 ((|#2| |#2|) 117)) (-2897 ((|#2| |#2|) 125)) (-3453 ((|#2| |#2|) 113)) (-3177 ((|#2| |#2|) 42)) (-3183 ((|#2| |#2|) 93)) (-3822 ((|#2| |#2|) 73)) (-1946 ((|#2| |#2|) 127)) (-1242 ((|#2| |#2|) 115)) (-3907 ((|#2| |#2|) 137)) (-3848 ((|#2| |#2|) 135)) (-2826 ((|#2| |#2|) 136)) (-1962 ((|#2| |#2|) 134)) (-3379 ((|#2| |#2|) 146)) (-2492 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-814 |#1|))) (|has| |#2| (-808 |#1|)) (|has| |#1| (-558 (-814 |#1|))) (|has| |#1| (-808 |#1|))))) (-1419 ((|#2| |#2|) 74)) (-3955 ((|#2| |#2|) 138)) (-3408 ((|#2| |#2|) 139)) (-2117 ((|#2| |#2|) 126)) (-3482 ((|#2| |#2|) 114)) (-1293 ((|#2| |#2|) 133)) (-3807 ((|#2| |#2|) 131)) (-4002 ((|#2| |#2|) 121)) (-1354 ((|#2| |#2|) 119)) (-1529 ((|#2| |#2|) 123)) (-2968 ((|#2| |#2|) 111)))
+(((-1101 |#1| |#2|) (-10 -7 (-15 -3408 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3183 (|#2| |#2|)) (-15 -3177 (|#2| |#2|)) (-15 -1419 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -2968 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -1293 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -1242 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -2897 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -1354 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -2826 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -2492 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1095))) (T -1101))
+((-2492 (*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2826 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1354 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1895 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2897 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1242 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2117 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1293 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2968 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1419 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3177 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3183 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3408 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(-10 -7 (-15 -3408 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3183 (|#2| |#2|)) (-15 -3177 (|#2| |#2|)) (-15 -1419 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -2968 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -1293 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -1242 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -2897 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -1354 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -2826 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -2492 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|))
+((-1586 (((-107) |#5| $) 59) (((-107) $) 101)) (-2356 ((|#5| |#5| $) 74)) (-3451 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-3702 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 72)) (-1759 (((-3 $ "failed") (-583 |#5|)) 125)) (-1644 (((-3 $ "failed") $) 111)) (-1907 ((|#5| |#5| $) 93)) (-1584 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 30)) (-3197 ((|#5| |#5| $) 97)) (-2521 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 68)) (-1333 (((-2 (|:| -1215 (-583 |#5|)) (|:| -1511 (-583 |#5|))) $) 54)) (-2096 (((-107) |#5| $) 57) (((-107) $) 102)) (-3377 ((|#4| $) 107)) (-1988 (((-3 |#5| "failed") $) 109)) (-2425 (((-583 |#5|) $) 48)) (-2998 (((-107) |#5| $) 66) (((-107) $) 106)) (-2946 ((|#5| |#5| $) 80)) (-3196 (((-107) $ $) 26)) (-3201 (((-107) |#5| $) 62) (((-107) $) 104)) (-3006 ((|#5| |#5| $) 77)) (-1631 (((-3 |#5| "failed") $) 108)) (-3467 (($ $ |#5|) 126)) (-4007 (((-703) $) 51)) (-2197 (($ (-583 |#5|)) 123)) (-2399 (($ $ |#4|) 121)) (-3339 (($ $ |#4|) 120)) (-3529 (($ $) 119)) (-2182 (((-787) $) NIL) (((-583 |#5|) $) 112)) (-4124 (((-703) $) 129)) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 44)) (-2340 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 99)) (-3447 (((-583 |#4|) $) 114)) (-1223 (((-107) |#4| $) 117)) (-1539 (((-107) $ $) 19)))
+(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4124 ((-703) |#1|)) (-15 -3467 (|#1| |#1| |#5|)) (-15 -3451 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1223 ((-107) |#4| |#1|)) (-15 -3447 ((-583 |#4|) |#1|)) (-15 -1644 ((-3 |#1| "failed") |#1|)) (-15 -1988 ((-3 |#5| "failed") |#1|)) (-15 -1631 ((-3 |#5| "failed") |#1|)) (-15 -3197 (|#5| |#5| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -1907 (|#5| |#5| |#1|)) (-15 -2946 (|#5| |#5| |#1|)) (-15 -3006 (|#5| |#5| |#1|)) (-15 -2356 (|#5| |#5| |#1|)) (-15 -3702 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -2521 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -2998 ((-107) |#1|)) (-15 -3201 ((-107) |#1|)) (-15 -1586 ((-107) |#1|)) (-15 -2340 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -2998 ((-107) |#5| |#1|)) (-15 -3201 ((-107) |#5| |#1|)) (-15 -1586 ((-107) |#5| |#1|)) (-15 -1584 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -2096 ((-107) |#1|)) (-15 -2096 ((-107) |#5| |#1|)) (-15 -1333 ((-2 (|:| -1215 (-583 |#5|)) (|:| -1511 (-583 |#5|))) |#1|)) (-15 -4007 ((-703) |#1|)) (-15 -2425 ((-583 |#5|) |#1|)) (-15 -3049 ((-3 (-2 (|:| |bas| |#1|) (|:| -4143 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -3049 ((-3 (-2 (|:| |bas| |#1|) (|:| -4143 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3196 ((-107) |#1| |#1|)) (-15 -2399 (|#1| |#1| |#4|)) (-15 -3339 (|#1| |#1| |#4|)) (-15 -3377 (|#4| |#1|)) (-15 -1759 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2182 ((-583 |#5|) |#1|)) (-15 -2197 (|#1| (-583 |#5|))) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3451 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|))) (-1103 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -1102))
+NIL
+(-10 -8 (-15 -4124 ((-703) |#1|)) (-15 -3467 (|#1| |#1| |#5|)) (-15 -3451 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1223 ((-107) |#4| |#1|)) (-15 -3447 ((-583 |#4|) |#1|)) (-15 -1644 ((-3 |#1| "failed") |#1|)) (-15 -1988 ((-3 |#5| "failed") |#1|)) (-15 -1631 ((-3 |#5| "failed") |#1|)) (-15 -3197 (|#5| |#5| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -1907 (|#5| |#5| |#1|)) (-15 -2946 (|#5| |#5| |#1|)) (-15 -3006 (|#5| |#5| |#1|)) (-15 -2356 (|#5| |#5| |#1|)) (-15 -3702 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -2521 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -2998 ((-107) |#1|)) (-15 -3201 ((-107) |#1|)) (-15 -1586 ((-107) |#1|)) (-15 -2340 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -2998 ((-107) |#5| |#1|)) (-15 -3201 ((-107) |#5| |#1|)) (-15 -1586 ((-107) |#5| |#1|)) (-15 -1584 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -2096 ((-107) |#1|)) (-15 -2096 ((-107) |#5| |#1|)) (-15 -1333 ((-2 (|:| -1215 (-583 |#5|)) (|:| -1511 (-583 |#5|))) |#1|)) (-15 -4007 ((-703) |#1|)) (-15 -2425 ((-583 |#5|) |#1|)) (-15 -3049 ((-3 (-2 (|:| |bas| |#1|) (|:| -4143 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -3049 ((-3 (-2 (|:| |bas| |#1|) (|:| -4143 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3196 ((-107) |#1| |#1|)) (-15 -2399 (|#1| |#1| |#4|)) (-15 -3339 (|#1| |#1| |#4|)) (-15 -3377 (|#4| |#1|)) (-15 -1759 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2182 ((-583 |#5|) |#1|)) (-15 -2197 (|#1| (-583 |#5|))) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3451 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2182 ((-787) |#1|)) (-15 -1539 ((-107) |#1| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) 85)) (-1310 (((-583 $) (-583 |#4|)) 86)) (-1363 (((-583 |#3|) $) 33)) (-3521 (((-107) $) 26)) (-2320 (((-107) $) 17 (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) 101) (((-107) $) 97)) (-2356 ((|#4| |#4| $) 92)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) 27)) (-1799 (((-107) $ (-703)) 44)) (-3451 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-3473 (($) 45 T CONST)) (-1216 (((-107) $) 22 (|has| |#1| (-509)))) (-1930 (((-107) $ $) 24 (|has| |#1| (-509)))) (-1660 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3045 (((-107) $) 25 (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3515 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) 36)) (-3076 (($ (-583 |#4|)) 35)) (-1644 (((-3 $ "failed") $) 82)) (-1907 ((|#4| |#4| $) 89)) (-1667 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3197 ((|#4| |#4| $) 87)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) 105)) (-3037 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) 104) (((-107) $) 103)) (-3377 ((|#3| $) 34)) (-4064 (((-107) $ (-703)) 43)) (-1196 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) 47)) (-2434 (((-583 |#3|) $) 32)) (-2995 (((-107) |#3| $) 31)) (-2942 (((-107) $ (-703)) 42)) (-3865 (((-1057) $) 9)) (-1988 (((-3 |#4| "failed") $) 83)) (-2425 (((-583 |#4|) $) 107)) (-2998 (((-107) |#4| $) 99) (((-107) $) 95)) (-2946 ((|#4| |#4| $) 90)) (-3196 (((-107) $ $) 110)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) 100) (((-107) $) 96)) (-3006 ((|#4| |#4| $) 91)) (-3094 (((-1021) $) 10)) (-1631 (((-3 |#4| "failed") $) 84)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3886 (((-3 $ "failed") $ |#4|) 78)) (-3467 (($ $ |#4|) 77)) (-2925 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) 38)) (-1546 (((-107) $) 41)) (-1326 (($) 40)) (-4007 (((-703) $) 106)) (-3105 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2322 (($ $) 39)) (-3582 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) 60)) (-2399 (($ $ |#3|) 28)) (-3339 (($ $ |#3|) 30)) (-3529 (($ $) 88)) (-4011 (($ $ |#3|) 29)) (-2182 (((-787) $) 11) (((-583 |#4|) $) 37)) (-4124 (((-703) $) 76 (|has| |#3| (-338)))) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3883 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) 81)) (-1223 (((-107) |#3| $) 80)) (-1539 (((-107) $ $) 6)) (-2210 (((-703) $) 46 (|has| $ (-6 -4183)))))
+(((-1103 |#1| |#2| |#3| |#4|) (-1185) (-509) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1103))
+((-3196 (*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3049 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4143 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1103 *5 *6 *7 *8)))) (-3049 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4143 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1103 *6 *7 *8 *9)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1215 (-583 *6)) (|:| -1511 (-583 *6)))))) (-2096 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1584 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1103 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))) (-1586 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3201 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2998 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2340 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1103 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1586 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-2521 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1103 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) (-3702 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1103 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))) (-2356 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3006 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2946 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1907 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3529 (*1 *1 *1) (-12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-3197 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1310 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1215 *1) (|:| -1511 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1103 *4 *5 *6 *7)))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1988 (*1 *2 *1) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1644 (*1 *1 *1) (|partial| -12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1223 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3451 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1103 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) (-3886 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3467 (*1 *1 *1 *2) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
+(-13 (-893 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3196 ((-107) $ $)) (-15 -3049 ((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3049 ((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2425 ((-583 |t#4|) $)) (-15 -4007 ((-703) $)) (-15 -1333 ((-2 (|:| -1215 (-583 |t#4|)) (|:| -1511 (-583 |t#4|))) $)) (-15 -2096 ((-107) |t#4| $)) (-15 -2096 ((-107) $)) (-15 -1584 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -1586 ((-107) |t#4| $)) (-15 -3201 ((-107) |t#4| $)) (-15 -2998 ((-107) |t#4| $)) (-15 -2340 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -1586 ((-107) $)) (-15 -3201 ((-107) $)) (-15 -2998 ((-107) $)) (-15 -2521 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3702 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2356 (|t#4| |t#4| $)) (-15 -3006 (|t#4| |t#4| $)) (-15 -2946 (|t#4| |t#4| $)) (-15 -1907 (|t#4| |t#4| $)) (-15 -3529 ($ $)) (-15 -3197 (|t#4| |t#4| $)) (-15 -1310 ((-583 $) (-583 |t#4|))) (-15 -2440 ((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |t#4|)))) (-583 |t#4|))) (-15 -1631 ((-3 |t#4| "failed") $)) (-15 -1988 ((-3 |t#4| "failed") $)) (-15 -1644 ((-3 $ "failed") $)) (-15 -3447 ((-583 |t#3|) $)) (-15 -1223 ((-107) |t#3| $)) (-15 -3451 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3886 ((-3 $ "failed") $ |t#4|)) (-15 -3467 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -4124 ((-703) $)) |noBranch|)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1109) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-1074)) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-1834 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1812 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1851 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-1989 (((-874 |#1|) $ (-703)) 16) (((-874 |#1|) $ (-703) (-703)) NIL)) (-2029 (((-107) $) NIL)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-703) $ (-1074)) NIL) (((-703) $ (-1074) (-703)) NIL)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1331 (((-107) $) NIL)) (-1343 (($ $ (-583 (-1074)) (-583 (-489 (-1074)))) NIL) (($ $ (-1074) (-489 (-1074))) NIL) (($ |#1| (-489 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1826 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-2863 (($ $ (-1074)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) NIL)) (-3992 (($ (-1 $) (-1074) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3467 (($ $ (-703)) NIL)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1979 (($ $ (-1074) $) NIL) (($ $ (-583 (-1074)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-1699 (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-4007 (((-489 (-1074)) $) NIL)) (-1860 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1074)) NIL) (($ (-874 |#1|)) NIL)) (-3086 ((|#1| $ (-489 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (((-874 |#1|) $ (-703)) NIL)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-3642 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1279 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) NIL T CONST)) (-2553 (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1104 |#1|) (-13 (-673 |#1| (-1074)) (-10 -8 (-15 -3086 ((-874 |#1|) $ (-703))) (-15 -2182 ($ (-1074))) (-15 -2182 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $ (-1074) |#1|)) (-15 -3992 ($ (-1 $) (-1074) |#1|))) |noBranch|))) (-961)) (T -1104))
+((-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1104 *4)) (-4 *4 (-961)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1104 *3)) (-4 *3 (-961)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1104 *3)))) (-2863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *1 (-1104 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-3992 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1104 *4))) (-5 *3 (-1074)) (-5 *1 (-1104 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
+(-13 (-673 |#1| (-1074)) (-10 -8 (-15 -3086 ((-874 |#1|) $ (-703))) (-15 -2182 ($ (-1074))) (-15 -2182 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $ (-1074) |#1|)) (-15 -3992 ($ (-1 $) (-1074) |#1|))) |noBranch|)))
+((-2578 (($ |#1| (-583 (-583 (-865 (-199)))) (-107)) 15)) (-3666 (((-107) $ (-107)) 14)) (-3152 (((-107) $) 13)) (-1709 (((-583 (-583 (-865 (-199)))) $) 10)) (-3151 ((|#1| $) 8)) (-1541 (((-107) $) 12)))
+(((-1105 |#1|) (-10 -8 (-15 -3151 (|#1| $)) (-15 -1709 ((-583 (-583 (-865 (-199)))) $)) (-15 -1541 ((-107) $)) (-15 -3152 ((-107) $)) (-15 -3666 ((-107) $ (-107))) (-15 -2578 ($ |#1| (-583 (-583 (-865 (-199)))) (-107)))) (-891)) (T -1105))
+((-2578 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1105 *2)) (-4 *2 (-891)))) (-3666 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1105 *3)) (-4 *3 (-891)))) (-3151 (*1 *2 *1) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-891)))))
+(-10 -8 (-15 -3151 (|#1| $)) (-15 -1709 ((-583 (-583 (-865 (-199)))) $)) (-15 -1541 ((-107) $)) (-15 -3152 ((-107) $)) (-15 -3666 ((-107) $ (-107))) (-15 -2578 ($ |#1| (-583 (-583 (-865 (-199)))) (-107))))
+((-1991 (((-865 (-199)) (-865 (-199))) 25)) (-1503 (((-865 (-199)) (-199) (-199) (-199) (-199)) 10)) (-2774 (((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199)))) 35)) (-2736 (((-199) (-865 (-199)) (-865 (-199))) 21)) (-2115 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 22)) (-2757 (((-583 (-583 (-199))) (-517)) 31)) (-1637 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 20)) (-1626 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 19)) (* (((-865 (-199)) (-199) (-865 (-199))) 18)))
+(((-1106) (-10 -7 (-15 -1503 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1626 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1637 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -2736 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -2115 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1991 ((-865 (-199)) (-865 (-199)))) (-15 -2757 ((-583 (-583 (-199))) (-517))) (-15 -2774 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))) (T -1106))
+((-2774 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1106)) (-5 *3 (-865 *4)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1106)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) (-2115 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) (-2736 (*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1106)))) (-1637 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) (-1626 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1106)))) (-1503 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)) (-5 *3 (-199)))))
+(-10 -7 (-15 -1503 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1626 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1637 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -2736 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -2115 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1991 ((-865 (-199)) (-865 (-199)))) (-15 -2757 ((-583 (-583 (-199))) (-517))) (-15 -2774 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3451 ((|#1| $ (-703)) 13)) (-2542 (((-703) $) 12)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2182 (((-879 |#1|) $) 10) (($ (-879 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1539 (((-107) $ $) 16 (|has| |#1| (-1003)))))
+(((-1107 |#1|) (-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2182 ($ (-879 |#1|))) (-15 -3451 (|#1| $ (-703))) (-15 -2542 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1109)) (T -1107))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1109)) (-5 *1 (-1107 *3)))) (-3451 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1107 *2)) (-4 *2 (-1109)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1107 *3)) (-4 *3 (-1109)))))
+(-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2182 ($ (-879 |#1|))) (-15 -3451 (|#1| $ (-703))) (-15 -2542 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
+((-3760 (((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)) (-517)) 79)) (-4102 (((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|))) 73)) (-4019 (((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|))) 58)))
+(((-1108 |#1|) (-10 -7 (-15 -4102 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -4019 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -3760 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)) (-517)))) (-319)) (T -1108))
+((-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1070 (-1070 *5)))) (-5 *1 (-1108 *5)) (-5 *3 (-1070 (-1070 *5))))) (-4019 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1070 (-1070 *4)))) (-5 *1 (-1108 *4)) (-5 *3 (-1070 (-1070 *4))))) (-4102 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1070 (-1070 *4)))) (-5 *1 (-1108 *4)) (-5 *3 (-1070 (-1070 *4))))))
+(-10 -7 (-15 -4102 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -4019 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -3760 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)) (-517))))
+NIL
+(((-1109) (-1185)) (T -1109))
+NIL
+(-13 (-10 -7 (-6 -3252)))
+((-3478 (((-107)) 14)) (-1323 (((-1159) (-583 |#1|) (-583 |#1|)) 18) (((-1159) (-583 |#1|)) 19)) (-4064 (((-107) |#1| |#1|) 30 (|has| |#1| (-779)))) (-2942 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 26) (((-3 (-107) "failed") |#1| |#1|) 24)) (-3628 ((|#1| (-583 |#1|)) 31 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 27)) (-1405 (((-2 (|:| -3520 (-583 |#1|)) (|:| -2934 (-583 |#1|)))) 16)))
+(((-1110 |#1|) (-10 -7 (-15 -1323 ((-1159) (-583 |#1|))) (-15 -1323 ((-1159) (-583 |#1|) (-583 |#1|))) (-15 -1405 ((-2 (|:| -3520 (-583 |#1|)) (|:| -2934 (-583 |#1|))))) (-15 -2942 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2942 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -3628 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -3478 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -3628 (|#1| (-583 |#1|))) (-15 -4064 ((-107) |#1| |#1|))) |noBranch|)) (-1003)) (T -1110))
+((-4064 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1110 *2)))) (-3478 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-1003)))) (-2942 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1110 *3)))) (-2942 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))) (-1405 (*1 *2) (-12 (-5 *2 (-2 (|:| -3520 (-583 *3)) (|:| -2934 (-583 *3)))) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))) (-1323 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1159)) (-5 *1 (-1110 *4)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1159)) (-5 *1 (-1110 *4)))))
+(-10 -7 (-15 -1323 ((-1159) (-583 |#1|))) (-15 -1323 ((-1159) (-583 |#1|) (-583 |#1|))) (-15 -1405 ((-2 (|:| -3520 (-583 |#1|)) (|:| -2934 (-583 |#1|))))) (-15 -2942 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2942 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -3628 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -3478 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -3628 (|#1| (-583 |#1|))) (-15 -4064 ((-107) |#1| |#1|))) |noBranch|))
+((-1788 (((-1159) (-583 (-1074)) (-583 (-1074))) 12) (((-1159) (-583 (-1074))) 10)) (-2819 (((-1159)) 13)) (-1738 (((-2 (|:| -2934 (-583 (-1074))) (|:| -3520 (-583 (-1074))))) 17)))
+(((-1111) (-10 -7 (-15 -1788 ((-1159) (-583 (-1074)))) (-15 -1788 ((-1159) (-583 (-1074)) (-583 (-1074)))) (-15 -1738 ((-2 (|:| -2934 (-583 (-1074))) (|:| -3520 (-583 (-1074)))))) (-15 -2819 ((-1159))))) (T -1111))
+((-2819 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1111)))) (-1738 (*1 *2) (-12 (-5 *2 (-2 (|:| -2934 (-583 (-1074))) (|:| -3520 (-583 (-1074))))) (-5 *1 (-1111)))) (-1788 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1111)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1111)))))
+(-10 -7 (-15 -1788 ((-1159) (-583 (-1074)))) (-15 -1788 ((-1159) (-583 (-1074)) (-583 (-1074)))) (-15 -1738 ((-2 (|:| -2934 (-583 (-1074))) (|:| -3520 (-583 (-1074)))))) (-15 -2819 ((-1159))))
+((-3938 (($ $) 16)) (-2965 (((-107) $) 23)))
+(((-1112 |#1|) (-10 -8 (-15 -3938 (|#1| |#1|)) (-15 -2965 ((-107) |#1|))) (-1113)) (T -1112))
+NIL
+(-10 -8 (-15 -3938 (|#1| |#1|)) (-15 -2965 ((-107) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 51)) (-3490 (((-388 $) $) 52)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2965 (((-107) $) 53)) (-2955 (((-107) $) 31)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-3693 (((-388 $) $) 50)) (-2349 (((-3 $ "failed") $ $) 42)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-1113) (-1185)) (T -1113))
+((-2965 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-107)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1113)))) (-3938 (*1 *1 *1) (-4 *1 (-1113))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1113)))))
+(-13 (-421) (-10 -8 (-15 -2965 ((-107) $)) (-15 -3490 ((-388 $) $)) (-15 -3938 ($ $)) (-15 -3693 ((-388 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1893 (((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|)) 23)))
-(((-1113 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 ((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|)))) (-961) (-961) (-1073) (-1073) |#1| |#2|) (T -1113))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1118 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1118 *6 *8 *10)) (-5 *1 (-1113 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))))
-(-10 -7 (-15 -1893 ((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-517) $) 100) (((-517) $ (-517)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 173)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3688 (((-517) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1114 |#1|) (-1184) (-961)) (T -1114))
-((-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1114 *3)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1114 *3)) (-4 *3 (-961)))) (-2112 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-2112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1132 |t#1| (-517)) (-10 -8 (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -3103 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2112 ((-377 (-874 |t#1|)) $ (-517))) (-15 -2112 ((-377 (-874 |t#1|)) $ (-517) (-517)))) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-517)) . T))
-((-2814 (((-107) $) 12)) (-1772 (((-3 |#3| "failed") $) 17) (((-3 (-1073) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3189 ((|#3| $) 14) (((-1073) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL)))
-(((-1115 |#1| |#2| |#3|) (-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|))) (-1116 |#2| |#3|) (-961) (-1145 |#2|)) (T -1115))
-NIL
-(-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 ((|#2| $) 231 (-4035 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1880 ((|#2| $) 267)) (-2477 (((-3 |#2| "failed") $) 263)) (-1590 ((|#2| $) 264)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 240 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 237 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) 249 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1073) "failed") $) 242 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-3189 ((|#2| $) 269) (((-517) $) 260 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1073) $) 243 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-2869 (($ $) 266) (($ (-517) $) 265)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3355 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 219 (-4035 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-4035 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 34)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-3209 (($) 233 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3556 (((-107) $) 247 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 225 (-4035 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 224 (-4035 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-3972 (((-517) $) 100) (((-517) $ (-517)) 99)) (-3848 (((-107) $) 31)) (-1405 (($ $) 229 (|has| |#1| (-333)))) (-1787 ((|#2| $) 227 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) 261 (-4035 (|has| |#2| (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) 248 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 173)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-2967 (($ $ $) 251 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3099 (($ $ $) 252 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1893 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1601 (($ (-517) |#2|) 268)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-2836 (($) 262 (-4035 (|has| |#2| (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-1927 (($ $) 232 (-4035 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2597 ((|#2| $) 235 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) 238 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) 239 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) |#2|) 212 (-4035 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 |#2|)) 211 (-4035 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015))) (($ $ |#2|) 206 (-4035 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) 89 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073) (-703)) 88 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1073))) 87 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073)) 86 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-2971 (($ $) 230 (|has| |#1| (-333)))) (-1800 ((|#2| $) 228 (|has| |#1| (-333)))) (-3688 (((-517) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-199) $) 246 (-4035 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) 245 (-4035 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) 244 (-4035 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) 223 (-4035 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) 222 (-4035 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 236 (-4035 (-4035 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#1| (-333))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1073)) 241 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 59)) (-1328 (((-3 $ "failed") $) 48 (-3807 (-4035 (-3807 (|has| |#2| (-132)) (-4035 (|has| $ (-132)) (|has| |#2| (-831)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-1949 ((|#2| $) 234 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) 250 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) 93 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073) (-703)) 92 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1073))) 91 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073)) 90 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1606 (((-107) $ $) 254 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1583 (((-107) $ $) 255 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 253 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) 256 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1116 |#1| |#2|) (-1184) (-961) (-1145 |t#1|)) (T -1116))
-((-3688 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)) (-5 *2 (-517)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1116 *3 *2)) (-4 *2 (-1145 *3)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1116 *4 *3)) (-4 *3 (-1145 *4)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))) (-2869 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1145 *2)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))))
-(-13 (-1114 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1601 ($ (-517) |t#2|)) (-15 -3688 ((-517) $)) (-15 -1880 (|t#2| $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)) (-15 -2256 ($ |t#2|)) (-15 -1590 (|t#2| $)) (-15 -2477 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-909 |t#2|)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1073) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1073) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-822 (-1073)) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1073)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) ((-808 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517)))) ((-806 |#2|) |has| |#1| (-333)) ((-831) -12 (|has| |#1| (-333)) (|has| |#2| (-831))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-909 |#2|) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-937) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-952 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-1073)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1073)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 |#2|) |has| |#1| (-333)) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) -12 (|has| |#1| (-333)) (|has| |#2| (-1049))) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1108) |has| |#1| (-333)) ((-1112) |has| |#1| (-333)) ((-1114 |#1|) . T) ((-1132 |#1| (-517)) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 70)) (-2668 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 88)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-1880 ((|#2| $) 11)) (-2477 (((-3 |#2| "failed") $) 30)) (-1590 ((|#2| $) 31)) (-1865 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1887 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1073) "failed") $) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-3189 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1073) $) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-2869 (($ $) 61) (($ (-517) $) 24)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 77)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 64)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-3972 (((-517) $) 93) (((-517) $ (-517)) 95)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 ((|#2| $) 151 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) 136)) (-3103 (($ (-1 |#1| (-517)) $) 132)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 19) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3099 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1893 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) |#2|) 10)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 145 (|has| |#1| (-333)))) (-4151 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 219 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-2836 (($) NIL (-12 (|has| |#2| (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2597 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 126)) (-2476 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) |#2|) NIL (-12 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1015))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) 140 (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 ((|#2| $) 152 (|has| |#1| (-333)))) (-3688 (((-517) $) 12)) (-1898 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-199) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1545 (($ $) 124)) (-2256 (((-787) $) 242) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1073)) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 74)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) 142)) (-2986 ((|#1| $) 90)) (-1949 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 13 T CONST)) (-2409 (($) 17 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1583 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1547 (((-107) $ $) 63)) (-1595 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1654 (($ $) 213) (($ $ $) 68)) (-1642 (($ $ $) 66)) (** (($ $ (-843)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1117 |#1| |#2|) (-1116 |#1| |#2|) (-961) (-1145 |#1|)) (T -1117))
-NIL
-(-1116 |#1| |#2|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 10)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1974 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1880 (((-1146 |#1| |#2| |#3|) $) NIL)) (-2477 (((-3 (-1146 |#1| |#2| |#3|) "failed") $) NIL)) (-1590 (((-1146 |#1| |#2| |#3|) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1146 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3189 (((-1146 |#1| |#2| |#3|) $) NIL) (((-1073) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-1146 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-1146 |#1| |#2| |#3|))) (|:| |vec| (-1153 (-1146 |#1| |#2| |#3|)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) NIL)) (-2112 (((-377 (-874 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-3972 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 (((-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 17) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) (-1146 |#1| |#2| |#3|)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2597 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1146 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1146 |#1| |#2| |#3|)) (-583 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1015))) (($ $ (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-258 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1149 |#2|)) 24) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 (((-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-3688 (((-517) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-493) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1146 |#1| |#2| |#3|)) NIL) (($ (-1149 |#2|)) 22) (($ (-1073)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-2720 ((|#1| $ (-517)) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 11)) (-1949 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 19 T CONST)) (-2409 (($) 15 T CONST)) (-2731 (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1146 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1118 |#1| |#2| |#3|) (-13 (-1116 |#1| (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1118))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1116 |#1| (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
-((-1724 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)) 10)) (-3432 (((-388 |#1|) |#1|) 21)) (-3755 (((-388 |#1|) |#1|) 20)))
-(((-1119 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)))) (-1130 (-517))) (T -1119))
-((-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))))
-(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107))))
-((-1893 (((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|)) 23 (|has| |#1| (-777))) (((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|)) 17)))
-(((-1120 |#1| |#2|) (-10 -7 (-15 -1893 ((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) |noBranch|)) (-1108) (-1108)) (T -1120))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1120 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1121 *6)) (-5 *1 (-1120 *5 *6)))))
-(-10 -7 (-15 -1893 ((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) |noBranch|))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2515 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1893 (((-1054 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-3100 ((|#1| $) 14)) (-3310 ((|#1| $) 10)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3320 (((-517) $) 18)) (-3521 ((|#1| $) 17)) (-3330 ((|#1| $) 11)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1838 (((-107) $) 16)) (-3502 (((-1054 |#1|) $) 38 (|has| |#1| (-777))) (((-1054 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3645 (($ |#1|) 25)) (-2256 (($ (-998 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1003)))) (-2881 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1321 (($ $ (-517)) 13)) (-1547 (((-107) $ $) 27 (|has| |#1| (-1003)))))
-(((-1121 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -2881 ($ |#1|)) (-15 -2515 ($ |#1|)) (-15 -2256 ($ (-998 |#1|))) (-15 -1838 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1054 |#1|))) |noBranch|))) (-1108)) (T -1121))
-((-2881 (*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))) (-2515 (*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1108)) (-5 *1 (-1121 *3)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1121 *3)) (-4 *3 (-1108)))))
-(-13 (-997 |#1|) (-10 -8 (-15 -2881 ($ |#1|)) (-15 -2515 ($ |#1|)) (-15 -2256 ($ (-998 |#1|))) (-15 -1838 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1054 |#1|))) |noBranch|)))
-((-1893 (((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|)) 15)))
-(((-1122 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 ((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|)))) (-1073) (-961) (-1073) (-961)) (T -1122))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1127 *5 *6)) (-14 *5 (-1073)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1127 *7 *8)) (-5 *1 (-1122 *5 *6 *7 *8)) (-14 *7 (-1073)))))
-(-10 -7 (-15 -1893 ((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|))))
-((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3484 ((|#1| |#3|) 13)) (-1897 ((|#3| |#3|) 19)))
-(((-1123 |#1| |#2| |#3|) (-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-1130 |#2|)) (T -1123))
-((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1123 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-1897 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-1130 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1123 *2 *4 *3)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3722 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-1912 (((-3 |#2| "failed") |#2| (-703)) 30)) (-1748 (((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|) 42)) (-1699 (((-583 |#2|) |#2|) 44)) (-2708 (((-3 |#2| "failed") |#2| |#2|) 39)))
-(((-1124 |#1| |#2|) (-10 -7 (-15 -1912 ((-3 |#2| "failed") |#2| (-703))) (-15 -3722 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -2708 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1748 ((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|)) (-15 -1699 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1130 |#1|)) (T -1124))
-((-1699 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))) (-1748 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))) (-2708 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-1130 *3)))) (-3722 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))) (-1912 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))))
-(-10 -7 (-15 -1912 ((-3 |#2| "failed") |#2| (-703))) (-15 -3722 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -2708 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1748 ((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|)) (-15 -1699 ((-583 |#2|) |#2|)))
-((-3298 (((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|) 31)))
-(((-1125 |#1| |#2|) (-10 -7 (-15 -3298 ((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|))) (-509) (-1130 |#1|)) (T -1125))
-((-3298 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1130 *4)))))
-(-10 -7 (-15 -3298 ((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|)))
-((-3757 ((|#2| |#2| |#2|) 19)) (-3976 ((|#2| |#2| |#2|) 30)) (-1329 ((|#2| |#2| |#2| (-703) (-703)) 36)))
-(((-1126 |#1| |#2|) (-10 -7 (-15 -3757 (|#2| |#2| |#2|)) (-15 -3976 (|#2| |#2| |#2|)) (-15 -1329 (|#2| |#2| |#2| (-703) (-703)))) (-961) (-1130 |#1|)) (T -1126))
-((-1329 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-1130 *4)))) (-3976 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))) (-3757 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))))
-(-10 -7 (-15 -3757 (|#2| |#2| |#2|)) (-15 -3976 (|#2| |#2| |#2|)) (-15 -1329 (|#2| |#2| |#2| (-703) (-703))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2490 (((-1153 |#2|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#2|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) NIL (|has| |#2| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2518 (($ $ $) NIL (|has| |#2| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#2| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) NIL (|has| |#2| (-509)))) (-1874 (((-2 (|:| -1931 |#2|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#2| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#2| (-1049)))) (-1350 (($ (-1069 |#2|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) 17) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1548 (((-1069 |#2|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#2| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1953 (($ $ (-703) |#2| $) NIL)) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) NIL) (($ $ (-583 (-989)) (-583 |#2|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#2| (-333)))) (-1449 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2256 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) NIL) (($ (-1149 |#1|)) 19) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1127 |#1| |#2|) (-13 (-1130 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))) (-15 -1953 ($ $ (-703) |#2| $)))) (-1073) (-961)) (T -1127))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-1127 *3 *4)) (-4 *4 (-961)))) (-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1127 *4 *3)) (-14 *4 (-1073)) (-4 *3 (-961)))))
-(-13 (-1130 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))) (-15 -1953 ($ $ (-703) |#2| $))))
-((-1893 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1128 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1130 |#1|) (-961) (-1130 |#3|)) (T -1128))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1130 *6)) (-5 *1 (-1128 *5 *4 *6 *2)) (-4 *4 (-1130 *5)))))
-(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2490 (((-1153 |#2|) $ (-703)) 113)) (-1364 (((-583 (-989)) $) 15)) (-2532 (($ (-1069 |#2|)) 66)) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) 18)) (-3143 (((-388 (-1069 $)) (-1069 $)) 183)) (-2535 (($ $) 173)) (-2759 (((-388 $) $) 171)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 81)) (-2241 (($ $ (-703)) 70)) (-2882 (($ $ (-703)) 72)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1772 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-989) $) NIL)) (-4080 (($ $ $) 150)) (-1874 (((-2 (|:| -1931 |#2|) (|:| -3425 $) (|:| -3060 $)) $ $) 152)) (-3972 (((-703) $ $) 168)) (-1319 (((-3 $ "failed") $) 122)) (-1339 (($ |#2| (-703)) NIL) (($ $ (-989) (-703)) 46) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) 41) (((-583 (-703)) $ (-583 (-989))) 42)) (-1548 (((-1069 |#2|) $) 58)) (-1409 (((-3 (-989) "failed") $) 39)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 69)) (-4151 (($ $) 194)) (-2836 (($) 118)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 180)) (-2561 (((-388 (-1069 $)) (-1069 $)) 87)) (-2209 (((-388 (-1069 $)) (-1069 $)) 85)) (-3755 (((-388 $) $) 105)) (-2051 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) 31) (($ $ (-583 (-989)) (-583 |#2|)) 28) (($ $ (-989) $) 25) (($ $ (-583 (-989)) (-583 $)) 23)) (-3146 (((-703) $) 186)) (-1449 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 185) (((-377 $) $ (-377 $)) 167)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 189)) (-3127 (($ $ (-989)) 139) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) 16) (((-583 (-703)) $ (-583 (-989))) 20)) (-3266 ((|#2| $) NIL) (($ $ (-989)) 124)) (-3793 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) 50) (($ (-377 (-517))) NIL) (($ $) NIL)))
-(((-1129 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1449 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -1449 (|#2| (-377 |#1|) |#2|)) (-15 -2316 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1874 ((-2 (|:| -1931 |#2|) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3793 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3972 ((-703) |#1| |#1|)) (-15 -1449 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 (|#1| |#1| (-703))) (-15 -2241 (|#1| |#1| (-703))) (-15 -4055 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| (-703))) (-15 -2532 (|#1| (-1069 |#2|))) (-15 -1548 ((-1069 |#2|) |#1|)) (-15 -2490 ((-1153 |#2|) |#1| (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| |#2|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3143 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3266 (|#1| |#1| (-989))) (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1369 ((-703) |#1| (-583 (-989)))) (-15 -1369 ((-703) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1339 (|#1| |#1| (-989) (-703))) (-15 -2349 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -2349 ((-703) |#1| (-989))) (-15 -1409 ((-3 (-989) "failed") |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3688 ((-703) |#1| (-989))) (-15 -3189 ((-989) |#1|)) (-15 -1772 ((-3 (-989) "failed") |#1|)) (-15 -2256 (|#1| (-989))) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-989) |#1|)) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-989) |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 ((-703) |#1|)) (-15 -1339 (|#1| |#2| (-703))) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2349 ((-703) |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3127 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-989) (-703))) (-15 -3127 (|#1| |#1| (-583 (-989)))) (-15 -3127 (|#1| |#1| (-989))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-1130 |#2|) (-961)) (T -1129))
-NIL
-(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1449 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -1449 (|#2| (-377 |#1|) |#2|)) (-15 -2316 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1874 ((-2 (|:| -1931 |#2|) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3793 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3972 ((-703) |#1| |#1|)) (-15 -1449 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 (|#1| |#1| (-703))) (-15 -2241 (|#1| |#1| (-703))) (-15 -4055 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| (-703))) (-15 -2532 (|#1| (-1069 |#2|))) (-15 -1548 ((-1069 |#2|) |#1|)) (-15 -2490 ((-1153 |#2|) |#1| (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| |#2|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3143 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3266 (|#1| |#1| (-989))) (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1369 ((-703) |#1| (-583 (-989)))) (-15 -1369 ((-703) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1339 (|#1| |#1| (-989) (-703))) (-15 -2349 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -2349 ((-703) |#1| (-989))) (-15 -1409 ((-3 (-989) "failed") |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3688 ((-703) |#1| (-989))) (-15 -3189 ((-989) |#1|)) (-15 -1772 ((-3 (-989) "failed") |#1|)) (-15 -2256 (|#1| (-989))) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-989) |#1|)) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-989) |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 ((-703) |#1|)) (-15 -1339 (|#1| |#2| (-703))) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2349 ((-703) |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3127 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-989) (-703))) (-15 -3127 (|#1| |#1| (-583 (-989)))) (-15 -3127 (|#1| |#1| (-989))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2490 (((-1153 |#1|) $ (-703)) 238)) (-1364 (((-583 (-989)) $) 110)) (-2532 (($ (-1069 |#1|)) 236)) (-2352 (((-1069 $) $ (-989)) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 (-989))) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3081 (($ $ $) 223 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-1707 (((-107) $ $) 208 (|has| |#1| (-333)))) (-2241 (($ $ (-703)) 231)) (-2882 (($ $ (-703)) 230)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) 136)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) (((-989) $) 135)) (-3388 (($ $ $ (-989)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2518 (($ $ $) 212 (|has| |#1| (-333)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 211 (|has| |#1| (-333)))) (-2704 (($ $ $) 229)) (-4080 (($ $ $) 220 (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) 219 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ (-989)) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) 224 (|has| |#1| (-509)))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1319 (((-3 $ "failed") $) 204 (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) 117) (($ (-1069 $) (-989)) 116)) (-3430 (($ $ (-703)) 235)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| (-703)) 153) (($ $ (-989) (-703)) 119) (($ $ (-583 (-989)) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) 120) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 233)) (-2349 (((-703) $) 170) (((-703) $ (-989)) 122) (((-583 (-703)) $ (-583 (-989))) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1548 (((-1069 |#1|) $) 237)) (-1409 (((-3 (-989) "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 232)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) 113)) (-4151 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) 203 (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 213 (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-989) |#1|) 141) (($ $ (-583 (-989)) (-583 |#1|)) 140) (($ $ (-989) $) 139) (($ $ (-583 (-989)) (-583 $)) 138)) (-3146 (((-703) $) 209 (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) 234)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 210 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-3127 (($ $ (-989)) 42) (($ $ (-583 (-989))) 41) (($ $ (-989) (-703)) 40) (($ $ (-583 (-989)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1073)) 250 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 249 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 248 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 247 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3688 (((-703) $) 150) (((-703) $ (-989)) 130) (((-583 (-703)) $ (-583 (-989))) 129)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-989)) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-989)) 137) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ (-703)) 155) (($ $ (-989) (-703)) 128) (($ $ (-583 (-989)) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-989)) 38) (($ $ (-583 (-989))) 37) (($ $ (-989) (-703)) 36) (($ $ (-583 (-989)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1073)) 246 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 245 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 244 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 243 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1130 |#1|) (-1184) (-961)) (T -1130))
-((-2490 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1130 *3)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-3504 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2711 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))) (-4055 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *4)))) (-2241 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2882 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2704 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)))) (-3127 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-3388 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-1449 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-3972 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3793 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3793 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-1874 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1931 *3) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))) (-2316 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1130 *3)))) (-1449 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))))
-(-13 (-871 |t#1| (-703) (-989)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -2490 ((-1153 |t#1|) $ (-703))) (-15 -1548 ((-1069 |t#1|) $)) (-15 -2532 ($ (-1069 |t#1|))) (-15 -3430 ($ $ (-703))) (-15 -3504 ((-3 $ "failed") $ (-703))) (-15 -2711 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -4055 ((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703))) (-15 -2241 ($ $ (-703))) (-15 -2882 ($ $ (-703))) (-15 -2704 ($ $ $)) (-15 -3127 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1049)) (-6 (-1049)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3010 (|t#1| $)) (-15 -3388 (|t#1| $ $))) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -1449 ((-377 $) (-377 $) (-377 $))) (-15 -3972 ((-703) $ $)) (-15 -3081 ($ $ $)) (-15 -3793 ((-3 $ "failed") $ $)) (-15 -3793 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -4080 ($ $ $)) (-15 -1874 ((-2 (|:| -1931 |t#1|) (|:| -3425 $) (|:| -3060 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (-15 -2316 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4176) (-15 -1449 (|t#1| (-377 $) |t#1|))) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -4151 ($ $)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| (-703)) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 (-989) |#1|) . T) ((-478 (-989) $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-989)) . T) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) -12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349)))) ((-808 (-517)) -12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))) ((-871 |#1| (-703) (-989)) . T) ((-831) |has| |#1| (-831)) ((-842) |has| |#1| (-333)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-989)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-1049)) ((-1112) |has| |#1| (-831)))
-((-1364 (((-583 (-989)) $) 28)) (-1212 (($ $) 25)) (-1339 (($ |#2| |#3|) NIL) (($ $ (-989) |#3|) 22) (($ $ (-583 (-989)) (-583 |#3|)) 20)) (-4152 (($ $) 14)) (-1191 ((|#2| $) 12)) (-3688 ((|#3| $) 10)))
-(((-1131 |#1| |#2| |#3|) (-10 -8 (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1339 (|#1| |#1| (-989) |#3|)) (-15 -1212 (|#1| |#1|)) (-15 -1339 (|#1| |#2| |#3|)) (-15 -3688 (|#3| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -1191 (|#2| |#1|))) (-1132 |#2| |#3|) (-961) (-724)) (T -1131))
-NIL
-(-10 -8 (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1339 (|#1| |#1| (-989) |#3|)) (-15 -1212 (|#1| |#1|)) (-15 -1339 (|#1| |#2| |#3|)) (-15 -3688 (|#3| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -1191 (|#2| |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2223 (((-1054 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3201 (((-107) $) 73)) (-3972 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-3848 (((-107) $) 31)) (-3430 (($ $ (-843)) 101)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61) (($ $ (-989) |#2|) 76) (($ $ (-583 (-989)) (-583 |#2|)) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1672 (($ $ |#2|) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1449 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3688 ((|#2| $) 64)) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3383 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1132 |#1| |#2|) (-1184) (-961) (-724)) (T -1132))
-((-2223 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1054 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1449 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1073)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3972 (*1 *2 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1974 (*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1974 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3383 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2256 (*2 (-1073)))) (-4 *2 (-961)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-2051 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1054 *3)))))
-(-13 (-890 |t#1| |t#2| (-989)) (-10 -8 (-15 -2223 ((-1054 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1449 (|t#1| $ |t#2|)) (-15 -1638 ((-1073) $)) (-15 -2986 (|t#1| $)) (-15 -3430 ($ $ (-843))) (-15 -3972 (|t#2| $)) (-15 -3972 (|t#2| $ |t#2|)) (-15 -1974 ($ $ |t#2|)) (-15 -1974 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2256 (|t#1| (-1073)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3383 (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (-15 -1672 ($ $ |t#2|)) (IF (|has| |t#2| (-1015)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2051 ((-1054 |t#1|) $ |t#1|)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1015)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| |#2| (-989)) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2535 ((|#2| |#2|) 12)) (-2759 (((-388 |#2|) |#2|) 14)) (-3971 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30)))
-(((-1133 |#1| |#2|) (-10 -7 (-15 -2759 ((-388 |#2|) |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3971 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1130 |#1|) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (T -1133))
-((-3971 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1133 *3 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1133 *3 *2)) (-4 *2 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-13 (-1130 *4) (-509) (-10 -8 (-15 -1401 ($ $ $))))))))
-(-10 -7 (-15 -2759 ((-388 |#2|) |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3971 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))))))
-((-1893 (((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)) 23)))
-(((-1134 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)))) (-961) (-961) (-1073) (-1073) |#1| |#2|) (T -1134))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1134 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))))
-(-10 -7 (-15 -1893 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1135 |#1|) (-1184) (-961)) (T -1135))
-((-2925 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1135 *4)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1135 *3)) (-4 *3 (-961)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1132 |t#1| (-377 (-517))) (-10 -8 (-15 -2925 ($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -3430 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-377 (-517))) . T))
-((-2814 (((-107) $) 12)) (-1772 (((-3 |#3| "failed") $) 17)) (-3189 ((|#3| $) 14)))
-(((-1136 |#1| |#2| |#3|) (-10 -8 (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|))) (-1137 |#2| |#3|) (-961) (-1114 |#2|)) (T -1136))
-NIL
-(-10 -8 (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 183)) (-3189 ((|#2| $) 182)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3598 (((-377 (-517)) $) 180)) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) |#2|) 181)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3721 ((|#2| $) 179)) (-2354 (((-3 |#2| "failed") $) 177)) (-1601 ((|#2| $) 178)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1137 |#1| |#2|) (-1184) (-961) (-1114 |t#1|)) (T -1137))
-((-3688 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1137 *3 *2)) (-4 *2 (-1114 *3)))) (-1613 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1137 *4 *3)) (-4 *3 (-1114 *4)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))) (-2354 (*1 *2 *1) (|partial| -12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))))
-(-13 (-1135 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1613 ($ (-377 (-517)) |t#2|)) (-15 -3598 ((-377 (-517)) $)) (-15 -3721 (|t#2| $)) (-15 -3688 ((-377 (-517)) $)) (-15 -2256 ($ |t#2|)) (-15 -1601 (|t#2| $)) (-15 -2354 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-377 (-517))) . T) ((-1135 |#1|) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 96)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-1865 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1887 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL)) (-3189 ((|#2| $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 79)) (-3598 (((-377 (-517)) $) 12)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) |#2|) 10)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) 68)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 120) (($ $ (-377 (-517))) 118)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 31) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 115)) (-1867 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 ((|#2| $) 11)) (-2354 (((-3 |#2| "failed") $) 41)) (-1601 ((|#2| $) 42)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 93 (|has| |#1| (-333)))) (-4151 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 140 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 112)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 16)) (-1898 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 110)) (-2256 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 99)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 117)) (-2986 ((|#1| $) 98)) (-3707 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 21 T CONST)) (-2409 (($) 17 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 66)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1654 (($ $) 131) (($ $ $) 72)) (-1642 (($ $ $) 70)) (** (($ $ (-843)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1138 |#1| |#2|) (-1137 |#1| |#2|) (-961) (-1114 |#1|)) (T -1138))
-NIL
-(-1137 |#1| |#2|)
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1118 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1146 |#1| |#2| |#3|) "failed") $) 22)) (-3189 (((-1118 |#1| |#2| |#3|) $) NIL) (((-1146 |#1| |#2| |#3|) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3598 (((-377 (-517)) $) 57)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) (-1118 |#1| |#2| |#3|)) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 29) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 (((-1118 |#1| |#2| |#3|) $) 60)) (-2354 (((-3 (-1118 |#1| |#2| |#3|) "failed") $) NIL)) (-1601 (((-1118 |#1| |#2| |#3|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 37)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 87) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1118 |#1| |#2| |#3|)) 16) (($ (-1146 |#1| |#2| |#3|)) 17) (($ (-1149 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 31 T CONST)) (-2409 (($) 26 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 33)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1139 |#1| |#2| |#3|) (-13 (-1137 |#1| (-1118 |#1| |#2| |#3|)) (-952 (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1139))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1137 |#1| (-1118 |#1| |#2| |#3|)) (-952 (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 32)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-3 (-1139 |#2| |#3| |#4|) "failed") $) 20)) (-3189 (((-517) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-1139 |#2| |#3| |#4|) $) NIL)) (-1212 (($ $) 33)) (-3621 (((-3 $ "failed") $) 25)) (-3534 (($ $) NIL (|has| (-1139 |#2| |#3| |#4|) (-421)))) (-1436 (($ $ (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 11)) (-4031 (((-107) $) NIL)) (-1339 (($ (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-2349 (((-289 |#2| |#3| |#4|) $) NIL)) (-3328 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-1893 (($ (-1 (-1139 |#2| |#3| |#4|) (-1139 |#2| |#3| |#4|)) $) NIL)) (-3020 (((-3 (-772 |#2|) "failed") $) 72)) (-4152 (($ $) NIL)) (-1191 (((-1139 |#2| |#3| |#4|) $) 18)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 (((-1139 |#2| |#3| |#4|) $) NIL)) (-2476 (((-3 $ "failed") $ (-1139 |#2| |#3| |#4|)) NIL (|has| (-1139 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-1389 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $) 55)) (-3688 (((-289 |#2| |#3| |#4|) $) 14)) (-3266 (((-1139 |#2| |#3| |#4|) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1139 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))))) (-1311 (((-583 (-1139 |#2| |#3| |#4|)) $) NIL)) (-2720 (((-1139 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-132)))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| (-1139 |#2| |#3| |#4|) (-156)))) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 60 T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ (-1139 |#2| |#3| |#4|)) NIL (|has| (-1139 |#2| |#3| |#4|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1139 |#2| |#3| |#4|)) NIL) (($ (-1139 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))))
-(((-1140 |#1| |#2| |#3| |#4|) (-13 (-296 (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -1389 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $)))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -1140))
-((-3020 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))) (-1389 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1056)))) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))))
-(-13 (-296 (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -1389 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $))))
-((-3199 ((|#2| $) 28)) (-3005 ((|#2| $) 18)) (-2779 (($ $) 35)) (-1345 (($ $ (-517)) 63)) (-2953 (((-107) $ (-703)) 32)) (-1918 ((|#2| $ |#2|) 60)) (-3781 ((|#2| $ |#2|) 58)) (-2411 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-4040 (($ $ (-583 $)) 59)) (-2993 ((|#2| $) 17)) (-1660 (($ $) NIL) (($ $ (-703)) 41)) (-3063 (((-583 $) $) 25)) (-1272 (((-107) $ $) 49)) (-2550 (((-107) $ (-703)) 31)) (-3847 (((-107) $ (-703)) 30)) (-1763 (((-107) $) 27)) (-2068 ((|#2| $) 23) (($ $ (-703)) 45)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2655 (((-107) $) 21)) (-2552 (($ $) 38)) (-3406 (($ $) 64)) (-2691 (((-703) $) 40)) (-1761 (($ $) 39)) (-2452 (($ $ $) 57) (($ |#2| $) NIL)) (-1479 (((-583 $) $) 26)) (-1547 (((-107) $ $) 47)) (-2296 (((-703) $) 34)))
-(((-1141 |#1| |#2|) (-10 -8 (-15 -1345 (|#1| |#1| (-517))) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -3781 (|#2| |#1| |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -3406 (|#1| |#1|)) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -3005 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1449 (|#2| |#1| "first")) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -1918 (|#2| |#1| |#2|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -4040 (|#1| |#1| (-583 |#1|))) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703)))) (-1142 |#2|) (-1108)) (T -1141))
-NIL
-(-10 -8 (-15 -1345 (|#1| |#1| (-517))) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -3781 (|#2| |#1| |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -3406 (|#1| |#1|)) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -3005 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1449 (|#2| |#1| "first")) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -1918 (|#2| |#1| |#2|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -4040 (|#1| |#1| (-583 |#1|))) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))))
-((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-1142 |#1|) (-1184) (-1108)) (T -1142))
-((-2452 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-1660 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2068 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1761 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-2552 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3406 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3042 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3096 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-3781 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1345 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))))
-(-13 (-926 |t#1|) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2452 ($ |t#1| $)) (-15 -1647 (|t#1| $)) (-15 -1449 (|t#1| $ "first")) (-15 -1647 ($ $ (-703))) (-15 -1660 ($ $)) (-15 -1449 ($ $ "rest")) (-15 -1660 ($ $ (-703))) (-15 -2068 (|t#1| $)) (-15 -1449 (|t#1| $ "last")) (-15 -2068 ($ $ (-703))) (-15 -2779 ($ $)) (-15 -2993 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -1761 ($ $)) (-15 -2691 ((-703) $)) (-15 -2552 ($ $)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2568 ($ $ $)) (-15 -2568 ($ $ |t#1|)) (-15 -3406 ($ $)) (-15 -3042 (|t#1| $ |t#1|)) (-15 -2411 (|t#1| $ "first" |t#1|)) (-15 -3096 ($ $ $)) (-15 -2411 ($ $ "rest" $)) (-15 -3781 (|t#1| $ |t#1|)) (-15 -2411 (|t#1| $ "last" |t#1|)) (-15 -1345 ($ $ (-517)))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
-((-1893 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1145 |#1|) (-1145 |#2|)) (T -1143))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6 *4 *2)) (-4 *4 (-1145 *5)))))
-(-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2814 (((-107) $) 15)) (-1865 (($ $) 90)) (-1721 (($ $) 66)) (-1839 (($ $) 86)) (-1701 (($ $) 62)) (-1887 (($ $) 94)) (-1743 (($ $) 70)) (-1867 (($ $) 60)) (-2624 (($ $) 58)) (-1898 (($ $) 96)) (-1754 (($ $) 72)) (-1876 (($ $) 92)) (-1732 (($ $) 68)) (-1853 (($ $) 88)) (-1711 (($ $) 64)) (-2256 (((-787) $) 46) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3707 (($ $) 102)) (-1788 (($ $) 78)) (-3683 (($ $) 98)) (-1765 (($ $) 74)) (-3731 (($ $) 106)) (-1814 (($ $) 82)) (-1492 (($ $) 108)) (-1827 (($ $) 84)) (-3719 (($ $) 104)) (-1802 (($ $) 80)) (-3695 (($ $) 100)) (-1777 (($ $) 76)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-377 (-517))) 56)))
-(((-1144 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2814 ((-107) |#1|)) (-15 -2256 ((-787) |#1|))) (-1145 |#2|) (-961)) (T -1144))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2814 ((-107) |#1|)) (-15 -2256 ((-787) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1054 |#1|)) 153)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2328 (($ $) 152)) (-3520 (((-874 |#1|) $ (-703)) 150) (((-874 |#1|) $ (-703) (-703)) 149)) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) 100) (((-703) $ (-703)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 151)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-703)) 61) (($ $ (-989) (-703)) 76) (($ $ (-583 (-989)) (-583 (-703))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-4151 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 146 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1672 (($ $ (-703)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-3688 (((-703) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1311 (((-1054 |#1|) $) 154)) (-2720 ((|#1| $ (-703)) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1145 |#1|) (-1184) (-961)) (T -1145))
-((-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-5 *2 (-1054 *3)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) (-2328 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1145 *3)) (-4 *3 (-961)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1132 |t#1| (-703)) (-10 -8 (-15 -2925 ($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -1311 ((-1054 |t#1|) $)) (-15 -2925 ($ (-1054 |t#1|))) (-15 -2328 ($ $)) (-15 -3103 ($ (-1 |t#1| (-517)) $)) (-15 -3520 ((-874 |t#1|) $ (-703))) (-15 -3520 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1015)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-703) (-989)) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1132 |#1| (-703)) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 86)) (-2784 (((-1127 |#2| |#1|) $ (-703)) 73)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) 135 (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 120) (($ $ (-703) (-703)) 122)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1054 |#1|)) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2600 (($ $) 126)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2328 (($ $) 133)) (-3520 (((-874 |#1|) $ (-703)) 63) (((-874 |#1|) $ (-703) (-703)) 65)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3821 (($ $) 110)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2161 (($ (-517) (-517) $) 128)) (-3430 (($ $ (-843)) 132)) (-3103 (($ (-1 |#1| (-517)) $) 104)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 15) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 92)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-1641 (($ $) 108)) (-2533 (($ $) 106)) (-3804 (($ (-517) (-517) $) 130)) (-4151 (($ $) 143 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 149 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 144 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3926 (($ $ (-517) (-517)) 114)) (-1672 (($ $ (-703)) 116)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3515 (($ $) 112)) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 89) (($ $ $) 124 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 101 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1149 |#2|)) 97)) (-3688 (((-703) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 118)) (-2256 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 141 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1127 |#2| |#1|)) 79) (($ (-1149 |#2|)) 20)) (-1311 (((-1054 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) 88)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 87)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 17 T CONST)) (-2409 (($) 13 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 100)) (-1642 (($ $ $) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 138 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1146 |#1| |#2| |#3|) (-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (-15 -2533 ($ $)) (-15 -1641 ($ $)) (-15 -3821 ($ $)) (-15 -3515 ($ $)) (-15 -3926 ($ $ (-517) (-517))) (-15 -2600 ($ $)) (-15 -2161 ($ (-517) (-517) $)) (-15 -3804 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1146))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1146 *3 *4 *5)))) (-2784 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1146 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2533 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-1641 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3821 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3515 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3926 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-2600 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-2161 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-3804 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (-15 -2533 ($ $)) (-15 -1641 ($ $)) (-15 -3821 ($ $)) (-15 -3515 ($ $)) (-15 -3926 ($ $ (-517) (-517))) (-15 -2600 ($ $)) (-15 -2161 ($ (-517) (-517) $)) (-15 -3804 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
-((-1495 (((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-4067 (((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3981 (((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|)) 13)) (-2079 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3070 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2275 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-2285 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-1553 ((|#2| |#2| |#2|) 43)))
-(((-1147 |#1| |#2|) (-10 -7 (-15 -3981 ((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|))) (-15 -4067 ((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1495 ((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1553 (|#2| |#2| |#2|)) (-15 -3070 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2079 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2275 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2285 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1145 |#1|)) (T -1147))
-((-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1145 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1147 *5 *6)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1145 *5)) (-5 *1 (-1147 *5 *2)))) (-2079 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-1553 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-1145 *3)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-583 (-1054 *4)))) (-5 *1 (-1147 *4 *5)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))))
-(-10 -7 (-15 -3981 ((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|))) (-15 -4067 ((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1495 ((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1553 (|#2| |#2| |#2|)) (-15 -3070 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2079 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2275 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2285 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|))))))
-((-2873 ((|#2| |#4| (-703)) 30)) (-1930 ((|#4| |#2|) 25)) (-3665 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-2424 (((-1 |#4| (-583 |#4|)) |#3|) 45)))
-(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1930 (|#4| |#2|)) (-15 -2873 (|#2| |#4| (-703))) (-15 -2424 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3665 (|#4| (-377 |#2|))) |noBranch|)) (-961) (-1130 |#1|) (-593 |#2|) (-1145 |#1|)) (T -1148))
-((-3665 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1130 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1148 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1145 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-1148 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1145 *5)))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1130 *4)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
-(-10 -7 (-15 -1930 (|#4| |#2|)) (-15 -2873 (|#2| |#4| (-703))) (-15 -2424 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3665 (|#4| (-377 |#2|))) |noBranch|))
-((-2750 (((-107) $ $) NIL)) (-1638 (((-1073)) 12)) (-3985 (((-1056) $) 17)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11) (((-1073) $) 8)) (-1547 (((-107) $ $) 14)))
-(((-1149 |#1|) (-13 (-1003) (-557 (-1073)) (-10 -8 (-15 -2256 ((-1073) $)) (-15 -1638 ((-1073))))) (-1073)) (T -1149))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))) (-1638 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))))
-(-13 (-1003) (-557 (-1073)) (-10 -8 (-15 -2256 ((-1073) $)) (-15 -1638 ((-1073)))))
-((-3526 (($ (-703)) 16)) (-2723 (((-623 |#2|) $ $) 37)) (-1292 ((|#2| $) 46)) (-2195 ((|#2| $) 45)) (-3501 ((|#2| $ $) 33)) (-2862 (($ $ $) 42)) (-1654 (($ $) 20) (($ $ $) 26)) (-1642 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
-(((-1150 |#1| |#2|) (-10 -8 (-15 -1292 (|#2| |#1|)) (-15 -2195 (|#2| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2723 ((-623 |#2|) |#1| |#1|)) (-15 -3501 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -3526 (|#1| (-703))) (-15 -1642 (|#1| |#1| |#1|))) (-1151 |#2|) (-1108)) (T -1150))
-NIL
-(-10 -8 (-15 -1292 (|#2| |#1|)) (-15 -2195 (|#2| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2723 ((-623 |#2|) |#1| |#1|)) (-15 -3501 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -3526 (|#1| (-703))) (-15 -1642 (|#1| |#1| |#1|)))
-((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703)) 112 (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1292 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3847 (((-107) $ (-703)) 10)) (-2195 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3501 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-2862 (($ $ $) 104 (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1654 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
-(((-1151 |#1|) (-1184) (-1108)) (T -1151))
-((-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-25)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1151 *3)) (-4 *3 (-23)) (-4 *3 (-1108)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (-3501 (*1 *2 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (-2723 (*1 *2 *1 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-961)) (-5 *2 (-623 *3)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1642 ($ $ $)) |noBranch|) (IF (|has| |t#1| (-23)) (-15 -3526 ($ (-703))) |noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1654 ($ $)) (-15 -1654 ($ $ $)) (-15 * ($ (-517) $))) |noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3501 (|t#1| $ $)) (-15 -2723 ((-623 |t#1|) $ $)) (-15 -2862 ($ $ $))) |noBranch|) (IF (|has| |t#1| (-918)) (IF (|has| |t#1| (-961)) (PROGN (-15 -2195 (|t#1| $)) (-15 -1292 (|t#1| $))) |noBranch|) |noBranch|)))
-(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T))
-((-3905 (((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|) 13)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|) 15)) (-1893 (((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|)) 28) (((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|)) 18)))
-(((-1152 |#1| |#2|) (-10 -7 (-15 -3905 ((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -1893 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -1893 ((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|)))) (-1108) (-1108)) (T -1152))
-((-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1152 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1153 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1153 *5)) (-5 *1 (-1152 *6 *5)))))
-(-10 -7 (-15 -3905 ((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -1893 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -1893 ((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|))))
-((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-3118 (($ (-583 |#1|)) 9)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 15 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 8)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1153 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -3118 ($ (-583 |#1|))))) (-1108)) (T -1153))
-((-3118 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1153 *3)))))
-(-13 (-1151 |#1|) (-10 -8 (-15 -3118 ($ (-583 |#1|)))))
-((-2750 (((-107) $ $) NIL)) (-2795 (((-1056) $ (-1056)) 87) (((-1056) $ (-1056) (-1056)) 85) (((-1056) $ (-1056) (-583 (-1056))) 84)) (-2361 (($) 56)) (-2529 (((-1158) $ (-437) (-843)) 42)) (-3029 (((-1158) $ (-843) (-1056)) 70) (((-1158) $ (-843) (-797)) 71)) (-2444 (((-1158) $ (-843) (-349) (-349)) 45)) (-4150 (((-1158) $ (-1056)) 66)) (-1455 (((-1158) $ (-843) (-1056)) 75)) (-1278 (((-1158) $ (-843) (-349) (-349)) 46)) (-3779 (((-1158) $ (-843) (-843)) 43)) (-2785 (((-1158) $) 67)) (-3801 (((-1158) $ (-843) (-1056)) 74)) (-2877 (((-1158) $ (-437) (-843)) 30)) (-3038 (((-1158) $ (-843) (-1056)) 73)) (-1525 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-2009 (((-1158) $ (-703) (-703)) 40)) (-3409 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 37)) (-3206 (((-1021) $) NIL)) (-2003 (((-1153 (-3 (-437) "undefined")) $) 36)) (-2162 (((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $) 35)) (-3227 (((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517)) 65)) (-3895 (((-583 (-865 (-199))) $) NIL)) (-2042 (((-437) $ (-843)) 32)) (-1570 (((-1158) $ (-703) (-703) (-843) (-843)) 39)) (-2867 (((-1158) $ (-1056)) 76)) (-3661 (((-1158) $ (-843) (-1056)) 72)) (-2256 (((-787) $) 82)) (-1210 (((-1158) $) 77)) (-2547 (((-1158) $ (-843) (-1056)) 68) (((-1158) $ (-843) (-797)) 69)) (-1547 (((-107) $ $) NIL)))
-(((-1154) (-13 (-1003) (-10 -8 (-15 -3895 ((-583 (-865 (-199))) $)) (-15 -2361 ($)) (-15 -3409 ($ $)) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -3409 ($ (-437) (-583 (-236)))) (-15 -3227 ((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -2162 ((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2003 ((-1153 (-3 (-437) "undefined")) $)) (-15 -4150 ((-1158) $ (-1056))) (-15 -2877 ((-1158) $ (-437) (-843))) (-15 -2042 ((-437) $ (-843))) (-15 -2547 ((-1158) $ (-843) (-1056))) (-15 -2547 ((-1158) $ (-843) (-797))) (-15 -3029 ((-1158) $ (-843) (-1056))) (-15 -3029 ((-1158) $ (-843) (-797))) (-15 -3038 ((-1158) $ (-843) (-1056))) (-15 -3801 ((-1158) $ (-843) (-1056))) (-15 -3661 ((-1158) $ (-843) (-1056))) (-15 -2867 ((-1158) $ (-1056))) (-15 -1210 ((-1158) $)) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -1278 ((-1158) $ (-843) (-349) (-349))) (-15 -2444 ((-1158) $ (-843) (-349) (-349))) (-15 -1455 ((-1158) $ (-843) (-1056))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -2529 ((-1158) $ (-437) (-843))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -2785 ((-1158) $)) (-15 -3435 ((-517) $)) (-15 -2256 ((-787) $))))) (T -1154))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1154)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1154)))) (-2361 (*1 *1) (-5 *1 (-1154))) (-3409 (*1 *1 *1) (-5 *1 (-1154))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1154)))) (-3227 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1154)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-1153 (-3 (-437) "undefined"))) (-5 *1 (-1154)))) (-4150 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2877 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2042 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1154)))) (-2547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3038 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3801 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3661 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1570 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1278 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2444 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1455 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2009 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2529 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1154)))))
-(-13 (-1003) (-10 -8 (-15 -3895 ((-583 (-865 (-199))) $)) (-15 -2361 ($)) (-15 -3409 ($ $)) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -3409 ($ (-437) (-583 (-236)))) (-15 -3227 ((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -2162 ((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2003 ((-1153 (-3 (-437) "undefined")) $)) (-15 -4150 ((-1158) $ (-1056))) (-15 -2877 ((-1158) $ (-437) (-843))) (-15 -2042 ((-437) $ (-843))) (-15 -2547 ((-1158) $ (-843) (-1056))) (-15 -2547 ((-1158) $ (-843) (-797))) (-15 -3029 ((-1158) $ (-843) (-1056))) (-15 -3029 ((-1158) $ (-843) (-797))) (-15 -3038 ((-1158) $ (-843) (-1056))) (-15 -3801 ((-1158) $ (-843) (-1056))) (-15 -3661 ((-1158) $ (-843) (-1056))) (-15 -2867 ((-1158) $ (-1056))) (-15 -1210 ((-1158) $)) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -1278 ((-1158) $ (-843) (-349) (-349))) (-15 -2444 ((-1158) $ (-843) (-349) (-349))) (-15 -1455 ((-1158) $ (-843) (-1056))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -2529 ((-1158) $ (-437) (-843))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -2785 ((-1158) $)) (-15 -3435 ((-517) $)) (-15 -2256 ((-787) $))))
-((-2750 (((-107) $ $) NIL)) (-4132 (((-1158) $ (-349)) 138) (((-1158) $ (-349) (-349) (-349)) 139)) (-2795 (((-1056) $ (-1056)) 146) (((-1056) $ (-1056) (-1056)) 144) (((-1056) $ (-1056) (-583 (-1056))) 143)) (-1929 (($) 49)) (-3222 (((-1158) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1158) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1158) $ (-349) (-349)) 116) (((-1158) $ (-349) (-349) (-349)) 123)) (-2268 (((-349)) 96) (((-349) (-349)) 97)) (-2488 (((-349)) 91) (((-349) (-349)) 93)) (-3732 (((-349)) 94) (((-349) (-349)) 95)) (-1444 (((-349)) 100) (((-349) (-349)) 101)) (-2974 (((-349)) 98) (((-349) (-349)) 99)) (-2444 (((-1158) $ (-349) (-349)) 140)) (-4150 (((-1158) $ (-1056)) 124)) (-2467 (((-1034 (-199)) $) 50) (($ $ (-1034 (-199))) 51)) (-2505 (((-1158) $ (-1056)) 152)) (-1892 (((-1158) $ (-1056)) 153)) (-1225 (((-1158) $ (-349) (-349)) 122) (((-1158) $ (-517) (-517)) 137)) (-3779 (((-1158) $ (-843) (-843)) 130)) (-2785 (((-1158) $) 110)) (-2749 (((-1158) $ (-1056)) 151)) (-1203 (((-1158) $ (-1056)) 107)) (-1525 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-2009 (((-1158) $ (-703) (-703)) 129)) (-3347 (((-1158) $ (-703) (-865 (-199))) 158)) (-3977 (($ $) 56) (($ (-1034 (-199)) (-1056)) 57) (($ (-1034 (-199)) (-583 (-236))) 58)) (-3916 (((-1158) $ (-349) (-349) (-349)) 104)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 102)) (-1211 (((-1158) $ (-349)) 141)) (-2812 (((-1158) $ (-349)) 156)) (-3206 (((-1021) $) NIL)) (-1551 (((-1158) $ (-349)) 155)) (-2960 (((-1158) $ (-1056)) 109)) (-1570 (((-1158) $ (-703) (-703) (-843) (-843)) 128)) (-2767 (((-1158) $ (-1056)) 106)) (-2867 (((-1158) $ (-1056)) 108)) (-2715 (((-1158) $ (-142) (-142)) 127)) (-2256 (((-787) $) 135)) (-1210 (((-1158) $) 111)) (-2351 (((-1158) $ (-1056)) 154)) (-2547 (((-1158) $ (-1056)) 105)) (-1547 (((-107) $ $) NIL)))
-(((-1155) (-13 (-1003) (-10 -8 (-15 -2488 ((-349))) (-15 -2488 ((-349) (-349))) (-15 -3732 ((-349))) (-15 -3732 ((-349) (-349))) (-15 -2268 ((-349))) (-15 -2268 ((-349) (-349))) (-15 -2974 ((-349))) (-15 -2974 ((-349) (-349))) (-15 -1444 ((-349))) (-15 -1444 ((-349) (-349))) (-15 -1929 ($)) (-15 -3977 ($ $)) (-15 -3977 ($ (-1034 (-199)) (-1056))) (-15 -3977 ($ (-1034 (-199)) (-583 (-236)))) (-15 -2467 ((-1034 (-199)) $)) (-15 -2467 ($ $ (-1034 (-199)))) (-15 -3347 ((-1158) $ (-703) (-865 (-199)))) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -4150 ((-1158) $ (-1056))) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -3222 ((-1158) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3222 ((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3222 ((-1158) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349) (-349))) (-15 -2867 ((-1158) $ (-1056))) (-15 -2547 ((-1158) $ (-1056))) (-15 -2767 ((-1158) $ (-1056))) (-15 -1203 ((-1158) $ (-1056))) (-15 -2960 ((-1158) $ (-1056))) (-15 -1225 ((-1158) $ (-349) (-349))) (-15 -1225 ((-1158) $ (-517) (-517))) (-15 -4132 ((-1158) $ (-349))) (-15 -4132 ((-1158) $ (-349) (-349) (-349))) (-15 -2444 ((-1158) $ (-349) (-349))) (-15 -2749 ((-1158) $ (-1056))) (-15 -1551 ((-1158) $ (-349))) (-15 -2812 ((-1158) $ (-349))) (-15 -2505 ((-1158) $ (-1056))) (-15 -1892 ((-1158) $ (-1056))) (-15 -2351 ((-1158) $ (-1056))) (-15 -3916 ((-1158) $ (-349) (-349) (-349))) (-15 -1211 ((-1158) $ (-349))) (-15 -2785 ((-1158) $)) (-15 -2715 ((-1158) $ (-142) (-142))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -1210 ((-1158) $)) (-15 -3435 ((-517) $))))) (T -1155))
-((-2488 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-3732 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2268 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2974 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2974 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1444 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1444 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1929 (*1 *1) (-5 *1 (-1155))) (-3977 (*1 *1 *1) (-5 *1 (-1155))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1056)) (-5 *1 (-1155)))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) (-2467 (*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) (-3347 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-2009 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4150 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1570 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2547 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2767 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1203 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2960 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1225 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1225 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4132 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4132 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2444 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2749 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1551 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2812 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2505 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1892 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3916 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1211 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2715 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1155)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155)))))
-(-13 (-1003) (-10 -8 (-15 -2488 ((-349))) (-15 -2488 ((-349) (-349))) (-15 -3732 ((-349))) (-15 -3732 ((-349) (-349))) (-15 -2268 ((-349))) (-15 -2268 ((-349) (-349))) (-15 -2974 ((-349))) (-15 -2974 ((-349) (-349))) (-15 -1444 ((-349))) (-15 -1444 ((-349) (-349))) (-15 -1929 ($)) (-15 -3977 ($ $)) (-15 -3977 ($ (-1034 (-199)) (-1056))) (-15 -3977 ($ (-1034 (-199)) (-583 (-236)))) (-15 -2467 ((-1034 (-199)) $)) (-15 -2467 ($ $ (-1034 (-199)))) (-15 -3347 ((-1158) $ (-703) (-865 (-199)))) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -4150 ((-1158) $ (-1056))) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -3222 ((-1158) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3222 ((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3222 ((-1158) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349) (-349))) (-15 -2867 ((-1158) $ (-1056))) (-15 -2547 ((-1158) $ (-1056))) (-15 -2767 ((-1158) $ (-1056))) (-15 -1203 ((-1158) $ (-1056))) (-15 -2960 ((-1158) $ (-1056))) (-15 -1225 ((-1158) $ (-349) (-349))) (-15 -1225 ((-1158) $ (-517) (-517))) (-15 -4132 ((-1158) $ (-349))) (-15 -4132 ((-1158) $ (-349) (-349) (-349))) (-15 -2444 ((-1158) $ (-349) (-349))) (-15 -2749 ((-1158) $ (-1056))) (-15 -1551 ((-1158) $ (-349))) (-15 -2812 ((-1158) $ (-349))) (-15 -2505 ((-1158) $ (-1056))) (-15 -1892 ((-1158) $ (-1056))) (-15 -2351 ((-1158) $ (-1056))) (-15 -3916 ((-1158) $ (-349) (-349) (-349))) (-15 -1211 ((-1158) $ (-349))) (-15 -2785 ((-1158) $)) (-15 -2715 ((-1158) $ (-142) (-142))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -1210 ((-1158) $)) (-15 -3435 ((-517) $))))
-((-3904 (((-583 (-1056)) (-583 (-1056))) 94) (((-583 (-1056))) 89)) (-1565 (((-583 (-1056))) 87)) (-3996 (((-583 (-843)) (-583 (-843))) 62) (((-583 (-843))) 59)) (-2810 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-3473 (((-1158)) 64)) (-3744 (((-843) (-843)) 80) (((-843)) 79)) (-2649 (((-843) (-843)) 78) (((-843)) 77)) (-3190 (((-797) (-797)) 74) (((-797)) 73)) (-3714 (((-199)) 84) (((-199) (-349)) 86)) (-1230 (((-843)) 81) (((-843) (-843)) 82)) (-3175 (((-843) (-843)) 76) (((-843)) 75)) (-2528 (((-797) (-797)) 68) (((-797)) 66)) (-3667 (((-797) (-797)) 70) (((-797)) 69)) (-3317 (((-797) (-797)) 72) (((-797)) 71)))
-(((-1156) (-10 -7 (-15 -2528 ((-797))) (-15 -2528 ((-797) (-797))) (-15 -3667 ((-797))) (-15 -3667 ((-797) (-797))) (-15 -3317 ((-797))) (-15 -3317 ((-797) (-797))) (-15 -3190 ((-797))) (-15 -3190 ((-797) (-797))) (-15 -3175 ((-843))) (-15 -3175 ((-843) (-843))) (-15 -2810 ((-583 (-703)))) (-15 -2810 ((-583 (-703)) (-583 (-703)))) (-15 -3996 ((-583 (-843)))) (-15 -3996 ((-583 (-843)) (-583 (-843)))) (-15 -3473 ((-1158))) (-15 -3904 ((-583 (-1056)))) (-15 -3904 ((-583 (-1056)) (-583 (-1056)))) (-15 -1565 ((-583 (-1056)))) (-15 -2649 ((-843))) (-15 -3744 ((-843))) (-15 -2649 ((-843) (-843))) (-15 -3744 ((-843) (-843))) (-15 -1230 ((-843) (-843))) (-15 -1230 ((-843))) (-15 -3714 ((-199) (-349))) (-15 -3714 ((-199))))) (T -1156))
-((-3714 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1156)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1156)))) (-1230 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-1230 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3744 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-2649 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-1565 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3904 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3473 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1156)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) (-3996 (*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) (-2810 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) (-2810 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3175 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3190 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3317 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3667 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3667 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-2528 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
-(-10 -7 (-15 -2528 ((-797))) (-15 -2528 ((-797) (-797))) (-15 -3667 ((-797))) (-15 -3667 ((-797) (-797))) (-15 -3317 ((-797))) (-15 -3317 ((-797) (-797))) (-15 -3190 ((-797))) (-15 -3190 ((-797) (-797))) (-15 -3175 ((-843))) (-15 -3175 ((-843) (-843))) (-15 -2810 ((-583 (-703)))) (-15 -2810 ((-583 (-703)) (-583 (-703)))) (-15 -3996 ((-583 (-843)))) (-15 -3996 ((-583 (-843)) (-583 (-843)))) (-15 -3473 ((-1158))) (-15 -3904 ((-583 (-1056)))) (-15 -3904 ((-583 (-1056)) (-583 (-1056)))) (-15 -1565 ((-583 (-1056)))) (-15 -2649 ((-843))) (-15 -3744 ((-843))) (-15 -2649 ((-843) (-843))) (-15 -3744 ((-843) (-843))) (-15 -1230 ((-843) (-843))) (-15 -1230 ((-843))) (-15 -3714 ((-199) (-349))) (-15 -3714 ((-199))))
-((-2747 (((-437) (-583 (-583 (-865 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-865 (-199))))) 16) (((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 15)) (-1768 (((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236))) 23) (((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 22)) (-2256 (((-1154) (-437)) 34)))
-(((-1157) (-10 -7 (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2256 ((-1154) (-437))))) (T -1157))
-((-2256 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-1768 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-1768 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))))
-(-10 -7 (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2256 ((-1154) (-437))))
-((-2677 (($) 7)) (-2256 (((-787) $) 10)))
-(((-1158) (-10 -8 (-15 -2677 ($)) (-15 -2256 ((-787) $)))) (T -1158))
-((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1158)))) (-2677 (*1 *1) (-5 *1 (-1158))))
-(-10 -8 (-15 -2677 ($)) (-15 -2256 ((-787) $)))
-((-1667 (($ $ |#2|) 10)))
-(((-1159 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1| |#2|))) (-1160 |#2|) (-333)) (T -1159))
-NIL
-(-10 -8 (-15 -1667 (|#1| |#1| |#2|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3141 (((-125)) 28)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 29)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1160 |#1|) (-1184) (-333)) (T -1160))
-((-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-333)))) (-3141 (*1 *2) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
-(-13 (-650 |t#1|) (-10 -8 (-15 -1667 ($ $ |t#1|)) (-15 -3141 ((-125)))))
+((-1857 (((-1119 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1119 |#1| |#3| |#5|)) 23)))
+(((-1114 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1857 ((-1119 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1119 |#1| |#3| |#5|)))) (-961) (-961) (-1074) (-1074) |#1| |#2|) (T -1114))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1074)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1119 *6 *8 *10)) (-5 *1 (-1114 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1074)))))
+(-10 -7 (-15 -1857 ((-1119 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1119 |#1| |#3| |#5|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 (-989)) $) 74)) (-1625 (((-1074) $) 103)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-3349 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-4040 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1834 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 162 (|has| |#1| (-333)))) (-3490 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3706 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1812 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1851 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) 17 T CONST)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-1217 (($ $) 60)) (-1568 (((-3 $ "failed") $) 34)) (-2323 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2366 (($ $ $) 156 (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2965 (((-107) $) 164 (|has| |#1| (-333)))) (-2029 (((-107) $) 73)) (-2475 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-517) $) 100) (((-517) $ (-517)) 99)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) 101)) (-3558 (($ (-1 |#1| (-517)) $) 173)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-1331 (((-107) $) 62)) (-1343 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-1857 (($ (-1 |#1| |#1|) $) 63)) (-1826 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-1368 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3865 (((-1057) $) 9)) (-4123 (($ $) 165 (|has| |#1| (-333)))) (-2863 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 169 (-3763 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 150 (|has| |#1| (-333)))) (-1396 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3693 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 158 (|has| |#1| (-333)))) (-3467 (($ $ (-517)) 95)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2459 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-2623 (((-703) $) 154 (|has| |#1| (-333)))) (-1986 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 155 (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-4007 (((-517) $) 64)) (-1860 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 72)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-3086 ((|#1| $ (-517)) 59)) (-1589 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-2840 ((|#1| $) 102)) (-3642 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3622 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1115 |#1|) (-1185) (-961)) (T -1115))
+((-1534 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1115 *3)))) (-3558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1115 *3)) (-4 *3 (-961)))) (-2323 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1115 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-2323 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1115 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-2863 (*1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-2863 (*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1074)) (-4 *1 (-1115 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1115 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1363 ((-583 *2) *3))) (|has| *3 (-15 -2863 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1133 |t#1| (-517)) (-10 -8 (-15 -1534 ($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -3558 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2323 ((-377 (-874 |t#1|)) $ (-517))) (-15 -2323 ((-377 (-874 |t#1|)) $ (-517) (-517)))) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $)) (IF (|has| |t#1| (-15 -2863 (|t#1| |t#1| (-1074)))) (IF (|has| |t#1| (-15 -1363 ((-583 (-1074)) |t#1|))) (-15 -2863 ($ $ (-1074))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1095)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -2863 ($ $ (-1074))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1095))) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1113) |has| |#1| (-333)) ((-1133 |#1| (-517)) . T))
+((-2745 (((-107) $) 12)) (-1759 (((-3 |#3| "failed") $) 17) (((-3 (-1074) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3076 ((|#3| $) 14) (((-1074) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL)))
+(((-1116 |#1| |#2| |#3|) (-10 -8 (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-1074) |#1|)) (-15 -1759 ((-3 (-1074) "failed") |#1|)) (-15 -3076 (|#3| |#1|)) (-15 -1759 ((-3 |#3| "failed") |#1|)) (-15 -2745 ((-107) |#1|))) (-1117 |#2| |#3|) (-961) (-1146 |#2|)) (T -1116))
+NIL
+(-10 -8 (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3076 ((-1074) |#1|)) (-15 -1759 ((-3 (-1074) "failed") |#1|)) (-15 -3076 (|#3| |#1|)) (-15 -1759 ((-3 |#3| "failed") |#1|)) (-15 -2745 ((-107) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-2667 ((|#2| $) 231 (-1651 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1363 (((-583 (-989)) $) 74)) (-1625 (((-1074) $) 103)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-3349 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-4040 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-3692 ((|#2| $) 267)) (-1636 (((-3 |#2| "failed") $) 263)) (-1579 ((|#2| $) 264)) (-1834 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) 19)) (-2594 (((-388 (-1070 $)) (-1070 $)) 240 (-1651 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3938 (($ $) 162 (|has| |#1| (-333)))) (-3490 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3706 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 237 (-1651 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1812 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1207 (((-517) $) 249 (-1651 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-1534 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1851 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-1651 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-1651 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1074) "failed") $) 242 (-1651 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333))))) (-3076 ((|#2| $) 269) (((-517) $) 260 (-1651 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-1651 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1074) $) 243 (-1651 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333))))) (-2163 (($ $) 266) (($ (-517) $) 265)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-1217 (($ $) 60)) (-4012 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 219 (-1651 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-1651 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-1568 (((-3 $ "failed") $) 34)) (-2323 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-3098 (($) 233 (-1651 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2366 (($ $ $) 156 (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2965 (((-107) $) 164 (|has| |#1| (-333)))) (-2099 (((-107) $) 247 (-1651 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2029 (((-107) $) 73)) (-2475 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 225 (-1651 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 224 (-1651 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-1921 (((-517) $) 100) (((-517) $ (-517)) 99)) (-2955 (((-107) $) 31)) (-1936 (($ $) 229 (|has| |#1| (-333)))) (-1772 ((|#2| $) 227 (|has| |#1| (-333)))) (-2666 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3744 (((-3 $ "failed") $) 261 (-1651 (|has| |#2| (-1050)) (|has| |#1| (-333))))) (-1624 (((-107) $) 248 (-1651 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3371 (($ $ (-843)) 101)) (-3558 (($ (-1 |#1| (-517)) $) 173)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-1331 (((-107) $) 62)) (-1343 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-1575 (($ $ $) 251 (-1651 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-2986 (($ $ $) 252 (-1651 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1857 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1826 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-1368 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1590 (($ (-517) |#2|) 268)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 165 (|has| |#1| (-333)))) (-2863 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 169 (-3763 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-2663 (($) 262 (-1651 (|has| |#2| (-1050)) (|has| |#1| (-333))) CONST)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 150 (|has| |#1| (-333)))) (-1396 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-1194 (($ $) 232 (-1651 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-3263 ((|#2| $) 235 (-1651 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1206 (((-388 (-1070 $)) (-1070 $)) 238 (-1651 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3923 (((-388 (-1070 $)) (-1070 $)) 239 (-1651 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3693 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 158 (|has| |#1| (-333)))) (-3467 (($ $ (-517)) 95)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2459 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1074) |#2|) 212 (-1651 (|has| |#2| (-478 (-1074) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 |#2|)) 211 (-1651 (|has| |#2| (-478 (-1074) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-1651 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-1651 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-1651 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-1651 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-2623 (((-703) $) 154 (|has| |#1| (-333)))) (-1986 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015))) (($ $ |#2|) 206 (-1651 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 155 (|has| |#1| (-333)))) (-1699 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3763 (-1651 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3763 (-1651 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) 89 (-3763 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1074) (-703)) 88 (-3763 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1074))) 87 (-3763 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1074)) 86 (-3763 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-3691 (($ $) 230 (|has| |#1| (-333)))) (-1783 ((|#2| $) 228 (|has| |#1| (-333)))) (-4007 (((-517) $) 64)) (-1860 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3582 (((-199) $) 246 (-1651 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) 245 (-1651 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) 244 (-1651 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) 223 (-1651 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) 222 (-1651 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 236 (-1651 (-1651 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#1| (-333))))) (-2860 (($ $) 72)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1074)) 241 (-1651 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-3086 ((|#1| $ (-517)) 59)) (-1589 (((-3 $ "failed") $) 48 (-3763 (-1651 (-3763 (|has| |#2| (-132)) (-1651 (|has| $ (-132)) (|has| |#2| (-831)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1865 (((-703)) 29)) (-2840 ((|#1| $) 102)) (-3112 ((|#2| $) 234 (-1651 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3642 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3622 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-1221 (($ $) 250 (-1651 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3763 (-1651 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3763 (-1651 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) 93 (-3763 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1074) (-703)) 92 (-3763 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1074))) 91 (-3763 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1074)) 90 (-3763 (-1651 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1593 (((-107) $ $) 254 (-1651 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1570 (((-107) $ $) 255 (-1651 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 253 (-1651 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1560 (((-107) $ $) 256 (-1651 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1117 |#1| |#2|) (-1185) (-961) (-1146 |t#1|)) (T -1117))
+((-4007 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1146 *3)) (-5 *2 (-517)))) (-2182 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1117 *3 *2)) (-4 *2 (-1146 *3)))) (-1590 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1117 *4 *3)) (-4 *3 (-1146 *4)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))) (-2163 (*1 *1 *1) (-12 (-4 *1 (-1117 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1146 *2)))) (-2163 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1117 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1146 *3)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))) (-1636 (*1 *2 *1) (|partial| -12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))))
+(-13 (-1115 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1590 ($ (-517) |t#2|)) (-15 -4007 ((-517) $)) (-15 -3692 (|t#2| $)) (-15 -2163 ($ $)) (-15 -2163 ($ (-517) $)) (-15 -2182 ($ |t#2|)) (-15 -1579 (|t#2| $)) (-15 -1636 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-909 |t#2|)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3763 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3763 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3763 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1074) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1074) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3763 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-822 (-1074)) -3763 (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1074)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) ((-808 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517)))) ((-806 |#2|) |has| |#1| (-333)) ((-831) -12 (|has| |#1| (-333)) (|has| |#2| (-831))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-909 |#2|) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-937) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-952 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-1074)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1074)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 |#2|) |has| |#1| (-333)) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) -12 (|has| |#1| (-333)) (|has| |#2| (-1050))) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1109) |has| |#1| (-333)) ((-1113) |has| |#1| (-333)) ((-1115 |#1|) . T) ((-1133 |#1| (-517)) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 70)) (-2667 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 88)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3349 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-4040 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-3692 ((|#2| $) 11)) (-1636 (((-3 |#2| "failed") $) 30)) (-1579 ((|#2| $) 31)) (-1834 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1812 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-1207 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-1534 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1851 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1074) "failed") $) NIL (-12 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333))))) (-3076 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1074) $) NIL (-12 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333))))) (-2163 (($ $) 61) (($ (-517) $) 24)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) NIL)) (-4012 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-1568 (((-3 $ "failed") $) 77)) (-2323 (((-377 (-874 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-3098 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-2099 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2029 (((-107) $) 64)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-1921 (((-517) $) 93) (((-517) $ (-517)) 95)) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL (|has| |#1| (-333)))) (-1772 ((|#2| $) 151 (|has| |#1| (-333)))) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3744 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1050)) (|has| |#1| (-333))))) (-1624 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3371 (($ $ (-843)) 136)) (-3558 (($ (-1 |#1| (-517)) $) 132)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-517)) 19) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-1575 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-2986 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1857 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1826 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1590 (($ (-517) |#2|) 10)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 145 (|has| |#1| (-333)))) (-2863 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 219 (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095)))))) (-2663 (($) NIL (-12 (|has| |#2| (-1050)) (|has| |#1| (-333))) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1194 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-3263 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ (-517)) 126)) (-2349 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2459 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1074) |#2|) NIL (-12 (|has| |#2| (-478 (-1074) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1074) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1015))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1699 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3763 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3763 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3763 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3763 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3763 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) 140 (-3763 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-3691 (($ $) NIL (|has| |#1| (-333)))) (-1783 ((|#2| $) 152 (|has| |#1| (-333)))) (-4007 (((-517) $) 12)) (-1860 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3582 (((-199) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2860 (($ $) 124)) (-2182 (((-787) $) 242) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1074)) NIL (-12 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3086 ((|#1| $ (-517)) 74)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1865 (((-703)) 142)) (-2840 ((|#1| $) 90)) (-3112 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3642 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-1221 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 13 T CONST)) (-2306 (($) 17 T CONST)) (-2553 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3763 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3763 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3763 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3763 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3763 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1593 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1570 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1539 (((-107) $ $) 63)) (-1582 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1560 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1637 (($ $) 213) (($ $ $) 68)) (-1626 (($ $ $) 66)) (** (($ $ (-843)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1118 |#1| |#2|) (-1117 |#1| |#2|) (-961) (-1146 |#1|)) (T -1118))
+NIL
+(-1117 |#1| |#2|)
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-2667 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 10)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3209 (($ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1452 (((-107) $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3349 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-4040 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-3692 (((-1147 |#1| |#2| |#3|) $) NIL)) (-1636 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) NIL)) (-1579 (((-1147 |#1| |#2| |#3|) $) NIL)) (-1834 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1812 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1207 (((-517) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-1534 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1851 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3076 (((-1147 |#1| |#2| |#3|) $) NIL) (((-1074) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2163 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-1147 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2522 (-623 (-1147 |#1| |#2| |#3|))) (|:| |vec| (-1154 (-1147 |#1| |#2| |#3|)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-1568 (((-3 $ "failed") $) NIL)) (-2323 (((-377 (-874 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-3098 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-2099 (((-107) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2029 (((-107) $) NIL)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3289 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-1921 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-2955 (((-107) $) NIL)) (-1936 (($ $) NIL (|has| |#1| (-333)))) (-1772 (((-1147 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3744 (((-3 $ "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-333))))) (-1624 (((-107) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3371 (($ $ (-843)) NIL)) (-3558 (($ (-1 |#1| (-517)) $) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-517)) 17) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-1575 (($ $ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-2986 (($ $ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1826 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1590 (($ (-517) (-1147 |#1| |#2| |#3|)) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-2863 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-2663 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-333))) CONST)) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1194 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-3263 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ (-517)) NIL)) (-2349 (((-3 $ "failed") $ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1074) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-478 (-1074) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-478 (-1074) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1147 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1147 |#1| |#2| |#3|)) (-583 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1015))) (($ $ (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-258 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1699 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1150 |#2|)) 24) (($ $ (-703)) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-3691 (($ $) NIL (|has| |#1| (-333)))) (-1783 (((-1147 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-4007 (((-517) $) NIL)) (-1860 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3582 (((-493) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2860 (($ $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1147 |#1| |#2| |#3|)) NIL) (($ (-1150 |#2|)) 22) (($ (-1074)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (($ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-3086 ((|#1| $ (-517)) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1865 (((-703)) NIL)) (-2840 ((|#1| $) 11)) (-3112 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3642 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1221 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 19 T CONST)) (-2306 (($) 15 T CONST)) (-2553 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1593 (((-107) $ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1570 (((-107) $ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1560 (((-107) $ $) NIL (-3763 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1147 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1147 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1119 |#1| |#2| |#3|) (-13 (-1117 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|))) (-961) (-1074) |#1|) (T -1119))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1117 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|)))
+((-1677 (((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107)) 10)) (-3397 (((-388 |#1|) |#1|) 21)) (-3693 (((-388 |#1|) |#1|) 20)))
+(((-1120 |#1|) (-10 -7 (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3397 ((-388 |#1|) |#1|)) (-15 -1677 ((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107)))) (-1131 (-517))) (T -1120))
+((-1677 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| *3) (|:| -1671 (-517))))))) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))) (-3397 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))))
+(-10 -7 (-15 -3693 ((-388 |#1|) |#1|)) (-15 -3397 ((-388 |#1|) |#1|)) (-15 -1677 ((-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| |#1|) (|:| -1671 (-517)))))) |#1| (-107))))
+((-1857 (((-1055 |#2|) (-1 |#2| |#1|) (-1122 |#1|)) 23 (|has| |#1| (-777))) (((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)) 17)))
+(((-1121 |#1| |#2|) (-10 -7 (-15 -1857 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) (IF (|has| |#1| (-777)) (-15 -1857 ((-1055 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) |noBranch|)) (-1109) (-1109)) (T -1121))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-777)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1055 *6)) (-5 *1 (-1121 *5 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1122 *6)) (-5 *1 (-1121 *5 *6)))))
+(-10 -7 (-15 -1857 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) (IF (|has| |#1| (-777)) (-15 -1857 ((-1055 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) |noBranch|))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2391 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1857 (((-1055 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-3520 ((|#1| $) 14)) (-3205 ((|#1| $) 10)) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3217 (((-517) $) 18)) (-2934 ((|#1| $) 17)) (-3228 ((|#1| $) 11)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3951 (((-107) $) 16)) (-3408 (((-1055 |#1|) $) 38 (|has| |#1| (-777))) (((-1055 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3582 (($ |#1|) 25)) (-2182 (($ (-998 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1003)))) (-2725 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1329 (($ $ (-517)) 13)) (-1539 (((-107) $ $) 27 (|has| |#1| (-1003)))))
+(((-1122 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -2725 ($ |#1|)) (-15 -2391 ($ |#1|)) (-15 -2182 ($ (-998 |#1|))) (-15 -3951 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1055 |#1|))) |noBranch|))) (-1109)) (T -1122))
+((-2725 (*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1109)))) (-2391 (*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1109)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1109)) (-5 *1 (-1122 *3)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1122 *3)) (-4 *3 (-1109)))))
+(-13 (-997 |#1|) (-10 -8 (-15 -2725 ($ |#1|)) (-15 -2391 ($ |#1|)) (-15 -2182 ($ (-998 |#1|))) (-15 -3951 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1055 |#1|))) |noBranch|)))
+((-1857 (((-1128 |#3| |#4|) (-1 |#4| |#2|) (-1128 |#1| |#2|)) 15)))
+(((-1123 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 ((-1128 |#3| |#4|) (-1 |#4| |#2|) (-1128 |#1| |#2|)))) (-1074) (-961) (-1074) (-961)) (T -1123))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1128 *5 *6)) (-14 *5 (-1074)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1128 *7 *8)) (-5 *1 (-1123 *5 *6 *7 *8)) (-14 *7 (-1074)))))
+(-10 -7 (-15 -1857 ((-1128 |#3| |#4|) (-1 |#4| |#2|) (-1128 |#1| |#2|))))
+((-2558 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2583 ((|#1| |#3|) 13)) (-3882 ((|#3| |#3|) 19)))
+(((-1124 |#1| |#2| |#3|) (-10 -7 (-15 -2583 (|#1| |#3|)) (-15 -3882 (|#3| |#3|)) (-15 -2558 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-1131 |#2|)) (T -1124))
+((-2558 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1124 *4 *5 *3)) (-4 *3 (-1131 *5)))) (-3882 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1124 *3 *4 *2)) (-4 *2 (-1131 *4)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1124 *2 *4 *3)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -2583 (|#1| |#3|)) (-15 -3882 (|#3| |#3|)) (-15 -2558 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1325 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-4017 (((-3 |#2| "failed") |#2| (-703)) 30)) (-1696 (((-3 (-2 (|:| -3577 |#2|) (|:| -3591 |#2|)) "failed") |#2|) 42)) (-3688 (((-583 |#2|) |#2|) 44)) (-3069 (((-3 |#2| "failed") |#2| |#2|) 39)))
+(((-1125 |#1| |#2|) (-10 -7 (-15 -4017 ((-3 |#2| "failed") |#2| (-703))) (-15 -1325 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3069 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1696 ((-3 (-2 (|:| -3577 |#2|) (|:| -3591 |#2|)) "failed") |#2|)) (-15 -3688 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1131 |#1|)) (T -1125))
+((-3688 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1131 *4)))) (-1696 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3577 *3) (|:| -3591 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1131 *4)))) (-3069 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-1131 *3)))) (-1325 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-1131 *4)))) (-4017 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-1131 *4)))))
+(-10 -7 (-15 -4017 ((-3 |#2| "failed") |#2| (-703))) (-15 -1325 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3069 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1696 ((-3 (-2 (|:| -3577 |#2|) (|:| -3591 |#2|)) "failed") |#2|)) (-15 -3688 ((-583 |#2|) |#2|)))
+((-1733 (((-3 (-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) "failed") |#2| |#2|) 31)))
+(((-1126 |#1| |#2|) (-10 -7 (-15 -1733 ((-3 (-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) "failed") |#2| |#2|))) (-509) (-1131 |#1|)) (T -1126))
+((-1733 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-1126 *4 *3)) (-4 *3 (-1131 *4)))))
+(-10 -7 (-15 -1733 ((-3 (-2 (|:| -3319 |#2|) (|:| -3169 |#2|)) "failed") |#2| |#2|)))
+((-3316 ((|#2| |#2| |#2|) 19)) (-1953 ((|#2| |#2| |#2|) 30)) (-1601 ((|#2| |#2| |#2| (-703) (-703)) 36)))
+(((-1127 |#1| |#2|) (-10 -7 (-15 -3316 (|#2| |#2| |#2|)) (-15 -1953 (|#2| |#2| |#2|)) (-15 -1601 (|#2| |#2| |#2| (-703) (-703)))) (-961) (-1131 |#1|)) (T -1127))
+((-1601 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1127 *4 *2)) (-4 *2 (-1131 *4)))) (-1953 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1131 *3)))) (-3316 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1131 *3)))))
+(-10 -7 (-15 -3316 (|#2| |#2| |#2|)) (-15 -1953 (|#2| |#2| |#2|)) (-15 -1601 (|#2| |#2| |#2| (-703) (-703))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1770 (((-1154 |#2|) $ (-703)) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-3908 (($ (-1070 |#2|)) NIL)) (-2255 (((-1070 $) $ (-989)) NIL) (((-1070 |#2|) $) NIL)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3209 (($ $) NIL (|has| |#2| (-509)))) (-1452 (((-107) $) NIL (|has| |#2| (-509)))) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) NIL (|has| |#2| (-509)))) (-2594 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3938 (($ $) NIL (|has| |#2| (-421)))) (-3490 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3765 (((-107) $ $) NIL (|has| |#2| (-333)))) (-1212 (($ $ (-703)) NIL)) (-2250 (($ $ (-703)) NIL)) (-3677 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3076 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-989) $) NIL)) (-1309 (($ $ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2383 (($ $ $) NIL (|has| |#2| (-333)))) (-1217 (($ $) NIL)) (-4012 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2366 (($ $ $) NIL (|has| |#2| (-333)))) (-3051 (($ $ $) NIL)) (-3555 (($ $ $) NIL (|has| |#2| (-509)))) (-1257 (((-2 (|:| -1883 |#2|) (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#2| (-509)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-3039 (($ $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-1203 (((-583 $) $) NIL)) (-2965 (((-107) $) NIL (|has| |#2| (-831)))) (-2253 (($ $ |#2| (-703) $) NIL)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-1921 (((-703) $ $) NIL (|has| |#2| (-509)))) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-3744 (((-3 $ "failed") $) NIL (|has| |#2| (-1050)))) (-1352 (($ (-1070 |#2|) (-989)) NIL) (($ (-1070 $) (-989)) NIL)) (-3371 (($ $ (-703)) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-1343 (($ |#2| (-703)) 17) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-989)) NIL) (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL)) (-2672 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-1575 (($ $ $) NIL (|has| |#2| (-779)))) (-2986 (($ $ $) NIL (|has| |#2| (-779)))) (-3751 (($ (-1 (-703) (-703)) $) NIL)) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-2891 (((-1070 |#2|) $) NIL)) (-1954 (((-3 (-989) "failed") $) NIL)) (-4159 (($ $) NIL)) (-1192 ((|#2| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3865 (((-1057) $) NIL)) (-3267 (((-2 (|:| -3319 $) (|:| -3169 $)) $ (-703)) NIL)) (-4128 (((-3 (-583 $) "failed") $) NIL)) (-3116 (((-3 (-583 $) "failed") $) NIL)) (-2911 (((-3 (-2 (|:| |var| (-989)) (|:| -2059 (-703))) "failed") $) NIL)) (-2863 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-2663 (($) NIL (|has| |#2| (-1050)) CONST)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 ((|#2| $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1396 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3150 (($ $ (-703) |#2| $) NIL)) (-1206 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-3693 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#2| (-333)))) (-2349 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-1979 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) NIL) (($ $ (-583 (-989)) (-583 |#2|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-2623 (((-703) $) NIL (|has| |#2| (-333)))) (-1986 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-2759 (((-3 $ "failed") $ (-703)) NIL)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#2| (-333)))) (-4042 (($ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-1699 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4007 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3582 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-1423 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-3684 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2182 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) NIL) (($ (-1150 |#1|)) 19) (($ (-377 (-517))) NIL (-3763 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1589 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3767 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-2306 (($) 14 T CONST)) (-2553 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1593 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1539 (((-107) $ $) NIL)) (-1582 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1649 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1128 |#1| |#2|) (-13 (-1131 |#2|) (-10 -8 (-15 -2182 ($ (-1150 |#1|))) (-15 -3150 ($ $ (-703) |#2| $)))) (-1074) (-961)) (T -1128))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-14 *3 (-1074)) (-5 *1 (-1128 *3 *4)) (-4 *4 (-961)))) (-3150 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1128 *4 *3)) (-14 *4 (-1074)) (-4 *3 (-961)))))
+(-13 (-1131 |#2|) (-10 -8 (-15 -2182 ($ (-1150 |#1|))) (-15 -3150 ($ $ (-703) |#2| $))))
+((-1857 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1131 |#1|) (-961) (-1131 |#3|)) (T -1129))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1131 *6)) (-5 *1 (-1129 *5 *4 *6 *2)) (-4 *4 (-1131 *5)))))
+(-10 -7 (-15 -1857 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1770 (((-1154 |#2|) $ (-703)) 113)) (-1363 (((-583 (-989)) $) 15)) (-3908 (($ (-1070 |#2|)) 66)) (-3860 (((-703) $) NIL) (((-703) $ (-583 (-989))) 18)) (-2594 (((-388 (-1070 $)) (-1070 $)) 183)) (-3938 (($ $) 173)) (-3490 (((-388 $) $) 171)) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 81)) (-1212 (($ $ (-703)) 70)) (-2250 (($ $ (-703)) 72)) (-3677 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1759 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-989) "failed") $) NIL)) (-3076 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-989) $) NIL)) (-3555 (($ $ $) 150)) (-1257 (((-2 (|:| -1883 |#2|) (|:| -3319 $) (|:| -3169 $)) $ $) 152)) (-1921 (((-703) $ $) 168)) (-3744 (((-3 $ "failed") $) 122)) (-1343 (($ |#2| (-703)) NIL) (($ $ (-989) (-703)) 46) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2672 (((-703) $) NIL) (((-703) $ (-989)) 41) (((-583 (-703)) $ (-583 (-989))) 42)) (-2891 (((-1070 |#2|) $) 58)) (-1954 (((-3 (-989) "failed") $) 39)) (-3267 (((-2 (|:| -3319 $) (|:| -3169 $)) $ (-703)) 69)) (-2863 (($ $) 194)) (-2663 (($) 118)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 180)) (-1206 (((-388 (-1070 $)) (-1070 $)) 87)) (-3923 (((-388 (-1070 $)) (-1070 $)) 85)) (-3693 (((-388 $) $) 105)) (-1979 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) 31) (($ $ (-583 (-989)) (-583 |#2|)) 28) (($ $ (-989) $) 25) (($ $ (-583 (-989)) (-583 $)) 23)) (-2623 (((-703) $) 186)) (-1986 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 185) (((-377 $) $ (-377 $)) 167)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 189)) (-1699 (($ $ (-989)) 139) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-4007 (((-703) $) NIL) (((-703) $ (-989)) 16) (((-583 (-703)) $ (-583 (-989))) 20)) (-1423 ((|#2| $) NIL) (($ $ (-989)) 124)) (-3684 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) 50) (($ (-377 (-517))) NIL) (($ $) NIL)))
+(((-1130 |#1| |#2|) (-10 -8 (-15 -2182 (|#1| |#1|)) (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2663 (|#1|)) (-15 -3744 ((-3 |#1| "failed") |#1|)) (-15 -1986 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -2623 ((-703) |#1|)) (-15 -1412 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 -1986 (|#2| (-377 |#1|) |#2|)) (-15 -3677 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1257 ((-2 (|:| -1883 |#2|) (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -3684 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3684 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1921 ((-703) |#1| |#1|)) (-15 -1986 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2250 (|#1| |#1| (-703))) (-15 -1212 (|#1| |#1| (-703))) (-15 -3267 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| (-703))) (-15 -3908 (|#1| (-1070 |#2|))) (-15 -2891 ((-1070 |#2|) |#1|)) (-15 -1770 ((-1154 |#2|) |#1| (-703))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1986 (|#1| |#1| |#1|)) (-15 -1986 (|#2| |#1| |#2|)) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -2594 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -3923 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -1206 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2963 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -1423 (|#1| |#1| (-989))) (-15 -1363 ((-583 (-989)) |#1|)) (-15 -3860 ((-703) |#1| (-583 (-989)))) (-15 -3860 ((-703) |#1|)) (-15 -1343 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1343 (|#1| |#1| (-989) (-703))) (-15 -2672 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -2672 ((-703) |#1| (-989))) (-15 -1954 ((-3 (-989) "failed") |#1|)) (-15 -4007 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -4007 ((-703) |#1| (-989))) (-15 -3076 ((-989) |#1|)) (-15 -1759 ((-3 (-989) "failed") |#1|)) (-15 -2182 (|#1| (-989))) (-15 -1979 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -1979 (|#1| |#1| (-989) |#1|)) (-15 -1979 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -1979 (|#1| |#1| (-989) |#2|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -4007 ((-703) |#1|)) (-15 -1343 (|#1| |#2| (-703))) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -2672 ((-703) |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -1699 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-989) (-703))) (-15 -1699 (|#1| |#1| (-583 (-989)))) (-15 -1699 (|#1| |#1| (-989))) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|))) (-1131 |#2|) (-961)) (T -1130))
+NIL
+(-10 -8 (-15 -2182 (|#1| |#1|)) (-15 -4129 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-388 |#1|) |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2663 (|#1|)) (-15 -3744 ((-3 |#1| "failed") |#1|)) (-15 -1986 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -2623 ((-703) |#1|)) (-15 -1412 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 -1986 (|#2| (-377 |#1|) |#2|)) (-15 -3677 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1257 ((-2 (|:| -1883 |#2|) (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -3684 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3684 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1921 ((-703) |#1| |#1|)) (-15 -1986 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2250 (|#1| |#1| (-703))) (-15 -1212 (|#1| |#1| (-703))) (-15 -3267 ((-2 (|:| -3319 |#1|) (|:| -3169 |#1|)) |#1| (-703))) (-15 -3908 (|#1| (-1070 |#2|))) (-15 -2891 ((-1070 |#2|) |#1|)) (-15 -1770 ((-1154 |#2|) |#1| (-703))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1699 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-1074) (-703))) (-15 -1699 (|#1| |#1| (-583 (-1074)))) (-15 -1699 (|#1| |#1| (-1074))) (-15 -1699 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-703))) (-15 -1986 (|#1| |#1| |#1|)) (-15 -1986 (|#2| |#1| |#2|)) (-15 -3693 ((-388 |#1|) |#1|)) (-15 -2594 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -3923 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -1206 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2963 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -1423 (|#1| |#1| (-989))) (-15 -1363 ((-583 (-989)) |#1|)) (-15 -3860 ((-703) |#1| (-583 (-989)))) (-15 -3860 ((-703) |#1|)) (-15 -1343 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1343 (|#1| |#1| (-989) (-703))) (-15 -2672 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -2672 ((-703) |#1| (-989))) (-15 -1954 ((-3 (-989) "failed") |#1|)) (-15 -4007 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -4007 ((-703) |#1| (-989))) (-15 -3076 ((-989) |#1|)) (-15 -1759 ((-3 (-989) "failed") |#1|)) (-15 -2182 (|#1| (-989))) (-15 -1979 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -1979 (|#1| |#1| (-989) |#1|)) (-15 -1979 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -1979 (|#1| |#1| (-989) |#2|)) (-15 -1979 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -1979 (|#1| |#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| (-265 |#1|))) (-15 -1979 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -4007 ((-703) |#1|)) (-15 -1343 (|#1| |#2| (-703))) (-15 -3076 ((-517) |#1|)) (-15 -1759 ((-3 (-517) "failed") |#1|)) (-15 -3076 ((-377 (-517)) |#1|)) (-15 -1759 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2182 (|#1| |#2|)) (-15 -1759 ((-3 |#2| "failed") |#1|)) (-15 -3076 (|#2| |#1|)) (-15 -2672 ((-703) |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -1699 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1699 (|#1| |#1| (-989) (-703))) (-15 -1699 (|#1| |#1| (-583 (-989)))) (-15 -1699 (|#1| |#1| (-989))) (-15 -2182 (|#1| (-517))) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1770 (((-1154 |#1|) $ (-703)) 238)) (-1363 (((-583 (-989)) $) 110)) (-3908 (($ (-1070 |#1|)) 236)) (-2255 (((-1070 $) $ (-989)) 125) (((-1070 |#1|) $) 124)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-3209 (($ $) 88 (|has| |#1| (-509)))) (-1452 (((-107) $) 90 (|has| |#1| (-509)))) (-3860 (((-703) $) 112) (((-703) $ (-583 (-989))) 111)) (-1387 (((-3 $ "failed") $ $) 19)) (-3348 (($ $ $) 223 (|has| |#1| (-509)))) (-2594 (((-388 (-1070 $)) (-1070 $)) 100 (|has| |#1| (-831)))) (-3938 (($ $) 98 (|has| |#1| (-421)))) (-3490 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2963 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-831)))) (-3765 (((-107) $ $) 208 (|has| |#1| (-333)))) (-1212 (($ $ (-703)) 231)) (-2250 (($ $ (-703)) 230)) (-3677 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) 136)) (-3076 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) (((-989) $) 135)) (-1309 (($ $ $ (-989)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2383 (($ $ $) 212 (|has| |#1| (-333)))) (-1217 (($ $) 154)) (-4012 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2522 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 211 (|has| |#1| (-333)))) (-3051 (($ $ $) 229)) (-3555 (($ $ $) 220 (|has| |#1| (-509)))) (-1257 (((-2 (|:| -1883 |#1|) (|:| -3319 $) (|:| -3169 $)) $ $) 219 (|has| |#1| (-509)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-3039 (($ $) 176 (|has| |#1| (-421))) (($ $ (-989)) 105 (|has| |#1| (-421)))) (-1203 (((-583 $) $) 109)) (-2965 (((-107) $) 96 (|has| |#1| (-831)))) (-2253 (($ $ |#1| (-703) $) 172)) (-3289 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-1921 (((-703) $ $) 224 (|has| |#1| (-509)))) (-2955 (((-107) $) 31)) (-2091 (((-703) $) 169)) (-3744 (((-3 $ "failed") $) 204 (|has| |#1| (-1050)))) (-1352 (($ (-1070 |#1|) (-989)) 117) (($ (-1070 $) (-989)) 116)) (-3371 (($ $ (-703)) 235)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-3704 (((-583 $) $) 126)) (-1331 (((-107) $) 152)) (-1343 (($ |#1| (-703)) 153) (($ $ (-989) (-703)) 119) (($ $ (-583 (-989)) (-583 (-703))) 118)) (-3009 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $ (-989)) 120) (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 233)) (-2672 (((-703) $) 170) (((-703) $ (-989)) 122) (((-583 (-703)) $ (-583 (-989))) 121)) (-1575 (($ $ $) 79 (|has| |#1| (-779)))) (-2986 (($ $ $) 78 (|has| |#1| (-779)))) (-3751 (($ (-1 (-703) (-703)) $) 171)) (-1857 (($ (-1 |#1| |#1|) $) 151)) (-2891 (((-1070 |#1|) $) 237)) (-1954 (((-3 (-989) "failed") $) 123)) (-4159 (($ $) 149)) (-1192 ((|#1| $) 148)) (-1368 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3865 (((-1057) $) 9)) (-3267 (((-2 (|:| -3319 $) (|:| -3169 $)) $ (-703)) 232)) (-4128 (((-3 (-583 $) "failed") $) 114)) (-3116 (((-3 (-583 $) "failed") $) 115)) (-2911 (((-3 (-2 (|:| |var| (-989)) (|:| -2059 (-703))) "failed") $) 113)) (-2863 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-2663 (($) 203 (|has| |#1| (-1050)) CONST)) (-3094 (((-1021) $) 10)) (-4134 (((-107) $) 166)) (-4144 ((|#1| $) 167)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 95 (|has| |#1| (-421)))) (-1396 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-1206 (((-388 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-831)))) (-3923 (((-388 (-1070 $)) (-1070 $)) 101 (|has| |#1| (-831)))) (-3693 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 213 (|has| |#1| (-333)))) (-2349 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-1979 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-989) |#1|) 141) (($ $ (-583 (-989)) (-583 |#1|)) 140) (($ $ (-989) $) 139) (($ $ (-583 (-989)) (-583 $)) 138)) (-2623 (((-703) $) 209 (|has| |#1| (-333)))) (-1986 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-2759 (((-3 $ "failed") $ (-703)) 234)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 210 (|has| |#1| (-333)))) (-4042 (($ $ (-989)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-1699 (($ $ (-989)) 42) (($ $ (-583 (-989))) 41) (($ $ (-989) (-703)) 40) (($ $ (-583 (-989)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1074)) 250 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 249 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 248 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 247 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4007 (((-703) $) 150) (((-703) $ (-989)) 130) (((-583 (-703)) $ (-583 (-989))) 129)) (-3582 (((-814 (-349)) $) 82 (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-1423 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-989)) 106 (|has| |#1| (-421)))) (-2071 (((-3 (-1154 $) "failed") (-623 $)) 104 (-1651 (|has| $ (-132)) (|has| |#1| (-831))))) (-3684 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-989)) 137) (($ (-377 (-517))) 72 (-3763 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-2834 (((-583 |#1|) $) 168)) (-3086 ((|#1| $ (-703)) 155) (($ $ (-989) (-703)) 128) (($ $ (-583 (-989)) (-583 (-703))) 127)) (-1589 (((-3 $ "failed") $) 73 (-3763 (-1651 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1865 (((-703)) 29)) (-2962 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3767 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-989)) 38) (($ $ (-583 (-989))) 37) (($ $ (-989) (-703)) 36) (($ $ (-583 (-989)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1074)) 246 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 245 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 244 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 243 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1593 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 6)) (-1582 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1649 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1131 |#1|) (-1185) (-961)) (T -1131))
+((-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1131 *4)) (-4 *4 (-961)) (-5 *2 (-1154 *4)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-5 *2 (-1070 *3)))) (-3908 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-961)) (-4 *1 (-1131 *3)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-2759 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-1131 *3)))) (-3267 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-1131 *4)))) (-1212 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-2250 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-3051 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)))) (-1699 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-1309 (*1 *2 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-1986 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-1921 (*1 *2 *1 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3348 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3684 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3684 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-3555 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-1257 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1883 *3) (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-1131 *3)))) (-3677 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1131 *3)))) (-1986 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2863 (*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))))
+(-13 (-871 |t#1| (-703) (-989)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -1770 ((-1154 |t#1|) $ (-703))) (-15 -2891 ((-1070 |t#1|) $)) (-15 -3908 ($ (-1070 |t#1|))) (-15 -3371 ($ $ (-703))) (-15 -2759 ((-3 $ "failed") $ (-703))) (-15 -3009 ((-2 (|:| -3319 $) (|:| -3169 $)) $ $)) (-15 -3267 ((-2 (|:| -3319 $) (|:| -3169 $)) $ (-703))) (-15 -1212 ($ $ (-703))) (-15 -2250 ($ $ (-703))) (-15 -3051 ($ $ $)) (-15 -1699 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1050)) (-6 (-1050)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -4042 (|t#1| $)) (-15 -1309 (|t#1| $ $))) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -1986 ((-377 $) (-377 $) (-377 $))) (-15 -1921 ((-703) $ $)) (-15 -3348 ($ $ $)) (-15 -3684 ((-3 $ "failed") $ $)) (-15 -3684 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -3555 ($ $ $)) (-15 -1257 ((-2 (|:| -1883 |t#1|) (|:| -3319 $) (|:| -3169 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (-15 -3677 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4179) (-15 -1986 (|t#1| (-377 $) |t#1|))) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -2863 ($ $)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| (-703)) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3763 (|has| |#1| (-831)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 (-989) |#1|) . T) ((-478 (-989) $) . T) ((-478 $ $) . T) ((-509) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-989)) . T) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-808 (-349)) -12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349)))) ((-808 (-517)) -12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))) ((-871 |#1| (-703) (-989)) . T) ((-831) |has| |#1| (-831)) ((-842) |has| |#1| (-333)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-989)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-1050)) ((-1113) |has| |#1| (-831)))
+((-1363 (((-583 (-989)) $) 28)) (-1217 (($ $) 25)) (-1343 (($ |#2| |#3|) NIL) (($ $ (-989) |#3|) 22) (($ $ (-583 (-989)) (-583 |#3|)) 20)) (-4159 (($ $) 14)) (-1192 ((|#2| $) 12)) (-4007 ((|#3| $) 10)))
+(((-1132 |#1| |#2| |#3|) (-10 -8 (-15 -1363 ((-583 (-989)) |#1|)) (-15 -1343 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1343 (|#1| |#1| (-989) |#3|)) (-15 -1217 (|#1| |#1|)) (-15 -1343 (|#1| |#2| |#3|)) (-15 -4007 (|#3| |#1|)) (-15 -4159 (|#1| |#1|)) (-15 -1192 (|#2| |#1|))) (-1133 |#2| |#3|) (-961) (-724)) (T -1132))
+NIL
+(-10 -8 (-15 -1363 ((-583 (-989)) |#1|)) (-15 -1343 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1343 (|#1| |#1| (-989) |#3|)) (-15 -1217 (|#1| |#1|)) (-15 -1343 (|#1| |#2| |#3|)) (-15 -4007 (|#3| |#1|)) (-15 -4159 (|#1| |#1|)) (-15 -1192 (|#2| |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 (-989)) $) 74)) (-1625 (((-1074) $) 103)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-3349 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-4040 (((-1055 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1217 (($ $) 60)) (-1568 (((-3 $ "failed") $) 34)) (-2029 (((-107) $) 73)) (-1921 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2955 (((-107) $) 31)) (-3371 (($ $ (-843)) 101)) (-1331 (((-107) $) 62)) (-1343 (($ |#1| |#2|) 61) (($ $ (-989) |#2|) 76) (($ $ (-583 (-989)) (-583 |#2|)) 75)) (-1857 (($ (-1 |#1| |#1|) $) 63)) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-3467 (($ $ |#2|) 95)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1979 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1986 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1015)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4007 ((|#2| $) 64)) (-2860 (($ $) 72)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3086 ((|#1| $ |#2|) 59)) (-1589 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-2840 ((|#1| $) 102)) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3284 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1133 |#1| |#2|) (-1185) (-961) (-724)) (T -1133))
+((-4040 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1055 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1986 (*1 *2 *1 *3) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1074)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1921 (*1 *2 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3349 (*1 *1 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3349 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3284 (*1 *2 *1 *3) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2182 (*2 (-1074)))) (-4 *2 (-961)))) (-3467 (*1 *1 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1979 (*1 *2 *1 *3) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1055 *3)))))
+(-13 (-890 |t#1| |t#2| (-989)) (-10 -8 (-15 -4040 ((-1055 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1986 (|t#1| $ |t#2|)) (-15 -1625 ((-1074) $)) (-15 -2840 (|t#1| $)) (-15 -3371 ($ $ (-843))) (-15 -1921 (|t#2| $)) (-15 -1921 (|t#2| $ |t#2|)) (-15 -3349 ($ $ |t#2|)) (-15 -3349 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2182 (|t#1| (-1074)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3284 (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (-15 -3467 ($ $ |t#2|)) (IF (|has| |t#2| (-1015)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-822 (-1074))) (-6 (-822 (-1074))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1979 ((-1055 |t#1|) $ |t#1|)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1015)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| |#2| (-989)) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-3938 ((|#2| |#2|) 12)) (-3490 (((-388 |#2|) |#2|) 14)) (-1911 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30)))
+(((-1134 |#1| |#2|) (-10 -7 (-15 -3490 ((-388 |#2|) |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -1911 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1131 |#1|) (-509) (-10 -8 (-15 -1396 ($ $ $))))) (T -1134))
+((-1911 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1131 *3) (-509) (-10 -8 (-15 -1396 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1134 *3 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-1131 *3) (-509) (-10 -8 (-15 -1396 ($ $ $))))))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-13 (-1131 *4) (-509) (-10 -8 (-15 -1396 ($ $ $))))))))
+(-10 -7 (-15 -3490 ((-388 |#2|) |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -1911 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))))))
+((-1857 (((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)) 23)))
+(((-1135 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1857 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)))) (-961) (-961) (-1074) (-1074) |#1| |#2|) (T -1135))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1074)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1135 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1074)))))
+(-10 -7 (-15 -1857 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 (-989)) $) 74)) (-1625 (((-1074) $) 103)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-3349 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-4040 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1834 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 162 (|has| |#1| (-333)))) (-3490 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3706 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1812 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1851 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) 17 T CONST)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-1217 (($ $) 60)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 156 (|has| |#1| (-333)))) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2965 (((-107) $) 164 (|has| |#1| (-333)))) (-2029 (((-107) $) 73)) (-2475 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-1331 (((-107) $) 62)) (-1343 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1857 (($ (-1 |#1| |#1|) $) 63)) (-1826 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-1368 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3865 (((-1057) $) 9)) (-4123 (($ $) 165 (|has| |#1| (-333)))) (-2863 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 169 (-3763 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 150 (|has| |#1| (-333)))) (-1396 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3693 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 158 (|has| |#1| (-333)))) (-3467 (($ $ (-377 (-517))) 95)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2459 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-2623 (((-703) $) 154 (|has| |#1| (-333)))) (-1986 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 155 (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-4007 (((-377 (-517)) $) 64)) (-1860 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 72)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-3086 ((|#1| $ (-377 (-517))) 59)) (-1589 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-2840 ((|#1| $) 102)) (-3642 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3622 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1136 |#1|) (-1185) (-961)) (T -1136))
+((-1534 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1136 *4)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1136 *3)) (-4 *3 (-961)))) (-2863 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-2863 (*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1074)) (-4 *1 (-1136 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1136 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1363 ((-583 *2) *3))) (|has| *3 (-15 -2863 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1133 |t#1| (-377 (-517))) (-10 -8 (-15 -1534 ($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -3371 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $)) (IF (|has| |t#1| (-15 -2863 (|t#1| |t#1| (-1074)))) (IF (|has| |t#1| (-15 -1363 ((-583 (-1074)) |t#1|))) (-15 -2863 ($ $ (-1074))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1095)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -2863 ($ $ (-1074))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1095))) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1113) |has| |#1| (-333)) ((-1133 |#1| (-377 (-517))) . T))
+((-2745 (((-107) $) 12)) (-1759 (((-3 |#3| "failed") $) 17)) (-3076 ((|#3| $) 14)))
+(((-1137 |#1| |#2| |#3|) (-10 -8 (-15 -3076 (|#3| |#1|)) (-15 -1759 ((-3 |#3| "failed") |#1|)) (-15 -2745 ((-107) |#1|))) (-1138 |#2| |#3|) (-961) (-1115 |#2|)) (T -1137))
+NIL
+(-10 -8 (-15 -3076 (|#3| |#1|)) (-15 -1759 ((-3 |#3| "failed") |#1|)) (-15 -2745 ((-107) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 (-989)) $) 74)) (-1625 (((-1074) $) 103)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-3349 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-4040 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1834 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 162 (|has| |#1| (-333)))) (-3490 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3706 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1812 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1851 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#2| "failed") $) 183)) (-3076 ((|#2| $) 182)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-1217 (($ $) 60)) (-1568 (((-3 $ "failed") $) 34)) (-2414 (((-377 (-517)) $) 180)) (-2366 (($ $ $) 156 (|has| |#1| (-333)))) (-1602 (($ (-377 (-517)) |#2|) 181)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2965 (((-107) $) 164 (|has| |#1| (-333)))) (-2029 (((-107) $) 73)) (-2475 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-1331 (((-107) $) 62)) (-1343 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1857 (($ (-1 |#1| |#1|) $) 63)) (-1826 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-1368 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1315 ((|#2| $) 179)) (-2723 (((-3 |#2| "failed") $) 177)) (-1590 ((|#2| $) 178)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 165 (|has| |#1| (-333)))) (-2863 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 169 (-3763 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 150 (|has| |#1| (-333)))) (-1396 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3693 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 158 (|has| |#1| (-333)))) (-3467 (($ $ (-377 (-517))) 95)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2459 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-2623 (((-703) $) 154 (|has| |#1| (-333)))) (-1986 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 155 (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-4007 (((-377 (-517)) $) 64)) (-1860 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 72)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-3086 ((|#1| $ (-377 (-517))) 59)) (-1589 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-2840 ((|#1| $) 102)) (-3642 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3622 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1138 |#1| |#2|) (-1185) (-961) (-1115 |t#1|)) (T -1138))
+((-4007 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1115 *3)) (-5 *2 (-377 (-517))))) (-2182 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1138 *3 *2)) (-4 *2 (-1115 *3)))) (-1602 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1138 *4 *3)) (-4 *3 (-1115 *4)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1115 *3)) (-5 *2 (-377 (-517))))) (-1315 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))) (-2723 (*1 *2 *1) (|partial| -12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))))
+(-13 (-1136 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1602 ($ (-377 (-517)) |t#2|)) (-15 -2414 ((-377 (-517)) $)) (-15 -1315 (|t#2| $)) (-15 -4007 ((-377 (-517)) $)) (-15 -2182 ($ |t#2|)) (-15 -1590 (|t#2| $)) (-15 -2723 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3763 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1113) |has| |#1| (-333)) ((-1133 |#1| (-377 (-517))) . T) ((-1136 |#1|) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 96)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3349 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-4040 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-1834 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1812 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1851 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) NIL)) (-3076 ((|#2| $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) 79)) (-2414 (((-377 (-517)) $) 12)) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-1602 (($ (-377 (-517)) |#2|) 10)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) 68)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) 120) (($ $ (-377 (-517))) 118)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-377 (-517))) 31) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) 115)) (-1826 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1315 ((|#2| $) 11)) (-2723 (((-3 |#2| "failed") $) 41)) (-1590 ((|#2| $) 42)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) 93 (|has| |#1| (-333)))) (-2863 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 140 (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095)))))) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ (-377 (-517))) 112)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2459 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1015)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-4007 (((-377 (-517)) $) 16)) (-1860 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 110)) (-2182 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3086 ((|#1| $ (-377 (-517))) 99)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) 117)) (-2840 ((|#1| $) 98)) (-3642 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 21 T CONST)) (-2306 (($) 17 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1539 (((-107) $ $) 66)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1637 (($ $) 131) (($ $ $) 72)) (-1626 (($ $ $) 70)) (** (($ $ (-843)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1139 |#1| |#2|) (-1138 |#1| |#2|) (-961) (-1115 |#1|)) (T -1139))
+NIL
+(-1138 |#1| |#2|)
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 11)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) NIL (|has| |#1| (-509)))) (-3349 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-4040 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1834 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $) NIL (|has| |#1| (-333)))) (-3490 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1812 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1851 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-1119 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 22)) (-3076 (((-1119 |#1| |#2| |#3|) $) NIL) (((-1147 |#1| |#2| |#3|) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2414 (((-377 (-517)) $) 57)) (-2366 (($ $ $) NIL (|has| |#1| (-333)))) (-1602 (($ (-377 (-517)) (-1119 |#1| |#2| |#3|)) NIL)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2965 (((-107) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-2955 (((-107) $) NIL)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-377 (-517))) 29) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-1826 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-1368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1315 (((-1119 |#1| |#2| |#3|) $) 60)) (-2723 (((-3 (-1119 |#1| |#2| |#3|) "failed") $) NIL)) (-1590 (((-1119 |#1| |#2| |#3|) $) NIL)) (-3865 (((-1057) $) NIL)) (-4123 (($ $) NIL (|has| |#1| (-333)))) (-2863 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) NIL)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1396 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3693 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2002 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ (-377 (-517))) NIL)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3991 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-2623 (((-703) $) NIL (|has| |#1| (-333)))) (-1986 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) NIL (|has| |#1| (-333)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1150 |#2|)) 37)) (-4007 (((-377 (-517)) $) NIL)) (-1860 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) NIL)) (-2182 (((-787) $) 87) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1119 |#1| |#2| |#3|)) 16) (($ (-1147 |#1| |#2| |#3|)) 17) (($ (-1150 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3086 ((|#1| $ (-377 (-517))) NIL)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-2840 ((|#1| $) 12)) (-3642 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2297 (($) 31 T CONST)) (-2306 (($) 26 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 33)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1140 |#1| |#2| |#3|) (-13 (-1138 |#1| (-1119 |#1| |#2| |#3|)) (-952 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|))) (-961) (-1074) |#1|) (T -1140))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1138 |#1| (-1119 |#1| |#2| |#3|)) (-952 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 32)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-3209 (($ $) NIL)) (-1452 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 (-517) "failed") $) NIL (|has| (-1140 |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1140 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-3 (-1140 |#2| |#3| |#4|) "failed") $) 20)) (-3076 (((-517) $) NIL (|has| (-1140 |#2| |#3| |#4|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-1140 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-1140 |#2| |#3| |#4|) $) NIL)) (-1217 (($ $) 33)) (-1568 (((-3 $ "failed") $) 25)) (-3039 (($ $) NIL (|has| (-1140 |#2| |#3| |#4|) (-421)))) (-2253 (($ $ (-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) 11)) (-1331 (((-107) $) NIL)) (-1343 (($ (-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-2672 (((-289 |#2| |#3| |#4|) $) NIL)) (-3751 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-1857 (($ (-1 (-1140 |#2| |#3| |#4|) (-1140 |#2| |#3| |#4|)) $) NIL)) (-4126 (((-3 (-772 |#2|) "failed") $) 72)) (-4159 (($ $) NIL)) (-1192 (((-1140 |#2| |#3| |#4|) $) 18)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4134 (((-107) $) NIL)) (-4144 (((-1140 |#2| |#3| |#4|) $) NIL)) (-2349 (((-3 $ "failed") $ (-1140 |#2| |#3| |#4|)) NIL (|has| (-1140 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-2844 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1057))) "failed") $) 55)) (-4007 (((-289 |#2| |#3| |#4|) $) 14)) (-1423 (((-1140 |#2| |#3| |#4|) $) NIL (|has| (-1140 |#2| |#3| |#4|) (-421)))) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1140 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3763 (|has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1140 |#2| |#3| |#4|) (-952 (-377 (-517))))))) (-2834 (((-583 (-1140 |#2| |#3| |#4|)) $) NIL)) (-3086 (((-1140 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-1589 (((-3 $ "failed") $) NIL (|has| (-1140 |#2| |#3| |#4|) (-132)))) (-1865 (((-703)) NIL)) (-2962 (($ $ $ (-703)) NIL (|has| (-1140 |#2| |#3| |#4|) (-156)))) (-3767 (((-107) $ $) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 60 T CONST)) (-2306 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ (-1140 |#2| |#3| |#4|)) NIL (|has| (-1140 |#2| |#3| |#4|) (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1140 |#2| |#3| |#4|)) NIL) (($ (-1140 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))))
+(((-1141 |#1| |#2| |#3| |#4|) (-13 (-296 (-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -4126 ((-3 (-772 |#2|) "failed") $)) (-15 -2844 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1057))) "failed") $)))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1095) (-400 |#1|)) (-1074) |#2|) (T -1141))
+((-4126 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))) (-2844 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1057)))) (-5 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))))
+(-13 (-296 (-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -4126 ((-3 (-772 |#2|) "failed") $)) (-15 -2844 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1057))) "failed") $))))
+((-3088 ((|#2| $) 28)) (-2864 ((|#2| $) 18)) (-2602 (($ $) 35)) (-2809 (($ $ (-517)) 63)) (-1799 (((-107) $ (-703)) 32)) (-4072 ((|#2| $ |#2|) 60)) (-3573 ((|#2| $ |#2|) 58)) (-2307 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-1414 (($ $ (-583 $)) 59)) (-2849 ((|#2| $) 17)) (-1644 (($ $) NIL) (($ $ (-703)) 41)) (-3200 (((-583 $) $) 25)) (-1703 (((-107) $ $) 49)) (-4064 (((-107) $ (-703)) 31)) (-2942 (((-107) $ (-703)) 30)) (-3762 (((-107) $) 27)) (-1988 ((|#2| $) 23) (($ $ (-703)) 45)) (-1986 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2562 (((-107) $) 21)) (-4084 (($ $) 38)) (-3145 (($ $) 64)) (-2943 (((-703) $) 40)) (-2103 (($ $) 39)) (-2337 (($ $ $) 57) (($ |#2| $) NIL)) (-3935 (((-583 $) $) 26)) (-1539 (((-107) $ $) 47)) (-2210 (((-703) $) 34)))
+(((-1142 |#1| |#2|) (-10 -8 (-15 -2809 (|#1| |#1| (-517))) (-15 -2307 (|#2| |#1| "last" |#2|)) (-15 -3573 (|#2| |#1| |#2|)) (-15 -2307 (|#1| |#1| "rest" |#1|)) (-15 -2307 (|#2| |#1| "first" |#2|)) (-15 -3145 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -2943 ((-703) |#1|)) (-15 -2103 (|#1| |#1|)) (-15 -2864 (|#2| |#1|)) (-15 -2849 (|#2| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1988 (|#1| |#1| (-703))) (-15 -1986 (|#2| |#1| "last")) (-15 -1988 (|#2| |#1|)) (-15 -1644 (|#1| |#1| (-703))) (-15 -1986 (|#1| |#1| "rest")) (-15 -1644 (|#1| |#1|)) (-15 -1986 (|#2| |#1| "first")) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#1|)) (-15 -4072 (|#2| |#1| |#2|)) (-15 -2307 (|#2| |#1| "value" |#2|)) (-15 -1414 (|#1| |#1| (-583 |#1|))) (-15 -1703 ((-107) |#1| |#1|)) (-15 -2562 ((-107) |#1|)) (-15 -1986 (|#2| |#1| "value")) (-15 -3088 (|#2| |#1|)) (-15 -3762 ((-107) |#1|)) (-15 -3200 ((-583 |#1|) |#1|)) (-15 -3935 ((-583 |#1|) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -1799 ((-107) |#1| (-703))) (-15 -4064 ((-107) |#1| (-703))) (-15 -2942 ((-107) |#1| (-703)))) (-1143 |#2|) (-1109)) (T -1142))
+NIL
+(-10 -8 (-15 -2809 (|#1| |#1| (-517))) (-15 -2307 (|#2| |#1| "last" |#2|)) (-15 -3573 (|#2| |#1| |#2|)) (-15 -2307 (|#1| |#1| "rest" |#1|)) (-15 -2307 (|#2| |#1| "first" |#2|)) (-15 -3145 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -2943 ((-703) |#1|)) (-15 -2103 (|#1| |#1|)) (-15 -2864 (|#2| |#1|)) (-15 -2849 (|#2| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1988 (|#1| |#1| (-703))) (-15 -1986 (|#2| |#1| "last")) (-15 -1988 (|#2| |#1|)) (-15 -1644 (|#1| |#1| (-703))) (-15 -1986 (|#1| |#1| "rest")) (-15 -1644 (|#1| |#1|)) (-15 -1986 (|#2| |#1| "first")) (-15 -2337 (|#1| |#2| |#1|)) (-15 -2337 (|#1| |#1| |#1|)) (-15 -4072 (|#2| |#1| |#2|)) (-15 -2307 (|#2| |#1| "value" |#2|)) (-15 -1414 (|#1| |#1| (-583 |#1|))) (-15 -1703 ((-107) |#1| |#1|)) (-15 -2562 ((-107) |#1|)) (-15 -1986 (|#2| |#1| "value")) (-15 -3088 (|#2| |#1|)) (-15 -3762 ((-107) |#1|)) (-15 -3200 ((-583 |#1|) |#1|)) (-15 -3935 ((-583 |#1|) |#1|)) (-15 -1539 ((-107) |#1| |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -1799 ((-107) |#1| (-703))) (-15 -4064 ((-107) |#1| (-703))) (-15 -2942 ((-107) |#1| (-703))))
+((-2571 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3088 ((|#1| $) 48)) (-2864 ((|#1| $) 65)) (-2602 (($ $) 67)) (-2809 (($ $ (-517)) 52 (|has| $ (-6 -4184)))) (-1799 (((-107) $ (-703)) 8)) (-4072 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3499 (($ $ $) 56 (|has| $ (-6 -4184)))) (-3573 ((|#1| $ |#1|) 54 (|has| $ (-6 -4184)))) (-3043 ((|#1| $ |#1|) 58 (|has| $ (-6 -4184)))) (-2307 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4184))) (($ $ "rest" $) 55 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4184)))) (-1414 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-2849 ((|#1| $) 66)) (-3473 (($) 7 T CONST)) (-1644 (($ $) 73) (($ $ (-703)) 71)) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3200 (((-583 $) $) 50)) (-1703 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-4064 (((-107) $ (-703)) 9)) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2942 (((-107) $ (-703)) 10)) (-3617 (((-583 |#1|) $) 45)) (-3762 (((-107) $) 49)) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1988 ((|#1| $) 70) (($ $ (-703)) 68)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 76) (($ $ (-703)) 74)) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1482 (((-517) $ $) 44)) (-2562 (((-107) $) 46)) (-4084 (($ $) 62)) (-3145 (($ $) 59 (|has| $ (-6 -4184)))) (-2943 (((-703) $) 63)) (-2103 (($ $) 64)) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2322 (($ $) 13)) (-1286 (($ $ $) 61 (|has| $ (-6 -4184))) (($ $ |#1|) 60 (|has| $ (-6 -4184)))) (-2337 (($ $ $) 78) (($ |#1| $) 77)) (-2182 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3935 (((-583 $) $) 51)) (-3172 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1539 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-1143 |#1|) (-1185) (-1109)) (T -1143))
+((-2337 (*1 *1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2337 (*1 *1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1631 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-1644 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-1644 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-2602 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2103 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) (-4084 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1286 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1286 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-3145 (*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-3043 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2307 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-3499 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2307 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-3573 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2307 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2809 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4184)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))))
+(-13 (-926 |t#1|) (-10 -8 (-15 -2337 ($ $ $)) (-15 -2337 ($ |t#1| $)) (-15 -1631 (|t#1| $)) (-15 -1986 (|t#1| $ "first")) (-15 -1631 ($ $ (-703))) (-15 -1644 ($ $)) (-15 -1986 ($ $ "rest")) (-15 -1644 ($ $ (-703))) (-15 -1988 (|t#1| $)) (-15 -1986 (|t#1| $ "last")) (-15 -1988 ($ $ (-703))) (-15 -2602 ($ $)) (-15 -2849 (|t#1| $)) (-15 -2864 (|t#1| $)) (-15 -2103 ($ $)) (-15 -2943 ((-703) $)) (-15 -4084 ($ $)) (IF (|has| $ (-6 -4184)) (PROGN (-15 -1286 ($ $ $)) (-15 -1286 ($ $ |t#1|)) (-15 -3145 ($ $)) (-15 -3043 (|t#1| $ |t#1|)) (-15 -2307 (|t#1| $ "first" |t#1|)) (-15 -3499 ($ $ $)) (-15 -2307 ($ $ "rest" $)) (-15 -3573 (|t#1| $ |t#1|)) (-15 -2307 (|t#1| $ "last" |t#1|)) (-15 -2809 ($ $ (-517)))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-1857 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1857 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1146 |#1|) (-1146 |#2|)) (T -1144))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1146 *6)) (-5 *1 (-1144 *5 *6 *4 *2)) (-4 *4 (-1146 *5)))))
+(-10 -7 (-15 -1857 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2745 (((-107) $) 15)) (-1834 (($ $) 90)) (-1710 (($ $) 66)) (-1812 (($ $) 86)) (-1685 (($ $) 62)) (-1851 (($ $) 94)) (-1731 (($ $) 70)) (-1826 (($ $) 60)) (-2459 (($ $) 58)) (-1860 (($ $) 96)) (-1741 (($ $) 72)) (-1842 (($ $) 92)) (-1722 (($ $) 68)) (-1824 (($ $) 88)) (-1698 (($ $) 64)) (-2182 (((-787) $) 46) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3642 (($ $) 102)) (-1773 (($ $) 78)) (-3622 (($ $) 98)) (-1751 (($ $) 74)) (-3661 (($ $) 106)) (-1794 (($ $) 82)) (-1279 (($ $) 108)) (-1803 (($ $) 84)) (-3650 (($ $) 104)) (-1784 (($ $) 80)) (-3631 (($ $) 100)) (-1762 (($ $) 76)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-377 (-517))) 56)))
+(((-1145 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1710 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1741 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1794 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1860 (|#1| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2745 ((-107) |#1|)) (-15 -2182 ((-787) |#1|))) (-1146 |#2|) (-961)) (T -1145))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1710 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1741 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1794 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1860 (|#1| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2182 (|#1| |#2|)) (-15 -2182 (|#1| |#1|)) (-15 -2182 (|#1| (-377 (-517)))) (-15 -2182 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2745 ((-107) |#1|)) (-15 -2182 ((-787) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1363 (((-583 (-989)) $) 74)) (-1625 (((-1074) $) 103)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3209 (($ $) 52 (|has| |#1| (-509)))) (-1452 (((-107) $) 54 (|has| |#1| (-509)))) (-3349 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-4040 (((-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-1834 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1812 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1055 |#1|)) 153)) (-1851 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) 17 T CONST)) (-1217 (($ $) 60)) (-1568 (((-3 $ "failed") $) 34)) (-2514 (($ $) 152)) (-1989 (((-874 |#1|) $ (-703)) 150) (((-874 |#1|) $ (-703) (-703)) 149)) (-2029 (((-107) $) 73)) (-2475 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-703) $) 100) (((-703) $ (-703)) 99)) (-2955 (((-107) $) 31)) (-2666 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3371 (($ $ (-843)) 101)) (-3558 (($ (-1 |#1| (-517)) $) 151)) (-1331 (((-107) $) 62)) (-1343 (($ |#1| (-703)) 61) (($ $ (-989) (-703)) 76) (($ $ (-583 (-989)) (-583 (-703))) 75)) (-1857 (($ (-1 |#1| |#1|) $) 63)) (-1826 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) 65)) (-1192 ((|#1| $) 66)) (-3865 (((-1057) $) 9)) (-2863 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 146 (-3763 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3094 (((-1021) $) 10)) (-3467 (($ $ (-703)) 95)) (-2349 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2459 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1979 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1986 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1015)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-4007 (((-703) $) 64)) (-1860 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 72)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2834 (((-1055 |#1|) $) 154)) (-3086 ((|#1| $ (-703)) 59)) (-1589 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1865 (((-703)) 29)) (-2840 ((|#1| $) 102)) (-3642 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3622 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1146 |#1|) (-1185) (-961)) (T -1146))
+((-1534 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1146 *3)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-5 *2 (-1055 *3)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-4 *1 (-1146 *3)))) (-2514 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)))) (-3558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1146 *3)) (-4 *3 (-961)))) (-1989 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1146 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (-1989 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1146 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2863 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-2863 (*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1074)) (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1363 ((-583 *2) *3))) (|has| *3 (-15 -2863 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1133 |t#1| (-703)) (-10 -8 (-15 -1534 ($ (-1055 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -2834 ((-1055 |t#1|) $)) (-15 -1534 ($ (-1055 |t#1|))) (-15 -2514 ($ $)) (-15 -3558 ($ (-1 |t#1| (-517)) $)) (-15 -1989 ((-874 |t#1|) $ (-703))) (-15 -1989 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -2863 ($ $)) (IF (|has| |t#1| (-15 -2863 (|t#1| |t#1| (-1074)))) (IF (|has| |t#1| (-15 -1363 ((-583 (-1074)) |t#1|))) (-15 -2863 ($ $ (-1074))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1095)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -2863 ($ $ (-1074))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1095))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1015)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| (-703) (-989)) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3763 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1133 |#1| (-703)) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1363 (((-583 (-989)) $) NIL)) (-1625 (((-1074) $) 86)) (-2484 (((-1128 |#2| |#1|) $ (-703)) 73)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3209 (($ $) NIL (|has| |#1| (-509)))) (-1452 (((-107) $) 135 (|has| |#1| (-509)))) (-3349 (($ $ (-703)) 120) (($ $ (-703) (-703)) 122)) (-4040 (((-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-1834 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1710 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1387 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1812 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1534 (($ (-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1055 |#1|)) NIL)) (-1851 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3473 (($) NIL T CONST)) (-3294 (($ $) 126)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-2514 (($ $) 133)) (-1989 (((-874 |#1|) $ (-703)) 63) (((-874 |#1|) $ (-703) (-703)) 65)) (-2029 (((-107) $) NIL)) (-2475 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1921 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-2955 (((-107) $) NIL)) (-2636 (($ $) 110)) (-2666 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1712 (($ (-517) (-517) $) 128)) (-3371 (($ $ (-843)) 132)) (-3558 (($ (-1 |#1| (-517)) $) 104)) (-1331 (((-107) $) NIL)) (-1343 (($ |#1| (-703)) 15) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) 92)) (-1826 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4159 (($ $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-1766 (($ $) 108)) (-3919 (($ $) 106)) (-2509 (($ (-517) (-517) $) 130)) (-2863 (($ $) 143 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 149 (-3763 (-12 (|has| |#1| (-15 -2863 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1363 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 144 (|has| |#1| (-37 (-377 (-517)))))) (-3094 (((-1021) $) NIL)) (-1460 (($ $ (-517) (-517)) 114)) (-3467 (($ $ (-703)) 116)) (-2349 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2871 (($ $) 112)) (-1979 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1986 ((|#1| $ (-703)) 89) (($ $ $) 124 (|has| (-703) (-1015)))) (-1699 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) 101 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1150 |#2|)) 97)) (-4007 (((-703) $) NIL)) (-1860 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1741 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1842 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2860 (($ $) 118)) (-2182 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 141 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1128 |#2| |#1|)) 79) (($ (-1150 |#2|)) 20)) (-2834 (((-1055 |#1|) $) NIL)) (-3086 ((|#1| $ (-703)) 88)) (-1589 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1865 (((-703)) NIL)) (-2840 ((|#1| $) 87)) (-3642 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1773 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3767 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3661 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1794 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3284 ((|#1| $ (-703)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2182 (|#1| (-1074))))))) (-1279 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3650 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1784 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3631 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1762 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 17 T CONST)) (-2306 (($) 13 T CONST)) (-2553 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1539 (((-107) $ $) NIL)) (-1649 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) 100)) (-1626 (($ $ $) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 138 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1147 |#1| |#2| |#3|) (-13 (-1146 |#1|) (-10 -8 (-15 -2182 ($ (-1128 |#2| |#1|))) (-15 -2484 ((-1128 |#2| |#1|) $ (-703))) (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (-15 -3919 ($ $)) (-15 -1766 ($ $)) (-15 -2636 ($ $)) (-15 -2871 ($ $)) (-15 -1460 ($ $ (-517) (-517))) (-15 -3294 ($ $)) (-15 -1712 ($ (-517) (-517) $)) (-15 -2509 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|))) (-961) (-1074) |#1|) (T -1147))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1128 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) (-2484 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1128 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1074)) (-14 *6 *4))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-1766 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-2636 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-2871 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-1460 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))) (-3294 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-1712 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))) (-2509 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1146 |#1|) (-10 -8 (-15 -2182 ($ (-1128 |#2| |#1|))) (-15 -2484 ((-1128 |#2| |#1|) $ (-703))) (-15 -2182 ($ (-1150 |#2|))) (-15 -1699 ($ $ (-1150 |#2|))) (-15 -3919 ($ $)) (-15 -1766 ($ $)) (-15 -2636 ($ $)) (-15 -2871 ($ $)) (-15 -1460 ($ $ (-517) (-517))) (-15 -3294 ($ $)) (-15 -1712 ($ (-517) (-517) $)) (-15 -2509 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2863 ($ $ (-1150 |#2|))) |noBranch|)))
+((-2072 (((-1 (-1055 |#1|) (-583 (-1055 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-3411 (((-1 (-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3815 (((-1 (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2|)) 13)) (-2082 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3261 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3230 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-3333 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-2947 ((|#2| |#2| |#2|) 43)))
+(((-1148 |#1| |#2|) (-10 -7 (-15 -3815 ((-1 (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2|))) (-15 -3411 ((-1 (-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2072 ((-1 (-1055 |#1|) (-583 (-1055 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -2947 (|#2| |#2| |#2|)) (-15 -3261 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2082 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3230 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3333 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1146 |#1|)) (T -1148))
+((-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1146 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1148 *5 *6)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1146 *5)) (-5 *1 (-1148 *5 *2)))) (-2082 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-1148 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-1148 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-2947 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1148 *3 *2)) (-4 *2 (-1146 *3)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-583 (-1055 *4)))) (-5 *1 (-1148 *4 *5)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-1055 *4) (-1055 *4))) (-5 *1 (-1148 *4 *5)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1148 *4 *5)))))
+(-10 -7 (-15 -3815 ((-1 (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2|))) (-15 -3411 ((-1 (-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2072 ((-1 (-1055 |#1|) (-583 (-1055 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -2947 (|#2| |#2| |#2|)) (-15 -3261 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2082 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3230 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3333 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|))))))
+((-2192 ((|#2| |#4| (-703)) 30)) (-1231 ((|#4| |#2|) 25)) (-3747 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-2252 (((-1 |#4| (-583 |#4|)) |#3|) 45)))
+(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1231 (|#4| |#2|)) (-15 -2192 (|#2| |#4| (-703))) (-15 -2252 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3747 (|#4| (-377 |#2|))) |noBranch|)) (-961) (-1131 |#1|) (-593 |#2|) (-1146 |#1|)) (T -1149))
+((-3747 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1146 *4)) (-5 *1 (-1149 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1131 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1149 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1146 *4)))) (-2192 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-1149 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1146 *5)))) (-1231 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1131 *4)) (-4 *2 (-1146 *4)) (-5 *1 (-1149 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
+(-10 -7 (-15 -1231 (|#4| |#2|)) (-15 -2192 (|#2| |#4| (-703))) (-15 -2252 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3747 (|#4| (-377 |#2|))) |noBranch|))
+((-2571 (((-107) $ $) NIL)) (-1625 (((-1074)) 12)) (-3865 (((-1057) $) 17)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 11) (((-1074) $) 8)) (-1539 (((-107) $ $) 14)))
+(((-1150 |#1|) (-13 (-1003) (-557 (-1074)) (-10 -8 (-15 -2182 ((-1074) $)) (-15 -1625 ((-1074))))) (-1074)) (T -1150))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1150 *3)) (-14 *3 *2))) (-1625 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1150 *3)) (-14 *3 *2))))
+(-13 (-1003) (-557 (-1074)) (-10 -8 (-15 -2182 ((-1074) $)) (-15 -1625 ((-1074)))))
+((-3437 (($ (-703)) 16)) (-2544 (((-623 |#2|) $ $) 37)) (-2751 ((|#2| $) 46)) (-2542 ((|#2| $) 45)) (-2736 ((|#2| $ $) 33)) (-2115 (($ $ $) 42)) (-1637 (($ $) 20) (($ $ $) 26)) (-1626 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
+(((-1151 |#1| |#2|) (-10 -8 (-15 -2751 (|#2| |#1|)) (-15 -2542 (|#2| |#1|)) (-15 -2115 (|#1| |#1| |#1|)) (-15 -2544 ((-623 |#2|) |#1| |#1|)) (-15 -2736 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 -3437 (|#1| (-703))) (-15 -1626 (|#1| |#1| |#1|))) (-1152 |#2|) (-1109)) (T -1151))
+NIL
+(-10 -8 (-15 -2751 (|#2| |#1|)) (-15 -2542 (|#2| |#1|)) (-15 -2115 (|#1| |#1| |#1|)) (-15 -2544 ((-623 |#2|) |#1| |#1|)) (-15 -2736 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 -3437 (|#1| (-703))) (-15 -1626 (|#1| |#1| |#1|)))
+((-2571 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3437 (($ (-703)) 112 (|has| |#1| (-23)))) (-3423 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) 8)) (-2307 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-3473 (($) 7 T CONST)) (-1227 (($ $) 90 (|has| $ (-6 -4184)))) (-2979 (($ $) 100)) (-1667 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1971 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) 51)) (-2446 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-3037 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2544 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3366 (($ (-703) |#1|) 69)) (-4064 (((-107) $ (-703)) 9)) (-2305 (((-517) $) 43 (|has| (-517) (-779)))) (-1575 (($ $ $) 87 (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2564 (((-517) $) 44 (|has| (-517) (-779)))) (-2986 (($ $ $) 86 (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2751 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-2942 (((-107) $ (-703)) 10)) (-2542 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3865 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4086 (((-583 (-517)) $) 46)) (-3646 (((-107) (-517) $) 47)) (-3094 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1631 ((|#1| $) 42 (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-1254 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) 14)) (-3127 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) 48)) (-1546 (((-107) $) 11)) (-1326 (($) 12)) (-1986 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-2736 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-3685 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-2115 (($ $ $) 104 (|has| |#1| (-961)))) (-3105 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3966 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2322 (($ $) 13)) (-3582 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 70)) (-2337 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2182 (((-787) $) 20 (|has| |#1| (-1003)))) (-3883 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1570 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1539 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1582 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1560 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1637 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1626 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2210 (((-703) $) 6 (|has| $ (-6 -4183)))))
+(((-1152 |#1|) (-1185) (-1109)) (T -1152))
+((-1626 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-25)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1152 *3)) (-4 *3 (-23)) (-4 *3 (-1109)))) (-1637 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-21)))) (-1637 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1152 *3)) (-4 *3 (-1109)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) (-2736 (*1 *2 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))) (-2544 (*1 *2 *1 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1109)) (-4 *3 (-961)) (-5 *2 (-623 *3)))) (-2115 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))) (-2542 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-918)) (-4 *2 (-961)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-918)) (-4 *2 (-961)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1626 ($ $ $)) |noBranch|) (IF (|has| |t#1| (-23)) (-15 -3437 ($ (-703))) |noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1637 ($ $)) (-15 -1637 ($ $ $)) (-15 * ($ (-517) $))) |noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -2736 (|t#1| $ $)) (-15 -2544 ((-623 |t#1|) $ $)) (-15 -2115 ($ $ $))) |noBranch|) (IF (|has| |t#1| (-918)) (IF (|has| |t#1| (-961)) (PROGN (-15 -2542 (|t#1| $)) (-15 -2751 (|t#1| $))) |noBranch|) |noBranch|)))
+(((-33) . T) ((-97) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3763 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1109) . T))
+((-2325 (((-1154 |#2|) (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|) 13)) (-2521 ((|#2| (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|) 15)) (-1857 (((-3 (-1154 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1154 |#1|)) 28) (((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|)) 18)))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -2325 ((-1154 |#2|) (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|)) (-15 -1857 ((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|))) (-15 -1857 ((-3 (-1154 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1154 |#1|)))) (-1109) (-1109)) (T -1153))
+((-1857 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1154 *6)) (-5 *1 (-1153 *5 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1154 *6)) (-5 *1 (-1153 *5 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-1153 *5 *2)))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1154 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-1154 *5)) (-5 *1 (-1153 *6 *5)))))
+(-10 -7 (-15 -2325 ((-1154 |#2|) (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|)) (-15 -1857 ((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|))) (-15 -1857 ((-3 (-1154 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1154 |#1|))))
+((-2571 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3437 (($ (-703)) NIL (|has| |#1| (-23)))) (-3328 (($ (-583 |#1|)) 9)) (-3423 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-2866 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2740 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-3056 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1799 (((-107) $ (-703)) NIL)) (-2307 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3451 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3473 (($) NIL T CONST)) (-1227 (($ $) NIL (|has| $ (-6 -4184)))) (-2979 (($ $) NIL)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1971 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-1226 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-4020 ((|#1| $ (-517)) NIL)) (-2446 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3037 (((-583 |#1|) $) 15 (|has| $ (-6 -4183)))) (-2544 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3366 (($ (-703) |#1|) NIL)) (-4064 (((-107) $ (-703)) NIL)) (-2305 (((-517) $) NIL (|has| (-517) (-779)))) (-1575 (($ $ $) NIL (|has| |#1| (-779)))) (-2262 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1196 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2502 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2564 (((-517) $) NIL (|has| (-517) (-779)))) (-2986 (($ $ $) NIL (|has| |#1| (-779)))) (-1213 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2751 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-2942 (((-107) $ (-703)) NIL)) (-2542 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3865 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2454 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4086 (((-583 (-517)) $) NIL)) (-3646 (((-107) (-517) $) NIL)) (-3094 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1631 ((|#1| $) NIL (|has| (-517) (-779)))) (-2293 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1254 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-2925 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3670 (((-107) $ $) NIL)) (-3127 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3042 (((-583 |#1|) $) NIL)) (-1546 (((-107) $) NIL)) (-1326 (($) NIL)) (-1986 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-2736 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3685 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-2115 (($ $ $) NIL (|has| |#1| (-961)))) (-3105 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3966 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2197 (($ (-583 |#1|)) 8)) (-2337 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2182 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3883 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1593 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1570 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1539 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1582 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1560 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1637 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1626 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1154 |#1|) (-13 (-1152 |#1|) (-10 -8 (-15 -3328 ($ (-583 |#1|))))) (-1109)) (T -1154))
+((-3328 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1154 *3)))))
+(-13 (-1152 |#1|) (-10 -8 (-15 -3328 ($ (-583 |#1|)))))
+((-2571 (((-107) $ $) NIL)) (-2620 (((-1057) $ (-1057)) 87) (((-1057) $ (-1057) (-1057)) 85) (((-1057) $ (-1057) (-583 (-1057))) 84)) (-2807 (($) 56)) (-2402 (((-1159) $ (-437) (-843)) 42)) (-2899 (((-1159) $ (-843) (-1057)) 70) (((-1159) $ (-843) (-797)) 71)) (-2331 (((-1159) $ (-843) (-349) (-349)) 45)) (-4153 (((-1159) $ (-1057)) 66)) (-1449 (((-1159) $ (-843) (-1057)) 75)) (-3721 (((-1159) $ (-843) (-349) (-349)) 46)) (-3547 (((-1159) $ (-843) (-843)) 43)) (-2610 (((-1159) $) 67)) (-2482 (((-1159) $ (-843) (-1057)) 74)) (-2223 (((-1159) $ (-437) (-843)) 30)) (-1292 (((-1159) $ (-843) (-1057)) 73)) (-1522 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-2498 (((-1159) $ (-703) (-703)) 40)) (-3175 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-3865 (((-1057) $) NIL)) (-3342 (((-517) $) 37)) (-3094 (((-1021) $) NIL)) (-2448 (((-1154 (-3 (-437) "undefined")) $) 36)) (-1724 (((-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1292 (-517)) (|:| -1925 (-517)) (|:| |spline| (-517)) (|:| -4037 (-517)) (|:| |axesColor| (-797)) (|:| -2899 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $) 35)) (-2189 (((-1159) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517)) 65)) (-2249 (((-583 (-865 (-199))) $) NIL)) (-2837 (((-437) $ (-843)) 32)) (-2037 (((-1159) $ (-703) (-703) (-843) (-843)) 39)) (-2154 (((-1159) $ (-1057)) 76)) (-1925 (((-1159) $ (-843) (-1057)) 72)) (-2182 (((-787) $) 82)) (-1215 (((-1159) $) 77)) (-4037 (((-1159) $ (-843) (-1057)) 68) (((-1159) $ (-843) (-797)) 69)) (-1539 (((-107) $ $) NIL)))
+(((-1155) (-13 (-1003) (-10 -8 (-15 -2249 ((-583 (-865 (-199))) $)) (-15 -2807 ($)) (-15 -3175 ($ $)) (-15 -1522 ((-583 (-236)) $)) (-15 -1522 ($ $ (-583 (-236)))) (-15 -3175 ($ (-437) (-583 (-236)))) (-15 -2189 ((-1159) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -1724 ((-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1292 (-517)) (|:| -1925 (-517)) (|:| |spline| (-517)) (|:| -4037 (-517)) (|:| |axesColor| (-797)) (|:| -2899 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2448 ((-1154 (-3 (-437) "undefined")) $)) (-15 -4153 ((-1159) $ (-1057))) (-15 -2223 ((-1159) $ (-437) (-843))) (-15 -2837 ((-437) $ (-843))) (-15 -4037 ((-1159) $ (-843) (-1057))) (-15 -4037 ((-1159) $ (-843) (-797))) (-15 -2899 ((-1159) $ (-843) (-1057))) (-15 -2899 ((-1159) $ (-843) (-797))) (-15 -1292 ((-1159) $ (-843) (-1057))) (-15 -2482 ((-1159) $ (-843) (-1057))) (-15 -1925 ((-1159) $ (-843) (-1057))) (-15 -2154 ((-1159) $ (-1057))) (-15 -1215 ((-1159) $)) (-15 -2037 ((-1159) $ (-703) (-703) (-843) (-843))) (-15 -3721 ((-1159) $ (-843) (-349) (-349))) (-15 -2331 ((-1159) $ (-843) (-349) (-349))) (-15 -1449 ((-1159) $ (-843) (-1057))) (-15 -2498 ((-1159) $ (-703) (-703))) (-15 -2402 ((-1159) $ (-437) (-843))) (-15 -3547 ((-1159) $ (-843) (-843))) (-15 -2620 ((-1057) $ (-1057))) (-15 -2620 ((-1057) $ (-1057) (-1057))) (-15 -2620 ((-1057) $ (-1057) (-583 (-1057)))) (-15 -2610 ((-1159) $)) (-15 -3342 ((-517) $)) (-15 -2182 ((-787) $))))) (T -1155))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1155)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1155)))) (-2807 (*1 *1) (-5 *1 (-1155))) (-3175 (*1 *1 *1) (-5 *1 (-1155))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-3175 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) (-2189 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1292 (-517)) (|:| -1925 (-517)) (|:| |spline| (-517)) (|:| -4037 (-517)) (|:| |axesColor| (-797)) (|:| -2899 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1155)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-1154 (-3 (-437) "undefined"))) (-5 *1 (-1155)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2223 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1155)))) (-4037 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-4037 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2899 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2899 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1292 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2482 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1925 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1215 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2037 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-3721 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2331 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1449 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2402 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-3547 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2620 (*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1155)))) (-2620 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1155)))) (-2620 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-1155)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1155)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155)))))
+(-13 (-1003) (-10 -8 (-15 -2249 ((-583 (-865 (-199))) $)) (-15 -2807 ($)) (-15 -3175 ($ $)) (-15 -1522 ((-583 (-236)) $)) (-15 -1522 ($ $ (-583 (-236)))) (-15 -3175 ($ (-437) (-583 (-236)))) (-15 -2189 ((-1159) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -1724 ((-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1292 (-517)) (|:| -1925 (-517)) (|:| |spline| (-517)) (|:| -4037 (-517)) (|:| |axesColor| (-797)) (|:| -2899 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2448 ((-1154 (-3 (-437) "undefined")) $)) (-15 -4153 ((-1159) $ (-1057))) (-15 -2223 ((-1159) $ (-437) (-843))) (-15 -2837 ((-437) $ (-843))) (-15 -4037 ((-1159) $ (-843) (-1057))) (-15 -4037 ((-1159) $ (-843) (-797))) (-15 -2899 ((-1159) $ (-843) (-1057))) (-15 -2899 ((-1159) $ (-843) (-797))) (-15 -1292 ((-1159) $ (-843) (-1057))) (-15 -2482 ((-1159) $ (-843) (-1057))) (-15 -1925 ((-1159) $ (-843) (-1057))) (-15 -2154 ((-1159) $ (-1057))) (-15 -1215 ((-1159) $)) (-15 -2037 ((-1159) $ (-703) (-703) (-843) (-843))) (-15 -3721 ((-1159) $ (-843) (-349) (-349))) (-15 -2331 ((-1159) $ (-843) (-349) (-349))) (-15 -1449 ((-1159) $ (-843) (-1057))) (-15 -2498 ((-1159) $ (-703) (-703))) (-15 -2402 ((-1159) $ (-437) (-843))) (-15 -3547 ((-1159) $ (-843) (-843))) (-15 -2620 ((-1057) $ (-1057))) (-15 -2620 ((-1057) $ (-1057) (-1057))) (-15 -2620 ((-1057) $ (-1057) (-583 (-1057)))) (-15 -2610 ((-1159) $)) (-15 -3342 ((-517) $)) (-15 -2182 ((-787) $))))
+((-2571 (((-107) $ $) NIL)) (-2711 (((-1159) $ (-349)) 138) (((-1159) $ (-349) (-349) (-349)) 139)) (-2620 (((-1057) $ (-1057)) 146) (((-1057) $ (-1057) (-1057)) 144) (((-1057) $ (-1057) (-583 (-1057))) 143)) (-1219 (($) 49)) (-2159 (((-1159) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1159) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1159) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1159) $ (-349) (-349)) 116) (((-1159) $ (-349) (-349) (-349)) 123)) (-3164 (((-349)) 96) (((-349) (-349)) 97)) (-1750 (((-349)) 91) (((-349) (-349)) 93)) (-3104 (((-349)) 94) (((-349) (-349)) 95)) (-3595 (((-349)) 100) (((-349) (-349)) 101)) (-3733 (((-349)) 98) (((-349) (-349)) 99)) (-2331 (((-1159) $ (-349) (-349)) 140)) (-4153 (((-1159) $ (-1057)) 124)) (-1548 (((-1034 (-199)) $) 50) (($ $ (-1034 (-199))) 51)) (-1882 (((-1159) $ (-1057)) 152)) (-3833 (((-1159) $ (-1057)) 153)) (-3416 (((-1159) $ (-349) (-349)) 122) (((-1159) $ (-517) (-517)) 137)) (-3547 (((-1159) $ (-843) (-843)) 130)) (-2610 (((-1159) $) 110)) (-3369 (((-1159) $ (-1057)) 151)) (-2657 (((-1159) $ (-1057)) 107)) (-1522 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-2498 (((-1159) $ (-703) (-703)) 129)) (-3943 (((-1159) $ (-703) (-865 (-199))) 158)) (-1958 (($ $) 56) (($ (-1034 (-199)) (-1057)) 57) (($ (-1034 (-199)) (-583 (-236))) 58)) (-2405 (((-1159) $ (-349) (-349) (-349)) 104)) (-3865 (((-1057) $) NIL)) (-3342 (((-517) $) 102)) (-2732 (((-1159) $ (-349)) 141)) (-2721 (((-1159) $ (-349)) 156)) (-3094 (((-1021) $) NIL)) (-2922 (((-1159) $ (-349)) 155)) (-1856 (((-1159) $ (-1057)) 109)) (-2037 (((-1159) $ (-703) (-703) (-843) (-843)) 128)) (-3590 (((-1159) $ (-1057)) 106)) (-2154 (((-1159) $ (-1057)) 108)) (-3046 (((-1159) $ (-142) (-142)) 127)) (-2182 (((-787) $) 135)) (-1215 (((-1159) $) 111)) (-2697 (((-1159) $ (-1057)) 154)) (-4037 (((-1159) $ (-1057)) 105)) (-1539 (((-107) $ $) NIL)))
+(((-1156) (-13 (-1003) (-10 -8 (-15 -1750 ((-349))) (-15 -1750 ((-349) (-349))) (-15 -3104 ((-349))) (-15 -3104 ((-349) (-349))) (-15 -3164 ((-349))) (-15 -3164 ((-349) (-349))) (-15 -3733 ((-349))) (-15 -3733 ((-349) (-349))) (-15 -3595 ((-349))) (-15 -3595 ((-349) (-349))) (-15 -1219 ($)) (-15 -1958 ($ $)) (-15 -1958 ($ (-1034 (-199)) (-1057))) (-15 -1958 ($ (-1034 (-199)) (-583 (-236)))) (-15 -1548 ((-1034 (-199)) $)) (-15 -1548 ($ $ (-1034 (-199)))) (-15 -3943 ((-1159) $ (-703) (-865 (-199)))) (-15 -1522 ((-583 (-236)) $)) (-15 -1522 ($ $ (-583 (-236)))) (-15 -2498 ((-1159) $ (-703) (-703))) (-15 -3547 ((-1159) $ (-843) (-843))) (-15 -4153 ((-1159) $ (-1057))) (-15 -2037 ((-1159) $ (-703) (-703) (-843) (-843))) (-15 -2159 ((-1159) $ (-349) (-349) (-349) (-349) (-349))) (-15 -2159 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -2159 ((-1159) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -2159 ((-1159) $ (-517) (-517) (-349) (-349) (-349))) (-15 -2159 ((-1159) $ (-349) (-349))) (-15 -2159 ((-1159) $ (-349) (-349) (-349))) (-15 -2154 ((-1159) $ (-1057))) (-15 -4037 ((-1159) $ (-1057))) (-15 -3590 ((-1159) $ (-1057))) (-15 -2657 ((-1159) $ (-1057))) (-15 -1856 ((-1159) $ (-1057))) (-15 -3416 ((-1159) $ (-349) (-349))) (-15 -3416 ((-1159) $ (-517) (-517))) (-15 -2711 ((-1159) $ (-349))) (-15 -2711 ((-1159) $ (-349) (-349) (-349))) (-15 -2331 ((-1159) $ (-349) (-349))) (-15 -3369 ((-1159) $ (-1057))) (-15 -2922 ((-1159) $ (-349))) (-15 -2721 ((-1159) $ (-349))) (-15 -1882 ((-1159) $ (-1057))) (-15 -3833 ((-1159) $ (-1057))) (-15 -2697 ((-1159) $ (-1057))) (-15 -2405 ((-1159) $ (-349) (-349) (-349))) (-15 -2732 ((-1159) $ (-349))) (-15 -2610 ((-1159) $)) (-15 -3046 ((-1159) $ (-142) (-142))) (-15 -2620 ((-1057) $ (-1057))) (-15 -2620 ((-1057) $ (-1057) (-1057))) (-15 -2620 ((-1057) $ (-1057) (-583 (-1057)))) (-15 -1215 ((-1159) $)) (-15 -3342 ((-517) $))))) (T -1156))
+((-1750 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-1750 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3104 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3104 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3164 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3733 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3733 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3595 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-1219 (*1 *1) (-5 *1 (-1156))) (-1958 (*1 *1 *1) (-5 *1 (-1156))) (-1958 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1057)) (-5 *1 (-1156)))) (-1958 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1156)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1156)))) (-1548 (*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1156)))) (-3943 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1156)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1156)))) (-2498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3547 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2037 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2159 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1156)))) (-2159 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2159 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2159 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-4037 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3590 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2657 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-1856 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3416 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3416 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2711 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2711 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2331 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3369 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2922 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2721 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3833 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2697 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2405 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2732 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3046 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2620 (*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1156)))) (-2620 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1156)))) (-2620 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-1156)))) (-1215 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1156)))))
+(-13 (-1003) (-10 -8 (-15 -1750 ((-349))) (-15 -1750 ((-349) (-349))) (-15 -3104 ((-349))) (-15 -3104 ((-349) (-349))) (-15 -3164 ((-349))) (-15 -3164 ((-349) (-349))) (-15 -3733 ((-349))) (-15 -3733 ((-349) (-349))) (-15 -3595 ((-349))) (-15 -3595 ((-349) (-349))) (-15 -1219 ($)) (-15 -1958 ($ $)) (-15 -1958 ($ (-1034 (-199)) (-1057))) (-15 -1958 ($ (-1034 (-199)) (-583 (-236)))) (-15 -1548 ((-1034 (-199)) $)) (-15 -1548 ($ $ (-1034 (-199)))) (-15 -3943 ((-1159) $ (-703) (-865 (-199)))) (-15 -1522 ((-583 (-236)) $)) (-15 -1522 ($ $ (-583 (-236)))) (-15 -2498 ((-1159) $ (-703) (-703))) (-15 -3547 ((-1159) $ (-843) (-843))) (-15 -4153 ((-1159) $ (-1057))) (-15 -2037 ((-1159) $ (-703) (-703) (-843) (-843))) (-15 -2159 ((-1159) $ (-349) (-349) (-349) (-349) (-349))) (-15 -2159 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -2159 ((-1159) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -2159 ((-1159) $ (-517) (-517) (-349) (-349) (-349))) (-15 -2159 ((-1159) $ (-349) (-349))) (-15 -2159 ((-1159) $ (-349) (-349) (-349))) (-15 -2154 ((-1159) $ (-1057))) (-15 -4037 ((-1159) $ (-1057))) (-15 -3590 ((-1159) $ (-1057))) (-15 -2657 ((-1159) $ (-1057))) (-15 -1856 ((-1159) $ (-1057))) (-15 -3416 ((-1159) $ (-349) (-349))) (-15 -3416 ((-1159) $ (-517) (-517))) (-15 -2711 ((-1159) $ (-349))) (-15 -2711 ((-1159) $ (-349) (-349) (-349))) (-15 -2331 ((-1159) $ (-349) (-349))) (-15 -3369 ((-1159) $ (-1057))) (-15 -2922 ((-1159) $ (-349))) (-15 -2721 ((-1159) $ (-349))) (-15 -1882 ((-1159) $ (-1057))) (-15 -3833 ((-1159) $ (-1057))) (-15 -2697 ((-1159) $ (-1057))) (-15 -2405 ((-1159) $ (-349) (-349) (-349))) (-15 -2732 ((-1159) $ (-349))) (-15 -2610 ((-1159) $)) (-15 -3046 ((-1159) $ (-142) (-142))) (-15 -2620 ((-1057) $ (-1057))) (-15 -2620 ((-1057) $ (-1057) (-1057))) (-15 -2620 ((-1057) $ (-1057) (-583 (-1057)))) (-15 -1215 ((-1159) $)) (-15 -3342 ((-517) $))))
+((-2317 (((-583 (-1057)) (-583 (-1057))) 94) (((-583 (-1057))) 89)) (-3040 (((-583 (-1057))) 87)) (-3974 (((-583 (-843)) (-583 (-843))) 62) (((-583 (-843))) 59)) (-2695 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-2495 (((-1159)) 64)) (-3203 (((-843) (-843)) 80) (((-843)) 79)) (-2510 (((-843) (-843)) 78) (((-843)) 77)) (-1964 (((-797) (-797)) 74) (((-797)) 73)) (-1255 (((-199)) 84) (((-199) (-349)) 86)) (-3485 (((-843)) 81) (((-843) (-843)) 82)) (-2927 (((-843) (-843)) 76) (((-843)) 75)) (-3871 (((-797) (-797)) 68) (((-797)) 66)) (-3777 (((-797) (-797)) 70) (((-797)) 69)) (-1885 (((-797) (-797)) 72) (((-797)) 71)))
+(((-1157) (-10 -7 (-15 -3871 ((-797))) (-15 -3871 ((-797) (-797))) (-15 -3777 ((-797))) (-15 -3777 ((-797) (-797))) (-15 -1885 ((-797))) (-15 -1885 ((-797) (-797))) (-15 -1964 ((-797))) (-15 -1964 ((-797) (-797))) (-15 -2927 ((-843))) (-15 -2927 ((-843) (-843))) (-15 -2695 ((-583 (-703)))) (-15 -2695 ((-583 (-703)) (-583 (-703)))) (-15 -3974 ((-583 (-843)))) (-15 -3974 ((-583 (-843)) (-583 (-843)))) (-15 -2495 ((-1159))) (-15 -2317 ((-583 (-1057)))) (-15 -2317 ((-583 (-1057)) (-583 (-1057)))) (-15 -3040 ((-583 (-1057)))) (-15 -2510 ((-843))) (-15 -3203 ((-843))) (-15 -2510 ((-843) (-843))) (-15 -3203 ((-843) (-843))) (-15 -3485 ((-843) (-843))) (-15 -3485 ((-843))) (-15 -1255 ((-199) (-349))) (-15 -1255 ((-199))))) (T -1157))
+((-1255 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1157)))) (-1255 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1157)))) (-3485 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3203 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-2510 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3203 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-2510 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3040 (*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))) (-2317 (*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))) (-2495 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1157)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1157)))) (-3974 (*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1157)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1157)))) (-2695 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1157)))) (-2927 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-2927 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-1964 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-1964 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-1885 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-3777 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-3871 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
+(-10 -7 (-15 -3871 ((-797))) (-15 -3871 ((-797) (-797))) (-15 -3777 ((-797))) (-15 -3777 ((-797) (-797))) (-15 -1885 ((-797))) (-15 -1885 ((-797) (-797))) (-15 -1964 ((-797))) (-15 -1964 ((-797) (-797))) (-15 -2927 ((-843))) (-15 -2927 ((-843) (-843))) (-15 -2695 ((-583 (-703)))) (-15 -2695 ((-583 (-703)) (-583 (-703)))) (-15 -3974 ((-583 (-843)))) (-15 -3974 ((-583 (-843)) (-583 (-843)))) (-15 -2495 ((-1159))) (-15 -2317 ((-583 (-1057)))) (-15 -2317 ((-583 (-1057)) (-583 (-1057)))) (-15 -3040 ((-583 (-1057)))) (-15 -2510 ((-843))) (-15 -3203 ((-843))) (-15 -2510 ((-843) (-843))) (-15 -3203 ((-843) (-843))) (-15 -3485 ((-843) (-843))) (-15 -3485 ((-843))) (-15 -1255 ((-199) (-349))) (-15 -1255 ((-199))))
+((-3343 (((-437) (-583 (-583 (-865 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-865 (-199))))) 16) (((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 15)) (-1940 (((-1155) (-583 (-583 (-865 (-199)))) (-583 (-236))) 23) (((-1155) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 22)) (-2182 (((-1155) (-437)) 34)))
+(((-1158) (-10 -7 (-15 -3343 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -3343 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -3343 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1940 ((-1155) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1940 ((-1155) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2182 ((-1155) (-437))))) (T -1158))
+((-2182 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1155)) (-5 *1 (-1158)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-1158)))) (-1940 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-1158)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1158)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1158)))) (-3343 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1158)))))
+(-10 -7 (-15 -3343 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -3343 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -3343 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1940 ((-1155) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1940 ((-1155) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2182 ((-1155) (-437))))
+((-2503 (($) 7)) (-2182 (((-787) $) 10)))
+(((-1159) (-10 -8 (-15 -2503 ($)) (-15 -2182 ((-787) $)))) (T -1159))
+((-2182 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1159)))) (-2503 (*1 *1) (-5 *1 (-1159))))
+(-10 -8 (-15 -2503 ($)) (-15 -2182 ((-787) $)))
+((-1649 (($ $ |#2|) 10)))
+(((-1160 |#1| |#2|) (-10 -8 (-15 -1649 (|#1| |#1| |#2|))) (-1161 |#2|) (-333)) (T -1160))
+NIL
+(-10 -8 (-15 -1649 (|#1| |#1| |#2|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2586 (((-125)) 28)) (-2182 (((-787) $) 11)) (-2297 (($) 18 T CONST)) (-1539 (((-107) $ $) 6)) (-1649 (($ $ |#1|) 29)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1161 |#1|) (-1185) (-333)) (T -1161))
+((-1649 (*1 *1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-333)))) (-2586 (*1 *2) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
+(-13 (-650 |t#1|) (-10 -8 (-15 -1649 ($ $ |t#1|)) (-15 -2586 ((-125)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-1593 (((-583 (-1103 |#1|)) (-1073) (-1103 |#1|)) 78)) (-4039 (((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|))) 57)) (-3680 (((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|))) 68)) (-1858 (((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703)) 59)) (-3641 (((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073)) 27)) (-2128 (((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703)) 58)))
-(((-1161 |#1|) (-10 -7 (-15 -1858 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -2128 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -4039 ((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|)))) (-15 -3641 ((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073))) (-15 -1593 ((-583 (-1103 |#1|)) (-1073) (-1103 |#1|))) (-15 -3680 ((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|))))) (-333)) (T -1161))
-((-3680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1103 *6)) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1161 *6)) (-5 *5 (-1054 *4)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-583 (-1103 *5))) (-5 *1 (-1161 *5)) (-5 *4 (-1103 *5)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 (-1069 (-874 *4)) (-874 *4))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-1054 (-1054 (-874 *5)))) (-5 *1 (-1161 *5)) (-5 *4 (-1054 (-874 *5))))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))))
-(-10 -7 (-15 -1858 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -2128 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -4039 ((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|)))) (-15 -3641 ((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073))) (-15 -1593 ((-583 (-1103 |#1|)) (-1073) (-1103 |#1|))) (-15 -3680 ((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|)))))
-((-4140 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-2216 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73)))
-(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1130 |#1|) (-1130 |#2|) (-379 |#2| |#3|)) (T -1162))
-((-4140 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1162 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-2216 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1162 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
-(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 41)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 62) (($ (-517)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-156)))) (-2961 (((-703)) NIL)) (-2273 (((-1158) (-703)) 16)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 26 T CONST)) (-2409 (($) 65 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) 69) (($ $ $) NIL)) (-1642 (($ $ $) 45)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-1163 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2256 ($ |#4|)) (-15 -2273 ((-1158) (-703))))) (-961) (-779) (-725) (-871 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1163))
-((-2256 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1667 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1163 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1158)) (-5 *1 (-1163 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2256 ($ |#4|)) (-15 -2273 ((-1158) (-703)))))
-((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 87)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 27)) (-1677 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 69)) (-3659 ((|#4| |#4| $) 74)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-1536 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 75)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 28 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-3825 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-583 |#4|)) 34)) (-1433 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) NIL)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2068 (((-3 |#4| "failed") $) NIL)) (-2774 (((-583 |#4|) $) 49)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) 73)) (-3411 (((-107) $ $) 84)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 68)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) NIL)) (-1672 (($ $ |#4|) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 66)) (-1746 (($) 41)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) NIL)) (-2442 (($ $ |#3|) NIL)) (-3759 (($ $ |#3|) NIL)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) NIL) (((-583 |#4|) $) 56)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-4021 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-583 |#4|)) 40)) (-2418 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-583 $) (-583 |#4|)) 65)) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-1871 (((-107) |#3| $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
-(((-1164 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3825 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3825 ((-3 $ "failed") (-583 |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|))) (-15 -2418 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2418 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1164))
-((-3825 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))) (-3825 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) (-4021 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))) (-4021 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) (-2418 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1164 *6 *7 *8 *9))) (-5 *1 (-1164 *6 *7 *8 *9)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1164 *4 *5 *6 *7))) (-5 *1 (-1164 *4 *5 *6 *7)))))
-(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3825 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3825 ((-3 $ "failed") (-583 |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|))) (-15 -2418 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2418 ((-583 $) (-583 |#4|)))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-1165 |#1|) (-1184) (-961)) (T -1165))
-((-2256 (*1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -2256 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|)))
+((-3443 (((-583 (-1104 |#1|)) (-1074) (-1104 |#1|)) 78)) (-1401 (((-1055 (-1055 (-874 |#1|))) (-1074) (-1055 (-874 |#1|))) 57)) (-3939 (((-1 (-1055 (-1104 |#1|)) (-1055 (-1104 |#1|))) (-703) (-1104 |#1|) (-1055 (-1104 |#1|))) 68)) (-4096 (((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703)) 59)) (-1771 (((-1 (-1070 (-874 |#1|)) (-874 |#1|)) (-1074)) 27)) (-1398 (((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703)) 58)))
+(((-1162 |#1|) (-10 -7 (-15 -4096 ((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703))) (-15 -1398 ((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703))) (-15 -1401 ((-1055 (-1055 (-874 |#1|))) (-1074) (-1055 (-874 |#1|)))) (-15 -1771 ((-1 (-1070 (-874 |#1|)) (-874 |#1|)) (-1074))) (-15 -3443 ((-583 (-1104 |#1|)) (-1074) (-1104 |#1|))) (-15 -3939 ((-1 (-1055 (-1104 |#1|)) (-1055 (-1104 |#1|))) (-703) (-1104 |#1|) (-1055 (-1104 |#1|))))) (-333)) (T -1162))
+((-3939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1104 *6)) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1162 *6)) (-5 *5 (-1055 *4)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-4 *5 (-333)) (-5 *2 (-583 (-1104 *5))) (-5 *1 (-1162 *5)) (-5 *4 (-1104 *5)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 (-1070 (-874 *4)) (-874 *4))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-4 *5 (-333)) (-5 *2 (-1055 (-1055 (-874 *5)))) (-5 *1 (-1162 *5)) (-5 *4 (-1055 (-874 *5))))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1055 (-874 *4)) (-1055 (-874 *4)))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1055 (-874 *4)) (-1055 (-874 *4)))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))))
+(-10 -7 (-15 -4096 ((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703))) (-15 -1398 ((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703))) (-15 -1401 ((-1055 (-1055 (-874 |#1|))) (-1074) (-1055 (-874 |#1|)))) (-15 -1771 ((-1 (-1070 (-874 |#1|)) (-874 |#1|)) (-1074))) (-15 -3443 ((-583 (-1104 |#1|)) (-1074) (-1104 |#1|))) (-15 -3939 ((-1 (-1055 (-1104 |#1|)) (-1055 (-1104 |#1|))) (-703) (-1104 |#1|) (-1055 (-1104 |#1|)))))
+((-2786 (((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-3993 (((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73)))
+(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -2786 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1131 |#1|) (-1131 |#2|) (-379 |#2| |#3|)) (T -1163))
+((-2786 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1163 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-3993 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -3809 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1163 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
+(-10 -7 (-15 -3993 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -2786 ((-2 (|:| -3809 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 41)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) NIL)) (-2955 (((-107) $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2182 (((-787) $) 62) (($ (-517)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-156)))) (-1865 (((-703)) NIL)) (-3219 (((-1159) (-703)) 16)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 26 T CONST)) (-2306 (($) 65 T CONST)) (-1539 (((-107) $ $) 67)) (-1649 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1637 (($ $) 69) (($ $ $) NIL)) (-1626 (($ $ $) 45)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-1164 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2182 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1649 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2182 ($ |#4|)) (-15 -3219 ((-1159) (-703))))) (-961) (-779) (-725) (-871 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1164))
+((-2182 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1164 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1649 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1164 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2182 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1164 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1159)) (-5 *1 (-1164 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
+(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2182 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1649 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2182 ($ |#4|)) (-15 -3219 ((-1159) (-703)))))
+((-2571 (((-107) $ $) NIL)) (-2440 (((-583 (-2 (|:| -1215 $) (|:| -1511 (-583 |#4|)))) (-583 |#4|)) NIL)) (-1310 (((-583 $) (-583 |#4|)) 87)) (-1363 (((-583 |#3|) $) NIL)) (-3521 (((-107) $) NIL)) (-2320 (((-107) $) NIL (|has| |#1| (-509)))) (-1586 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2356 ((|#4| |#4| $) NIL)) (-3056 (((-2 (|:| |under| $) (|:| -3263 $) (|:| |upper| $)) $ |#3|) NIL)) (-1799 (((-107) $ (-703)) NIL)) (-3451 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3473 (($) NIL T CONST)) (-1216 (((-107) $) NIL (|has| |#1| (-509)))) (-1930 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1660 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3045 (((-107) $) NIL (|has| |#1| (-509)))) (-3702 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 27)) (-3515 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-509)))) (-4024 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1759 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3076 (($ (-583 |#4|)) NIL)) (-1644 (((-3 $ "failed") $) 69)) (-1907 ((|#4| |#4| $) 74)) (-1667 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-1971 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3169 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1584 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-3197 ((|#4| |#4| $) NIL)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1333 (((-2 (|:| -1215 (-583 |#4|)) (|:| -1511 (-583 |#4|))) $) NIL)) (-3037 (((-583 |#4|) $) NIL (|has| $ (-6 -4183)))) (-2096 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3377 ((|#3| $) 75)) (-4064 (((-107) $ (-703)) NIL)) (-1196 (((-583 |#4|) $) 28 (|has| $ (-6 -4183)))) (-2502 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2680 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-583 |#4|)) 34)) (-1213 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4184)))) (-1857 (($ (-1 |#4| |#4|) $) NIL)) (-2434 (((-583 |#3|) $) NIL)) (-2995 (((-107) |#3| $) NIL)) (-2942 (((-107) $ (-703)) NIL)) (-3865 (((-1057) $) NIL)) (-1988 (((-3 |#4| "failed") $) NIL)) (-2425 (((-583 |#4|) $) 49)) (-2998 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2946 ((|#4| |#4| $) 73)) (-3196 (((-107) $ $) 84)) (-2929 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3201 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3006 ((|#4| |#4| $) NIL)) (-3094 (((-1021) $) NIL)) (-1631 (((-3 |#4| "failed") $) 68)) (-2293 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3886 (((-3 $ "failed") $ |#4|) NIL)) (-3467 (($ $ |#4|) NIL)) (-2925 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1979 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3670 (((-107) $ $) NIL)) (-1546 (((-107) $) 66)) (-1326 (($) 41)) (-4007 (((-703) $) NIL)) (-3105 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2322 (($ $) NIL)) (-3582 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2197 (($ (-583 |#4|)) NIL)) (-2399 (($ $ |#3|) NIL)) (-3339 (($ $ |#3|) NIL)) (-3529 (($ $) NIL)) (-4011 (($ $ |#3|) NIL)) (-2182 (((-787) $) NIL) (((-583 |#4|) $) 56)) (-4124 (((-703) $) NIL (|has| |#3| (-338)))) (-1238 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-583 |#4|)) 40)) (-2202 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-583 $) (-583 |#4|)) 65)) (-3049 (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -4143 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2340 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3883 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-3447 (((-583 |#3|) $) NIL)) (-1223 (((-107) |#3| $) NIL)) (-1539 (((-107) $ $) NIL)) (-2210 (((-703) $) NIL (|has| $ (-6 -4183)))))
+(((-1165 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2680 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2680 ((-3 $ "failed") (-583 |#4|))) (-15 -1238 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1238 ((-3 $ "failed") (-583 |#4|))) (-15 -2202 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2202 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1165))
+((-2680 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1165 *5 *6 *7 *8)))) (-2680 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1165 *3 *4 *5 *6)))) (-1238 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1165 *5 *6 *7 *8)))) (-1238 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1165 *3 *4 *5 *6)))) (-2202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1165 *6 *7 *8 *9))) (-5 *1 (-1165 *6 *7 *8 *9)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1165 *4 *5 *6 *7))) (-5 *1 (-1165 *4 *5 *6 *7)))))
+(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2680 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2680 ((-3 $ "failed") (-583 |#4|))) (-15 -1238 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1238 ((-3 $ "failed") (-583 |#4|))) (-15 -2202 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2202 ((-583 $) (-583 |#4|)))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1387 (((-3 $ "failed") $ $) 19)) (-3473 (($) 17 T CONST)) (-1568 (((-3 $ "failed") $) 34)) (-2955 (((-107) $) 31)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-1166 |#1|) (-1185) (-961)) (T -1166))
+((-2182 (*1 *1 *2) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -2182 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 45)) (-3883 (($ $ (-703)) 39)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ $) 61) (($ $ (-751 |#1|)) 48) (($ $ |#1|) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL)) (-1212 (($ $) 32)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) NIL)) (-3768 (($ $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) 31)) (-2402 (($ $) 33)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-1785 (((-751 |#1|) $) NIL)) (-2844 (((-751 |#1|) $) 34)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (($ $ $) 60) (($ $ (-751 |#1|)) 50) (($ $ |#1|) 54)) (-2854 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-751 |#1|) $) 28)) (-1191 ((|#2| $) 30)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3688 (((-703) $) 36)) (-3819 (((-107) $) 40)) (-1619 ((|#2| $) NIL)) (-2256 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-751 |#1|)) NIL)) (-1931 ((|#2| $ $) 63) ((|#2| $ (-751 |#1|)) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 14 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1166 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1172 |#1| |#2|)) (-779) (-961)) (T -1166))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-3367 (((-583 |#1|) $) 45)) (-2176 (($ $ (-703)) 39)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2422 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-3473 (($) NIL T CONST)) (-3660 (($ $ $) 61) (($ $ (-751 |#1|)) 48) (($ $ |#1|) 52)) (-1759 (((-3 (-751 |#1|) "failed") $) NIL)) (-3076 (((-751 |#1|) $) NIL)) (-1217 (($ $) 32)) (-1568 (((-3 $ "failed") $) NIL)) (-3679 (((-107) $) NIL)) (-3418 (($ $) NIL)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-3327 (($ (-751 |#1|) |#2|) 31)) (-2088 (($ $) 33)) (-2094 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-2779 (((-751 |#1|) $) NIL)) (-1966 (((-751 |#1|) $) 34)) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-3913 (($ $ $) 60) (($ $ (-751 |#1|)) 50) (($ $ |#1|) 54)) (-2043 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4159 (((-751 |#1|) $) 28)) (-1192 ((|#2| $) 30)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-4007 (((-703) $) 36)) (-2625 (((-107) $) 40)) (-1605 ((|#2| $) NIL)) (-2182 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ (-751 |#1|)) NIL)) (-1883 ((|#2| $ $) 63) ((|#2| $ (-751 |#1|)) NIL)) (-1865 (((-703)) NIL)) (-2146 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2297 (($) 12 T CONST)) (-2306 (($) 14 T CONST)) (-2557 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1539 (((-107) $ $) 38)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1167 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1173 |#1| |#2|)) (-779) (-961)) (T -1167))
NIL
-(-13 (-352 |#2| (-751 |#1|)) (-1172 |#1| |#2|))
-((-1867 ((|#3| |#3| (-703)) 23)) (-2624 ((|#3| |#3| (-703)) 28)) (-3650 ((|#3| |#3| |#3| (-703)) 29)))
-(((-1167 |#1| |#2| |#3|) (-10 -7 (-15 -2624 (|#3| |#3| (-703))) (-15 -1867 (|#3| |#3| (-703))) (-15 -3650 (|#3| |#3| |#3| (-703)))) (-13 (-961) (-650 (-377 (-517)))) (-779) (-1172 |#2| |#1|)) (T -1167))
-((-3650 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) (-2624 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))))
-(-10 -7 (-15 -2624 (|#3| |#3| (-703))) (-15 -1867 (|#3| |#3| (-703))) (-15 -3650 (|#3| |#3| |#3| (-703))))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 40)) (-4038 (((-3 $ "failed") $ $) 19)) (-3116 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3092 (($) 17 T CONST)) (-3791 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) 64)) (-3189 (((-751 |#1|) $) 63)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 45)) (-3768 (($ $) 44)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 50)) (-3419 (($ (-751 |#1|) |#2|) 51)) (-2402 (($ $) 49)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-1785 (((-751 |#1|) $) 61)) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-2208 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3819 (((-107) $) 47)) (-1619 ((|#2| $) 46)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1931 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1168 |#1| |#2|) (-1184) (-779) (-961)) (T -1168))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1168 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) (-1931 (*1 *2 *1 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-2208 (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2208 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3791 (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3791 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3419 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1168 *4 *3)) (-4 *3 (-961)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3116 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
-(-13 (-961) (-1165 |t#2|) (-952 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1785 ((-751 |t#1|) $)) (-15 -3208 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1931 (|t#2| $ (-751 |t#1|))) (-15 -1931 (|t#2| $ $)) (-15 -2208 ($ $ |t#1|)) (-15 -2208 ($ $ (-751 |t#1|))) (-15 -2208 ($ $ $)) (-15 -3791 ($ $ |t#1|)) (-15 -3791 ($ $ (-751 |t#1|))) (-15 -3791 ($ $ $)) (-15 -3419 ($ (-751 |t#1|) |t#2|)) (-15 -4031 ((-107) $)) (-15 -2402 ($ $)) (-15 -2256 ($ |t#1|)) (-15 -3819 ((-107) $)) (-15 -1619 (|t#2| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -3116 ($ $ $)) (-15 -3116 ($ $ (-703)))) |noBranch|) (-15 -1893 ($ (-1 |t#2| |t#2|) $)) (-15 -3463 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4173)) (-6 -4173) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1165 |#2|) . T))
-((-2909 (((-107) $) 13)) (-1871 (((-107) $) 12)) (-4103 (($ $) 17) (($ $ (-703)) 18)))
-(((-1169 |#1| |#2|) (-10 -8 (-15 -4103 (|#1| |#1| (-703))) (-15 -4103 (|#1| |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|))) (-1170 |#2|) (-333)) (T -1169))
+(-13 (-352 |#2| (-751 |#1|)) (-1173 |#1| |#2|))
+((-1826 ((|#3| |#3| (-703)) 23)) (-2459 ((|#3| |#3| (-703)) 28)) (-1840 ((|#3| |#3| |#3| (-703)) 29)))
+(((-1168 |#1| |#2| |#3|) (-10 -7 (-15 -2459 (|#3| |#3| (-703))) (-15 -1826 (|#3| |#3| (-703))) (-15 -1840 (|#3| |#3| |#3| (-703)))) (-13 (-961) (-650 (-377 (-517)))) (-779) (-1173 |#2| |#1|)) (T -1168))
+((-1840 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))) (-1826 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))) (-2459 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))))
+(-10 -7 (-15 -2459 (|#3| |#3| (-703))) (-15 -1826 (|#3| |#3| (-703))) (-15 -1840 (|#3| |#3| |#3| (-703))))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-3367 (((-583 |#1|) $) 40)) (-1387 (((-3 $ "failed") $ $) 19)) (-2422 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3473 (($) 17 T CONST)) (-3660 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1759 (((-3 (-751 |#1|) "failed") $) 64)) (-3076 (((-751 |#1|) $) 63)) (-1568 (((-3 $ "failed") $) 34)) (-3679 (((-107) $) 45)) (-3418 (($ $) 44)) (-2955 (((-107) $) 31)) (-1331 (((-107) $) 50)) (-3327 (($ (-751 |#1|) |#2|) 51)) (-2088 (($ $) 49)) (-2094 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-2779 (((-751 |#1|) $) 61)) (-1857 (($ (-1 |#2| |#2|) $) 41)) (-3913 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-2625 (((-107) $) 47)) (-1605 ((|#2| $) 46)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1883 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1169 |#1| |#2|) (-1185) (-779) (-961)) (T -1169))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2779 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-2094 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1883 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1169 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) (-1883 (*1 *2 *1 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-3913 (*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3913 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3913 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3660 (*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3660 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3660 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3327 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1169 *4 *3)) (-4 *3 (-961)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-2088 (*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2182 (*1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-3418 (*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2422 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
+(-13 (-961) (-1166 |t#2|) (-952 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2779 ((-751 |t#1|) $)) (-15 -2094 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1883 (|t#2| $ (-751 |t#1|))) (-15 -1883 (|t#2| $ $)) (-15 -3913 ($ $ |t#1|)) (-15 -3913 ($ $ (-751 |t#1|))) (-15 -3913 ($ $ $)) (-15 -3660 ($ $ |t#1|)) (-15 -3660 ($ $ (-751 |t#1|))) (-15 -3660 ($ $ $)) (-15 -3327 ($ (-751 |t#1|) |t#2|)) (-15 -1331 ((-107) $)) (-15 -2088 ($ $)) (-15 -2182 ($ |t#1|)) (-15 -2625 ((-107) $)) (-15 -1605 (|t#2| $)) (-15 -3679 ((-107) $)) (-15 -3418 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -2422 ($ $ $)) (-15 -2422 ($ $ (-703)))) |noBranch|) (-15 -1857 ($ (-1 |t#2| |t#2|) $)) (-15 -3367 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4176)) (-6 -4176) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1166 |#2|) . T))
+((-1416 (((-107) $) 13)) (-1223 (((-107) $) 12)) (-2496 (($ $) 17) (($ $ (-703)) 18)))
+(((-1170 |#1| |#2|) (-10 -8 (-15 -2496 (|#1| |#1| (-703))) (-15 -2496 (|#1| |#1|)) (-15 -1416 ((-107) |#1|)) (-15 -1223 ((-107) |#1|))) (-1171 |#2|) (-333)) (T -1170))
NIL
-(-10 -8 (-15 -4103 (|#1| |#1| (-703))) (-15 -4103 (|#1| |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2909 (((-107) $) 94)) (-3250 (((-703)) 90)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 101)) (-3189 ((|#1| $) 100)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-2378 (($ $ (-703)) 87 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 84 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3202 (((-107) $) 93)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-3327 (((-765 (-843))) 91)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 85 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) 99)) (-3688 (((-765 (-843)) $) 92)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-1328 (((-3 $ "failed") $) 83 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-1871 (((-107) $) 95)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-4103 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64) (($ $ |#1|) 98)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-1170 |#1|) (-1184) (-333)) (T -1170))
-((-1871 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-3327 (*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-3250 (*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-4103 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-4 *3 (-338)))))
-(-13 (-333) (-952 |t#1|) (-1160 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |noBranch|) (-15 -1871 ((-107) $)) (-15 -2909 ((-107) $)) (-15 -3202 ((-107) $)) (-15 -3688 ((-765 (-843)) $)) (-15 -3327 ((-765 (-843)))) (-15 -3250 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -4103 ($ $)) (-15 -4103 ($ $ (-703)))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T) ((-1160 |#1|) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 84)) (-3883 (($ $ (-703)) 87)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-815 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL) (((-815 |#1|) $) NIL)) (-1212 (($ $) 86)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) 75)) (-3768 (($ $) 79)) (-3485 (($ $ $ (-703)) 88)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) NIL) (($ (-815 |#1|) |#2|) 25)) (-2402 (($ $) 101)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1785 (((-751 |#1|) $) NIL)) (-2844 (((-751 |#1|) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1867 (($ $ (-703)) 95 (|has| |#2| (-650 (-377 (-517)))))) (-2854 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-815 |#1|) $) 69)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2624 (($ $ (-703)) 92 (|has| |#2| (-650 (-377 (-517)))))) (-3688 (((-703) $) 85)) (-3819 (((-107) $) 70)) (-1619 ((|#2| $) 74)) (-2256 (((-787) $) 56) (($ (-517)) NIL) (($ |#2|) 50) (($ (-751 |#1|)) NIL) (($ |#1|) 58) (($ (-815 |#1|)) NIL) (($ (-601 |#1| |#2|)) 42) (((-1166 |#1| |#2|) $) 63) (((-1175 |#1| |#2|) $) 68)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-815 |#1|)) NIL)) (-1931 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 24 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2908 (((-3 (-601 |#1| |#2|) "failed") $) 100)) (-1547 (((-107) $ $) 64)) (-1654 (($ $) 94) (($ $ $) 93)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-815 |#1|)) NIL)))
-(((-1171 |#1| |#2|) (-13 (-1172 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2256 ($ (-601 |#1| |#2|))) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1175 |#1| |#2|) $)) (-15 -2908 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3485 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2624 ($ $ (-703))) (-15 -1867 ($ $ (-703)))) |noBranch|))) (-779) (-156)) (T -1171))
-((-2256 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1171 *3 *4)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2908 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3485 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2624 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1867 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
-(-13 (-1172 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2256 ($ (-601 |#1| |#2|))) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1175 |#1| |#2|) $)) (-15 -2908 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3485 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2624 ($ $ (-703))) (-15 -1867 ($ $ (-703)))) |noBranch|)))
-((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 40)) (-3883 (($ $ (-703)) 73)) (-4038 (((-3 $ "failed") $ $) 19)) (-3116 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3092 (($) 17 T CONST)) (-3791 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) 64)) (-3189 (((-751 |#1|) $) 63)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 45)) (-3768 (($ $) 44)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 50)) (-3419 (($ (-751 |#1|) |#2|) 51)) (-2402 (($ $) 49)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-1785 (((-751 |#1|) $) 61)) (-2844 (((-751 |#1|) $) 75)) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-2208 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 (((-703) $) 74)) (-3819 (((-107) $) 47)) (-1619 ((|#2| $) 46)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1931 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1172 |#1| |#2|) (-1184) (-779) (-961)) (T -1172))
-((-2844 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(-13 (-1168 |t#1| |t#2|) (-10 -8 (-15 -2844 ((-751 |t#1|) $)) (-15 -3688 ((-703) $)) (-15 -3883 ($ $ (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1165 |#2|) . T) ((-1168 |#1| |#2|) . T))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 (-1073)) $) NIL)) (-2657 (($ (-1166 (-1073) |#1|)) NIL)) (-3883 (($ $ (-703)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ (-1073)) NIL) (($ $ (-751 (-1073))) NIL) (($ $ $) NIL)) (-1772 (((-3 (-751 (-1073)) "failed") $) NIL)) (-3189 (((-751 (-1073)) $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) NIL)) (-3768 (($ $) NIL)) (-3848 (((-107) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 (-1073)) |#1|) NIL)) (-2402 (($ $) NIL)) (-3208 (((-2 (|:| |k| (-751 (-1073))) (|:| |c| |#1|)) $) NIL)) (-1785 (((-751 (-1073)) $) NIL)) (-2844 (((-751 (-1073)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2208 (($ $ (-1073)) NIL) (($ $ (-751 (-1073))) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3502 (((-1166 (-1073) |#1|) $) NIL)) (-3688 (((-703) $) NIL)) (-3819 (((-107) $) NIL)) (-1619 ((|#1| $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1073))) NIL) (($ (-1073)) NIL)) (-1931 ((|#1| $ (-751 (-1073))) NIL) ((|#1| $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-3389 (((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $) NIL)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1073) $) NIL)))
-(((-1173 |#1|) (-13 (-1172 (-1073) |#1|) (-10 -8 (-15 -3502 ((-1166 (-1073) |#1|) $)) (-15 -2657 ($ (-1166 (-1073) |#1|))) (-15 -3389 ((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $)))) (-961)) (T -1173))
-((-3502 (*1 *2 *1) (-12 (-5 *2 (-1166 (-1073) *3)) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-1166 (-1073) *3)) (-4 *3 (-961)) (-5 *1 (-1173 *3)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1073)) (|:| |c| (-1173 *3))))) (-5 *1 (-1173 *3)) (-4 *3 (-961)))))
-(-13 (-1172 (-1073) |#1|) (-10 -8 (-15 -3502 ((-1166 (-1073) |#1|) $)) (-15 -2657 ($ (-1166 (-1073) |#1|))) (-15 -3389 ((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $))))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL)) (-3189 ((|#2| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 29)) (-3768 (($ $) 30)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ |#2| |#1|) NIL)) (-1785 ((|#2| $) 19)) (-2844 ((|#2| $) 16)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4152 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3819 (((-107) $) 27)) (-1619 ((|#1| $) 28)) (-2256 (((-787) $) 53) (($ (-517)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ |#2|) NIL)) (-1931 ((|#1| $ |#2|) 24)) (-2961 (((-703)) 14)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 11 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1547 (((-107) $ $) 26)) (-1667 (($ $ |#1|) 55 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 42)) (** (($ $ (-843)) NIL) (($ $ (-703)) 44)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2296 (((-703) $) 15)))
-(((-1174 |#1| |#2|) (-13 (-961) (-1165 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2296 ((-703) $)) (-15 -2256 ($ |#2|)) (-15 -2844 (|#2| $)) (-15 -1785 (|#2| $)) (-15 -1212 ($ $)) (-15 -1931 (|#1| $ |#2|)) (-15 -3819 ((-107) $)) (-15 -1619 (|#1| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1667 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4173)) (-6 -4173) |noBranch|) (IF (|has| |#1| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961) (-775)) (T -1174))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-775)))) (-2256 (*1 *1 *2) (-12 (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-2844 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))) (-1785 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))) (-1931 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-1619 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1667 (*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(-13 (-961) (-1165 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2296 ((-703) $)) (-15 -2256 ($ |#2|)) (-15 -2844 (|#2| $)) (-15 -1785 (|#2| $)) (-15 -1212 ($ $)) (-15 -1931 (|#1| $ |#2|)) (-15 -3819 ((-107) $)) (-15 -1619 (|#1| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1667 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4173)) (-6 -4173) |noBranch|) (IF (|has| |#1| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 119)) (-2657 (($ (-1166 |#1| |#2|)) 43)) (-3883 (($ $ (-703)) 31)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) 47 (|has| |#2| (-156))) (($ $ (-703)) 45 (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ |#1|) 101) (($ $ (-751 |#1|)) 102) (($ $ $) 25)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL)) (-3621 (((-3 $ "failed") $) 109)) (-4092 (((-107) $) 104)) (-3768 (($ $) 105)) (-3848 (((-107) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) 19)) (-2402 (($ $) NIL)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1785 (((-751 |#1|) $) 110)) (-2844 (((-751 |#1|) $) 113)) (-1893 (($ (-1 |#2| |#2|) $) 118)) (-2208 (($ $ |#1|) 99) (($ $ (-751 |#1|)) 100) (($ $ $) 55)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3502 (((-1166 |#1| |#2|) $) 83)) (-3688 (((-703) $) 116)) (-3819 (((-107) $) 69)) (-1619 ((|#2| $) 27)) (-2256 (((-787) $) 62) (($ (-517)) 76) (($ |#2|) 73) (($ (-751 |#1|)) 17) (($ |#1|) 72)) (-1931 ((|#2| $ (-751 |#1|)) 103) ((|#2| $ $) 26)) (-2961 (((-703)) 107)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 14 T CONST)) (-3389 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-2409 (($) 28 T CONST)) (-1547 (((-107) $ $) 13)) (-1654 (($ $) 87) (($ $ $) 90)) (-1642 (($ $ $) 54)) (** (($ $ (-843)) NIL) (($ $ (-703)) 48)) (* (($ (-843) $) NIL) (($ (-703) $) 46) (($ (-517) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81)))
-(((-1175 |#1| |#2|) (-13 (-1172 |#1| |#2|) (-10 -8 (-15 -3502 ((-1166 |#1| |#2|) $)) (-15 -2657 ($ (-1166 |#1| |#2|))) (-15 -3389 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-961)) (T -1175))
-((-3502 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1175 *3 *4)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1175 *3 *4))))) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(-13 (-1172 |#1| |#2|) (-10 -8 (-15 -3502 ((-1166 |#1| |#2|) $)) (-15 -2657 ($ (-1166 |#1| |#2|))) (-15 -3389 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1972 (((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517)) 15) (((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|))) 11)))
-(((-1176 |#1|) (-10 -7 (-15 -1972 ((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|)))) (-15 -1972 ((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517)))) (-1108)) (T -1176))
-((-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1054 *5)) (-583 (-1054 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1054 *5))) (-5 *1 (-1176 *5)) (-4 *5 (-1108)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-1 (-1054 *4) (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1108)))))
-(-10 -7 (-15 -1972 ((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|)))) (-15 -1972 ((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517))))
-((-2110 (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 145) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 144) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 143) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 142) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|)) 127)) (-3048 (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|))) 70) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107)) 69) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107)) 68)) (-2759 (((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|)) 59)) (-2047 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 112) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 111) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 110) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 109) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 104)) (-2420 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 117) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 116) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 115) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 114)) (-3645 (((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 96) (((-1069 (-939 (-377 |#1|))) (-1069 |#1|)) 87) (((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 94) (((-874 (-939 (-377 |#1|))) (-874 |#1|)) 92) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 32)))
-(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2759 ((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3645 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3645 ((-1069 (-939 (-377 |#1|))) (-1069 |#1|))) (-15 -3645 ((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-937)) (-583 (-1073)) (-583 (-1073))) (T -1177))
-((-3645 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1069 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2047 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2110 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-3048 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))))
-(-10 -7 (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2759 ((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3645 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3645 ((-1069 (-939 (-377 |#1|))) (-1069 |#1|))) (-15 -3645 ((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|))))))
-((-1915 (((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|) 17)) (-1387 (((-107) (-1153 |#1|)) 11)) (-2978 (((-3 (-1153 (-517)) "failed") (-1153 |#1|)) 14)))
-(((-1178 |#1|) (-10 -7 (-15 -1387 ((-107) (-1153 |#1|))) (-15 -2978 ((-3 (-1153 (-517)) "failed") (-1153 |#1|))) (-15 -1915 ((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|))) (-579 (-517))) (T -1178))
-((-1915 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-377 (-517)))) (-5 *1 (-1178 *4)))) (-2978 (*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-517))) (-5 *1 (-1178 *4)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1178 *4)))))
-(-10 -7 (-15 -1387 ((-107) (-1153 |#1|))) (-15 -2978 ((-3 (-1153 (-517)) "failed") (-1153 |#1|))) (-15 -1915 ((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|)))
-((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 11)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) 8)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 43)) (-3209 (($) 36)) (-3848 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) 29)) (-1549 (((-843) $) 15)) (-3985 (((-1056) $) NIL)) (-2836 (($) 25 T CONST)) (-3448 (($ (-843)) 37)) (-3206 (((-1021) $) NIL)) (-3645 (((-517) $) 13)) (-2256 (((-787) $) 22) (($ (-517)) 19)) (-2961 (((-703)) 9)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 23 T CONST)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 27)) (-1654 (($ $) 38) (($ $ $) 35)) (-1642 (($ $ $) 26)) (** (($ $ (-843)) NIL) (($ $ (-703)) 40)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31)))
-(((-1179 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1049)) (-843)) (T -1179))
+(-10 -8 (-15 -2496 (|#1| |#1| (-703))) (-15 -2496 (|#1| |#1|)) (-15 -1416 ((-107) |#1|)) (-15 -1223 ((-107) |#1|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-1692 (((-2 (|:| -1697 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-3209 (($ $) 40)) (-1452 (((-107) $) 38)) (-1416 (((-107) $) 94)) (-2360 (((-703)) 90)) (-1387 (((-3 $ "failed") $ $) 19)) (-3938 (($ $) 73)) (-3490 (((-388 $) $) 72)) (-3765 (((-107) $ $) 59)) (-3473 (($) 17 T CONST)) (-1759 (((-3 |#1| "failed") $) 101)) (-3076 ((|#1| $) 100)) (-2383 (($ $ $) 55)) (-1568 (((-3 $ "failed") $) 34)) (-2366 (($ $ $) 56)) (-2678 (((-2 (|:| -1883 (-583 $)) (|:| -3107 $)) (-583 $)) 51)) (-2990 (($ $ (-703)) 87 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2965 (((-107) $) 71)) (-1921 (((-765 (-843)) $) 84 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2955 (((-107) $) 31)) (-2976 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1368 (($ $ $) 46) (($ (-583 $)) 45)) (-3865 (((-1057) $) 9)) (-4123 (($ $) 70)) (-2039 (((-107) $) 93)) (-3094 (((-1021) $) 10)) (-4129 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1396 (($ $ $) 48) (($ (-583 $)) 47)) (-3693 (((-388 $) $) 74)) (-3738 (((-765 (-843))) 91)) (-2002 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3107 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2349 (((-3 $ "failed") $ $) 42)) (-3991 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2623 (((-703) $) 58)) (-1412 (((-2 (|:| -3319 $) (|:| -3169 $)) $ $) 57)) (-3654 (((-3 (-703) "failed") $ $) 85 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2586 (((-125)) 99)) (-4007 (((-765 (-843)) $) 92)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-1589 (((-3 $ "failed") $) 83 (-3763 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-703)) 29)) (-3767 (((-107) $ $) 39)) (-1223 (((-107) $) 95)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-2496 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1539 (((-107) $ $) 6)) (-1649 (($ $ $) 64) (($ $ |#1|) 98)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-1171 |#1|) (-1185) (-333)) (T -1171))
+((-1223 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-3738 (*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-2360 (*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-2496 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-2496 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-4 *3 (-338)))))
+(-13 (-333) (-952 |t#1|) (-1161 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |noBranch|) (-15 -1223 ((-107) $)) (-15 -1416 ((-107) $)) (-15 -2039 ((-107) $)) (-15 -4007 ((-765 (-843)) $)) (-15 -3738 ((-765 (-843)))) (-15 -2360 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -2496 ($ $)) (-15 -2496 ($ $ (-703)))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3763 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3763 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T) ((-1161 |#1|) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-3367 (((-583 |#1|) $) 84)) (-2176 (($ $ (-703)) 87)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2422 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-3473 (($) NIL T CONST)) (-3660 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1759 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-815 |#1|) "failed") $) NIL)) (-3076 (((-751 |#1|) $) NIL) (((-815 |#1|) $) NIL)) (-1217 (($ $) 86)) (-1568 (((-3 $ "failed") $) NIL)) (-3679 (((-107) $) 75)) (-3418 (($ $) 79)) (-2591 (($ $ $ (-703)) 88)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-3327 (($ (-751 |#1|) |#2|) NIL) (($ (-815 |#1|) |#2|) 25)) (-2088 (($ $) 101)) (-2094 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2779 (((-751 |#1|) $) NIL)) (-1966 (((-751 |#1|) $) NIL)) (-1857 (($ (-1 |#2| |#2|) $) NIL)) (-3913 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1826 (($ $ (-703)) 95 (|has| |#2| (-650 (-377 (-517)))))) (-2043 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4159 (((-815 |#1|) $) 69)) (-1192 ((|#2| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2459 (($ $ (-703)) 92 (|has| |#2| (-650 (-377 (-517)))))) (-4007 (((-703) $) 85)) (-2625 (((-107) $) 70)) (-1605 ((|#2| $) 74)) (-2182 (((-787) $) 56) (($ (-517)) NIL) (($ |#2|) 50) (($ (-751 |#1|)) NIL) (($ |#1|) 58) (($ (-815 |#1|)) NIL) (($ (-601 |#1| |#2|)) 42) (((-1167 |#1| |#2|) $) 63) (((-1176 |#1| |#2|) $) 68)) (-2834 (((-583 |#2|) $) NIL)) (-3086 ((|#2| $ (-815 |#1|)) NIL)) (-1883 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-1865 (((-703)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 21 T CONST)) (-2306 (($) 24 T CONST)) (-2557 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1403 (((-3 (-601 |#1| |#2|) "failed") $) 100)) (-1539 (((-107) $ $) 64)) (-1637 (($ $) 94) (($ $ $) 93)) (-1626 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-815 |#1|)) NIL)))
+(((-1172 |#1| |#2|) (-13 (-1173 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2182 ($ (-601 |#1| |#2|))) (-15 -2182 ((-1167 |#1| |#2|) $)) (-15 -2182 ((-1176 |#1| |#2|) $)) (-15 -1403 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -2591 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2459 ($ $ (-703))) (-15 -1826 ($ $ (-703)))) |noBranch|))) (-779) (-156)) (T -1172))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1172 *3 *4)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1403 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2591 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2459 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1826 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(-13 (-1173 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2182 ($ (-601 |#1| |#2|))) (-15 -2182 ((-1167 |#1| |#2|) $)) (-15 -2182 ((-1176 |#1| |#2|) $)) (-15 -1403 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -2591 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2459 ($ $ (-703))) (-15 -1826 ($ $ (-703)))) |noBranch|)))
+((-2571 (((-107) $ $) 7)) (-2745 (((-107) $) 16)) (-3367 (((-583 |#1|) $) 40)) (-2176 (($ $ (-703)) 73)) (-1387 (((-3 $ "failed") $ $) 19)) (-2422 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3473 (($) 17 T CONST)) (-3660 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1759 (((-3 (-751 |#1|) "failed") $) 64)) (-3076 (((-751 |#1|) $) 63)) (-1568 (((-3 $ "failed") $) 34)) (-3679 (((-107) $) 45)) (-3418 (($ $) 44)) (-2955 (((-107) $) 31)) (-1331 (((-107) $) 50)) (-3327 (($ (-751 |#1|) |#2|) 51)) (-2088 (($ $) 49)) (-2094 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-2779 (((-751 |#1|) $) 61)) (-1966 (((-751 |#1|) $) 75)) (-1857 (($ (-1 |#2| |#2|) $) 41)) (-3913 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3865 (((-1057) $) 9)) (-3094 (((-1021) $) 10)) (-4007 (((-703) $) 74)) (-2625 (((-107) $) 47)) (-1605 ((|#2| $) 46)) (-2182 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1883 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-1865 (((-703)) 29)) (-2146 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2297 (($) 18 T CONST)) (-2306 (($) 30 T CONST)) (-1539 (((-107) $ $) 6)) (-1637 (($ $) 22) (($ $ $) 21)) (-1626 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1173 |#1| |#2|) (-1185) (-779) (-961)) (T -1173))
+((-1966 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))) (-2176 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(-13 (-1169 |t#1| |t#2|) (-10 -8 (-15 -1966 ((-751 |t#1|) $)) (-15 -4007 ((-703) $)) (-15 -2176 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1166 |#2|) . T) ((-1169 |#1| |#2|) . T))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-3367 (((-583 (-1074)) $) NIL)) (-2580 (($ (-1167 (-1074) |#1|)) NIL)) (-2176 (($ $ (-703)) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2422 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-3473 (($) NIL T CONST)) (-3660 (($ $ (-1074)) NIL) (($ $ (-751 (-1074))) NIL) (($ $ $) NIL)) (-1759 (((-3 (-751 (-1074)) "failed") $) NIL)) (-3076 (((-751 (-1074)) $) NIL)) (-1568 (((-3 $ "failed") $) NIL)) (-3679 (((-107) $) NIL)) (-3418 (($ $) NIL)) (-2955 (((-107) $) NIL)) (-1331 (((-107) $) NIL)) (-3327 (($ (-751 (-1074)) |#1|) NIL)) (-2088 (($ $) NIL)) (-2094 (((-2 (|:| |k| (-751 (-1074))) (|:| |c| |#1|)) $) NIL)) (-2779 (((-751 (-1074)) $) NIL)) (-1966 (((-751 (-1074)) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-3913 (($ $ (-1074)) NIL) (($ $ (-751 (-1074))) NIL) (($ $ $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-3408 (((-1167 (-1074) |#1|) $) NIL)) (-4007 (((-703) $) NIL)) (-2625 (((-107) $) NIL)) (-1605 ((|#1| $) NIL)) (-2182 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1074))) NIL) (($ (-1074)) NIL)) (-1883 ((|#1| $ (-751 (-1074))) NIL) ((|#1| $ $) NIL)) (-1865 (((-703)) NIL)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) NIL T CONST)) (-1319 (((-583 (-2 (|:| |k| (-1074)) (|:| |c| $))) $) NIL)) (-2306 (($) NIL T CONST)) (-1539 (((-107) $ $) NIL)) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1074) $) NIL)))
+(((-1174 |#1|) (-13 (-1173 (-1074) |#1|) (-10 -8 (-15 -3408 ((-1167 (-1074) |#1|) $)) (-15 -2580 ($ (-1167 (-1074) |#1|))) (-15 -1319 ((-583 (-2 (|:| |k| (-1074)) (|:| |c| $))) $)))) (-961)) (T -1174))
+((-3408 (*1 *2 *1) (-12 (-5 *2 (-1167 (-1074) *3)) (-5 *1 (-1174 *3)) (-4 *3 (-961)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1167 (-1074) *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1074)) (|:| |c| (-1174 *3))))) (-5 *1 (-1174 *3)) (-4 *3 (-961)))))
+(-13 (-1173 (-1074) |#1|) (-10 -8 (-15 -3408 ((-1167 (-1074) |#1|) $)) (-15 -2580 ($ (-1167 (-1074) |#1|))) (-15 -1319 ((-583 (-2 (|:| |k| (-1074)) (|:| |c| $))) $))))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-1387 (((-3 $ "failed") $ $) NIL)) (-3473 (($) NIL T CONST)) (-1759 (((-3 |#2| "failed") $) NIL)) (-3076 ((|#2| $) NIL)) (-1217 (($ $) NIL)) (-1568 (((-3 $ "failed") $) 34)) (-3679 (((-107) $) 29)) (-3418 (($ $) 30)) (-2955 (((-107) $) NIL)) (-2091 (((-703) $) NIL)) (-3704 (((-583 $) $) NIL)) (-1331 (((-107) $) NIL)) (-3327 (($ |#2| |#1|) NIL)) (-2779 ((|#2| $) 19)) (-1966 ((|#2| $) 16)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2043 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4159 ((|#2| $) NIL)) (-1192 ((|#1| $) NIL)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-2625 (((-107) $) 27)) (-1605 ((|#1| $) 28)) (-2182 (((-787) $) 53) (($ (-517)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-2834 (((-583 |#1|) $) NIL)) (-3086 ((|#1| $ |#2|) NIL)) (-1883 ((|#1| $ |#2|) 24)) (-1865 (((-703)) 14)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 25 T CONST)) (-2306 (($) 11 T CONST)) (-2557 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1539 (((-107) $ $) 26)) (-1649 (($ $ |#1|) 55 (|has| |#1| (-333)))) (-1637 (($ $) NIL) (($ $ $) NIL)) (-1626 (($ $ $) 42)) (** (($ $ (-843)) NIL) (($ $ (-703)) 44)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2210 (((-703) $) 15)))
+(((-1175 |#1| |#2|) (-13 (-961) (-1166 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2210 ((-703) $)) (-15 -2182 ($ |#2|)) (-15 -1966 (|#2| $)) (-15 -2779 (|#2| $)) (-15 -1217 ($ $)) (-15 -1883 (|#1| $ |#2|)) (-15 -2625 ((-107) $)) (-15 -1605 (|#1| $)) (-15 -3679 ((-107) $)) (-15 -3418 ($ $)) (-15 -1857 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1649 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4176)) (-6 -4176) |noBranch|) (IF (|has| |#1| (-6 -4180)) (-6 -4180) |noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |noBranch|))) (-961) (-775)) (T -1175))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1217 (*1 *1 *1) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1175 *3 *4)) (-4 *4 (-775)))) (-2182 (*1 *1 *2) (-12 (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-1966 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)))) (-2779 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)))) (-1883 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-775)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-1605 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-775)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-3418 (*1 *1 *1) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1649 (*1 *1 *1 *2) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(-13 (-961) (-1166 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2210 ((-703) $)) (-15 -2182 ($ |#2|)) (-15 -1966 (|#2| $)) (-15 -2779 (|#2| $)) (-15 -1217 ($ $)) (-15 -1883 (|#1| $ |#2|)) (-15 -2625 ((-107) $)) (-15 -1605 (|#1| $)) (-15 -3679 ((-107) $)) (-15 -3418 ($ $)) (-15 -1857 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1649 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4176)) (-6 -4176) |noBranch|) (IF (|has| |#1| (-6 -4180)) (-6 -4180) |noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |noBranch|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) NIL)) (-3367 (((-583 |#1|) $) 119)) (-2580 (($ (-1167 |#1| |#2|)) 43)) (-2176 (($ $ (-703)) 31)) (-1387 (((-3 $ "failed") $ $) NIL)) (-2422 (($ $ $) 47 (|has| |#2| (-156))) (($ $ (-703)) 45 (|has| |#2| (-156)))) (-3473 (($) NIL T CONST)) (-3660 (($ $ |#1|) 101) (($ $ (-751 |#1|)) 102) (($ $ $) 25)) (-1759 (((-3 (-751 |#1|) "failed") $) NIL)) (-3076 (((-751 |#1|) $) NIL)) (-1568 (((-3 $ "failed") $) 109)) (-3679 (((-107) $) 104)) (-3418 (($ $) 105)) (-2955 (((-107) $) NIL)) (-1331 (((-107) $) NIL)) (-3327 (($ (-751 |#1|) |#2|) 19)) (-2088 (($ $) NIL)) (-2094 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2779 (((-751 |#1|) $) 110)) (-1966 (((-751 |#1|) $) 113)) (-1857 (($ (-1 |#2| |#2|) $) 118)) (-3913 (($ $ |#1|) 99) (($ $ (-751 |#1|)) 100) (($ $ $) 55)) (-3865 (((-1057) $) NIL)) (-3094 (((-1021) $) NIL)) (-3408 (((-1167 |#1| |#2|) $) 83)) (-4007 (((-703) $) 116)) (-2625 (((-107) $) 69)) (-1605 ((|#2| $) 27)) (-2182 (((-787) $) 62) (($ (-517)) 76) (($ |#2|) 73) (($ (-751 |#1|)) 17) (($ |#1|) 72)) (-1883 ((|#2| $ (-751 |#1|)) 103) ((|#2| $ $) 26)) (-1865 (((-703)) 107)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 14 T CONST)) (-1319 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-2306 (($) 28 T CONST)) (-1539 (((-107) $ $) 13)) (-1637 (($ $) 87) (($ $ $) 90)) (-1626 (($ $ $) 54)) (** (($ $ (-843)) NIL) (($ $ (-703)) 48)) (* (($ (-843) $) NIL) (($ (-703) $) 46) (($ (-517) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81)))
+(((-1176 |#1| |#2|) (-13 (-1173 |#1| |#2|) (-10 -8 (-15 -3408 ((-1167 |#1| |#2|) $)) (-15 -2580 ($ (-1167 |#1| |#2|))) (-15 -1319 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-961)) (T -1176))
+((-3408 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1167 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1176 *3 *4)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1176 *3 *4))))) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(-13 (-1173 |#1| |#2|) (-10 -8 (-15 -3408 ((-1167 |#1| |#2|) $)) (-15 -2580 ($ (-1167 |#1| |#2|))) (-15 -1319 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-2389 (((-583 (-1055 |#1|)) (-1 (-583 (-1055 |#1|)) (-583 (-1055 |#1|))) (-517)) 15) (((-1055 |#1|) (-1 (-1055 |#1|) (-1055 |#1|))) 11)))
+(((-1177 |#1|) (-10 -7 (-15 -2389 ((-1055 |#1|) (-1 (-1055 |#1|) (-1055 |#1|)))) (-15 -2389 ((-583 (-1055 |#1|)) (-1 (-583 (-1055 |#1|)) (-583 (-1055 |#1|))) (-517)))) (-1109)) (T -1177))
+((-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1055 *5)) (-583 (-1055 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1055 *5))) (-5 *1 (-1177 *5)) (-4 *5 (-1109)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-1 (-1055 *4) (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-1109)))))
+(-10 -7 (-15 -2389 ((-1055 |#1|) (-1 (-1055 |#1|) (-1055 |#1|)))) (-15 -2389 ((-583 (-1055 |#1|)) (-1 (-583 (-1055 |#1|)) (-583 (-1055 |#1|))) (-517))))
+((-2308 (((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 145) (((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 144) (((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 143) (((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 142) (((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-958 |#1| |#2|)) 127)) (-3075 (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|))) 70) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107)) 69) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107)) 68)) (-3490 (((-583 (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|)) 59)) (-2912 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 112) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 111) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 110) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 109) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 104)) (-2217 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 117) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 116) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 115) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 114)) (-3582 (((-583 (-712 |#1| (-789 |#3|))) (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 96) (((-1070 (-939 (-377 |#1|))) (-1070 |#1|)) 87) (((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 94) (((-874 (-939 (-377 |#1|))) (-874 |#1|)) 92) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 32)))
+(((-1178 |#1| |#2| |#3|) (-10 -7 (-15 -3075 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -3075 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -3075 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2217 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2217 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2217 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2217 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -3490 ((-583 (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3582 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3582 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3582 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3582 ((-1070 (-939 (-377 |#1|))) (-1070 |#1|))) (-15 -3582 ((-583 (-712 |#1| (-789 |#3|))) (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-937)) (-583 (-1074)) (-583 (-1074))) (T -1178))
+((-3582 (*1 *2 *3) (-12 (-5 *3 (-1045 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1070 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1074))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-1045 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-2217 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2217 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2912 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2912 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-2308 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *4)) (|:| -2575 (-583 (-874 *4)))))) (-5 *1 (-1178 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-2308 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2308 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2308 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *4)) (|:| -2575 (-583 (-874 *4)))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-3075 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))))
+(-10 -7 (-15 -3075 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -3075 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -3075 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -2308 ((-583 (-2 (|:| -3870 (-1070 |#1|)) (|:| -2575 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2912 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2217 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2217 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2217 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2217 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -3490 ((-583 (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3582 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3582 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3582 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3582 ((-1070 (-939 (-377 |#1|))) (-1070 |#1|))) (-15 -3582 ((-583 (-712 |#1| (-789 |#3|))) (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|))))))
+((-4043 (((-3 (-1154 (-377 (-517))) "failed") (-1154 |#1|) |#1|) 17)) (-2818 (((-107) (-1154 |#1|)) 11)) (-3776 (((-3 (-1154 (-517)) "failed") (-1154 |#1|)) 14)))
+(((-1179 |#1|) (-10 -7 (-15 -2818 ((-107) (-1154 |#1|))) (-15 -3776 ((-3 (-1154 (-517)) "failed") (-1154 |#1|))) (-15 -4043 ((-3 (-1154 (-377 (-517))) "failed") (-1154 |#1|) |#1|))) (-579 (-517))) (T -1179))
+((-4043 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1154 (-377 (-517)))) (-5 *1 (-1179 *4)))) (-3776 (*1 *2 *3) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1154 (-517))) (-5 *1 (-1179 *4)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1179 *4)))))
+(-10 -7 (-15 -2818 ((-107) (-1154 |#1|))) (-15 -3776 ((-3 (-1154 (-517)) "failed") (-1154 |#1|))) (-15 -4043 ((-3 (-1154 (-377 (-517))) "failed") (-1154 |#1|) |#1|)))
+((-2571 (((-107) $ $) NIL)) (-2745 (((-107) $) 11)) (-1387 (((-3 $ "failed") $ $) NIL)) (-1598 (((-703)) 8)) (-3473 (($) NIL T CONST)) (-1568 (((-3 $ "failed") $) 43)) (-3098 (($) 36)) (-2955 (((-107) $) NIL)) (-3744 (((-3 $ "failed") $) 29)) (-2903 (((-843) $) 15)) (-3865 (((-1057) $) NIL)) (-2663 (($) 25 T CONST)) (-3353 (($ (-843)) 37)) (-3094 (((-1021) $) NIL)) (-3582 (((-517) $) 13)) (-2182 (((-787) $) 22) (($ (-517)) 19)) (-1865 (((-703)) 9)) (-2146 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2297 (($) 23 T CONST)) (-2306 (($) 24 T CONST)) (-1539 (((-107) $ $) 27)) (-1637 (($ $) 38) (($ $ $) 35)) (-1626 (($ $ $) 26)) (** (($ $ (-843)) NIL) (($ $ (-703)) 40)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31)))
+(((-1180 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1050)) (-843)) (T -1180))
NIL
-(-13 (-156) (-338) (-558 (-517)) (-1049))
+(-13 (-156) (-338) (-558 (-517)) (-1050))
NIL
NIL
NIL
@@ -4848,4 +4852,4 @@ NIL
NIL
NIL
NIL
-((-1184 3124859 3124864 3124869 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3124844 3124849 3124854 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3124829 3124834 3124839 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3124814 3124819 3124824 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3124799 3124804 3124809 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1179 3123929 3124674 3124751 "ZMOD" 3124756 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1178 3123039 3123203 3123412 "ZLINDEP" 3123761 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1177 3112443 3114188 3116140 "ZDSOLVE" 3121188 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1176 3111689 3111830 3112019 "YSTREAM" 3112289 NIL YSTREAM (NIL T) -7 NIL NIL) (-1175 3109458 3110994 3111197 "XRPOLY" 3111532 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1174 3105928 3107257 3107835 "XPR" 3108926 NIL XPR (NIL T T) -8 NIL NIL) (-1173 3103642 3105263 3105466 "XPOLY" 3105759 NIL XPOLY (NIL T) -8 NIL NIL) (-1172 3101455 3102833 3102888 "XPOLYC" 3103173 NIL XPOLYC (NIL T T) -9 NIL 3103286) (-1171 3097829 3099974 3100361 "XPBWPOLY" 3101114 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1170 3093712 3096025 3096068 "XF" 3096689 NIL XF (NIL T) -9 NIL 3097085) (-1169 3093333 3093421 3093590 "XF-" 3093595 NIL XF- (NIL T T) -8 NIL NIL) (-1168 3088714 3090013 3090068 "XFALG" 3092216 NIL XFALG (NIL T T) -9 NIL 3093001) (-1167 3087851 3087955 3088159 "XEXPPKG" 3088606 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1166 3085949 3087702 3087797 "XDPOLY" 3087802 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1165 3084828 3085438 3085481 "XALG" 3085543 NIL XALG (NIL T) -9 NIL 3085661) (-1164 3078304 3082812 3083305 "WUTSET" 3084420 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1163 3076120 3076927 3077276 "WP" 3078088 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1162 3075006 3075204 3075499 "WFFINTBS" 3075917 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1161 3072910 3073337 3073799 "WEIER" 3074578 NIL WEIER (NIL T) -7 NIL NIL) (-1160 3072058 3072482 3072525 "VSPACE" 3072661 NIL VSPACE (NIL T) -9 NIL 3072735) (-1159 3071896 3071923 3072014 "VSPACE-" 3072019 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1158 3071642 3071685 3071756 "VOID" 3071847 T VOID (NIL) -8 NIL NIL) (-1157 3069778 3070137 3070543 "VIEW" 3071258 T VIEW (NIL) -7 NIL NIL) (-1156 3066203 3066841 3067578 "VIEWDEF" 3069063 T VIEWDEF (NIL) -7 NIL NIL) (-1155 3055542 3057751 3059924 "VIEW3D" 3064052 T VIEW3D (NIL) -8 NIL NIL) (-1154 3047824 3049453 3051032 "VIEW2D" 3053985 T VIEW2D (NIL) -8 NIL NIL) (-1153 3043233 3047594 3047686 "VECTOR" 3047767 NIL VECTOR (NIL T) -8 NIL NIL) (-1152 3041810 3042069 3042387 "VECTOR2" 3042963 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1151 3035359 3039605 3039649 "VECTCAT" 3040637 NIL VECTCAT (NIL T) -9 NIL 3041214) (-1150 3034373 3034627 3035017 "VECTCAT-" 3035022 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1149 3033854 3034024 3034144 "VARIABLE" 3034288 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1148 3032691 3032845 3033105 "UTSODETL" 3033681 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1147 3030131 3030591 3031115 "UTSODE" 3032232 NIL UTSODE (NIL T T) -7 NIL NIL) (-1146 3021981 3027773 3028260 "UTS" 3029701 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1145 3013286 3018648 3018691 "UTSCAT" 3019792 NIL UTSCAT (NIL T) -9 NIL 3020542) (-1144 3010642 3011357 3012345 "UTSCAT-" 3012350 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1143 3010273 3010316 3010447 "UTS2" 3010593 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1142 3004549 3007114 3007158 "URAGG" 3009228 NIL URAGG (NIL T) -9 NIL 3009949) (-1141 3001488 3002351 3003474 "URAGG-" 3003479 NIL URAGG- (NIL T T) -8 NIL NIL) (-1140 2997174 3000105 3000576 "UPXSSING" 3001152 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1139 2989070 2996297 2996576 "UPXS" 2996952 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1138 2982102 2988975 2989046 "UPXSCONS" 2989051 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1137 2972330 2979157 2979219 "UPXSCCA" 2979868 NIL UPXSCCA (NIL T T) -9 NIL 2980109) (-1136 2971969 2972054 2972227 "UPXSCCA-" 2972232 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1135 2962126 2968726 2968769 "UPXSCAT" 2969412 NIL UPXSCAT (NIL T) -9 NIL 2970013) (-1134 2961560 2961639 2961816 "UPXS2" 2962041 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1133 2960214 2960467 2960818 "UPSQFREE" 2961303 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1132 2954068 2957120 2957175 "UPSCAT" 2958324 NIL UPSCAT (NIL T T) -9 NIL 2959091) (-1131 2953282 2953486 2953809 "UPSCAT-" 2953814 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1130 2939361 2947358 2947401 "UPOLYC" 2949479 NIL UPOLYC (NIL T) -9 NIL 2950693) (-1129 2930754 2933158 2936283 "UPOLYC-" 2936288 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1128 2930385 2930428 2930559 "UPOLYC2" 2930705 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1127 2921844 2929954 2930091 "UP" 2930295 NIL UP (NIL NIL T) -8 NIL NIL) (-1126 2921187 2921294 2921457 "UPMP" 2921733 NIL UPMP (NIL T T) -7 NIL NIL) (-1125 2920740 2920821 2920960 "UPDIVP" 2921100 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1124 2919308 2919557 2919873 "UPDECOMP" 2920489 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1123 2918543 2918655 2918840 "UPCDEN" 2919192 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1122 2918066 2918135 2918282 "UP2" 2918468 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1121 2916595 2917281 2917553 "UNISEG" 2917829 NIL UNISEG (NIL T) -8 NIL NIL) (-1120 2915812 2915939 2916143 "UNISEG2" 2916439 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1119 2914872 2915052 2915278 "UNIFACT" 2915628 NIL UNIFACT (NIL T) -7 NIL NIL) (-1118 2898773 2914055 2914304 "ULS" 2914680 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1117 2886741 2898678 2898749 "ULSCONS" 2898754 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1116 2869445 2881455 2881517 "ULSCCAT" 2882229 NIL ULSCCAT (NIL T T) -9 NIL 2882524) (-1115 2868496 2868741 2869128 "ULSCCAT-" 2869133 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1114 2858447 2864961 2865004 "ULSCAT" 2865860 NIL ULSCAT (NIL T) -9 NIL 2866582) (-1113 2857881 2857960 2858137 "ULS2" 2858362 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1112 2856278 2857245 2857276 "UFD" 2857488 T UFD (NIL) -9 NIL 2857602) (-1111 2856072 2856118 2856213 "UFD-" 2856218 NIL UFD- (NIL T) -8 NIL NIL) (-1110 2855154 2855337 2855553 "UDVO" 2855878 T UDVO (NIL) -7 NIL NIL) (-1109 2852972 2853381 2853851 "UDPO" 2854719 NIL UDPO (NIL T) -7 NIL NIL) (-1108 2852904 2852909 2852940 "TYPE" 2852945 T TYPE (NIL) -9 NIL NIL) (-1107 2851875 2852077 2852317 "TWOFACT" 2852698 NIL TWOFACT (NIL T) -7 NIL NIL) (-1106 2850817 2851154 2851415 "TUPLE" 2851649 NIL TUPLE (NIL T) -8 NIL NIL) (-1105 2848508 2849027 2849566 "TUBETOOL" 2850300 T TUBETOOL (NIL) -7 NIL NIL) (-1104 2847357 2847562 2847803 "TUBE" 2848301 NIL TUBE (NIL T) -8 NIL NIL) (-1103 2842083 2846337 2846618 "TS" 2847110 NIL TS (NIL T) -8 NIL NIL) (-1102 2830787 2834879 2834976 "TSETCAT" 2840210 NIL TSETCAT (NIL T T T T) -9 NIL 2841740) (-1101 2825523 2827120 2829010 "TSETCAT-" 2829015 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1100 2819794 2820640 2821578 "TRMANIP" 2824663 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1099 2819235 2819298 2819461 "TRIMAT" 2819726 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1098 2817041 2817278 2817641 "TRIGMNIP" 2818984 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1097 2816560 2816673 2816704 "TRIGCAT" 2816917 T TRIGCAT (NIL) -9 NIL NIL) (-1096 2816229 2816308 2816449 "TRIGCAT-" 2816454 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1095 2813134 2815089 2815369 "TREE" 2815984 NIL TREE (NIL T) -8 NIL NIL) (-1094 2812407 2812935 2812966 "TRANFUN" 2813001 T TRANFUN (NIL) -9 NIL 2813067) (-1093 2811686 2811877 2812157 "TRANFUN-" 2812162 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1092 2811490 2811522 2811583 "TOPSP" 2811647 T TOPSP (NIL) -7 NIL NIL) (-1091 2810842 2810957 2811110 "TOOLSIGN" 2811371 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1090 2809503 2810019 2810258 "TEXTFILE" 2810625 T TEXTFILE (NIL) -8 NIL NIL) (-1089 2807368 2807882 2808320 "TEX" 2809087 T TEX (NIL) -8 NIL NIL) (-1088 2807149 2807180 2807252 "TEX1" 2807331 NIL TEX1 (NIL T) -7 NIL NIL) (-1087 2806797 2806860 2806950 "TEMUTL" 2807081 T TEMUTL (NIL) -7 NIL NIL) (-1086 2804951 2805231 2805556 "TBCMPPK" 2806520 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1085 2796609 2802869 2802926 "TBAGG" 2803326 NIL TBAGG (NIL T T) -9 NIL 2803537) (-1084 2791679 2793167 2794921 "TBAGG-" 2794926 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1083 2791063 2791170 2791315 "TANEXP" 2791568 NIL TANEXP (NIL T) -7 NIL NIL) (-1082 2784576 2790920 2791013 "TABLE" 2791018 NIL TABLE (NIL T T) -8 NIL NIL) (-1081 2783989 2784087 2784225 "TABLEAU" 2784473 NIL TABLEAU (NIL T) -8 NIL NIL) (-1080 2778597 2779817 2781065 "TABLBUMP" 2782775 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1079 2775060 2775755 2776538 "SYSSOLP" 2777848 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1078 2773614 2773869 2774181 "SYNTAX" 2774770 T SYNTAX (NIL) -8 NIL NIL) (-1077 2770748 2771356 2771994 "SYMTAB" 2772998 T SYMTAB (NIL) -8 NIL NIL) (-1076 2765997 2766899 2767882 "SYMS" 2769787 T SYMS (NIL) -8 NIL NIL) (-1075 2763236 2765463 2765689 "SYMPOLY" 2765805 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1074 2762756 2762831 2762953 "SYMFUNC" 2763148 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1073 2758734 2759993 2760815 "SYMBOL" 2761956 T SYMBOL (NIL) -8 NIL NIL) (-1072 2752273 2753962 2755682 "SWITCH" 2757036 T SWITCH (NIL) -8 NIL NIL) (-1071 2745508 2751102 2751403 "SUTS" 2752029 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1070 2737403 2744631 2744910 "SUPXS" 2745286 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1069 2728936 2737024 2737149 "SUP" 2737312 NIL SUP (NIL T) -8 NIL NIL) (-1068 2728095 2728222 2728439 "SUPFRACF" 2728804 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1067 2727720 2727779 2727890 "SUP2" 2728030 NIL SUP2 (NIL T T) -7 NIL NIL) (-1066 2726146 2726418 2726778 "SUMRF" 2727421 NIL SUMRF (NIL T) -7 NIL NIL) (-1065 2725467 2725532 2725729 "SUMFS" 2726068 NIL SUMFS (NIL T T) -7 NIL NIL) (-1064 2709408 2724650 2724899 "SULS" 2725275 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1063 2708730 2708933 2709073 "SUCH" 2709316 NIL SUCH (NIL T T) -8 NIL NIL) (-1062 2702657 2703669 2704627 "SUBSPACE" 2707818 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1061 2702089 2702179 2702342 "SUBRESP" 2702546 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1060 2695458 2696754 2698065 "STTF" 2700825 NIL STTF (NIL T) -7 NIL NIL) (-1059 2689631 2690751 2691898 "STTFNC" 2694358 NIL STTFNC (NIL T) -7 NIL NIL) (-1058 2680986 2682853 2684644 "STTAYLOR" 2687874 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1057 2674242 2680850 2680933 "STRTBL" 2680938 NIL STRTBL (NIL T) -8 NIL NIL) (-1056 2669633 2674197 2674228 "STRING" 2674233 T STRING (NIL) -8 NIL NIL) (-1055 2664491 2668976 2669007 "STRICAT" 2669066 T STRICAT (NIL) -9 NIL 2669128) (-1054 2657216 2662018 2662636 "STREAM" 2663908 NIL STREAM (NIL T) -8 NIL NIL) (-1053 2656726 2656803 2656947 "STREAM3" 2657133 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1052 2655708 2655891 2656126 "STREAM2" 2656539 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1051 2655396 2655448 2655541 "STREAM1" 2655650 NIL STREAM1 (NIL T) -7 NIL NIL) (-1050 2654412 2654593 2654824 "STINPROD" 2655212 NIL STINPROD (NIL T) -7 NIL NIL) (-1049 2653990 2654174 2654205 "STEP" 2654285 T STEP (NIL) -9 NIL 2654363) (-1048 2647545 2653889 2653966 "STBL" 2653971 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1047 2642717 2646764 2646808 "STAGG" 2646961 NIL STAGG (NIL T) -9 NIL 2647050) (-1046 2640419 2641021 2641893 "STAGG-" 2641898 NIL STAGG- (NIL T T) -8 NIL NIL) (-1045 2638617 2640189 2640281 "STACK" 2640362 NIL STACK (NIL T) -8 NIL NIL) (-1044 2631348 2636764 2637219 "SREGSET" 2638247 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1043 2623788 2625156 2626668 "SRDCMPK" 2629954 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1042 2616731 2621198 2621229 "SRAGG" 2622532 T SRAGG (NIL) -9 NIL 2623140) (-1041 2615748 2616003 2616382 "SRAGG-" 2616387 NIL SRAGG- (NIL T) -8 NIL NIL) (-1040 2610205 2614675 2615098 "SQMATRIX" 2615371 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1039 2603963 2606925 2607651 "SPLTREE" 2609551 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1038 2599953 2600619 2601265 "SPLNODE" 2603389 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1037 2598999 2599232 2599263 "SPFCAT" 2599707 T SPFCAT (NIL) -9 NIL NIL) (-1036 2597736 2597946 2598210 "SPECOUT" 2598757 T SPECOUT (NIL) -7 NIL NIL) (-1035 2589758 2591505 2591548 "SPACEC" 2595871 NIL SPACEC (NIL T) -9 NIL 2597687) (-1034 2587930 2589691 2589739 "SPACE3" 2589744 NIL SPACE3 (NIL T) -8 NIL NIL) (-1033 2586684 2586855 2587145 "SORTPAK" 2587736 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1032 2584740 2585043 2585461 "SOLVETRA" 2586348 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1031 2583751 2583973 2584247 "SOLVESER" 2584513 NIL SOLVESER (NIL T) -7 NIL NIL) (-1030 2578971 2579852 2580854 "SOLVERAD" 2582803 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1029 2574786 2575395 2576124 "SOLVEFOR" 2578338 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1028 2569085 2574137 2574234 "SNTSCAT" 2574239 NIL SNTSCAT (NIL T T T T) -9 NIL 2574309) (-1027 2563192 2567418 2567807 "SMTS" 2568776 NIL SMTS (NIL T T T) -8 NIL NIL) (-1026 2557602 2563081 2563157 "SMP" 2563162 NIL SMP (NIL T T) -8 NIL NIL) (-1025 2555761 2556062 2556460 "SMITH" 2557299 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1024 2548728 2552924 2553027 "SMATCAT" 2554367 NIL SMATCAT (NIL NIL T T T) -9 NIL 2554913) (-1023 2545669 2546492 2547669 "SMATCAT-" 2547674 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1022 2543388 2544905 2544949 "SKAGG" 2545210 NIL SKAGG (NIL T) -9 NIL 2545345) (-1021 2539446 2542492 2542770 "SINT" 2543132 T SINT (NIL) -8 NIL NIL) (-1020 2539218 2539256 2539322 "SIMPAN" 2539402 T SIMPAN (NIL) -7 NIL NIL) (-1019 2538056 2538277 2538552 "SIGNRF" 2538977 NIL SIGNRF (NIL T) -7 NIL NIL) (-1018 2536865 2537016 2537306 "SIGNEF" 2537885 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1017 2534557 2535011 2535516 "SHP" 2536407 NIL SHP (NIL T NIL) -7 NIL NIL) (-1016 2528416 2534458 2534534 "SHDP" 2534539 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1015 2527905 2528097 2528128 "SGROUP" 2528280 T SGROUP (NIL) -9 NIL 2528367) (-1014 2527675 2527727 2527831 "SGROUP-" 2527836 NIL SGROUP- (NIL T) -8 NIL NIL) (-1013 2524511 2525208 2525931 "SGCF" 2526974 T SGCF (NIL) -7 NIL NIL) (-1012 2518909 2523961 2524058 "SFRTCAT" 2524063 NIL SFRTCAT (NIL T T T T) -9 NIL 2524101) (-1011 2512369 2513384 2514518 "SFRGCD" 2517892 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1010 2505535 2506606 2507790 "SFQCMPK" 2511302 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1009 2505157 2505246 2505356 "SFORT" 2505476 NIL SFORT (NIL T T) -8 NIL NIL) (-1008 2504302 2504997 2505118 "SEXOF" 2505123 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1007 2503436 2504183 2504251 "SEX" 2504256 T SEX (NIL) -8 NIL NIL) (-1006 2498212 2498901 2498997 "SEXCAT" 2502768 NIL SEXCAT (NIL T T T T T) -9 NIL 2503387) (-1005 2495392 2498146 2498194 "SET" 2498199 NIL SET (NIL T) -8 NIL NIL) (-1004 2493643 2494105 2494410 "SETMN" 2495133 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1003 2493250 2493376 2493407 "SETCAT" 2493524 T SETCAT (NIL) -9 NIL 2493608) (-1002 2493030 2493082 2493181 "SETCAT-" 2493186 NIL SETCAT- (NIL T) -8 NIL NIL) (-1001 2489417 2491491 2491535 "SETAGG" 2492405 NIL SETAGG (NIL T) -9 NIL 2492745) (-1000 2488875 2488991 2489228 "SETAGG-" 2489233 NIL SETAGG- (NIL T T) -8 NIL NIL) (-999 2488085 2488378 2488438 "SEGXCAT" 2488721 NIL SEGXCAT (NIL T T) -9 NIL 2488840) (-998 2487151 2487761 2487937 "SEG" 2487942 NIL SEG (NIL T) -8 NIL NIL) (-997 2486068 2486281 2486323 "SEGCAT" 2486896 NIL SEGCAT (NIL T) -9 NIL 2487134) (-996 2485132 2485460 2485655 "SEGBIND" 2485906 NIL SEGBIND (NIL T) -8 NIL NIL) (-995 2484764 2484821 2484930 "SEGBIND2" 2485069 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-994 2484001 2484124 2484322 "SEG2" 2484612 NIL SEG2 (NIL T T) -7 NIL NIL) (-993 2483440 2483938 2483983 "SDVAR" 2483988 NIL SDVAR (NIL T) -8 NIL NIL) (-992 2475746 2483219 2483343 "SDPOL" 2483348 NIL SDPOL (NIL T) -8 NIL NIL) (-991 2474345 2474611 2474928 "SCPKG" 2475461 NIL SCPKG (NIL T) -7 NIL NIL) (-990 2473572 2473705 2473882 "SCACHE" 2474200 NIL SCACHE (NIL T) -7 NIL NIL) (-989 2473015 2473336 2473419 "SAOS" 2473509 T SAOS (NIL) -8 NIL NIL) (-988 2472583 2472618 2472789 "SAERFFC" 2472974 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-987 2466479 2472482 2472560 "SAE" 2472565 NIL SAE (NIL T T NIL) -8 NIL NIL) (-986 2466075 2466110 2466267 "SAEFACT" 2466438 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-985 2464401 2464715 2465114 "RURPK" 2465741 NIL RURPK (NIL T NIL) -7 NIL NIL) (-984 2463054 2463331 2463638 "RULESET" 2464237 NIL RULESET (NIL T T T) -8 NIL NIL) (-983 2460262 2460765 2461226 "RULE" 2462736 NIL RULE (NIL T T T) -8 NIL NIL) (-982 2459904 2460059 2460140 "RULECOLD" 2460214 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-981 2454796 2455590 2456506 "RSETGCD" 2459103 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-980 2444110 2449162 2449257 "RSETCAT" 2453322 NIL RSETCAT (NIL T T T T) -9 NIL 2454419) (-979 2442041 2442580 2443400 "RSETCAT-" 2443405 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-978 2434471 2435846 2437362 "RSDCMPK" 2440640 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-977 2432488 2432929 2433002 "RRCC" 2434078 NIL RRCC (NIL T T) -9 NIL 2434422) (-976 2431842 2432016 2432292 "RRCC-" 2432297 NIL RRCC- (NIL T T T) -8 NIL NIL) (-975 2406172 2415797 2415862 "RPOLCAT" 2426364 NIL RPOLCAT (NIL T T T) -9 NIL 2429511) (-974 2397676 2400014 2403132 "RPOLCAT-" 2403137 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-973 2388754 2395906 2396386 "ROUTINE" 2397216 T ROUTINE (NIL) -8 NIL NIL) (-972 2385459 2388310 2388457 "ROMAN" 2388627 T ROMAN (NIL) -8 NIL NIL) (-971 2383745 2384330 2384587 "ROIRC" 2385265 NIL ROIRC (NIL T T) -8 NIL NIL) (-970 2380102 2382406 2382435 "RNS" 2382731 T RNS (NIL) -9 NIL 2383001) (-969 2378616 2378999 2379530 "RNS-" 2379603 NIL RNS- (NIL T) -8 NIL NIL) (-968 2378041 2378449 2378478 "RNG" 2378483 T RNG (NIL) -9 NIL 2378504) (-967 2377438 2377800 2377841 "RMODULE" 2377901 NIL RMODULE (NIL T) -9 NIL 2377943) (-966 2376290 2376384 2376714 "RMCAT2" 2377339 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-965 2373008 2375477 2375796 "RMATRIX" 2376027 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-964 2366009 2368243 2368356 "RMATCAT" 2371665 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2372642) (-963 2365388 2365535 2365838 "RMATCAT-" 2365843 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-962 2364958 2365033 2365159 "RINTERP" 2365307 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-961 2364008 2364572 2364601 "RING" 2364711 T RING (NIL) -9 NIL 2364805) (-960 2363803 2363847 2363941 "RING-" 2363946 NIL RING- (NIL T) -8 NIL NIL) (-959 2362655 2362891 2363146 "RIDIST" 2363568 T RIDIST (NIL) -7 NIL NIL) (-958 2353977 2362129 2362332 "RGCHAIN" 2362504 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-957 2350982 2351596 2352264 "RF" 2353341 NIL RF (NIL T) -7 NIL NIL) (-956 2350631 2350694 2350795 "RFFACTOR" 2350913 NIL RFFACTOR (NIL T) -7 NIL NIL) (-955 2350359 2350394 2350489 "RFFACT" 2350590 NIL RFFACT (NIL T) -7 NIL NIL) (-954 2348489 2348853 2349233 "RFDIST" 2349999 T RFDIST (NIL) -7 NIL NIL) (-953 2347947 2348039 2348199 "RETSOL" 2348391 NIL RETSOL (NIL T T) -7 NIL NIL) (-952 2347539 2347619 2347661 "RETRACT" 2347851 NIL RETRACT (NIL T) -9 NIL NIL) (-951 2347391 2347416 2347500 "RETRACT-" 2347505 NIL RETRACT- (NIL T T) -8 NIL NIL) (-950 2340261 2347048 2347173 "RESULT" 2347286 T RESULT (NIL) -8 NIL NIL) (-949 2338846 2339535 2339732 "RESRING" 2340164 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-948 2338486 2338535 2338631 "RESLATC" 2338783 NIL RESLATC (NIL T) -7 NIL NIL) (-947 2338195 2338229 2338334 "REPSQ" 2338445 NIL REPSQ (NIL T) -7 NIL NIL) (-946 2335626 2336206 2336806 "REP" 2337615 T REP (NIL) -7 NIL NIL) (-945 2335327 2335361 2335470 "REPDB" 2335585 NIL REPDB (NIL T) -7 NIL NIL) (-944 2329280 2330659 2331875 "REP2" 2334143 NIL REP2 (NIL T) -7 NIL NIL) (-943 2325690 2326371 2327174 "REP1" 2328509 NIL REP1 (NIL T) -7 NIL NIL) (-942 2318436 2323851 2324303 "REGSET" 2325321 NIL REGSET (NIL T T T T) -8 NIL NIL) (-941 2317259 2317594 2317841 "REF" 2318222 NIL REF (NIL T) -8 NIL NIL) (-940 2316640 2316743 2316908 "REDORDER" 2317143 NIL REDORDER (NIL T T) -7 NIL NIL) (-939 2312609 2315874 2316095 "RECLOS" 2316471 NIL RECLOS (NIL T) -8 NIL NIL) (-938 2311666 2311847 2312060 "REALSOLV" 2312416 T REALSOLV (NIL) -7 NIL NIL) (-937 2311513 2311554 2311583 "REAL" 2311588 T REAL (NIL) -9 NIL 2311623) (-936 2308004 2308806 2309688 "REAL0Q" 2310678 NIL REAL0Q (NIL T) -7 NIL NIL) (-935 2303615 2304603 2305662 "REAL0" 2306985 NIL REAL0 (NIL T) -7 NIL NIL) (-934 2303023 2303095 2303300 "RDIV" 2303537 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-933 2302096 2302270 2302481 "RDIST" 2302845 NIL RDIST (NIL T) -7 NIL NIL) (-932 2300700 2300987 2301356 "RDETRS" 2301804 NIL RDETRS (NIL T T) -7 NIL NIL) (-931 2298521 2298975 2299510 "RDETR" 2300242 NIL RDETR (NIL T T) -7 NIL NIL) (-930 2297137 2297415 2297816 "RDEEFS" 2298237 NIL RDEEFS (NIL T T) -7 NIL NIL) (-929 2295637 2295943 2296372 "RDEEF" 2296825 NIL RDEEF (NIL T T) -7 NIL NIL) (-928 2289862 2292794 2292823 "RCFIELD" 2294100 T RCFIELD (NIL) -9 NIL 2294830) (-927 2287931 2288435 2289128 "RCFIELD-" 2289201 NIL RCFIELD- (NIL T) -8 NIL NIL) (-926 2284264 2286049 2286091 "RCAGG" 2287162 NIL RCAGG (NIL T) -9 NIL 2287625) (-925 2283895 2283989 2284149 "RCAGG-" 2284154 NIL RCAGG- (NIL T T) -8 NIL NIL) (-924 2283240 2283351 2283513 "RATRET" 2283779 NIL RATRET (NIL T) -7 NIL NIL) (-923 2282797 2282864 2282983 "RATFACT" 2283168 NIL RATFACT (NIL T) -7 NIL NIL) (-922 2282112 2282232 2282382 "RANDSRC" 2282667 T RANDSRC (NIL) -7 NIL NIL) (-921 2281849 2281893 2281964 "RADUTIL" 2282061 T RADUTIL (NIL) -7 NIL NIL) (-920 2274856 2280592 2280909 "RADIX" 2281564 NIL RADIX (NIL NIL) -8 NIL NIL) (-919 2266426 2274700 2274828 "RADFF" 2274833 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-918 2266077 2266152 2266181 "RADCAT" 2266338 T RADCAT (NIL) -9 NIL NIL) (-917 2265862 2265910 2266007 "RADCAT-" 2266012 NIL RADCAT- (NIL T) -8 NIL NIL) (-916 2264019 2265637 2265726 "QUEUE" 2265806 NIL QUEUE (NIL T) -8 NIL NIL) (-915 2260516 2263956 2264001 "QUAT" 2264006 NIL QUAT (NIL T) -8 NIL NIL) (-914 2260154 2260197 2260324 "QUATCT2" 2260467 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-913 2253908 2257288 2257329 "QUATCAT" 2258108 NIL QUATCAT (NIL T) -9 NIL 2258865) (-912 2250052 2251089 2252476 "QUATCAT-" 2252570 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-911 2247578 2249136 2249178 "QUAGG" 2249553 NIL QUAGG (NIL T) -9 NIL 2249728) (-910 2246503 2246976 2247148 "QFORM" 2247450 NIL QFORM (NIL NIL T) -8 NIL NIL) (-909 2237764 2243022 2243063 "QFCAT" 2243721 NIL QFCAT (NIL T) -9 NIL 2244702) (-908 2233336 2234537 2236128 "QFCAT-" 2236222 NIL QFCAT- (NIL T T) -8 NIL NIL) (-907 2232974 2233017 2233144 "QFCAT2" 2233287 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-906 2232434 2232544 2232674 "QEQUAT" 2232864 T QEQUAT (NIL) -8 NIL NIL) (-905 2225620 2226691 2227873 "QCMPACK" 2231367 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-904 2223200 2223621 2224047 "QALGSET" 2225277 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-903 2222445 2222619 2222851 "QALGSET2" 2223020 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-902 2221136 2221359 2221676 "PWFFINTB" 2222218 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-901 2219324 2219492 2219845 "PUSHVAR" 2220950 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-900 2215241 2216295 2216337 "PTRANFN" 2218221 NIL PTRANFN (NIL T) -9 NIL NIL) (-899 2213653 2213944 2214265 "PTPACK" 2214952 NIL PTPACK (NIL T) -7 NIL NIL) (-898 2213289 2213346 2213453 "PTFUNC2" 2213590 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-897 2207768 2212103 2212144 "PTCAT" 2212512 NIL PTCAT (NIL T) -9 NIL 2212674) (-896 2207426 2207461 2207585 "PSQFR" 2207727 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-895 2206021 2206319 2206653 "PSEUDLIN" 2207124 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-894 2192835 2195199 2197519 "PSETPK" 2203784 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-893 2185922 2188636 2188731 "PSETCAT" 2191712 NIL PSETCAT (NIL T T T T) -9 NIL 2192525) (-892 2183760 2184394 2185213 "PSETCAT-" 2185218 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-891 2183117 2183279 2183308 "PSCURVE" 2183573 T PSCURVE (NIL) -9 NIL 2183737) (-890 2179521 2181047 2181112 "PSCAT" 2181948 NIL PSCAT (NIL T T T) -9 NIL 2182188) (-889 2178585 2178801 2179200 "PSCAT-" 2179205 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-888 2177238 2177870 2178084 "PRTITION" 2178391 T PRTITION (NIL) -8 NIL NIL) (-887 2166338 2168544 2170731 "PRS" 2175101 NIL PRS (NIL T T) -7 NIL NIL) (-886 2164202 2165688 2165729 "PRQAGG" 2165912 NIL PRQAGG (NIL T) -9 NIL 2166014) (-885 2158008 2162400 2163204 "PRODUCT" 2163444 NIL PRODUCT (NIL T T) -8 NIL NIL) (-884 2155290 2157474 2157704 "PR" 2157822 NIL PR (NIL T T) -8 NIL NIL) (-883 2155086 2155118 2155177 "PRINT" 2155251 T PRINT (NIL) -7 NIL NIL) (-882 2154426 2154543 2154695 "PRIMES" 2154966 NIL PRIMES (NIL T) -7 NIL NIL) (-881 2152491 2152892 2153358 "PRIMELT" 2154005 NIL PRIMELT (NIL T) -7 NIL NIL) (-880 2152222 2152270 2152299 "PRIMCAT" 2152422 T PRIMCAT (NIL) -9 NIL NIL) (-879 2148383 2152160 2152205 "PRIMARR" 2152210 NIL PRIMARR (NIL T) -8 NIL NIL) (-878 2147390 2147568 2147796 "PRIMARR2" 2148201 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-877 2147033 2147089 2147200 "PREASSOC" 2147328 NIL PREASSOC (NIL T T) -7 NIL NIL) (-876 2146513 2146644 2146673 "PPCURVE" 2146876 T PPCURVE (NIL) -9 NIL 2147010) (-875 2143874 2144273 2144864 "POLYROOT" 2146095 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-874 2137782 2143482 2143640 "POLY" 2143748 NIL POLY (NIL T) -8 NIL NIL) (-873 2137167 2137225 2137458 "POLYLIFT" 2137718 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-872 2133452 2133901 2134529 "POLYCATQ" 2136712 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-871 2120460 2125857 2125922 "POLYCAT" 2129407 NIL POLYCAT (NIL T T T) -9 NIL 2131319) (-870 2113911 2115772 2118155 "POLYCAT-" 2118160 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-869 2113500 2113568 2113687 "POLY2UP" 2113837 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-868 2113136 2113193 2113300 "POLY2" 2113437 NIL POLY2 (NIL T T) -7 NIL NIL) (-867 2111823 2112062 2112337 "POLUTIL" 2112911 NIL POLUTIL (NIL T T) -7 NIL NIL) (-866 2110185 2110462 2110792 "POLTOPOL" 2111545 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-865 2105714 2110122 2110167 "POINT" 2110172 NIL POINT (NIL T) -8 NIL NIL) (-864 2103901 2104258 2104633 "PNTHEORY" 2105359 T PNTHEORY (NIL) -7 NIL NIL) (-863 2102329 2102626 2103035 "PMTOOLS" 2103599 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-862 2101922 2102000 2102117 "PMSYM" 2102245 NIL PMSYM (NIL T) -7 NIL NIL) (-861 2101432 2101501 2101675 "PMQFCAT" 2101847 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-860 2100787 2100897 2101053 "PMPRED" 2101309 NIL PMPRED (NIL T) -7 NIL NIL) (-859 2100183 2100269 2100430 "PMPREDFS" 2100688 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-858 2098831 2099039 2099422 "PMPLCAT" 2099946 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-857 2098363 2098442 2098594 "PMLSAGG" 2098746 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-856 2097840 2097916 2098096 "PMKERNEL" 2098281 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-855 2097457 2097532 2097645 "PMINS" 2097759 NIL PMINS (NIL T) -7 NIL NIL) (-854 2096887 2096956 2097171 "PMFS" 2097382 NIL PMFS (NIL T T T) -7 NIL NIL) (-853 2096118 2096236 2096440 "PMDOWN" 2096764 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-852 2095281 2095440 2095622 "PMASS" 2095956 T PMASS (NIL) -7 NIL NIL) (-851 2094555 2094666 2094829 "PMASSFS" 2095167 NIL PMASSFS (NIL T T) -7 NIL NIL) (-850 2094214 2094281 2094374 "PLOTTOOL" 2094482 T PLOTTOOL (NIL) -7 NIL NIL) (-849 2088915 2090081 2091208 "PLOT" 2093107 T PLOT (NIL) -8 NIL NIL) (-848 2084788 2085803 2086708 "PLOT3D" 2088030 T PLOT3D (NIL) -8 NIL NIL) (-847 2083712 2083886 2084118 "PLOT1" 2084595 NIL PLOT1 (NIL T) -7 NIL NIL) (-846 2059107 2063778 2068629 "PLEQN" 2078978 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-845 2058425 2058547 2058727 "PINTERP" 2058972 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-844 2058118 2058165 2058268 "PINTERPA" 2058372 NIL PINTERPA (NIL T T) -7 NIL NIL) (-843 2057345 2057912 2058005 "PI" 2058045 T PI (NIL) -8 NIL NIL) (-842 2055736 2056721 2056750 "PID" 2056932 T PID (NIL) -9 NIL 2057066) (-841 2055461 2055498 2055586 "PICOERCE" 2055693 NIL PICOERCE (NIL T) -7 NIL NIL) (-840 2054782 2054920 2055096 "PGROEB" 2055317 NIL PGROEB (NIL T) -7 NIL NIL) (-839 2050369 2051183 2052088 "PGE" 2053897 T PGE (NIL) -7 NIL NIL) (-838 2048493 2048739 2049105 "PGCD" 2050086 NIL PGCD (NIL T T T T) -7 NIL NIL) (-837 2047831 2047934 2048095 "PFRPAC" 2048377 NIL PFRPAC (NIL T) -7 NIL NIL) (-836 2044446 2046379 2046732 "PFR" 2047510 NIL PFR (NIL T) -8 NIL NIL) (-835 2042835 2043079 2043404 "PFOTOOLS" 2044193 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-834 2041368 2041607 2041958 "PFOQ" 2042592 NIL PFOQ (NIL T T T) -7 NIL NIL) (-833 2039845 2040057 2040419 "PFO" 2041152 NIL PFO (NIL T T T T T) -7 NIL NIL) (-832 2036368 2039734 2039803 "PF" 2039808 NIL PF (NIL NIL) -8 NIL NIL) (-831 2033797 2035078 2035107 "PFECAT" 2035692 T PFECAT (NIL) -9 NIL 2036075) (-830 2033242 2033396 2033610 "PFECAT-" 2033615 NIL PFECAT- (NIL T) -8 NIL NIL) (-829 2031846 2032097 2032398 "PFBRU" 2032991 NIL PFBRU (NIL T T) -7 NIL NIL) (-828 2029713 2030064 2030496 "PFBR" 2031497 NIL PFBR (NIL T T T T) -7 NIL NIL) (-827 2025569 2027093 2027767 "PERM" 2029072 NIL PERM (NIL T) -8 NIL NIL) (-826 2020836 2021776 2022646 "PERMGRP" 2024732 NIL PERMGRP (NIL T) -8 NIL NIL) (-825 2018908 2019901 2019943 "PERMCAT" 2020389 NIL PERMCAT (NIL T) -9 NIL 2020692) (-824 2018563 2018604 2018727 "PERMAN" 2018861 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-823 2016009 2018132 2018263 "PENDTREE" 2018465 NIL PENDTREE (NIL T) -8 NIL NIL) (-822 2014081 2014859 2014901 "PDRING" 2015558 NIL PDRING (NIL T) -9 NIL 2015843) (-821 2013184 2013402 2013764 "PDRING-" 2013769 NIL PDRING- (NIL T T) -8 NIL NIL) (-820 2010326 2011076 2011767 "PDEPROB" 2012513 T PDEPROB (NIL) -8 NIL NIL) (-819 2007897 2008393 2008942 "PDEPACK" 2009797 T PDEPACK (NIL) -7 NIL NIL) (-818 2006809 2006999 2007250 "PDECOMP" 2007696 NIL PDECOMP (NIL T T) -7 NIL NIL) (-817 2004420 2005235 2005264 "PDECAT" 2006049 T PDECAT (NIL) -9 NIL 2006760) (-816 2004173 2004206 2004295 "PCOMP" 2004381 NIL PCOMP (NIL T T) -7 NIL NIL) (-815 2002380 2002976 2003272 "PBWLB" 2003903 NIL PBWLB (NIL T) -8 NIL NIL) (-814 1994889 1996457 1997793 "PATTERN" 2001065 NIL PATTERN (NIL T) -8 NIL NIL) (-813 1994521 1994578 1994687 "PATTERN2" 1994826 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-812 1992278 1992666 1993123 "PATTERN1" 1994110 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-811 1989673 1990227 1990708 "PATRES" 1991843 NIL PATRES (NIL T T) -8 NIL NIL) (-810 1989237 1989304 1989436 "PATRES2" 1989600 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-809 1987134 1987534 1987939 "PATMATCH" 1988906 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-808 1986670 1986853 1986895 "PATMAB" 1987002 NIL PATMAB (NIL T) -9 NIL 1987085) (-807 1985215 1985524 1985782 "PATLRES" 1986475 NIL PATLRES (NIL T T T) -8 NIL NIL) (-806 1984762 1984885 1984927 "PATAB" 1984932 NIL PATAB (NIL T) -9 NIL 1985102) (-805 1982243 1982775 1983348 "PARTPERM" 1984209 T PARTPERM (NIL) -7 NIL NIL) (-804 1981864 1981927 1982029 "PARSURF" 1982174 NIL PARSURF (NIL T) -8 NIL NIL) (-803 1981496 1981553 1981662 "PARSU2" 1981801 NIL PARSU2 (NIL T T) -7 NIL NIL) (-802 1981117 1981180 1981282 "PARSCURV" 1981427 NIL PARSCURV (NIL T) -8 NIL NIL) (-801 1980749 1980806 1980915 "PARSC2" 1981054 NIL PARSC2 (NIL T T) -7 NIL NIL) (-800 1980388 1980446 1980543 "PARPCURV" 1980685 NIL PARPCURV (NIL T) -8 NIL NIL) (-799 1980020 1980077 1980186 "PARPC2" 1980325 NIL PARPC2 (NIL T T) -7 NIL NIL) (-798 1979540 1979626 1979745 "PAN2EXPR" 1979921 T PAN2EXPR (NIL) -7 NIL NIL) (-797 1978346 1978661 1978889 "PALETTE" 1979332 T PALETTE (NIL) -8 NIL NIL) (-796 1972196 1977605 1977799 "PADICRC" 1978201 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1965404 1971542 1971726 "PADICRAT" 1972044 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1963708 1965341 1965386 "PADIC" 1965391 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1960912 1962486 1962527 "PADICCT" 1963108 NIL PADICCT (NIL NIL) -9 NIL 1963390) (-792 1959869 1960069 1960337 "PADEPAC" 1960699 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1959081 1959214 1959420 "PADE" 1959731 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1957096 1957928 1958241 "OWP" 1958851 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1956205 1956701 1956873 "OVAR" 1956964 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1955469 1955590 1955751 "OUT" 1956064 T OUT (NIL) -7 NIL NIL) (-787 1944515 1946694 1948864 "OUTFORM" 1953319 T OUTFORM (NIL) -8 NIL NIL) (-786 1943923 1944244 1944333 "OSI" 1944446 T OSI (NIL) -8 NIL NIL) (-785 1942670 1942897 1943181 "ORTHPOL" 1943671 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1940041 1942331 1942469 "OREUP" 1942613 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1937437 1939734 1939860 "ORESUP" 1939983 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1934976 1935476 1936034 "OREPCTO" 1936928 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1928889 1931095 1931136 "OREPCAT" 1933457 NIL OREPCAT (NIL T) -9 NIL 1934556) (-780 1926037 1926819 1927876 "OREPCAT-" 1927881 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1925214 1925486 1925515 "ORDSET" 1925824 T ORDSET (NIL) -9 NIL 1925988) (-778 1924733 1924855 1925048 "ORDSET-" 1925053 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1923346 1924147 1924176 "ORDRING" 1924378 T ORDRING (NIL) -9 NIL 1924502) (-776 1922991 1923085 1923229 "ORDRING-" 1923234 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1922366 1922847 1922876 "ORDMON" 1922881 T ORDMON (NIL) -9 NIL 1922902) (-774 1921528 1921675 1921870 "ORDFUNS" 1922215 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1921039 1921398 1921427 "ORDFIN" 1921432 T ORDFIN (NIL) -9 NIL 1921453) (-772 1917557 1919631 1920037 "ORDCOMP" 1920666 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1916823 1916950 1917136 "ORDCOMP2" 1917417 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1913331 1914213 1915050 "OPTPROB" 1916006 T OPTPROB (NIL) -8 NIL NIL) (-769 1910173 1910802 1911496 "OPTPACK" 1912657 T OPTPACK (NIL) -7 NIL NIL) (-768 1907898 1908634 1908663 "OPTCAT" 1909478 T OPTCAT (NIL) -9 NIL 1910124) (-767 1907666 1907705 1907771 "OPQUERY" 1907852 T OPQUERY (NIL) -7 NIL NIL) (-766 1904808 1905999 1906496 "OP" 1907201 NIL OP (NIL T) -8 NIL NIL) (-765 1901579 1903611 1903977 "ONECOMP" 1904475 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1900884 1900999 1901173 "ONECOMP2" 1901451 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1900303 1900409 1900539 "OMSERVER" 1900774 T OMSERVER (NIL) -7 NIL NIL) (-762 1897191 1899743 1899784 "OMSAGG" 1899845 NIL OMSAGG (NIL T) -9 NIL 1899909) (-761 1895814 1896077 1896359 "OMPKG" 1896929 T OMPKG (NIL) -7 NIL NIL) (-760 1895243 1895346 1895375 "OM" 1895674 T OM (NIL) -9 NIL NIL) (-759 1893784 1894797 1894964 "OMLO" 1895125 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1892714 1892861 1893087 "OMEXPR" 1893610 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1892032 1892260 1892396 "OMERR" 1892598 T OMERR (NIL) -8 NIL NIL) (-756 1891210 1891453 1891613 "OMERRK" 1891892 T OMERRK (NIL) -8 NIL NIL) (-755 1890688 1890887 1890995 "OMENC" 1891122 T OMENC (NIL) -8 NIL NIL) (-754 1884583 1885768 1886939 "OMDEV" 1889537 T OMDEV (NIL) -8 NIL NIL) (-753 1883652 1883823 1884017 "OMCONN" 1884409 T OMCONN (NIL) -8 NIL NIL) (-752 1882267 1883253 1883282 "OINTDOM" 1883287 T OINTDOM (NIL) -9 NIL 1883308) (-751 1878029 1879259 1879974 "OFMONOID" 1881584 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1877467 1877966 1878011 "ODVAR" 1878016 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1874594 1876966 1877150 "ODR" 1877343 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1866900 1874373 1874497 "ODPOL" 1874502 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1860729 1866772 1866877 "ODP" 1866882 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1859495 1859710 1859985 "ODETOOLS" 1860503 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1856464 1857120 1857836 "ODESYS" 1858828 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1851370 1852278 1853300 "ODERTRIC" 1855540 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1850796 1850878 1851072 "ODERED" 1851282 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1847698 1848246 1848921 "ODERAT" 1850219 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1844666 1845130 1845726 "ODEPRRIC" 1847227 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1842537 1843104 1843613 "ODEPROB" 1844177 T ODEPROB (NIL) -8 NIL NIL) (-739 1839069 1839552 1840198 "ODEPRIM" 1842016 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1838322 1838424 1838682 "ODEPAL" 1838961 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1834524 1835305 1836159 "ODEPACK" 1837488 T ODEPACK (NIL) -7 NIL NIL) (-736 1833561 1833668 1833896 "ODEINT" 1834413 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1827662 1829087 1830534 "ODEIFTBL" 1832134 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1823006 1823792 1824750 "ODEEF" 1826821 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1822343 1822432 1822661 "ODECONST" 1822911 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1820500 1821133 1821162 "ODECAT" 1821765 T ODECAT (NIL) -9 NIL 1822294) (-731 1817372 1820212 1820331 "OCT" 1820413 NIL OCT (NIL T) -8 NIL NIL) (-730 1817010 1817053 1817180 "OCTCT2" 1817323 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1811851 1814289 1814330 "OC" 1815426 NIL OC (NIL T) -9 NIL 1816275) (-728 1809078 1809826 1810816 "OC-" 1810910 NIL OC- (NIL T T) -8 NIL NIL) (-727 1808456 1808898 1808927 "OCAMON" 1808932 T OCAMON (NIL) -9 NIL 1808953) (-726 1807909 1808316 1808345 "OASGP" 1808350 T OASGP (NIL) -9 NIL 1808370) (-725 1807196 1807659 1807688 "OAMONS" 1807728 T OAMONS (NIL) -9 NIL 1807771) (-724 1806636 1807043 1807072 "OAMON" 1807077 T OAMON (NIL) -9 NIL 1807097) (-723 1805940 1806432 1806461 "OAGROUP" 1806466 T OAGROUP (NIL) -9 NIL 1806486) (-722 1805630 1805680 1805768 "NUMTUBE" 1805884 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1799203 1800721 1802257 "NUMQUAD" 1804114 T NUMQUAD (NIL) -7 NIL NIL) (-720 1794959 1795947 1796972 "NUMODE" 1798198 T NUMODE (NIL) -7 NIL NIL) (-719 1792374 1793216 1793245 "NUMINT" 1794158 T NUMINT (NIL) -9 NIL 1794910) (-718 1791322 1791519 1791737 "NUMFMT" 1792176 T NUMFMT (NIL) -7 NIL NIL) (-717 1777717 1780654 1783176 "NUMERIC" 1788839 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1772117 1777169 1777264 "NTSCAT" 1777269 NIL NTSCAT (NIL T T T T) -9 NIL 1777307) (-715 1771313 1771478 1771670 "NTPOLFN" 1771957 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1759171 1768157 1768966 "NSUP" 1770536 NIL NSUP (NIL T) -8 NIL NIL) (-713 1758807 1758864 1758971 "NSUP2" 1759108 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1748769 1758586 1758716 "NSMP" 1758721 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1747201 1747502 1747859 "NREP" 1748457 NIL NREP (NIL T) -7 NIL NIL) (-710 1745792 1746044 1746402 "NPCOEF" 1746944 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1744858 1744973 1745189 "NORMRETR" 1745673 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1742911 1743201 1743608 "NORMPK" 1744566 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1742596 1742624 1742748 "NORMMA" 1742877 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1742423 1742553 1742582 "NONE" 1742587 T NONE (NIL) -8 NIL NIL) (-705 1742212 1742241 1742310 "NONE1" 1742387 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1741697 1741759 1741944 "NODE1" 1742144 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1739991 1740860 1741115 "NNI" 1741462 T NNI (NIL) -8 NIL NIL) (-702 1738411 1738724 1739088 "NLINSOL" 1739659 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1734603 1735564 1736480 "NIPROB" 1737515 T NIPROB (NIL) -8 NIL NIL) (-700 1733360 1733594 1733896 "NFINTBAS" 1734365 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1732068 1732299 1732580 "NCODIV" 1733128 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1731830 1731867 1731942 "NCNTFRAC" 1732025 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1730010 1730374 1730794 "NCEP" 1731455 NIL NCEP (NIL T) -7 NIL NIL) (-696 1728921 1729660 1729689 "NASRING" 1729799 T NASRING (NIL) -9 NIL 1729873) (-695 1728716 1728760 1728854 "NASRING-" 1728859 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1727869 1728368 1728397 "NARNG" 1728514 T NARNG (NIL) -9 NIL 1728605) (-693 1727561 1727628 1727762 "NARNG-" 1727767 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1726440 1726647 1726882 "NAGSP" 1727346 T NAGSP (NIL) -7 NIL NIL) (-691 1717864 1719510 1721145 "NAGS" 1724825 T NAGS (NIL) -7 NIL NIL) (-690 1716428 1716732 1717059 "NAGF07" 1717557 T NAGF07 (NIL) -7 NIL NIL) (-689 1711010 1712290 1713586 "NAGF04" 1715152 T NAGF04 (NIL) -7 NIL NIL) (-688 1704042 1705640 1707257 "NAGF02" 1709413 T NAGF02 (NIL) -7 NIL NIL) (-687 1699306 1700396 1701503 "NAGF01" 1702955 T NAGF01 (NIL) -7 NIL NIL) (-686 1692966 1694524 1696101 "NAGE04" 1697749 T NAGE04 (NIL) -7 NIL NIL) (-685 1684207 1686310 1688422 "NAGE02" 1690874 T NAGE02 (NIL) -7 NIL NIL) (-684 1680200 1681137 1682091 "NAGE01" 1683273 T NAGE01 (NIL) -7 NIL NIL) (-683 1678007 1678538 1679093 "NAGD03" 1679665 T NAGD03 (NIL) -7 NIL NIL) (-682 1669793 1671712 1673657 "NAGD02" 1676082 T NAGD02 (NIL) -7 NIL NIL) (-681 1663652 1665065 1666493 "NAGD01" 1668385 T NAGD01 (NIL) -7 NIL NIL) (-680 1659909 1660719 1661544 "NAGC06" 1662847 T NAGC06 (NIL) -7 NIL NIL) (-679 1658386 1658715 1659068 "NAGC05" 1659576 T NAGC05 (NIL) -7 NIL NIL) (-678 1657770 1657887 1658029 "NAGC02" 1658264 T NAGC02 (NIL) -7 NIL NIL) (-677 1656831 1657388 1657429 "NAALG" 1657508 NIL NAALG (NIL T) -9 NIL 1657569) (-676 1656666 1656695 1656785 "NAALG-" 1656790 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1650616 1651724 1652911 "MULTSQFR" 1655562 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1649935 1650010 1650194 "MULTFACT" 1650528 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1643077 1646988 1647041 "MTSCAT" 1648101 NIL MTSCAT (NIL T T) -9 NIL 1648614) (-672 1642789 1642843 1642935 "MTHING" 1643017 NIL MTHING (NIL T) -7 NIL NIL) (-671 1642581 1642614 1642674 "MSYSCMD" 1642749 T MSYSCMD (NIL) -7 NIL NIL) (-670 1638693 1641336 1641656 "MSET" 1642294 NIL MSET (NIL T) -8 NIL NIL) (-669 1635788 1638254 1638296 "MSETAGG" 1638301 NIL MSETAGG (NIL T) -9 NIL 1638335) (-668 1631656 1633198 1633933 "MRING" 1635097 NIL MRING (NIL T T) -8 NIL NIL) (-667 1631226 1631293 1631422 "MRF2" 1631583 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1630844 1630879 1631023 "MRATFAC" 1631185 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1628456 1628751 1629182 "MPRFF" 1630549 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1622476 1628311 1628407 "MPOLY" 1628412 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1621966 1622001 1622209 "MPCPF" 1622435 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1621482 1621525 1621708 "MPC3" 1621917 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1620683 1620764 1620983 "MPC2" 1621397 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1618984 1619321 1619711 "MONOTOOL" 1620343 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1618108 1618443 1618472 "MONOID" 1618749 T MONOID (NIL) -9 NIL 1618921) (-658 1617486 1617649 1617892 "MONOID-" 1617897 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1608422 1614408 1614468 "MONOGEN" 1615142 NIL MONOGEN (NIL T T) -9 NIL 1615595) (-656 1605640 1606375 1607375 "MONOGEN-" 1607494 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1604499 1604919 1604948 "MONADWU" 1605340 T MONADWU (NIL) -9 NIL 1605578) (-654 1603871 1604030 1604278 "MONADWU-" 1604283 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1603256 1603474 1603503 "MONAD" 1603710 T MONAD (NIL) -9 NIL 1603822) (-652 1602941 1603019 1603151 "MONAD-" 1603156 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1601192 1601854 1602133 "MOEBIUS" 1602694 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1600585 1600963 1601004 "MODULE" 1601009 NIL MODULE (NIL T) -9 NIL 1601035) (-649 1600153 1600249 1600439 "MODULE-" 1600444 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1597824 1598519 1598845 "MODRING" 1599978 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1594786 1595951 1596465 "MODOP" 1597359 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1592973 1593425 1593766 "MODMONOM" 1594585 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1582695 1591181 1591601 "MODMON" 1592603 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1579821 1581539 1581815 "MODFIELD" 1582570 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1579347 1579390 1579569 "MMAP" 1579772 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1577584 1578361 1578402 "MLO" 1578819 NIL MLO (NIL T) -9 NIL 1579059) (-641 1574951 1575466 1576068 "MLIFT" 1577065 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1574342 1574426 1574580 "MKUCFUNC" 1574862 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1573941 1574011 1574134 "MKRECORD" 1574265 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1572989 1573150 1573378 "MKFUNC" 1573752 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1572377 1572481 1572637 "MKFLCFN" 1572872 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1571803 1572170 1572259 "MKCHSET" 1572321 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1571080 1571182 1571367 "MKBCFUNC" 1571696 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1567764 1570634 1570770 "MINT" 1570964 T MINT (NIL) -8 NIL NIL) (-633 1566576 1566819 1567096 "MHROWRED" 1567519 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1561847 1565021 1565445 "MFLOAT" 1566172 T MFLOAT (NIL) -8 NIL NIL) (-631 1561204 1561280 1561451 "MFINFACT" 1561759 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1557551 1558390 1559265 "MESH" 1560349 T MESH (NIL) -7 NIL NIL) (-629 1555941 1556253 1556606 "MDDFACT" 1557238 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1552789 1555100 1555142 "MDAGG" 1555397 NIL MDAGG (NIL T) -9 NIL 1555540) (-627 1542487 1552082 1552289 "MCMPLX" 1552602 T MCMPLX (NIL) -8 NIL NIL) (-626 1541628 1541774 1541974 "MCDEN" 1542336 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1539518 1539788 1540168 "MCALCFN" 1541358 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1537140 1537663 1538224 "MATSTOR" 1538989 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1533158 1536519 1536764 "MATRIX" 1536927 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1528933 1529637 1530370 "MATLIN" 1532518 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1519142 1522274 1522351 "MATCAT" 1527189 NIL MATCAT (NIL T T T) -9 NIL 1528600) (-620 1515507 1516520 1517875 "MATCAT-" 1517880 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1514109 1514262 1514593 "MATCAT2" 1515342 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1512221 1512545 1512929 "MAPPKG3" 1513784 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1511202 1511375 1511597 "MAPPKG2" 1512045 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1509701 1509985 1510312 "MAPPKG1" 1510908 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1509312 1509370 1509493 "MAPHACK3" 1509637 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1508904 1508965 1509079 "MAPHACK2" 1509244 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1508342 1508445 1508587 "MAPHACK1" 1508795 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1506450 1507044 1507347 "MAGMA" 1508071 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1502933 1504696 1505155 "M3D" 1506024 NIL M3D (NIL T) -8 NIL NIL) (-610 1497091 1501300 1501342 "LZSTAGG" 1502124 NIL LZSTAGG (NIL T) -9 NIL 1502419) (-609 1493065 1494222 1495679 "LZSTAGG-" 1495684 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1490181 1490958 1491444 "LWORD" 1492611 NIL LWORD (NIL T) -8 NIL NIL) (-607 1483341 1489952 1490086 "LSQM" 1490091 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1482565 1482704 1482932 "LSPP" 1483196 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1480377 1480678 1481134 "LSMP" 1482254 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1477156 1477830 1478560 "LSMP1" 1479679 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1471079 1476321 1476363 "LSAGG" 1476425 NIL LSAGG (NIL T) -9 NIL 1476503) (-602 1467774 1468698 1469911 "LSAGG-" 1469916 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1465400 1466918 1467167 "LPOLY" 1467569 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1464982 1465067 1465190 "LPEFRAC" 1465309 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1463331 1464078 1464330 "LO" 1464815 NIL LO (NIL T T T) -8 NIL NIL) (-598 1462984 1463096 1463125 "LOGIC" 1463236 T LOGIC (NIL) -9 NIL 1463316) (-597 1462846 1462869 1462940 "LOGIC-" 1462945 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1462039 1462179 1462372 "LODOOPS" 1462702 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1459457 1461956 1462021 "LODO" 1462026 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1458005 1458240 1458590 "LODOF" 1459205 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1454425 1456861 1456902 "LODOCAT" 1457334 NIL LODOCAT (NIL T) -9 NIL 1457544) (-592 1454159 1454217 1454343 "LODOCAT-" 1454348 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1451473 1454000 1454118 "LODO2" 1454123 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1448902 1451410 1451455 "LODO1" 1451460 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1447765 1447930 1448241 "LODEEF" 1448725 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1443049 1445893 1445935 "LNAGG" 1446882 NIL LNAGG (NIL T) -9 NIL 1447325) (-587 1442196 1442410 1442752 "LNAGG-" 1442757 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1438361 1439123 1439761 "LMOPS" 1441612 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1437758 1438120 1438161 "LMODULE" 1438221 NIL LMODULE (NIL T) -9 NIL 1438263) (-584 1435010 1437403 1437526 "LMDICT" 1437668 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1428241 1433960 1434256 "LIST" 1434747 NIL LIST (NIL T) -8 NIL NIL) (-582 1427766 1427840 1427979 "LIST3" 1428161 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1426773 1426951 1427179 "LIST2" 1427584 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1424907 1425219 1425618 "LIST2MAP" 1426420 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1423619 1424299 1424340 "LINEXP" 1424593 NIL LINEXP (NIL T) -9 NIL 1424741) (-578 1422266 1422526 1422823 "LINDEP" 1423371 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1419033 1419752 1420529 "LIMITRF" 1421521 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1417314 1417608 1418023 "LIMITPS" 1418728 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1411773 1416829 1417055 "LIE" 1417137 NIL LIE (NIL T T) -8 NIL NIL) (-574 1410824 1411267 1411308 "LIECAT" 1411448 NIL LIECAT (NIL T) -9 NIL 1411598) (-573 1410665 1410692 1410780 "LIECAT-" 1410785 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1403289 1410114 1410279 "LIB" 1410520 T LIB (NIL) -8 NIL NIL) (-571 1398926 1399807 1400742 "LGROBP" 1402406 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1396796 1397069 1397430 "LF" 1398648 NIL LF (NIL T T) -7 NIL NIL) (-569 1395636 1396327 1396356 "LFCAT" 1396563 T LFCAT (NIL) -9 NIL 1396702) (-568 1392548 1393174 1393860 "LEXTRIPK" 1395002 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1389254 1390118 1390621 "LEXP" 1392128 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1387652 1387965 1388366 "LEADCDET" 1388936 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1386848 1386922 1387149 "LAZM3PK" 1387573 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1381771 1384933 1385467 "LAUPOL" 1386364 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1381338 1381382 1381549 "LAPLACE" 1381721 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1379268 1380441 1380691 "LA" 1381172 NIL LA (NIL T T T) -8 NIL NIL) (-561 1378330 1378924 1378965 "LALG" 1379026 NIL LALG (NIL T) -9 NIL 1379084) (-560 1378045 1378104 1378239 "LALG-" 1378244 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1376955 1377142 1377439 "KOVACIC" 1377845 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1376789 1376813 1376855 "KONVERT" 1376917 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1376623 1376647 1376689 "KOERCE" 1376751 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1374359 1375119 1375511 "KERNEL" 1376263 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1373861 1373942 1374072 "KERNEL2" 1374273 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1367476 1372158 1372213 "KDAGG" 1372590 NIL KDAGG (NIL T T) -9 NIL 1372796) (-553 1367005 1367129 1367334 "KDAGG-" 1367339 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1360180 1366666 1366821 "KAFILE" 1366883 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1354639 1359695 1359921 "JORDAN" 1360003 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1350948 1352848 1352903 "IXAGG" 1353832 NIL IXAGG (NIL T T) -9 NIL 1354287) (-549 1349867 1350173 1350592 "IXAGG-" 1350597 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1345458 1349789 1349848 "IVECTOR" 1349853 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1344224 1344461 1344727 "ITUPLE" 1345225 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1342660 1342837 1343143 "ITRIGMNP" 1344046 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1341405 1341609 1341892 "ITFUN3" 1342436 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1341037 1341094 1341203 "ITFUN2" 1341342 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1338841 1339912 1340208 "ITAYLOR" 1340773 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1327835 1333029 1334187 "ISUPS" 1337715 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1326943 1327082 1327317 "ISUMP" 1327683 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1322207 1326744 1326823 "ISTRING" 1326896 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1321420 1321501 1321716 "IRURPK" 1322121 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1320356 1320557 1320797 "IRSN" 1321200 T IRSN (NIL) -7 NIL NIL) (-537 1318393 1318748 1319182 "IRRF2F" 1319995 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1318140 1318178 1318254 "IRREDFFX" 1318349 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1316755 1317014 1317313 "IROOT" 1317873 NIL IROOT (NIL T) -7 NIL NIL) (-534 1313397 1314448 1315136 "IR" 1316099 NIL IR (NIL T) -8 NIL NIL) (-533 1311010 1311505 1312071 "IR2" 1312875 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1310086 1310199 1310419 "IR2F" 1310893 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1309877 1309911 1309971 "IPRNTPK" 1310046 T IPRNTPK (NIL) -7 NIL NIL) (-530 1306431 1309766 1309835 "IPF" 1309840 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1304748 1306356 1306413 "IPADIC" 1306418 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1304247 1304305 1304494 "INVLAPLA" 1304684 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1293896 1296249 1298635 "INTTR" 1301911 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1290258 1290999 1291855 "INTTOOLS" 1293089 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1289844 1289935 1290052 "INTSLPE" 1290161 T INTSLPE (NIL) -7 NIL NIL) (-524 1287794 1289767 1289826 "INTRVL" 1289831 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1285401 1285913 1286487 "INTRF" 1287279 NIL INTRF (NIL T) -7 NIL NIL) (-522 1284816 1284913 1285054 "INTRET" 1285299 NIL INTRET (NIL T) -7 NIL NIL) (-521 1282818 1283207 1283676 "INTRAT" 1284424 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1280059 1280642 1281263 "INTPM" 1282307 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1276770 1277369 1278112 "INTPAF" 1279446 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1272053 1272989 1274014 "INTPACK" 1275765 T INTPACK (NIL) -7 NIL NIL) (-517 1268907 1271782 1271909 "INT" 1271946 T INT (NIL) -8 NIL NIL) (-516 1268159 1268311 1268519 "INTHERTR" 1268749 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1267598 1267678 1267866 "INTHERAL" 1268073 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1265444 1265887 1266344 "INTHEORY" 1267161 T INTHEORY (NIL) -7 NIL NIL) (-513 1256769 1258389 1260166 "INTG0" 1263797 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1237366 1242150 1246954 "INTFTBL" 1251985 T INTFTBL (NIL) -8 NIL NIL) (-511 1236615 1236753 1236926 "INTFACT" 1237225 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1234006 1234452 1235015 "INTEF" 1236169 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1232467 1233216 1233245 "INTDOM" 1233546 T INTDOM (NIL) -9 NIL 1233753) (-508 1231836 1232010 1232252 "INTDOM-" 1232257 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1228328 1230260 1230315 "INTCAT" 1231114 NIL INTCAT (NIL T) -9 NIL 1231433) (-506 1227801 1227903 1228031 "INTBIT" 1228220 T INTBIT (NIL) -7 NIL NIL) (-505 1226476 1226630 1226943 "INTALG" 1227646 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1225933 1226023 1226193 "INTAF" 1226380 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1219399 1225743 1225883 "INTABL" 1225888 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1214349 1217078 1217107 "INS" 1218075 T INS (NIL) -9 NIL 1218756) (-501 1211589 1212360 1213334 "INS-" 1213407 NIL INS- (NIL T) -8 NIL NIL) (-500 1210368 1210595 1210892 "INPSIGN" 1211342 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1209486 1209603 1209800 "INPRODPF" 1210248 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1208380 1208497 1208734 "INPRODFF" 1209366 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1207380 1207532 1207792 "INNMFACT" 1208216 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1206577 1206674 1206862 "INMODGCD" 1207279 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1205086 1205330 1205654 "INFSP" 1206322 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1204270 1204387 1204570 "INFPROD0" 1204966 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1201280 1202439 1202930 "INFORM" 1203787 T INFORM (NIL) -8 NIL NIL) (-492 1200890 1200950 1201048 "INFORM1" 1201215 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1200413 1200502 1200616 "INFINITY" 1200796 T INFINITY (NIL) -7 NIL NIL) (-490 1199031 1199279 1199600 "INEP" 1200161 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1198307 1198928 1198993 "INDE" 1198998 NIL INDE (NIL T) -8 NIL NIL) (-488 1197871 1197939 1198056 "INCRMAPS" 1198234 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1193182 1194107 1195051 "INBFF" 1196959 NIL INBFF (NIL T) -7 NIL NIL) (-486 1189683 1193027 1193130 "IMATRIX" 1193135 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1188397 1188520 1188834 "IMATQF" 1189540 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1186619 1186846 1187182 "IMATLIN" 1188154 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1181245 1186543 1186601 "ILIST" 1186606 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1179204 1181105 1181218 "IIARRAY2" 1181223 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1174572 1179115 1179179 "IFF" 1179184 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1169621 1173864 1174052 "IFARRAY" 1174429 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1168828 1169525 1169598 "IFAMON" 1169603 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1168411 1168476 1168531 "IEVALAB" 1168738 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1168086 1168154 1168314 "IEVALAB-" 1168319 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1167744 1168000 1168063 "IDPO" 1168068 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1167021 1167633 1167708 "IDPOAMS" 1167713 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1166355 1166910 1166985 "IDPOAM" 1166990 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1165440 1165690 1165744 "IDPC" 1166157 NIL IDPC (NIL T T) -9 NIL 1166306) (-472 1164936 1165332 1165405 "IDPAM" 1165410 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1164339 1164828 1164901 "IDPAG" 1164906 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1160594 1161442 1162337 "IDECOMP" 1163496 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1153470 1154519 1155565 "IDEAL" 1159631 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1152634 1152746 1152945 "ICDEN" 1153354 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1151733 1152114 1152261 "ICARD" 1152507 T ICARD (NIL) -8 NIL NIL) (-466 1149805 1150118 1150521 "IBPTOOLS" 1151410 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1145419 1149425 1149538 "IBITS" 1149724 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1142142 1142718 1143413 "IBATOOL" 1144836 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1139922 1140383 1140916 "IBACHIN" 1141677 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1137805 1139768 1139871 "IARRAY2" 1139876 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1133964 1137731 1137788 "IARRAY1" 1137793 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1127904 1132382 1132860 "IAN" 1133506 T IAN (NIL) -8 NIL NIL) (-459 1127415 1127472 1127645 "IALGFACT" 1127841 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1126942 1127055 1127084 "HYPCAT" 1127291 T HYPCAT (NIL) -9 NIL NIL) (-457 1126480 1126597 1126783 "HYPCAT-" 1126788 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1123166 1124497 1124539 "HOAGG" 1125520 NIL HOAGG (NIL T) -9 NIL 1126192) (-455 1121760 1122159 1122685 "HOAGG-" 1122690 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1115591 1121201 1121367 "HEXADEC" 1121614 T HEXADEC (NIL) -8 NIL NIL) (-453 1114339 1114561 1114824 "HEUGCD" 1115368 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1113442 1114176 1114306 "HELLFDIV" 1114311 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1111676 1113219 1113307 "HEAP" 1113386 NIL HEAP (NIL T) -8 NIL NIL) (-450 1105549 1111591 1111653 "HDP" 1111658 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1099261 1105186 1105337 "HDMP" 1105450 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1098586 1098725 1098889 "HB" 1099117 T HB (NIL) -7 NIL NIL) (-447 1092095 1098432 1098536 "HASHTBL" 1098541 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1089848 1091723 1091902 "HACKPI" 1091936 T HACKPI (NIL) -8 NIL NIL) (-445 1085544 1089702 1089814 "GTSET" 1089819 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1079082 1085422 1085520 "GSTBL" 1085525 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1071320 1078120 1078383 "GSERIES" 1078874 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1070342 1070795 1070824 "GROUP" 1071085 T GROUP (NIL) -9 NIL 1071244) (-441 1069458 1069681 1070025 "GROUP-" 1070030 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1067827 1068146 1068533 "GROEBSOL" 1069135 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1066767 1067029 1067081 "GRMOD" 1067610 NIL GRMOD (NIL T T) -9 NIL 1067778) (-438 1066535 1066571 1066699 "GRMOD-" 1066704 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1061875 1062897 1063894 "GRIMAGE" 1065558 T GRIMAGE (NIL) -8 NIL NIL) (-436 1060342 1060602 1060926 "GRDEF" 1061571 T GRDEF (NIL) -7 NIL NIL) (-435 1059786 1059902 1060043 "GRAY" 1060221 T GRAY (NIL) -7 NIL NIL) (-434 1059019 1059399 1059451 "GRALG" 1059604 NIL GRALG (NIL T T) -9 NIL 1059696) (-433 1058680 1058753 1058916 "GRALG-" 1058921 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1055488 1058269 1058445 "GPOLSET" 1058587 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1054844 1054901 1055158 "GOSPER" 1055425 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1050603 1051282 1051808 "GMODPOL" 1054543 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1049608 1049792 1050030 "GHENSEL" 1050415 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1043674 1044517 1045543 "GENUPS" 1048692 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1043371 1043422 1043511 "GENUFACT" 1043617 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1042783 1042860 1043025 "GENPGCD" 1043289 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1042257 1042292 1042505 "GENMFACT" 1042742 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1040825 1041080 1041387 "GENEEZ" 1042000 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1034699 1040438 1040599 "GDMP" 1040748 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1024080 1028472 1029577 "GCNAALG" 1033683 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1022501 1023373 1023402 "GCDDOM" 1023657 T GCDDOM (NIL) -9 NIL 1023814) (-420 1021971 1022098 1022313 "GCDDOM-" 1022318 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1020645 1020830 1021133 "GB" 1021751 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1009265 1011591 1013983 "GBINTERN" 1018336 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1007102 1007394 1007815 "GBF" 1008940 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1005883 1006048 1006315 "GBEUCLID" 1006918 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1005232 1005357 1005506 "GAUSSFAC" 1005754 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1003611 1003913 1004225 "GALUTIL" 1004952 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1001928 1002202 1002525 "GALPOLYU" 1003338 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 999317 999607 1000012 "GALFACTU" 1001625 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 991123 992622 994230 "GALFACT" 997749 NIL GALFACT (NIL T) -7 NIL NIL) (-410 988510 989168 989197 "FVFUN" 990353 T FVFUN (NIL) -9 NIL 991073) (-409 987775 987957 987986 "FVC" 988277 T FVC (NIL) -9 NIL 988460) (-408 987417 987572 987653 "FUNCTION" 987727 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 985087 985638 986127 "FT" 986948 T FT (NIL) -8 NIL NIL) (-406 983905 984388 984591 "FTEM" 984904 T FTEM (NIL) -8 NIL NIL) (-405 982172 982460 982861 "FSUPFACT" 983598 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 980569 980858 981190 "FST" 981860 T FST (NIL) -8 NIL NIL) (-403 979744 979850 980044 "FSRED" 980451 NIL FSRED (NIL T T) -7 NIL NIL) (-402 978425 978680 979033 "FSPRMELT" 979460 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 975510 975948 976447 "FSPECF" 977988 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 957847 966404 966445 "FS" 970283 NIL FS (NIL T) -9 NIL 972554) (-399 946497 949487 953543 "FS-" 953840 NIL FS- (NIL T T) -8 NIL NIL) (-398 946013 946067 946243 "FSINT" 946438 NIL FSINT (NIL T T) -7 NIL NIL) (-397 944298 945010 945311 "FSERIES" 945794 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 943316 943432 943662 "FSCINT" 944178 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 939552 942262 942304 "FSAGG" 942674 NIL FSAGG (NIL T) -9 NIL 942931) (-394 937314 937915 938711 "FSAGG-" 938806 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 936356 936499 936726 "FSAGG2" 937167 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 934015 934294 934847 "FS2UPS" 936074 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 933601 933644 933797 "FS2" 933966 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 932461 932632 932940 "FS2EXPXP" 933426 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 931887 932002 932154 "FRUTIL" 932341 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 923324 927402 928750 "FR" 930571 NIL FR (NIL T) -8 NIL NIL) (-387 918401 921044 921085 "FRNAALG" 922481 NIL FRNAALG (NIL T) -9 NIL 923087) (-386 914080 915150 916425 "FRNAALG-" 917175 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 913718 913761 913888 "FRNAAF2" 914031 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 912085 912577 912870 "FRMOD" 913532 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 909808 910476 910792 "FRIDEAL" 911876 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 909007 909094 909381 "FRIDEAL2" 909715 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 908266 908674 908716 "FRETRCT" 908721 NIL FRETRCT (NIL T) -9 NIL 908890) (-380 907378 907609 907960 "FRETRCT-" 907965 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 904587 905807 905867 "FRAMALG" 906749 NIL FRAMALG (NIL T T) -9 NIL 907041) (-378 902720 903176 903806 "FRAMALG-" 904029 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 896632 902205 902476 "FRAC" 902481 NIL FRAC (NIL T) -8 NIL NIL) (-376 896268 896325 896432 "FRAC2" 896569 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 895904 895961 896068 "FR2" 896205 NIL FR2 (NIL T T) -7 NIL NIL) (-374 890533 893446 893475 "FPS" 894594 T FPS (NIL) -9 NIL 895147) (-373 889982 890091 890255 "FPS-" 890401 NIL FPS- (NIL T) -8 NIL NIL) (-372 887383 889080 889109 "FPC" 889334 T FPC (NIL) -9 NIL 889476) (-371 887176 887216 887313 "FPC-" 887318 NIL FPC- (NIL T) -8 NIL NIL) (-370 886056 886666 886708 "FPATMAB" 886713 NIL FPATMAB (NIL T) -9 NIL 886863) (-369 883756 884232 884658 "FPARFRAC" 885693 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 879151 879648 880330 "FORTRAN" 883188 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 876867 877367 877906 "FORT" 878632 T FORT (NIL) -7 NIL NIL) (-366 874542 875104 875133 "FORTFN" 876193 T FORTFN (NIL) -9 NIL 876817) (-365 874305 874355 874384 "FORTCAT" 874443 T FORTCAT (NIL) -9 NIL 874505) (-364 872365 872848 873247 "FORMULA" 873926 T FORMULA (NIL) -8 NIL NIL) (-363 872153 872183 872252 "FORMULA1" 872329 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871676 871728 871901 "FORDER" 872095 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 870772 870936 871129 "FOP" 871503 T FOP (NIL) -7 NIL NIL) (-360 869380 870052 870226 "FNLA" 870654 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 868048 868437 868466 "FNCAT" 869038 T FNCAT (NIL) -9 NIL 869331) (-358 867614 868007 868035 "FNAME" 868040 T FNAME (NIL) -8 NIL NIL) (-357 866273 867246 867275 "FMTC" 867280 T FMTC (NIL) -9 NIL 867315) (-356 862593 863800 864427 "FMONOID" 865679 NIL FMONOID (NIL T) -8 NIL NIL) (-355 861815 862338 862485 "FM" 862490 NIL FM (NIL T T) -8 NIL NIL) (-354 859238 859884 859913 "FMFUN" 861057 T FMFUN (NIL) -9 NIL 861765) (-353 858506 858687 858716 "FMC" 859006 T FMC (NIL) -9 NIL 859188) (-352 855736 856570 856624 "FMCAT" 857806 NIL FMCAT (NIL T T) -9 NIL 858299) (-351 854631 855504 855603 "FM1" 855681 NIL FM1 (NIL T T) -8 NIL NIL) (-350 852405 852821 853315 "FLOATRP" 854182 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 845892 850061 850691 "FLOAT" 851795 T FLOAT (NIL) -8 NIL NIL) (-348 843330 843830 844408 "FLOATCP" 845359 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 842119 842967 843008 "FLINEXP" 843013 NIL FLINEXP (NIL T) -9 NIL 843105) (-346 841274 841509 841836 "FLINEXP-" 841841 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 840350 840494 840718 "FLASORT" 841126 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 837568 838410 838463 "FLALG" 839690 NIL FLALG (NIL T T) -9 NIL 840157) (-343 831359 835055 835097 "FLAGG" 836359 NIL FLAGG (NIL T) -9 NIL 837007) (-342 830085 830424 830914 "FLAGG-" 830919 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 829127 829270 829497 "FLAGG2" 829938 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 826102 827120 827180 "FINRALG" 828308 NIL FINRALG (NIL T T) -9 NIL 828813) (-339 825262 825491 825830 "FINRALG-" 825835 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824668 824881 824910 "FINITE" 825106 T FINITE (NIL) -9 NIL 825213) (-337 817128 819289 819330 "FINAALG" 822997 NIL FINAALG (NIL T) -9 NIL 824449) (-336 812469 813510 814654 "FINAALG-" 816033 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 811864 812224 812327 "FILE" 812399 NIL FILE (NIL T) -8 NIL NIL) (-334 810548 810860 810915 "FILECAT" 811599 NIL FILECAT (NIL T T) -9 NIL 811815) (-333 808363 809919 809948 "FIELD" 809988 T FIELD (NIL) -9 NIL 810068) (-332 806983 807368 807879 "FIELD-" 807884 NIL FIELD- (NIL T) -8 NIL NIL) (-331 804798 805620 805966 "FGROUP" 806670 NIL FGROUP (NIL T) -8 NIL NIL) (-330 803888 804052 804272 "FGLMICPK" 804630 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799690 803813 803870 "FFX" 803875 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 799291 799352 799487 "FFSLPE" 799623 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 795287 796063 796859 "FFPOLY" 798527 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 794791 794827 795036 "FFPOLY2" 795245 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790613 794710 794773 "FFP" 794778 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 785981 790524 790588 "FF" 790593 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 781077 785324 785514 "FFNBX" 785835 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 775987 780212 780470 "FFNBP" 780931 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 770590 775271 775482 "FFNB" 775820 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 769422 769620 769935 "FFINTBAS" 770387 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765598 767838 767867 "FFIELDC" 768487 T FFIELDC (NIL) -9 NIL 768863) (-318 764261 764631 765128 "FFIELDC-" 765133 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 763831 763876 764000 "FFHOM" 764203 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 761529 762013 762530 "FFF" 763346 NIL FFF (NIL T) -7 NIL NIL) (-315 757117 761271 761372 "FFCGX" 761472 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 752719 756849 756956 "FFCGP" 757060 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 747872 752446 752554 "FFCG" 752655 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729671 738794 738881 "FFCAT" 744046 NIL FFCAT (NIL T T T) -9 NIL 745531) (-311 724869 725916 727230 "FFCAT-" 728460 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 724280 724323 724558 "FFCAT2" 724820 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713484 717274 718489 "FEXPR" 723137 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712486 712921 712963 "FEVALAB" 713047 NIL FEVALAB (NIL T) -9 NIL 713305) (-307 711645 711855 712193 "FEVALAB-" 712198 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 710238 711028 711231 "FDIV" 711544 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 707304 708019 708135 "FDIVCAT" 709703 NIL FDIVCAT (NIL T T T T) -9 NIL 710140) (-304 707066 707093 707263 "FDIVCAT-" 707268 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 706286 706373 706650 "FDIV2" 706973 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 704979 705236 705523 "FCPAK1" 706019 T FCPAK1 (NIL) -7 NIL NIL) (-301 704107 704479 704620 "FCOMP" 704870 NIL FCOMP (NIL T) -8 NIL NIL) (-300 687747 691159 694719 "FC" 700567 T FC (NIL) -8 NIL NIL) (-299 680296 684342 684383 "FAXF" 686185 NIL FAXF (NIL T) -9 NIL 686875) (-298 677575 678230 679055 "FAXF-" 679520 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672681 676951 677127 "FARRAY" 677432 NIL FARRAY (NIL T) -8 NIL NIL) (-296 668027 670098 670151 "FAMR" 671163 NIL FAMR (NIL T T) -9 NIL 671620) (-295 666918 667220 667654 "FAMR-" 667659 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 666114 666840 666893 "FAMONOID" 666898 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 663947 664631 664685 "FAMONC" 665626 NIL FAMONC (NIL T T) -9 NIL 666010) (-292 662641 663703 663839 "FAGROUP" 663844 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660444 660763 661165 "FACUTIL" 662322 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659543 659728 659950 "FACTFUNC" 660254 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 651866 658794 659006 "EXPUPXS" 659399 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649365 649901 650483 "EXPRTUBE" 651304 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645559 646151 646888 "EXPRODE" 648704 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630727 644224 644647 "EXPR" 645168 NIL EXPR (NIL T) -8 NIL NIL) (-285 625155 625742 626554 "EXPR2UPS" 630025 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 624791 624848 624955 "EXPR2" 625092 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 616145 623928 624223 "EXPEXPAN" 624629 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 615972 616102 616131 "EXIT" 616136 T EXIT (NIL) -8 NIL NIL) (-281 615599 615661 615774 "EVALCYC" 615904 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 615139 615257 615299 "EVALAB" 615469 NIL EVALAB (NIL T) -9 NIL 615573) (-279 614620 614742 614963 "EVALAB-" 614968 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 612082 613394 613423 "EUCDOM" 613978 T EUCDOM (NIL) -9 NIL 614328) (-277 610487 610929 611519 "EUCDOM-" 611524 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 598100 600839 603570 "ESTOOLS" 607776 T ESTOOLS (NIL) -7 NIL NIL) (-275 597736 597793 597900 "ESTOOLS2" 598037 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597487 597529 597609 "ESTOOLS1" 597688 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591426 593150 593179 "ES" 595943 T ES (NIL) -9 NIL 597347) (-272 586374 587660 589477 "ES-" 589641 NIL ES- (NIL T) -8 NIL NIL) (-271 582781 583533 584305 "ESCONT" 585622 T ESCONT (NIL) -7 NIL NIL) (-270 582526 582558 582640 "ESCONT1" 582743 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 582201 582251 582351 "ES2" 582470 NIL ES2 (NIL T T) -7 NIL NIL) (-268 581831 581889 581998 "ES1" 582137 NIL ES1 (NIL T T) -7 NIL NIL) (-267 581047 581176 581352 "ERROR" 581675 T ERROR (NIL) -7 NIL NIL) (-266 574562 580906 580997 "EQTBL" 581002 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 567027 569908 571341 "EQ" 573162 NIL -3128 (NIL T) -8 NIL NIL) (-264 566659 566716 566825 "EQ2" 566964 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 561951 562997 564090 "EP" 565598 NIL EP (NIL T) -7 NIL NIL) (-262 561110 561674 561703 "ENTIRER" 561708 T ENTIRER (NIL) -9 NIL 561753) (-261 557566 559065 559435 "EMR" 560909 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556710 556895 556950 "ELTAGG" 557330 NIL ELTAGG (NIL T T) -9 NIL 557540) (-259 556429 556491 556632 "ELTAGG-" 556637 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 556217 556246 556301 "ELTAB" 556385 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 555343 555489 555688 "ELFUTS" 556068 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 555084 555140 555169 "ELEMFUN" 555274 T ELEMFUN (NIL) -9 NIL NIL) (-255 554954 554975 555043 "ELEMFUN-" 555048 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 549850 553053 553095 "ELAGG" 554035 NIL ELAGG (NIL T) -9 NIL 554496) (-253 548135 548569 549232 "ELAGG-" 549237 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 541005 542804 543630 "EFUPXS" 547412 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534457 536258 537067 "EFULS" 540282 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 531888 532246 532724 "EFSTRUC" 534089 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 520960 522525 524085 "EF" 530403 NIL EF (NIL T T) -7 NIL NIL) (-248 520061 520445 520594 "EAB" 520831 T EAB (NIL) -8 NIL NIL) (-247 519274 520020 520048 "E04UCFA" 520053 T E04UCFA (NIL) -8 NIL NIL) (-246 518487 519233 519261 "E04NAFA" 519266 T E04NAFA (NIL) -8 NIL NIL) (-245 517700 518446 518474 "E04MBFA" 518479 T E04MBFA (NIL) -8 NIL NIL) (-244 516913 517659 517687 "E04JAFA" 517692 T E04JAFA (NIL) -8 NIL NIL) (-243 516128 516872 516900 "E04GCFA" 516905 T E04GCFA (NIL) -8 NIL NIL) (-242 515343 516087 516115 "E04FDFA" 516120 T E04FDFA (NIL) -8 NIL NIL) (-241 514556 515302 515330 "E04DGFA" 515335 T E04DGFA (NIL) -8 NIL NIL) (-240 508742 510086 511448 "E04AGNT" 513214 T E04AGNT (NIL) -7 NIL NIL) (-239 507468 507948 507989 "DVARCAT" 508464 NIL DVARCAT (NIL T) -9 NIL 508662) (-238 506672 506884 507198 "DVARCAT-" 507203 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499534 506474 506601 "DSMP" 506606 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 494360 495491 496555 "DROPT" 498490 T DROPT (NIL) -8 NIL NIL) (-235 494025 494084 494182 "DROPT1" 494295 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 489147 490271 491406 "DROPT0" 492910 T DROPT0 (NIL) -7 NIL NIL) (-233 487492 487817 488203 "DRAWPT" 488781 T DRAWPT (NIL) -7 NIL NIL) (-232 482167 483066 484121 "DRAW" 486490 NIL DRAW (NIL T) -7 NIL NIL) (-231 481808 481859 481975 "DRAWHACK" 482110 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480553 480818 481105 "DRAWCX" 481541 T DRAWCX (NIL) -7 NIL NIL) (-229 480071 480139 480289 "DRAWCURV" 480479 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470675 472597 474676 "DRAWCFUN" 478012 T DRAWCFUN (NIL) -7 NIL NIL) (-227 467494 469370 469412 "DQAGG" 470041 NIL DQAGG (NIL T) -9 NIL 470314) (-226 455954 462692 462775 "DPOLCAT" 464613 NIL DPOLCAT (NIL T T T T) -9 NIL 465156) (-225 450794 452140 454097 "DPOLCAT-" 454102 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 444878 450656 450753 "DPMO" 450758 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 438865 444659 444825 "DPMM" 444830 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438784 438810 438845 "DOMAIN" 438850 T DOMAIN (NIL) -8 NIL NIL) (-221 432496 438421 438572 "DMP" 438685 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 432096 432152 432296 "DLP" 432434 NIL DLP (NIL T) -7 NIL NIL) (-219 425746 431197 431424 "DLIST" 431901 NIL DLIST (NIL T) -8 NIL NIL) (-218 422599 424602 424644 "DLAGG" 425194 NIL DLAGG (NIL T) -9 NIL 425422) (-217 421261 421953 421982 "DIVRING" 422132 T DIVRING (NIL) -9 NIL 422240) (-216 420249 420502 420895 "DIVRING-" 420900 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 418351 418708 419114 "DISPLAY" 419863 T DISPLAY (NIL) -7 NIL NIL) (-214 412246 418265 418328 "DIRPROD" 418333 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 411094 411297 411562 "DIRPROD2" 412039 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400738 406737 406791 "DIRPCAT" 407199 NIL DIRPCAT (NIL NIL T) -9 NIL 408015) (-211 398064 398706 399587 "DIRPCAT-" 399924 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 397351 397511 397697 "DIOSP" 397898 T DIOSP (NIL) -7 NIL NIL) (-209 394060 396264 396306 "DIOPS" 396740 NIL DIOPS (NIL T) -9 NIL 396968) (-208 393609 393723 393914 "DIOPS-" 393919 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 392480 393118 393147 "DIFRING" 393334 T DIFRING (NIL) -9 NIL 393443) (-206 392126 392203 392355 "DIFRING-" 392360 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389917 391199 391240 "DIFEXT" 391599 NIL DIFEXT (NIL T) -9 NIL 391890) (-204 388203 388631 389296 "DIFEXT-" 389301 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 385531 387735 387777 "DIAGG" 387782 NIL DIAGG (NIL T) -9 NIL 387802) (-202 384915 385072 385324 "DIAGG-" 385329 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 380386 383874 384151 "DHMATRIX" 384684 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 375998 376907 377917 "DFSFUN" 379396 T DFSFUN (NIL) -7 NIL NIL) (-199 370784 374712 375077 "DFLOAT" 375653 T DFLOAT (NIL) -8 NIL NIL) (-198 369017 369298 369693 "DFINTTLS" 370492 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 366050 367052 367450 "DERHAM" 368684 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363905 365825 365914 "DEQUEUE" 365994 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 363123 363256 363451 "DEGRED" 363767 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 359539 360280 361128 "DEFINTRF" 362355 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 357078 357545 358141 "DEFINTEF" 359060 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350909 356519 356685 "DECIMAL" 356932 T DECIMAL (NIL) -8 NIL NIL) (-191 348421 348879 349385 "DDFACT" 350453 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 348017 348060 348211 "DBLRESP" 348372 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345727 346061 346430 "DBASE" 347775 NIL DBASE (NIL T) -8 NIL NIL) (-188 344862 345686 345714 "D03FAFA" 345719 T D03FAFA (NIL) -8 NIL NIL) (-187 343998 344821 344849 "D03EEFA" 344854 T D03EEFA (NIL) -8 NIL NIL) (-186 341948 342414 342903 "D03AGNT" 343529 T D03AGNT (NIL) -7 NIL NIL) (-185 341266 341907 341935 "D02EJFA" 341940 T D02EJFA (NIL) -8 NIL NIL) (-184 340584 341225 341253 "D02CJFA" 341258 T D02CJFA (NIL) -8 NIL NIL) (-183 339902 340543 340571 "D02BHFA" 340576 T D02BHFA (NIL) -8 NIL NIL) (-182 339220 339861 339889 "D02BBFA" 339894 T D02BBFA (NIL) -8 NIL NIL) (-181 332419 334006 335612 "D02AGNT" 337634 T D02AGNT (NIL) -7 NIL NIL) (-180 330200 330719 331262 "D01WGTS" 331896 T D01WGTS (NIL) -7 NIL NIL) (-179 329307 330159 330187 "D01TRNS" 330192 T D01TRNS (NIL) -8 NIL NIL) (-178 328414 329266 329294 "D01GBFA" 329299 T D01GBFA (NIL) -8 NIL NIL) (-177 327521 328373 328401 "D01FCFA" 328406 T D01FCFA (NIL) -8 NIL NIL) (-176 326628 327480 327508 "D01ASFA" 327513 T D01ASFA (NIL) -8 NIL NIL) (-175 325735 326587 326615 "D01AQFA" 326620 T D01AQFA (NIL) -8 NIL NIL) (-174 324842 325694 325722 "D01APFA" 325727 T D01APFA (NIL) -8 NIL NIL) (-173 323949 324801 324829 "D01ANFA" 324834 T D01ANFA (NIL) -8 NIL NIL) (-172 323056 323908 323936 "D01AMFA" 323941 T D01AMFA (NIL) -8 NIL NIL) (-171 322163 323015 323043 "D01ALFA" 323048 T D01ALFA (NIL) -8 NIL NIL) (-170 321270 322122 322150 "D01AKFA" 322155 T D01AKFA (NIL) -8 NIL NIL) (-169 320377 321229 321257 "D01AJFA" 321262 T D01AJFA (NIL) -8 NIL NIL) (-168 313709 315251 316803 "D01AGNT" 318845 T D01AGNT (NIL) -7 NIL NIL) (-167 313046 313174 313326 "CYCLOTOM" 313577 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309781 310494 311221 "CYCLES" 312339 T CYCLES (NIL) -7 NIL NIL) (-165 309093 309227 309398 "CVMP" 309642 NIL CVMP (NIL T) -7 NIL NIL) (-164 306875 307132 307507 "CTRIGMNP" 308821 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 306249 306348 306501 "CSTTOOLS" 306772 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 302048 302705 303463 "CRFP" 305561 NIL CRFP (NIL T T) -7 NIL NIL) (-161 301095 301280 301508 "CRAPACK" 301852 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 300481 300582 300785 "CPMATCH" 300972 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 300206 300234 300340 "CPIMA" 300447 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 296570 297242 297960 "COORDSYS" 299541 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 292431 294573 295065 "CONTFRAC" 296110 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 291584 292148 292177 "COMRING" 292182 T COMRING (NIL) -9 NIL 292233) (-155 290665 290942 291126 "COMPPROP" 291420 T COMPPROP (NIL) -8 NIL NIL) (-154 290326 290361 290489 "COMPLPAT" 290624 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 280309 290137 290245 "COMPLEX" 290250 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279945 280002 280109 "COMPLEX2" 280246 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 279663 279698 279796 "COMPFACT" 279904 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263943 274237 274278 "COMPCAT" 275280 NIL COMPCAT (NIL T) -9 NIL 276656) (-149 253459 256382 260009 "COMPCAT-" 260365 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 253190 253218 253320 "COMMUPC" 253425 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252985 253018 253077 "COMMONOP" 253151 T COMMONOP (NIL) -7 NIL NIL) (-146 252568 252736 252823 "COMM" 252918 T COMM (NIL) -8 NIL NIL) (-145 251822 252014 252043 "COMBOPC" 252379 T COMBOPC (NIL) -9 NIL 252552) (-144 250718 250928 251170 "COMBINAT" 251612 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246924 247495 248133 "COMBF" 250142 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245710 246040 246275 "COLOR" 246709 T COLOR (NIL) -8 NIL NIL) (-141 245350 245397 245522 "CMPLXRT" 245657 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240908 241922 242988 "CLIP" 244304 T CLIP (NIL) -7 NIL NIL) (-139 239246 240016 240254 "CLIF" 240736 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 235477 237395 237437 "CLAGG" 238366 NIL CLAGG (NIL T) -9 NIL 238899) (-137 233899 234356 234939 "CLAGG-" 234944 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 233443 233528 233668 "CINTSLPE" 233808 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230944 231415 231963 "CHVAR" 232971 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 230166 230730 230759 "CHARZ" 230764 T CHARZ (NIL) -9 NIL 230778) (-133 229920 229960 230038 "CHARPOL" 230120 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 229026 229623 229652 "CHARNZ" 229699 T CHARNZ (NIL) -9 NIL 229754) (-131 227049 227716 228051 "CHAR" 228711 T CHAR (NIL) -8 NIL NIL) (-130 226774 226835 226864 "CFCAT" 226975 T CFCAT (NIL) -9 NIL NIL) (-129 226019 226130 226312 "CDEN" 226658 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 222011 225172 225452 "CCLASS" 225759 T CCLASS (NIL) -8 NIL NIL) (-127 217064 218040 218793 "CARTEN" 221314 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 216172 216320 216541 "CARTEN2" 216911 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 214469 215324 215580 "CARD" 215936 T CARD (NIL) -8 NIL NIL) (-124 213841 214169 214198 "CACHSET" 214330 T CACHSET (NIL) -9 NIL 214407) (-123 213337 213633 213662 "CABMON" 213712 T CABMON (NIL) -9 NIL 213768) (-122 210900 213029 213136 "BTREE" 213263 NIL BTREE (NIL T) -8 NIL NIL) (-121 208404 210548 210670 "BTOURN" 210810 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205828 207875 207917 "BTCAT" 207985 NIL BTCAT (NIL T) -9 NIL 208062) (-119 205495 205575 205724 "BTCAT-" 205729 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200685 204556 204585 "BTAGG" 204841 T BTAGG (NIL) -9 NIL 205020) (-117 200108 200252 200482 "BTAGG-" 200487 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 197158 199386 199601 "BSTREE" 199925 NIL BSTREE (NIL T) -8 NIL NIL) (-115 196296 196422 196606 "BRILL" 197014 NIL BRILL (NIL T) -7 NIL NIL) (-114 193004 195025 195067 "BRAGG" 195716 NIL BRAGG (NIL T) -9 NIL 195972) (-113 191533 191939 192494 "BRAGG-" 192499 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184741 190879 191063 "BPADICRT" 191381 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 183045 184678 184723 "BPADIC" 184728 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182745 182775 182888 "BOUNDZRO" 183009 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 178260 179351 180218 "BOP" 181898 T BOP (NIL) -8 NIL NIL) (-108 175883 176327 176846 "BOP1" 177774 NIL BOP1 (NIL T) -7 NIL NIL) (-107 174236 174926 175220 "BOOLEAN" 175609 T BOOLEAN (NIL) -8 NIL NIL) (-106 173602 173980 174033 "BMODULE" 174038 NIL BMODULE (NIL T T) -9 NIL 174102) (-105 169412 173400 173473 "BITS" 173549 T BITS (NIL) -8 NIL NIL) (-104 168509 168944 169096 "BINFILE" 169280 T BINFILE (NIL) -8 NIL NIL) (-103 162344 167953 168118 "BINARY" 168364 T BINARY (NIL) -8 NIL NIL) (-102 160177 161599 161641 "BGAGG" 161901 NIL BGAGG (NIL T) -9 NIL 162038) (-101 160008 160040 160131 "BGAGG-" 160136 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 159106 159392 159597 "BFUNCT" 159823 T BFUNCT (NIL) -8 NIL NIL) (-99 157809 157987 158271 "BEZOUT" 158931 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154340 156669 156997 "BBTREE" 157512 NIL BBTREE (NIL T) -8 NIL NIL) (-97 154077 154130 154157 "BASTYPE" 154274 T BASTYPE (NIL) -9 NIL NIL) (-96 153933 153961 154031 "BASTYPE-" 154036 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153371 153447 153597 "BALFACT" 153844 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 152193 152790 152975 "AUTOMOR" 153216 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151918 151923 151950 "ATTREG" 151955 T ATTREG (NIL) -9 NIL NIL) (-92 150197 150615 150967 "ATTRBUT" 151584 T ATTRBUT (NIL) -8 NIL NIL) (-91 149732 149845 149872 "ATRIG" 150073 T ATRIG (NIL) -9 NIL NIL) (-90 149541 149582 149669 "ATRIG-" 149674 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147744 149317 149405 "ASTACK" 149484 NIL ASTACK (NIL T) -8 NIL NIL) (-88 146251 146548 146912 "ASSOCEQ" 147427 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 145283 145910 146034 "ASP9" 146158 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 145047 145231 145270 "ASP8" 145275 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143917 144652 144794 "ASP80" 144936 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142816 143552 143684 "ASP7" 143816 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141772 142493 142611 "ASP78" 142729 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140743 141452 141569 "ASP77" 141686 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139658 140381 140512 "ASP74" 140643 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138559 139293 139425 "ASP73" 139557 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137514 138236 138354 "ASP6" 138472 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136463 137191 137309 "ASP55" 137427 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135413 136137 136256 "ASP50" 136375 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134501 135114 135224 "ASP4" 135334 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133589 134202 134312 "ASP49" 134422 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132374 133128 133296 "ASP42" 133478 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 131152 131907 132077 "ASP41" 132261 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 130104 130829 130947 "ASP35" 131065 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129869 130052 130091 "ASP34" 130096 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129606 129673 129749 "ASP33" 129824 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128502 129241 129373 "ASP31" 129505 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 128267 128450 128489 "ASP30" 128494 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 128002 128071 128147 "ASP29" 128222 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127767 127950 127989 "ASP28" 127994 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127532 127715 127754 "ASP27" 127759 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126616 127230 127341 "ASP24" 127452 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125533 126257 126387 "ASP20" 126517 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124621 125234 125344 "ASP1" 125454 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123565 124295 124414 "ASP19" 124533 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 123302 123369 123445 "ASP12" 123520 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 122155 122901 123045 "ASP10" 123189 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 120060 121999 122090 "ARRAY2" 122095 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115882 119708 119822 "ARRAY1" 119977 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114914 115087 115308 "ARRAY12" 115705 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 109279 111144 111220 "ARR2CAT" 113850 NIL ARR2CAT (NIL T T T) -9 NIL 114608) (-54 106713 107457 108411 "ARR2CAT-" 108416 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105473 105623 105926 "APPRULE" 106551 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 105126 105174 105292 "APPLYORE" 105419 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 104100 104391 104586 "ANY" 104949 T ANY (NIL) -8 NIL NIL) (-50 103378 103501 103658 "ANY1" 103974 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100910 101828 102153 "ANTISYM" 103103 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100737 100869 100896 "ANON" 100901 T ANON (NIL) -8 NIL NIL) (-47 94814 99282 99733 "AN" 100304 T AN (NIL) -8 NIL NIL) (-46 91126 92524 92575 "AMR" 93314 NIL AMR (NIL T T) -9 NIL 93907) (-45 90239 90460 90822 "AMR-" 90827 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74801 90156 90217 "ALIST" 90222 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71638 74395 74564 "ALGSC" 74719 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 68196 68750 69356 "ALGPKG" 71079 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 67473 67574 67758 "ALGMFACT" 68082 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 63230 63911 64561 "ALGMANIP" 67001 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 54549 62856 63006 "ALGFF" 63163 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53745 53876 54055 "ALGFACT" 54407 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52735 53345 53384 "ALGEBRA" 53444 NIL ALGEBRA (NIL T) -9 NIL 53502) (-36 52453 52512 52644 "ALGEBRA-" 52649 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34174 49899 49952 "ALAGG" 50088 NIL ALAGG (NIL T T) -9 NIL 50249) (-34 33709 33822 33849 "AHYP" 34050 T AHYP (NIL) -9 NIL NIL) (-33 32640 32888 32915 "AGG" 33414 T AGG (NIL) -9 NIL 33692) (-32 32074 32236 32450 "AGG-" 32455 NIL AGG- (NIL T) -8 NIL NIL) (-31 29763 30181 30597 "AF" 31718 NIL AF (NIL T T) -7 NIL NIL) (-30 29041 29295 29449 "ACPLOT" 29627 T ACPLOT (NIL) -8 NIL NIL) (-29 18460 26406 26458 "ACFS" 27169 NIL ACFS (NIL T) -9 NIL 27408) (-28 16474 16964 17739 "ACFS-" 17744 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12694 14650 14677 "ACF" 15556 T ACF (NIL) -9 NIL 15968) (-26 11398 11732 12225 "ACF-" 12230 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11192 "ABELSG" 11284 T ABELSG (NIL) -9 NIL 11349) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10232 10493 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9896 9980 10118 "ABELMON-" 10123 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9230 9576 9603 "ABELGRP" 9728 T ABELGRP (NIL) -9 NIL 9810) (-20 8693 8822 9038 "ABELGRP-" 9043 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8029 8069 "A1AGG" 8074 NIL A1AGG (NIL T) -9 NIL 8114) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-1185 3125227 3125232 3125237 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3125212 3125217 3125222 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3125197 3125202 3125207 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3125182 3125187 3125192 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3125167 3125172 3125177 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1180 3124297 3125042 3125119 "ZMOD" 3125124 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1179 3123407 3123571 3123780 "ZLINDEP" 3124129 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1178 3112811 3114556 3116508 "ZDSOLVE" 3121556 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1177 3112057 3112198 3112387 "YSTREAM" 3112657 NIL YSTREAM (NIL T) -7 NIL NIL) (-1176 3109826 3111362 3111565 "XRPOLY" 3111900 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1175 3106296 3107625 3108203 "XPR" 3109294 NIL XPR (NIL T T) -8 NIL NIL) (-1174 3104010 3105631 3105834 "XPOLY" 3106127 NIL XPOLY (NIL T) -8 NIL NIL) (-1173 3101823 3103201 3103256 "XPOLYC" 3103541 NIL XPOLYC (NIL T T) -9 NIL 3103654) (-1172 3098197 3100342 3100729 "XPBWPOLY" 3101482 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1171 3094080 3096393 3096436 "XF" 3097057 NIL XF (NIL T) -9 NIL 3097453) (-1170 3093701 3093789 3093958 "XF-" 3093963 NIL XF- (NIL T T) -8 NIL NIL) (-1169 3089082 3090381 3090436 "XFALG" 3092584 NIL XFALG (NIL T T) -9 NIL 3093369) (-1168 3088219 3088323 3088527 "XEXPPKG" 3088974 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1167 3086317 3088070 3088165 "XDPOLY" 3088170 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1166 3085196 3085806 3085849 "XALG" 3085911 NIL XALG (NIL T) -9 NIL 3086029) (-1165 3078672 3083180 3083673 "WUTSET" 3084788 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1164 3076488 3077295 3077644 "WP" 3078456 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1163 3075374 3075572 3075867 "WFFINTBS" 3076285 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1162 3073278 3073705 3074167 "WEIER" 3074946 NIL WEIER (NIL T) -7 NIL NIL) (-1161 3072426 3072850 3072893 "VSPACE" 3073029 NIL VSPACE (NIL T) -9 NIL 3073103) (-1160 3072264 3072291 3072382 "VSPACE-" 3072387 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1159 3072010 3072053 3072124 "VOID" 3072215 T VOID (NIL) -8 NIL NIL) (-1158 3070146 3070505 3070911 "VIEW" 3071626 T VIEW (NIL) -7 NIL NIL) (-1157 3066571 3067209 3067946 "VIEWDEF" 3069431 T VIEWDEF (NIL) -7 NIL NIL) (-1156 3055910 3058119 3060292 "VIEW3D" 3064420 T VIEW3D (NIL) -8 NIL NIL) (-1155 3048192 3049821 3051400 "VIEW2D" 3054353 T VIEW2D (NIL) -8 NIL NIL) (-1154 3043601 3047962 3048054 "VECTOR" 3048135 NIL VECTOR (NIL T) -8 NIL NIL) (-1153 3042178 3042437 3042755 "VECTOR2" 3043331 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1152 3035727 3039973 3040017 "VECTCAT" 3041005 NIL VECTCAT (NIL T) -9 NIL 3041582) (-1151 3034741 3034995 3035385 "VECTCAT-" 3035390 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1150 3034222 3034392 3034512 "VARIABLE" 3034656 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1149 3033059 3033213 3033473 "UTSODETL" 3034049 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1148 3030499 3030959 3031483 "UTSODE" 3032600 NIL UTSODE (NIL T T) -7 NIL NIL) (-1147 3022349 3028141 3028628 "UTS" 3030069 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1146 3013654 3019016 3019059 "UTSCAT" 3020160 NIL UTSCAT (NIL T) -9 NIL 3020910) (-1145 3011010 3011725 3012713 "UTSCAT-" 3012718 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1144 3010641 3010684 3010815 "UTS2" 3010961 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1143 3004917 3007482 3007526 "URAGG" 3009596 NIL URAGG (NIL T) -9 NIL 3010317) (-1142 3001856 3002719 3003842 "URAGG-" 3003847 NIL URAGG- (NIL T T) -8 NIL NIL) (-1141 2997542 3000473 3000944 "UPXSSING" 3001520 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1140 2989438 2996665 2996944 "UPXS" 2997320 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1139 2982470 2989343 2989414 "UPXSCONS" 2989419 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1138 2972698 2979525 2979587 "UPXSCCA" 2980236 NIL UPXSCCA (NIL T T) -9 NIL 2980477) (-1137 2972337 2972422 2972595 "UPXSCCA-" 2972600 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1136 2962494 2969094 2969137 "UPXSCAT" 2969780 NIL UPXSCAT (NIL T) -9 NIL 2970381) (-1135 2961928 2962007 2962184 "UPXS2" 2962409 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1134 2960582 2960835 2961186 "UPSQFREE" 2961671 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1133 2954436 2957488 2957543 "UPSCAT" 2958692 NIL UPSCAT (NIL T T) -9 NIL 2959459) (-1132 2953650 2953854 2954177 "UPSCAT-" 2954182 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1131 2939729 2947726 2947769 "UPOLYC" 2949847 NIL UPOLYC (NIL T) -9 NIL 2951061) (-1130 2931122 2933526 2936651 "UPOLYC-" 2936656 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1129 2930753 2930796 2930927 "UPOLYC2" 2931073 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1128 2922212 2930322 2930459 "UP" 2930663 NIL UP (NIL NIL T) -8 NIL NIL) (-1127 2921555 2921662 2921825 "UPMP" 2922101 NIL UPMP (NIL T T) -7 NIL NIL) (-1126 2921108 2921189 2921328 "UPDIVP" 2921468 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1125 2919676 2919925 2920241 "UPDECOMP" 2920857 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1124 2918911 2919023 2919208 "UPCDEN" 2919560 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1123 2918434 2918503 2918650 "UP2" 2918836 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1122 2916963 2917649 2917921 "UNISEG" 2918197 NIL UNISEG (NIL T) -8 NIL NIL) (-1121 2916180 2916307 2916511 "UNISEG2" 2916807 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1120 2915240 2915420 2915646 "UNIFACT" 2915996 NIL UNIFACT (NIL T) -7 NIL NIL) (-1119 2899141 2914423 2914672 "ULS" 2915048 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1118 2887109 2899046 2899117 "ULSCONS" 2899122 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1117 2869813 2881823 2881885 "ULSCCAT" 2882597 NIL ULSCCAT (NIL T T) -9 NIL 2882892) (-1116 2868864 2869109 2869496 "ULSCCAT-" 2869501 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1115 2858815 2865329 2865372 "ULSCAT" 2866228 NIL ULSCAT (NIL T) -9 NIL 2866950) (-1114 2858249 2858328 2858505 "ULS2" 2858730 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1113 2856646 2857613 2857644 "UFD" 2857856 T UFD (NIL) -9 NIL 2857970) (-1112 2856440 2856486 2856581 "UFD-" 2856586 NIL UFD- (NIL T) -8 NIL NIL) (-1111 2855522 2855705 2855921 "UDVO" 2856246 T UDVO (NIL) -7 NIL NIL) (-1110 2853340 2853749 2854219 "UDPO" 2855087 NIL UDPO (NIL T) -7 NIL NIL) (-1109 2853272 2853277 2853308 "TYPE" 2853313 T TYPE (NIL) -9 NIL NIL) (-1108 2852243 2852445 2852685 "TWOFACT" 2853066 NIL TWOFACT (NIL T) -7 NIL NIL) (-1107 2851185 2851522 2851783 "TUPLE" 2852017 NIL TUPLE (NIL T) -8 NIL NIL) (-1106 2848876 2849395 2849934 "TUBETOOL" 2850668 T TUBETOOL (NIL) -7 NIL NIL) (-1105 2847725 2847930 2848171 "TUBE" 2848669 NIL TUBE (NIL T) -8 NIL NIL) (-1104 2842451 2846705 2846986 "TS" 2847478 NIL TS (NIL T) -8 NIL NIL) (-1103 2831155 2835247 2835344 "TSETCAT" 2840578 NIL TSETCAT (NIL T T T T) -9 NIL 2842108) (-1102 2825891 2827488 2829378 "TSETCAT-" 2829383 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1101 2820162 2821008 2821946 "TRMANIP" 2825031 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1100 2819603 2819666 2819829 "TRIMAT" 2820094 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1099 2817409 2817646 2818009 "TRIGMNIP" 2819352 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1098 2816928 2817041 2817072 "TRIGCAT" 2817285 T TRIGCAT (NIL) -9 NIL NIL) (-1097 2816597 2816676 2816817 "TRIGCAT-" 2816822 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1096 2813502 2815457 2815737 "TREE" 2816352 NIL TREE (NIL T) -8 NIL NIL) (-1095 2812775 2813303 2813334 "TRANFUN" 2813369 T TRANFUN (NIL) -9 NIL 2813435) (-1094 2812054 2812245 2812525 "TRANFUN-" 2812530 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1093 2811858 2811890 2811951 "TOPSP" 2812015 T TOPSP (NIL) -7 NIL NIL) (-1092 2811210 2811325 2811478 "TOOLSIGN" 2811739 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1091 2809871 2810387 2810626 "TEXTFILE" 2810993 T TEXTFILE (NIL) -8 NIL NIL) (-1090 2807736 2808250 2808688 "TEX" 2809455 T TEX (NIL) -8 NIL NIL) (-1089 2807517 2807548 2807620 "TEX1" 2807699 NIL TEX1 (NIL T) -7 NIL NIL) (-1088 2807165 2807228 2807318 "TEMUTL" 2807449 T TEMUTL (NIL) -7 NIL NIL) (-1087 2805319 2805599 2805924 "TBCMPPK" 2806888 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1086 2796977 2803237 2803294 "TBAGG" 2803694 NIL TBAGG (NIL T T) -9 NIL 2803905) (-1085 2792047 2793535 2795289 "TBAGG-" 2795294 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1084 2791431 2791538 2791683 "TANEXP" 2791936 NIL TANEXP (NIL T) -7 NIL NIL) (-1083 2784944 2791288 2791381 "TABLE" 2791386 NIL TABLE (NIL T T) -8 NIL NIL) (-1082 2784357 2784455 2784593 "TABLEAU" 2784841 NIL TABLEAU (NIL T) -8 NIL NIL) (-1081 2778965 2780185 2781433 "TABLBUMP" 2783143 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1080 2775428 2776123 2776906 "SYSSOLP" 2778216 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1079 2774010 2774258 2774563 "SYNTAX" 2775145 T SYNTAX (NIL) -8 NIL NIL) (-1078 2771144 2771752 2772390 "SYMTAB" 2773394 T SYMTAB (NIL) -8 NIL NIL) (-1077 2766393 2767295 2768278 "SYMS" 2770183 T SYMS (NIL) -8 NIL NIL) (-1076 2763632 2765859 2766085 "SYMPOLY" 2766201 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1075 2763152 2763227 2763349 "SYMFUNC" 2763544 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1074 2759130 2760389 2761211 "SYMBOL" 2762352 T SYMBOL (NIL) -8 NIL NIL) (-1073 2752669 2754358 2756078 "SWITCH" 2757432 T SWITCH (NIL) -8 NIL NIL) (-1072 2745904 2751498 2751799 "SUTS" 2752425 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1071 2737799 2745027 2745306 "SUPXS" 2745682 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1070 2729332 2737420 2737545 "SUP" 2737708 NIL SUP (NIL T) -8 NIL NIL) (-1069 2728491 2728618 2728835 "SUPFRACF" 2729200 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1068 2728116 2728175 2728286 "SUP2" 2728426 NIL SUP2 (NIL T T) -7 NIL NIL) (-1067 2726542 2726814 2727174 "SUMRF" 2727817 NIL SUMRF (NIL T) -7 NIL NIL) (-1066 2725863 2725928 2726125 "SUMFS" 2726464 NIL SUMFS (NIL T T) -7 NIL NIL) (-1065 2709804 2725046 2725295 "SULS" 2725671 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1064 2709126 2709329 2709469 "SUCH" 2709712 NIL SUCH (NIL T T) -8 NIL NIL) (-1063 2703053 2704065 2705023 "SUBSPACE" 2708214 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1062 2702485 2702575 2702738 "SUBRESP" 2702942 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1061 2695854 2697150 2698461 "STTF" 2701221 NIL STTF (NIL T) -7 NIL NIL) (-1060 2690027 2691147 2692294 "STTFNC" 2694754 NIL STTFNC (NIL T) -7 NIL NIL) (-1059 2681382 2683249 2685040 "STTAYLOR" 2688270 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1058 2674638 2681246 2681329 "STRTBL" 2681334 NIL STRTBL (NIL T) -8 NIL NIL) (-1057 2670029 2674593 2674624 "STRING" 2674629 T STRING (NIL) -8 NIL NIL) (-1056 2664887 2669372 2669403 "STRICAT" 2669462 T STRICAT (NIL) -9 NIL 2669524) (-1055 2657612 2662414 2663032 "STREAM" 2664304 NIL STREAM (NIL T) -8 NIL NIL) (-1054 2657122 2657199 2657343 "STREAM3" 2657529 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1053 2656104 2656287 2656522 "STREAM2" 2656935 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1052 2655792 2655844 2655937 "STREAM1" 2656046 NIL STREAM1 (NIL T) -7 NIL NIL) (-1051 2654808 2654989 2655220 "STINPROD" 2655608 NIL STINPROD (NIL T) -7 NIL NIL) (-1050 2654386 2654570 2654601 "STEP" 2654681 T STEP (NIL) -9 NIL 2654759) (-1049 2647941 2654285 2654362 "STBL" 2654367 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1048 2643113 2647160 2647204 "STAGG" 2647357 NIL STAGG (NIL T) -9 NIL 2647446) (-1047 2640815 2641417 2642289 "STAGG-" 2642294 NIL STAGG- (NIL T T) -8 NIL NIL) (-1046 2639013 2640585 2640677 "STACK" 2640758 NIL STACK (NIL T) -8 NIL NIL) (-1045 2631744 2637160 2637615 "SREGSET" 2638643 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1044 2624184 2625552 2627064 "SRDCMPK" 2630350 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1043 2617127 2621594 2621625 "SRAGG" 2622928 T SRAGG (NIL) -9 NIL 2623536) (-1042 2616144 2616399 2616778 "SRAGG-" 2616783 NIL SRAGG- (NIL T) -8 NIL NIL) (-1041 2610601 2615071 2615494 "SQMATRIX" 2615767 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1040 2604359 2607321 2608047 "SPLTREE" 2609947 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1039 2600349 2601015 2601661 "SPLNODE" 2603785 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1038 2599395 2599628 2599659 "SPFCAT" 2600103 T SPFCAT (NIL) -9 NIL NIL) (-1037 2598132 2598342 2598606 "SPECOUT" 2599153 T SPECOUT (NIL) -7 NIL NIL) (-1036 2597893 2597933 2598002 "SPADPRSR" 2598085 T SPADPRSR (NIL) -7 NIL NIL) (-1035 2589915 2591662 2591705 "SPACEC" 2596028 NIL SPACEC (NIL T) -9 NIL 2597844) (-1034 2588087 2589848 2589896 "SPACE3" 2589901 NIL SPACE3 (NIL T) -8 NIL NIL) (-1033 2586841 2587012 2587302 "SORTPAK" 2587893 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1032 2584897 2585200 2585618 "SOLVETRA" 2586505 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1031 2583908 2584130 2584404 "SOLVESER" 2584670 NIL SOLVESER (NIL T) -7 NIL NIL) (-1030 2579128 2580009 2581011 "SOLVERAD" 2582960 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1029 2574943 2575552 2576281 "SOLVEFOR" 2578495 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1028 2569242 2574294 2574391 "SNTSCAT" 2574396 NIL SNTSCAT (NIL T T T T) -9 NIL 2574466) (-1027 2563349 2567575 2567964 "SMTS" 2568933 NIL SMTS (NIL T T T) -8 NIL NIL) (-1026 2557759 2563238 2563314 "SMP" 2563319 NIL SMP (NIL T T) -8 NIL NIL) (-1025 2555918 2556219 2556617 "SMITH" 2557456 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1024 2548885 2553081 2553184 "SMATCAT" 2554524 NIL SMATCAT (NIL NIL T T T) -9 NIL 2555070) (-1023 2545826 2546649 2547826 "SMATCAT-" 2547831 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1022 2543545 2545062 2545106 "SKAGG" 2545367 NIL SKAGG (NIL T) -9 NIL 2545502) (-1021 2539603 2542649 2542927 "SINT" 2543289 T SINT (NIL) -8 NIL NIL) (-1020 2539375 2539413 2539479 "SIMPAN" 2539559 T SIMPAN (NIL) -7 NIL NIL) (-1019 2538213 2538434 2538709 "SIGNRF" 2539134 NIL SIGNRF (NIL T) -7 NIL NIL) (-1018 2537022 2537173 2537463 "SIGNEF" 2538042 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1017 2534714 2535168 2535673 "SHP" 2536564 NIL SHP (NIL T NIL) -7 NIL NIL) (-1016 2528573 2534615 2534691 "SHDP" 2534696 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1015 2528062 2528254 2528285 "SGROUP" 2528437 T SGROUP (NIL) -9 NIL 2528524) (-1014 2527832 2527884 2527988 "SGROUP-" 2527993 NIL SGROUP- (NIL T) -8 NIL NIL) (-1013 2524668 2525365 2526088 "SGCF" 2527131 T SGCF (NIL) -7 NIL NIL) (-1012 2519066 2524118 2524215 "SFRTCAT" 2524220 NIL SFRTCAT (NIL T T T T) -9 NIL 2524258) (-1011 2512526 2513541 2514675 "SFRGCD" 2518049 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1010 2505692 2506763 2507947 "SFQCMPK" 2511459 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1009 2505314 2505403 2505513 "SFORT" 2505633 NIL SFORT (NIL T T) -8 NIL NIL) (-1008 2504459 2505154 2505275 "SEXOF" 2505280 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1007 2503593 2504340 2504408 "SEX" 2504413 T SEX (NIL) -8 NIL NIL) (-1006 2498369 2499058 2499154 "SEXCAT" 2502925 NIL SEXCAT (NIL T T T T T) -9 NIL 2503544) (-1005 2495549 2498303 2498351 "SET" 2498356 NIL SET (NIL T) -8 NIL NIL) (-1004 2493800 2494262 2494567 "SETMN" 2495290 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1003 2493407 2493533 2493564 "SETCAT" 2493681 T SETCAT (NIL) -9 NIL 2493765) (-1002 2493187 2493239 2493338 "SETCAT-" 2493343 NIL SETCAT- (NIL T) -8 NIL NIL) (-1001 2489574 2491648 2491692 "SETAGG" 2492562 NIL SETAGG (NIL T) -9 NIL 2492902) (-1000 2489032 2489148 2489385 "SETAGG-" 2489390 NIL SETAGG- (NIL T T) -8 NIL NIL) (-999 2488242 2488535 2488595 "SEGXCAT" 2488878 NIL SEGXCAT (NIL T T) -9 NIL 2488997) (-998 2487308 2487918 2488094 "SEG" 2488099 NIL SEG (NIL T) -8 NIL NIL) (-997 2486225 2486438 2486480 "SEGCAT" 2487053 NIL SEGCAT (NIL T) -9 NIL 2487291) (-996 2485289 2485617 2485812 "SEGBIND" 2486063 NIL SEGBIND (NIL T) -8 NIL NIL) (-995 2484921 2484978 2485087 "SEGBIND2" 2485226 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-994 2484158 2484281 2484479 "SEG2" 2484769 NIL SEG2 (NIL T T) -7 NIL NIL) (-993 2483597 2484095 2484140 "SDVAR" 2484145 NIL SDVAR (NIL T) -8 NIL NIL) (-992 2475903 2483376 2483500 "SDPOL" 2483505 NIL SDPOL (NIL T) -8 NIL NIL) (-991 2474502 2474768 2475085 "SCPKG" 2475618 NIL SCPKG (NIL T) -7 NIL NIL) (-990 2473729 2473862 2474039 "SCACHE" 2474357 NIL SCACHE (NIL T) -7 NIL NIL) (-989 2473172 2473493 2473576 "SAOS" 2473666 T SAOS (NIL) -8 NIL NIL) (-988 2472740 2472775 2472946 "SAERFFC" 2473131 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-987 2466636 2472639 2472717 "SAE" 2472722 NIL SAE (NIL T T NIL) -8 NIL NIL) (-986 2466232 2466267 2466424 "SAEFACT" 2466595 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-985 2464558 2464872 2465271 "RURPK" 2465898 NIL RURPK (NIL T NIL) -7 NIL NIL) (-984 2463211 2463488 2463795 "RULESET" 2464394 NIL RULESET (NIL T T T) -8 NIL NIL) (-983 2460419 2460922 2461383 "RULE" 2462893 NIL RULE (NIL T T T) -8 NIL NIL) (-982 2460061 2460216 2460297 "RULECOLD" 2460371 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-981 2454953 2455747 2456663 "RSETGCD" 2459260 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-980 2444267 2449319 2449414 "RSETCAT" 2453479 NIL RSETCAT (NIL T T T T) -9 NIL 2454576) (-979 2442198 2442737 2443557 "RSETCAT-" 2443562 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-978 2434628 2436003 2437519 "RSDCMPK" 2440797 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-977 2432645 2433086 2433159 "RRCC" 2434235 NIL RRCC (NIL T T) -9 NIL 2434579) (-976 2431999 2432173 2432449 "RRCC-" 2432454 NIL RRCC- (NIL T T T) -8 NIL NIL) (-975 2406329 2415954 2416019 "RPOLCAT" 2426521 NIL RPOLCAT (NIL T T T) -9 NIL 2429668) (-974 2397833 2400171 2403289 "RPOLCAT-" 2403294 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-973 2388911 2396063 2396543 "ROUTINE" 2397373 T ROUTINE (NIL) -8 NIL NIL) (-972 2385616 2388467 2388614 "ROMAN" 2388784 T ROMAN (NIL) -8 NIL NIL) (-971 2383902 2384487 2384744 "ROIRC" 2385422 NIL ROIRC (NIL T T) -8 NIL NIL) (-970 2380259 2382563 2382592 "RNS" 2382888 T RNS (NIL) -9 NIL 2383158) (-969 2378773 2379156 2379687 "RNS-" 2379760 NIL RNS- (NIL T) -8 NIL NIL) (-968 2378198 2378606 2378635 "RNG" 2378640 T RNG (NIL) -9 NIL 2378661) (-967 2377595 2377957 2377998 "RMODULE" 2378058 NIL RMODULE (NIL T) -9 NIL 2378100) (-966 2376447 2376541 2376871 "RMCAT2" 2377496 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-965 2373165 2375634 2375953 "RMATRIX" 2376184 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-964 2366166 2368400 2368513 "RMATCAT" 2371822 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2372799) (-963 2365545 2365692 2365995 "RMATCAT-" 2366000 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-962 2365115 2365190 2365316 "RINTERP" 2365464 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-961 2364165 2364729 2364758 "RING" 2364868 T RING (NIL) -9 NIL 2364962) (-960 2363960 2364004 2364098 "RING-" 2364103 NIL RING- (NIL T) -8 NIL NIL) (-959 2362812 2363048 2363303 "RIDIST" 2363725 T RIDIST (NIL) -7 NIL NIL) (-958 2354134 2362286 2362489 "RGCHAIN" 2362661 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-957 2351139 2351753 2352421 "RF" 2353498 NIL RF (NIL T) -7 NIL NIL) (-956 2350788 2350851 2350952 "RFFACTOR" 2351070 NIL RFFACTOR (NIL T) -7 NIL NIL) (-955 2350516 2350551 2350646 "RFFACT" 2350747 NIL RFFACT (NIL T) -7 NIL NIL) (-954 2348646 2349010 2349390 "RFDIST" 2350156 T RFDIST (NIL) -7 NIL NIL) (-953 2348104 2348196 2348356 "RETSOL" 2348548 NIL RETSOL (NIL T T) -7 NIL NIL) (-952 2347696 2347776 2347818 "RETRACT" 2348008 NIL RETRACT (NIL T) -9 NIL NIL) (-951 2347548 2347573 2347657 "RETRACT-" 2347662 NIL RETRACT- (NIL T T) -8 NIL NIL) (-950 2340418 2347205 2347330 "RESULT" 2347443 T RESULT (NIL) -8 NIL NIL) (-949 2339003 2339692 2339889 "RESRING" 2340321 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-948 2338643 2338692 2338788 "RESLATC" 2338940 NIL RESLATC (NIL T) -7 NIL NIL) (-947 2338352 2338386 2338491 "REPSQ" 2338602 NIL REPSQ (NIL T) -7 NIL NIL) (-946 2335783 2336363 2336963 "REP" 2337772 T REP (NIL) -7 NIL NIL) (-945 2335484 2335518 2335627 "REPDB" 2335742 NIL REPDB (NIL T) -7 NIL NIL) (-944 2329437 2330816 2332032 "REP2" 2334300 NIL REP2 (NIL T) -7 NIL NIL) (-943 2325847 2326528 2327331 "REP1" 2328666 NIL REP1 (NIL T) -7 NIL NIL) (-942 2318593 2324008 2324460 "REGSET" 2325478 NIL REGSET (NIL T T T T) -8 NIL NIL) (-941 2317416 2317751 2317998 "REF" 2318379 NIL REF (NIL T) -8 NIL NIL) (-940 2316797 2316900 2317065 "REDORDER" 2317300 NIL REDORDER (NIL T T) -7 NIL NIL) (-939 2312766 2316031 2316252 "RECLOS" 2316628 NIL RECLOS (NIL T) -8 NIL NIL) (-938 2311823 2312004 2312217 "REALSOLV" 2312573 T REALSOLV (NIL) -7 NIL NIL) (-937 2311670 2311711 2311740 "REAL" 2311745 T REAL (NIL) -9 NIL 2311780) (-936 2308161 2308963 2309845 "REAL0Q" 2310835 NIL REAL0Q (NIL T) -7 NIL NIL) (-935 2303772 2304760 2305819 "REAL0" 2307142 NIL REAL0 (NIL T) -7 NIL NIL) (-934 2303180 2303252 2303457 "RDIV" 2303694 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-933 2302253 2302427 2302638 "RDIST" 2303002 NIL RDIST (NIL T) -7 NIL NIL) (-932 2300857 2301144 2301513 "RDETRS" 2301961 NIL RDETRS (NIL T T) -7 NIL NIL) (-931 2298678 2299132 2299667 "RDETR" 2300399 NIL RDETR (NIL T T) -7 NIL NIL) (-930 2297294 2297572 2297973 "RDEEFS" 2298394 NIL RDEEFS (NIL T T) -7 NIL NIL) (-929 2295794 2296100 2296529 "RDEEF" 2296982 NIL RDEEF (NIL T T) -7 NIL NIL) (-928 2290019 2292951 2292980 "RCFIELD" 2294257 T RCFIELD (NIL) -9 NIL 2294987) (-927 2288088 2288592 2289285 "RCFIELD-" 2289358 NIL RCFIELD- (NIL T) -8 NIL NIL) (-926 2284421 2286206 2286248 "RCAGG" 2287319 NIL RCAGG (NIL T) -9 NIL 2287782) (-925 2284052 2284146 2284306 "RCAGG-" 2284311 NIL RCAGG- (NIL T T) -8 NIL NIL) (-924 2283397 2283508 2283670 "RATRET" 2283936 NIL RATRET (NIL T) -7 NIL NIL) (-923 2282954 2283021 2283140 "RATFACT" 2283325 NIL RATFACT (NIL T) -7 NIL NIL) (-922 2282269 2282389 2282539 "RANDSRC" 2282824 T RANDSRC (NIL) -7 NIL NIL) (-921 2282006 2282050 2282121 "RADUTIL" 2282218 T RADUTIL (NIL) -7 NIL NIL) (-920 2275013 2280749 2281066 "RADIX" 2281721 NIL RADIX (NIL NIL) -8 NIL NIL) (-919 2266583 2274857 2274985 "RADFF" 2274990 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-918 2266234 2266309 2266338 "RADCAT" 2266495 T RADCAT (NIL) -9 NIL NIL) (-917 2266019 2266067 2266164 "RADCAT-" 2266169 NIL RADCAT- (NIL T) -8 NIL NIL) (-916 2264176 2265794 2265883 "QUEUE" 2265963 NIL QUEUE (NIL T) -8 NIL NIL) (-915 2260673 2264113 2264158 "QUAT" 2264163 NIL QUAT (NIL T) -8 NIL NIL) (-914 2260311 2260354 2260481 "QUATCT2" 2260624 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-913 2254065 2257445 2257486 "QUATCAT" 2258265 NIL QUATCAT (NIL T) -9 NIL 2259022) (-912 2250209 2251246 2252633 "QUATCAT-" 2252727 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-911 2247735 2249293 2249335 "QUAGG" 2249710 NIL QUAGG (NIL T) -9 NIL 2249885) (-910 2246660 2247133 2247305 "QFORM" 2247607 NIL QFORM (NIL NIL T) -8 NIL NIL) (-909 2237921 2243179 2243220 "QFCAT" 2243878 NIL QFCAT (NIL T) -9 NIL 2244859) (-908 2233493 2234694 2236285 "QFCAT-" 2236379 NIL QFCAT- (NIL T T) -8 NIL NIL) (-907 2233131 2233174 2233301 "QFCAT2" 2233444 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-906 2232591 2232701 2232831 "QEQUAT" 2233021 T QEQUAT (NIL) -8 NIL NIL) (-905 2225777 2226848 2228030 "QCMPACK" 2231524 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-904 2223357 2223778 2224204 "QALGSET" 2225434 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-903 2222602 2222776 2223008 "QALGSET2" 2223177 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-902 2221293 2221516 2221833 "PWFFINTB" 2222375 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-901 2219481 2219649 2220002 "PUSHVAR" 2221107 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-900 2215398 2216452 2216494 "PTRANFN" 2218378 NIL PTRANFN (NIL T) -9 NIL NIL) (-899 2213810 2214101 2214422 "PTPACK" 2215109 NIL PTPACK (NIL T) -7 NIL NIL) (-898 2213446 2213503 2213610 "PTFUNC2" 2213747 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-897 2207925 2212260 2212301 "PTCAT" 2212669 NIL PTCAT (NIL T) -9 NIL 2212831) (-896 2207583 2207618 2207742 "PSQFR" 2207884 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-895 2206178 2206476 2206810 "PSEUDLIN" 2207281 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-894 2192992 2195356 2197676 "PSETPK" 2203941 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-893 2186079 2188793 2188888 "PSETCAT" 2191869 NIL PSETCAT (NIL T T T T) -9 NIL 2192682) (-892 2183917 2184551 2185370 "PSETCAT-" 2185375 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-891 2183274 2183436 2183465 "PSCURVE" 2183730 T PSCURVE (NIL) -9 NIL 2183894) (-890 2179678 2181204 2181269 "PSCAT" 2182105 NIL PSCAT (NIL T T T) -9 NIL 2182345) (-889 2178742 2178958 2179357 "PSCAT-" 2179362 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-888 2177395 2178027 2178241 "PRTITION" 2178548 T PRTITION (NIL) -8 NIL NIL) (-887 2166495 2168701 2170888 "PRS" 2175258 NIL PRS (NIL T T) -7 NIL NIL) (-886 2164359 2165845 2165886 "PRQAGG" 2166069 NIL PRQAGG (NIL T) -9 NIL 2166171) (-885 2158165 2162557 2163361 "PRODUCT" 2163601 NIL PRODUCT (NIL T T) -8 NIL NIL) (-884 2155447 2157631 2157861 "PR" 2157979 NIL PR (NIL T T) -8 NIL NIL) (-883 2155243 2155275 2155334 "PRINT" 2155408 T PRINT (NIL) -7 NIL NIL) (-882 2154583 2154700 2154852 "PRIMES" 2155123 NIL PRIMES (NIL T) -7 NIL NIL) (-881 2152648 2153049 2153515 "PRIMELT" 2154162 NIL PRIMELT (NIL T) -7 NIL NIL) (-880 2152379 2152427 2152456 "PRIMCAT" 2152579 T PRIMCAT (NIL) -9 NIL NIL) (-879 2148540 2152317 2152362 "PRIMARR" 2152367 NIL PRIMARR (NIL T) -8 NIL NIL) (-878 2147547 2147725 2147953 "PRIMARR2" 2148358 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-877 2147190 2147246 2147357 "PREASSOC" 2147485 NIL PREASSOC (NIL T T) -7 NIL NIL) (-876 2146670 2146801 2146830 "PPCURVE" 2147033 T PPCURVE (NIL) -9 NIL 2147167) (-875 2144031 2144430 2145021 "POLYROOT" 2146252 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-874 2137939 2143639 2143797 "POLY" 2143905 NIL POLY (NIL T) -8 NIL NIL) (-873 2137324 2137382 2137615 "POLYLIFT" 2137875 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-872 2133609 2134058 2134686 "POLYCATQ" 2136869 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-871 2120617 2126014 2126079 "POLYCAT" 2129564 NIL POLYCAT (NIL T T T) -9 NIL 2131476) (-870 2114068 2115929 2118312 "POLYCAT-" 2118317 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-869 2113657 2113725 2113844 "POLY2UP" 2113994 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-868 2113293 2113350 2113457 "POLY2" 2113594 NIL POLY2 (NIL T T) -7 NIL NIL) (-867 2111980 2112219 2112494 "POLUTIL" 2113068 NIL POLUTIL (NIL T T) -7 NIL NIL) (-866 2110342 2110619 2110949 "POLTOPOL" 2111702 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-865 2105871 2110279 2110324 "POINT" 2110329 NIL POINT (NIL T) -8 NIL NIL) (-864 2104058 2104415 2104790 "PNTHEORY" 2105516 T PNTHEORY (NIL) -7 NIL NIL) (-863 2102486 2102783 2103192 "PMTOOLS" 2103756 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-862 2102079 2102157 2102274 "PMSYM" 2102402 NIL PMSYM (NIL T) -7 NIL NIL) (-861 2101589 2101658 2101832 "PMQFCAT" 2102004 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-860 2100944 2101054 2101210 "PMPRED" 2101466 NIL PMPRED (NIL T) -7 NIL NIL) (-859 2100340 2100426 2100587 "PMPREDFS" 2100845 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-858 2098988 2099196 2099579 "PMPLCAT" 2100103 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-857 2098520 2098599 2098751 "PMLSAGG" 2098903 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-856 2097997 2098073 2098253 "PMKERNEL" 2098438 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-855 2097614 2097689 2097802 "PMINS" 2097916 NIL PMINS (NIL T) -7 NIL NIL) (-854 2097044 2097113 2097328 "PMFS" 2097539 NIL PMFS (NIL T T T) -7 NIL NIL) (-853 2096275 2096393 2096597 "PMDOWN" 2096921 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-852 2095438 2095597 2095779 "PMASS" 2096113 T PMASS (NIL) -7 NIL NIL) (-851 2094712 2094823 2094986 "PMASSFS" 2095324 NIL PMASSFS (NIL T T) -7 NIL NIL) (-850 2094371 2094438 2094531 "PLOTTOOL" 2094639 T PLOTTOOL (NIL) -7 NIL NIL) (-849 2089072 2090238 2091365 "PLOT" 2093264 T PLOT (NIL) -8 NIL NIL) (-848 2084945 2085960 2086865 "PLOT3D" 2088187 T PLOT3D (NIL) -8 NIL NIL) (-847 2083869 2084043 2084275 "PLOT1" 2084752 NIL PLOT1 (NIL T) -7 NIL NIL) (-846 2059264 2063935 2068786 "PLEQN" 2079135 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-845 2058582 2058704 2058884 "PINTERP" 2059129 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-844 2058275 2058322 2058425 "PINTERPA" 2058529 NIL PINTERPA (NIL T T) -7 NIL NIL) (-843 2057502 2058069 2058162 "PI" 2058202 T PI (NIL) -8 NIL NIL) (-842 2055893 2056878 2056907 "PID" 2057089 T PID (NIL) -9 NIL 2057223) (-841 2055618 2055655 2055743 "PICOERCE" 2055850 NIL PICOERCE (NIL T) -7 NIL NIL) (-840 2054939 2055077 2055253 "PGROEB" 2055474 NIL PGROEB (NIL T) -7 NIL NIL) (-839 2050526 2051340 2052245 "PGE" 2054054 T PGE (NIL) -7 NIL NIL) (-838 2048650 2048896 2049262 "PGCD" 2050243 NIL PGCD (NIL T T T T) -7 NIL NIL) (-837 2047988 2048091 2048252 "PFRPAC" 2048534 NIL PFRPAC (NIL T) -7 NIL NIL) (-836 2044603 2046536 2046889 "PFR" 2047667 NIL PFR (NIL T) -8 NIL NIL) (-835 2042992 2043236 2043561 "PFOTOOLS" 2044350 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-834 2041525 2041764 2042115 "PFOQ" 2042749 NIL PFOQ (NIL T T T) -7 NIL NIL) (-833 2040002 2040214 2040576 "PFO" 2041309 NIL PFO (NIL T T T T T) -7 NIL NIL) (-832 2036525 2039891 2039960 "PF" 2039965 NIL PF (NIL NIL) -8 NIL NIL) (-831 2033954 2035235 2035264 "PFECAT" 2035849 T PFECAT (NIL) -9 NIL 2036232) (-830 2033399 2033553 2033767 "PFECAT-" 2033772 NIL PFECAT- (NIL T) -8 NIL NIL) (-829 2032003 2032254 2032555 "PFBRU" 2033148 NIL PFBRU (NIL T T) -7 NIL NIL) (-828 2029870 2030221 2030653 "PFBR" 2031654 NIL PFBR (NIL T T T T) -7 NIL NIL) (-827 2025726 2027250 2027924 "PERM" 2029229 NIL PERM (NIL T) -8 NIL NIL) (-826 2020993 2021933 2022803 "PERMGRP" 2024889 NIL PERMGRP (NIL T) -8 NIL NIL) (-825 2019065 2020058 2020100 "PERMCAT" 2020546 NIL PERMCAT (NIL T) -9 NIL 2020849) (-824 2018720 2018761 2018884 "PERMAN" 2019018 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-823 2016166 2018289 2018420 "PENDTREE" 2018622 NIL PENDTREE (NIL T) -8 NIL NIL) (-822 2014238 2015016 2015058 "PDRING" 2015715 NIL PDRING (NIL T) -9 NIL 2016000) (-821 2013341 2013559 2013921 "PDRING-" 2013926 NIL PDRING- (NIL T T) -8 NIL NIL) (-820 2010483 2011233 2011924 "PDEPROB" 2012670 T PDEPROB (NIL) -8 NIL NIL) (-819 2008054 2008550 2009099 "PDEPACK" 2009954 T PDEPACK (NIL) -7 NIL NIL) (-818 2006966 2007156 2007407 "PDECOMP" 2007853 NIL PDECOMP (NIL T T) -7 NIL NIL) (-817 2004577 2005392 2005421 "PDECAT" 2006206 T PDECAT (NIL) -9 NIL 2006917) (-816 2004330 2004363 2004452 "PCOMP" 2004538 NIL PCOMP (NIL T T) -7 NIL NIL) (-815 2002537 2003133 2003429 "PBWLB" 2004060 NIL PBWLB (NIL T) -8 NIL NIL) (-814 1995046 1996614 1997950 "PATTERN" 2001222 NIL PATTERN (NIL T) -8 NIL NIL) (-813 1994678 1994735 1994844 "PATTERN2" 1994983 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-812 1992435 1992823 1993280 "PATTERN1" 1994267 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-811 1989830 1990384 1990865 "PATRES" 1992000 NIL PATRES (NIL T T) -8 NIL NIL) (-810 1989394 1989461 1989593 "PATRES2" 1989757 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-809 1987291 1987691 1988096 "PATMATCH" 1989063 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-808 1986827 1987010 1987052 "PATMAB" 1987159 NIL PATMAB (NIL T) -9 NIL 1987242) (-807 1985372 1985681 1985939 "PATLRES" 1986632 NIL PATLRES (NIL T T T) -8 NIL NIL) (-806 1984919 1985042 1985084 "PATAB" 1985089 NIL PATAB (NIL T) -9 NIL 1985259) (-805 1982400 1982932 1983505 "PARTPERM" 1984366 T PARTPERM (NIL) -7 NIL NIL) (-804 1982021 1982084 1982186 "PARSURF" 1982331 NIL PARSURF (NIL T) -8 NIL NIL) (-803 1981653 1981710 1981819 "PARSU2" 1981958 NIL PARSU2 (NIL T T) -7 NIL NIL) (-802 1981274 1981337 1981439 "PARSCURV" 1981584 NIL PARSCURV (NIL T) -8 NIL NIL) (-801 1980906 1980963 1981072 "PARSC2" 1981211 NIL PARSC2 (NIL T T) -7 NIL NIL) (-800 1980545 1980603 1980700 "PARPCURV" 1980842 NIL PARPCURV (NIL T) -8 NIL NIL) (-799 1980177 1980234 1980343 "PARPC2" 1980482 NIL PARPC2 (NIL T T) -7 NIL NIL) (-798 1979697 1979783 1979902 "PAN2EXPR" 1980078 T PAN2EXPR (NIL) -7 NIL NIL) (-797 1978503 1978818 1979046 "PALETTE" 1979489 T PALETTE (NIL) -8 NIL NIL) (-796 1972353 1977762 1977956 "PADICRC" 1978358 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1965561 1971699 1971883 "PADICRAT" 1972201 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1963865 1965498 1965543 "PADIC" 1965548 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1961069 1962643 1962684 "PADICCT" 1963265 NIL PADICCT (NIL NIL) -9 NIL 1963547) (-792 1960026 1960226 1960494 "PADEPAC" 1960856 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1959238 1959371 1959577 "PADE" 1959888 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1957253 1958085 1958398 "OWP" 1959008 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1956362 1956858 1957030 "OVAR" 1957121 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1955626 1955747 1955908 "OUT" 1956221 T OUT (NIL) -7 NIL NIL) (-787 1944672 1946851 1949021 "OUTFORM" 1953476 T OUTFORM (NIL) -8 NIL NIL) (-786 1944080 1944401 1944490 "OSI" 1944603 T OSI (NIL) -8 NIL NIL) (-785 1942827 1943054 1943338 "ORTHPOL" 1943828 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1940198 1942488 1942626 "OREUP" 1942770 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1937594 1939891 1940017 "ORESUP" 1940140 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1935133 1935633 1936191 "OREPCTO" 1937085 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1929046 1931252 1931293 "OREPCAT" 1933614 NIL OREPCAT (NIL T) -9 NIL 1934713) (-780 1926194 1926976 1928033 "OREPCAT-" 1928038 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1925371 1925643 1925672 "ORDSET" 1925981 T ORDSET (NIL) -9 NIL 1926145) (-778 1924890 1925012 1925205 "ORDSET-" 1925210 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1923503 1924304 1924333 "ORDRING" 1924535 T ORDRING (NIL) -9 NIL 1924659) (-776 1923148 1923242 1923386 "ORDRING-" 1923391 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1922523 1923004 1923033 "ORDMON" 1923038 T ORDMON (NIL) -9 NIL 1923059) (-774 1921685 1921832 1922027 "ORDFUNS" 1922372 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1921196 1921555 1921584 "ORDFIN" 1921589 T ORDFIN (NIL) -9 NIL 1921610) (-772 1917714 1919788 1920194 "ORDCOMP" 1920823 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1916980 1917107 1917293 "ORDCOMP2" 1917574 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1913488 1914370 1915207 "OPTPROB" 1916163 T OPTPROB (NIL) -8 NIL NIL) (-769 1910330 1910959 1911653 "OPTPACK" 1912814 T OPTPACK (NIL) -7 NIL NIL) (-768 1908055 1908791 1908820 "OPTCAT" 1909635 T OPTCAT (NIL) -9 NIL 1910281) (-767 1907823 1907862 1907928 "OPQUERY" 1908009 T OPQUERY (NIL) -7 NIL NIL) (-766 1904965 1906156 1906653 "OP" 1907358 NIL OP (NIL T) -8 NIL NIL) (-765 1901736 1903768 1904134 "ONECOMP" 1904632 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1901041 1901156 1901330 "ONECOMP2" 1901608 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1900460 1900566 1900696 "OMSERVER" 1900931 T OMSERVER (NIL) -7 NIL NIL) (-762 1897348 1899900 1899941 "OMSAGG" 1900002 NIL OMSAGG (NIL T) -9 NIL 1900066) (-761 1895971 1896234 1896516 "OMPKG" 1897086 T OMPKG (NIL) -7 NIL NIL) (-760 1895400 1895503 1895532 "OM" 1895831 T OM (NIL) -9 NIL NIL) (-759 1893941 1894954 1895121 "OMLO" 1895282 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1892871 1893018 1893244 "OMEXPR" 1893767 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1892189 1892417 1892553 "OMERR" 1892755 T OMERR (NIL) -8 NIL NIL) (-756 1891367 1891610 1891770 "OMERRK" 1892049 T OMERRK (NIL) -8 NIL NIL) (-755 1890845 1891044 1891152 "OMENC" 1891279 T OMENC (NIL) -8 NIL NIL) (-754 1884740 1885925 1887096 "OMDEV" 1889694 T OMDEV (NIL) -8 NIL NIL) (-753 1883809 1883980 1884174 "OMCONN" 1884566 T OMCONN (NIL) -8 NIL NIL) (-752 1882424 1883410 1883439 "OINTDOM" 1883444 T OINTDOM (NIL) -9 NIL 1883465) (-751 1878186 1879416 1880131 "OFMONOID" 1881741 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1877624 1878123 1878168 "ODVAR" 1878173 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1874751 1877123 1877307 "ODR" 1877500 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1867057 1874530 1874654 "ODPOL" 1874659 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1860886 1866929 1867034 "ODP" 1867039 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1859652 1859867 1860142 "ODETOOLS" 1860660 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1856621 1857277 1857993 "ODESYS" 1858985 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1851527 1852435 1853457 "ODERTRIC" 1855697 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1850953 1851035 1851229 "ODERED" 1851439 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1847855 1848403 1849078 "ODERAT" 1850376 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1844823 1845287 1845883 "ODEPRRIC" 1847384 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1842694 1843261 1843770 "ODEPROB" 1844334 T ODEPROB (NIL) -8 NIL NIL) (-739 1839226 1839709 1840355 "ODEPRIM" 1842173 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1838479 1838581 1838839 "ODEPAL" 1839118 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1834681 1835462 1836316 "ODEPACK" 1837645 T ODEPACK (NIL) -7 NIL NIL) (-736 1833718 1833825 1834053 "ODEINT" 1834570 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1827819 1829244 1830691 "ODEIFTBL" 1832291 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1823163 1823949 1824907 "ODEEF" 1826978 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1822500 1822589 1822818 "ODECONST" 1823068 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1820657 1821290 1821319 "ODECAT" 1821922 T ODECAT (NIL) -9 NIL 1822451) (-731 1817529 1820369 1820488 "OCT" 1820570 NIL OCT (NIL T) -8 NIL NIL) (-730 1817167 1817210 1817337 "OCTCT2" 1817480 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1812008 1814446 1814487 "OC" 1815583 NIL OC (NIL T) -9 NIL 1816432) (-728 1809235 1809983 1810973 "OC-" 1811067 NIL OC- (NIL T T) -8 NIL NIL) (-727 1808613 1809055 1809084 "OCAMON" 1809089 T OCAMON (NIL) -9 NIL 1809110) (-726 1808066 1808473 1808502 "OASGP" 1808507 T OASGP (NIL) -9 NIL 1808527) (-725 1807353 1807816 1807845 "OAMONS" 1807885 T OAMONS (NIL) -9 NIL 1807928) (-724 1806793 1807200 1807229 "OAMON" 1807234 T OAMON (NIL) -9 NIL 1807254) (-723 1806097 1806589 1806618 "OAGROUP" 1806623 T OAGROUP (NIL) -9 NIL 1806643) (-722 1805787 1805837 1805925 "NUMTUBE" 1806041 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1799360 1800878 1802414 "NUMQUAD" 1804271 T NUMQUAD (NIL) -7 NIL NIL) (-720 1795116 1796104 1797129 "NUMODE" 1798355 T NUMODE (NIL) -7 NIL NIL) (-719 1792531 1793373 1793402 "NUMINT" 1794315 T NUMINT (NIL) -9 NIL 1795067) (-718 1791479 1791676 1791894 "NUMFMT" 1792333 T NUMFMT (NIL) -7 NIL NIL) (-717 1777874 1780811 1783333 "NUMERIC" 1788996 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1772274 1777326 1777421 "NTSCAT" 1777426 NIL NTSCAT (NIL T T T T) -9 NIL 1777464) (-715 1771470 1771635 1771827 "NTPOLFN" 1772114 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1759328 1768314 1769123 "NSUP" 1770693 NIL NSUP (NIL T) -8 NIL NIL) (-713 1758964 1759021 1759128 "NSUP2" 1759265 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1748926 1758743 1758873 "NSMP" 1758878 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1747358 1747659 1748016 "NREP" 1748614 NIL NREP (NIL T) -7 NIL NIL) (-710 1745949 1746201 1746559 "NPCOEF" 1747101 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1745015 1745130 1745346 "NORMRETR" 1745830 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1743068 1743358 1743765 "NORMPK" 1744723 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1742753 1742781 1742905 "NORMMA" 1743034 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1742580 1742710 1742739 "NONE" 1742744 T NONE (NIL) -8 NIL NIL) (-705 1742369 1742398 1742467 "NONE1" 1742544 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1741854 1741916 1742101 "NODE1" 1742301 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1740148 1741017 1741272 "NNI" 1741619 T NNI (NIL) -8 NIL NIL) (-702 1738568 1738881 1739245 "NLINSOL" 1739816 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1734760 1735721 1736637 "NIPROB" 1737672 T NIPROB (NIL) -8 NIL NIL) (-700 1733517 1733751 1734053 "NFINTBAS" 1734522 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1732225 1732456 1732737 "NCODIV" 1733285 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1731987 1732024 1732099 "NCNTFRAC" 1732182 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1730167 1730531 1730951 "NCEP" 1731612 NIL NCEP (NIL T) -7 NIL NIL) (-696 1729078 1729817 1729846 "NASRING" 1729956 T NASRING (NIL) -9 NIL 1730030) (-695 1728873 1728917 1729011 "NASRING-" 1729016 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1728026 1728525 1728554 "NARNG" 1728671 T NARNG (NIL) -9 NIL 1728762) (-693 1727718 1727785 1727919 "NARNG-" 1727924 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1726597 1726804 1727039 "NAGSP" 1727503 T NAGSP (NIL) -7 NIL NIL) (-691 1718021 1719667 1721302 "NAGS" 1724982 T NAGS (NIL) -7 NIL NIL) (-690 1716585 1716889 1717216 "NAGF07" 1717714 T NAGF07 (NIL) -7 NIL NIL) (-689 1711167 1712447 1713743 "NAGF04" 1715309 T NAGF04 (NIL) -7 NIL NIL) (-688 1704199 1705797 1707414 "NAGF02" 1709570 T NAGF02 (NIL) -7 NIL NIL) (-687 1699463 1700553 1701660 "NAGF01" 1703112 T NAGF01 (NIL) -7 NIL NIL) (-686 1693123 1694681 1696258 "NAGE04" 1697906 T NAGE04 (NIL) -7 NIL NIL) (-685 1684364 1686467 1688579 "NAGE02" 1691031 T NAGE02 (NIL) -7 NIL NIL) (-684 1680357 1681294 1682248 "NAGE01" 1683430 T NAGE01 (NIL) -7 NIL NIL) (-683 1678164 1678695 1679250 "NAGD03" 1679822 T NAGD03 (NIL) -7 NIL NIL) (-682 1669950 1671869 1673814 "NAGD02" 1676239 T NAGD02 (NIL) -7 NIL NIL) (-681 1663809 1665222 1666650 "NAGD01" 1668542 T NAGD01 (NIL) -7 NIL NIL) (-680 1660066 1660876 1661701 "NAGC06" 1663004 T NAGC06 (NIL) -7 NIL NIL) (-679 1658543 1658872 1659225 "NAGC05" 1659733 T NAGC05 (NIL) -7 NIL NIL) (-678 1657927 1658044 1658186 "NAGC02" 1658421 T NAGC02 (NIL) -7 NIL NIL) (-677 1656988 1657545 1657586 "NAALG" 1657665 NIL NAALG (NIL T) -9 NIL 1657726) (-676 1656823 1656852 1656942 "NAALG-" 1656947 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1650773 1651881 1653068 "MULTSQFR" 1655719 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1650092 1650167 1650351 "MULTFACT" 1650685 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1643234 1647145 1647198 "MTSCAT" 1648258 NIL MTSCAT (NIL T T) -9 NIL 1648771) (-672 1642946 1643000 1643092 "MTHING" 1643174 NIL MTHING (NIL T) -7 NIL NIL) (-671 1642738 1642771 1642831 "MSYSCMD" 1642906 T MSYSCMD (NIL) -7 NIL NIL) (-670 1638850 1641493 1641813 "MSET" 1642451 NIL MSET (NIL T) -8 NIL NIL) (-669 1635945 1638411 1638453 "MSETAGG" 1638458 NIL MSETAGG (NIL T) -9 NIL 1638492) (-668 1631813 1633355 1634090 "MRING" 1635254 NIL MRING (NIL T T) -8 NIL NIL) (-667 1631383 1631450 1631579 "MRF2" 1631740 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1631001 1631036 1631180 "MRATFAC" 1631342 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1628613 1628908 1629339 "MPRFF" 1630706 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1622633 1628468 1628564 "MPOLY" 1628569 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1622123 1622158 1622366 "MPCPF" 1622592 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1621639 1621682 1621865 "MPC3" 1622074 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1620840 1620921 1621140 "MPC2" 1621554 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1619141 1619478 1619868 "MONOTOOL" 1620500 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1618265 1618600 1618629 "MONOID" 1618906 T MONOID (NIL) -9 NIL 1619078) (-658 1617643 1617806 1618049 "MONOID-" 1618054 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1608579 1614565 1614625 "MONOGEN" 1615299 NIL MONOGEN (NIL T T) -9 NIL 1615752) (-656 1605797 1606532 1607532 "MONOGEN-" 1607651 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1604656 1605076 1605105 "MONADWU" 1605497 T MONADWU (NIL) -9 NIL 1605735) (-654 1604028 1604187 1604435 "MONADWU-" 1604440 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1603413 1603631 1603660 "MONAD" 1603867 T MONAD (NIL) -9 NIL 1603979) (-652 1603098 1603176 1603308 "MONAD-" 1603313 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1601349 1602011 1602290 "MOEBIUS" 1602851 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1600742 1601120 1601161 "MODULE" 1601166 NIL MODULE (NIL T) -9 NIL 1601192) (-649 1600310 1600406 1600596 "MODULE-" 1600601 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1597981 1598676 1599002 "MODRING" 1600135 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1594943 1596108 1596622 "MODOP" 1597516 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1593130 1593582 1593923 "MODMONOM" 1594742 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1582852 1591338 1591758 "MODMON" 1592760 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1579978 1581696 1581972 "MODFIELD" 1582727 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1579504 1579547 1579726 "MMAP" 1579929 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1577741 1578518 1578559 "MLO" 1578976 NIL MLO (NIL T) -9 NIL 1579216) (-641 1575108 1575623 1576225 "MLIFT" 1577222 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1574499 1574583 1574737 "MKUCFUNC" 1575019 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1574098 1574168 1574291 "MKRECORD" 1574422 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1573146 1573307 1573535 "MKFUNC" 1573909 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1572534 1572638 1572794 "MKFLCFN" 1573029 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1571960 1572327 1572416 "MKCHSET" 1572478 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1571237 1571339 1571524 "MKBCFUNC" 1571853 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1567921 1570791 1570927 "MINT" 1571121 T MINT (NIL) -8 NIL NIL) (-633 1566733 1566976 1567253 "MHROWRED" 1567676 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1562004 1565178 1565602 "MFLOAT" 1566329 T MFLOAT (NIL) -8 NIL NIL) (-631 1561361 1561437 1561608 "MFINFACT" 1561916 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1557708 1558547 1559422 "MESH" 1560506 T MESH (NIL) -7 NIL NIL) (-629 1556098 1556410 1556763 "MDDFACT" 1557395 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1552946 1555257 1555299 "MDAGG" 1555554 NIL MDAGG (NIL T) -9 NIL 1555697) (-627 1542644 1552239 1552446 "MCMPLX" 1552759 T MCMPLX (NIL) -8 NIL NIL) (-626 1541785 1541931 1542131 "MCDEN" 1542493 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1539675 1539945 1540325 "MCALCFN" 1541515 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1537297 1537820 1538381 "MATSTOR" 1539146 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1533315 1536676 1536921 "MATRIX" 1537084 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1529090 1529794 1530527 "MATLIN" 1532675 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1519299 1522431 1522508 "MATCAT" 1527346 NIL MATCAT (NIL T T T) -9 NIL 1528757) (-620 1515664 1516677 1518032 "MATCAT-" 1518037 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1514266 1514419 1514750 "MATCAT2" 1515499 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1512378 1512702 1513086 "MAPPKG3" 1513941 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1511359 1511532 1511754 "MAPPKG2" 1512202 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1509858 1510142 1510469 "MAPPKG1" 1511065 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1509469 1509527 1509650 "MAPHACK3" 1509794 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1509061 1509122 1509236 "MAPHACK2" 1509401 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1508499 1508602 1508744 "MAPHACK1" 1508952 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1506607 1507201 1507504 "MAGMA" 1508228 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1503090 1504853 1505312 "M3D" 1506181 NIL M3D (NIL T) -8 NIL NIL) (-610 1497248 1501457 1501499 "LZSTAGG" 1502281 NIL LZSTAGG (NIL T) -9 NIL 1502576) (-609 1493222 1494379 1495836 "LZSTAGG-" 1495841 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1490338 1491115 1491601 "LWORD" 1492768 NIL LWORD (NIL T) -8 NIL NIL) (-607 1483498 1490109 1490243 "LSQM" 1490248 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1482722 1482861 1483089 "LSPP" 1483353 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1480534 1480835 1481291 "LSMP" 1482411 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1477313 1477987 1478717 "LSMP1" 1479836 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1471236 1476478 1476520 "LSAGG" 1476582 NIL LSAGG (NIL T) -9 NIL 1476660) (-602 1467931 1468855 1470068 "LSAGG-" 1470073 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1465557 1467075 1467324 "LPOLY" 1467726 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1465139 1465224 1465347 "LPEFRAC" 1465466 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1463488 1464235 1464487 "LO" 1464972 NIL LO (NIL T T T) -8 NIL NIL) (-598 1463141 1463253 1463282 "LOGIC" 1463393 T LOGIC (NIL) -9 NIL 1463473) (-597 1463003 1463026 1463097 "LOGIC-" 1463102 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1462196 1462336 1462529 "LODOOPS" 1462859 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1459614 1462113 1462178 "LODO" 1462183 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1458162 1458397 1458747 "LODOF" 1459362 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1454582 1457018 1457059 "LODOCAT" 1457491 NIL LODOCAT (NIL T) -9 NIL 1457701) (-592 1454316 1454374 1454500 "LODOCAT-" 1454505 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1451630 1454157 1454275 "LODO2" 1454280 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1449059 1451567 1451612 "LODO1" 1451617 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1447922 1448087 1448398 "LODEEF" 1448882 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1443206 1446050 1446092 "LNAGG" 1447039 NIL LNAGG (NIL T) -9 NIL 1447482) (-587 1442353 1442567 1442909 "LNAGG-" 1442914 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1438518 1439280 1439918 "LMOPS" 1441769 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1437915 1438277 1438318 "LMODULE" 1438378 NIL LMODULE (NIL T) -9 NIL 1438420) (-584 1435167 1437560 1437683 "LMDICT" 1437825 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1428398 1434117 1434413 "LIST" 1434904 NIL LIST (NIL T) -8 NIL NIL) (-582 1427923 1427997 1428136 "LIST3" 1428318 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1426930 1427108 1427336 "LIST2" 1427741 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1425064 1425376 1425775 "LIST2MAP" 1426577 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1423776 1424456 1424497 "LINEXP" 1424750 NIL LINEXP (NIL T) -9 NIL 1424898) (-578 1422423 1422683 1422980 "LINDEP" 1423528 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1419190 1419909 1420686 "LIMITRF" 1421678 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1417471 1417765 1418180 "LIMITPS" 1418885 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1411930 1416986 1417212 "LIE" 1417294 NIL LIE (NIL T T) -8 NIL NIL) (-574 1410981 1411424 1411465 "LIECAT" 1411605 NIL LIECAT (NIL T) -9 NIL 1411755) (-573 1410822 1410849 1410937 "LIECAT-" 1410942 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1403446 1410271 1410436 "LIB" 1410677 T LIB (NIL) -8 NIL NIL) (-571 1399083 1399964 1400899 "LGROBP" 1402563 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1396953 1397226 1397587 "LF" 1398805 NIL LF (NIL T T) -7 NIL NIL) (-569 1395793 1396484 1396513 "LFCAT" 1396720 T LFCAT (NIL) -9 NIL 1396859) (-568 1392705 1393331 1394017 "LEXTRIPK" 1395159 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1389411 1390275 1390778 "LEXP" 1392285 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1387809 1388122 1388523 "LEADCDET" 1389093 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1387005 1387079 1387306 "LAZM3PK" 1387730 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1381928 1385090 1385624 "LAUPOL" 1386521 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1381495 1381539 1381706 "LAPLACE" 1381878 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1379425 1380598 1380848 "LA" 1381329 NIL LA (NIL T T T) -8 NIL NIL) (-561 1378487 1379081 1379122 "LALG" 1379183 NIL LALG (NIL T) -9 NIL 1379241) (-560 1378202 1378261 1378396 "LALG-" 1378401 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1377112 1377299 1377596 "KOVACIC" 1378002 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1376946 1376970 1377012 "KONVERT" 1377074 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1376780 1376804 1376846 "KOERCE" 1376908 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1374516 1375276 1375668 "KERNEL" 1376420 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1374018 1374099 1374229 "KERNEL2" 1374430 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1367633 1372315 1372370 "KDAGG" 1372747 NIL KDAGG (NIL T T) -9 NIL 1372953) (-553 1367162 1367286 1367491 "KDAGG-" 1367496 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1360337 1366823 1366978 "KAFILE" 1367040 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1354796 1359852 1360078 "JORDAN" 1360160 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1351105 1353005 1353060 "IXAGG" 1353989 NIL IXAGG (NIL T T) -9 NIL 1354444) (-549 1350024 1350330 1350749 "IXAGG-" 1350754 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1345615 1349946 1350005 "IVECTOR" 1350010 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1344381 1344618 1344884 "ITUPLE" 1345382 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1342817 1342994 1343300 "ITRIGMNP" 1344203 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1341562 1341766 1342049 "ITFUN3" 1342593 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1341194 1341251 1341360 "ITFUN2" 1341499 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1338998 1340069 1340365 "ITAYLOR" 1340930 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1327992 1333186 1334344 "ISUPS" 1337872 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1327100 1327239 1327474 "ISUMP" 1327840 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1322364 1326901 1326980 "ISTRING" 1327053 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1321577 1321658 1321873 "IRURPK" 1322278 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1320513 1320714 1320954 "IRSN" 1321357 T IRSN (NIL) -7 NIL NIL) (-537 1318550 1318905 1319339 "IRRF2F" 1320152 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1318297 1318335 1318411 "IRREDFFX" 1318506 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1316912 1317171 1317470 "IROOT" 1318030 NIL IROOT (NIL T) -7 NIL NIL) (-534 1313554 1314605 1315293 "IR" 1316256 NIL IR (NIL T) -8 NIL NIL) (-533 1311167 1311662 1312228 "IR2" 1313032 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1310243 1310356 1310576 "IR2F" 1311050 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1310034 1310068 1310128 "IPRNTPK" 1310203 T IPRNTPK (NIL) -7 NIL NIL) (-530 1306588 1309923 1309992 "IPF" 1309997 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1304905 1306513 1306570 "IPADIC" 1306575 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1304404 1304462 1304651 "INVLAPLA" 1304841 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1294053 1296406 1298792 "INTTR" 1302068 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1290415 1291156 1292012 "INTTOOLS" 1293246 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1290001 1290092 1290209 "INTSLPE" 1290318 T INTSLPE (NIL) -7 NIL NIL) (-524 1287951 1289924 1289983 "INTRVL" 1289988 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1285558 1286070 1286644 "INTRF" 1287436 NIL INTRF (NIL T) -7 NIL NIL) (-522 1284973 1285070 1285211 "INTRET" 1285456 NIL INTRET (NIL T) -7 NIL NIL) (-521 1282975 1283364 1283833 "INTRAT" 1284581 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1280216 1280799 1281420 "INTPM" 1282464 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1276927 1277526 1278269 "INTPAF" 1279603 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1272210 1273146 1274171 "INTPACK" 1275922 T INTPACK (NIL) -7 NIL NIL) (-517 1269064 1271939 1272066 "INT" 1272103 T INT (NIL) -8 NIL NIL) (-516 1268316 1268468 1268676 "INTHERTR" 1268906 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1267755 1267835 1268023 "INTHERAL" 1268230 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1265601 1266044 1266501 "INTHEORY" 1267318 T INTHEORY (NIL) -7 NIL NIL) (-513 1256926 1258546 1260323 "INTG0" 1263954 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1237523 1242307 1247111 "INTFTBL" 1252142 T INTFTBL (NIL) -8 NIL NIL) (-511 1236772 1236910 1237083 "INTFACT" 1237382 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1234163 1234609 1235172 "INTEF" 1236326 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1232624 1233373 1233402 "INTDOM" 1233703 T INTDOM (NIL) -9 NIL 1233910) (-508 1231993 1232167 1232409 "INTDOM-" 1232414 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1228485 1230417 1230472 "INTCAT" 1231271 NIL INTCAT (NIL T) -9 NIL 1231590) (-506 1227958 1228060 1228188 "INTBIT" 1228377 T INTBIT (NIL) -7 NIL NIL) (-505 1226633 1226787 1227100 "INTALG" 1227803 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1226090 1226180 1226350 "INTAF" 1226537 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1219556 1225900 1226040 "INTABL" 1226045 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1214506 1217235 1217264 "INS" 1218232 T INS (NIL) -9 NIL 1218913) (-501 1211746 1212517 1213491 "INS-" 1213564 NIL INS- (NIL T) -8 NIL NIL) (-500 1210525 1210752 1211049 "INPSIGN" 1211499 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1209643 1209760 1209957 "INPRODPF" 1210405 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1208537 1208654 1208891 "INPRODFF" 1209523 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1207537 1207689 1207949 "INNMFACT" 1208373 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1206734 1206831 1207019 "INMODGCD" 1207436 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1205243 1205487 1205811 "INFSP" 1206479 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1204427 1204544 1204727 "INFPROD0" 1205123 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1201437 1202596 1203087 "INFORM" 1203944 T INFORM (NIL) -8 NIL NIL) (-492 1201047 1201107 1201205 "INFORM1" 1201372 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1200570 1200659 1200773 "INFINITY" 1200953 T INFINITY (NIL) -7 NIL NIL) (-490 1199188 1199436 1199757 "INEP" 1200318 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1198464 1199085 1199150 "INDE" 1199155 NIL INDE (NIL T) -8 NIL NIL) (-488 1198028 1198096 1198213 "INCRMAPS" 1198391 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1193339 1194264 1195208 "INBFF" 1197116 NIL INBFF (NIL T) -7 NIL NIL) (-486 1189840 1193184 1193287 "IMATRIX" 1193292 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1188554 1188677 1188991 "IMATQF" 1189697 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1186776 1187003 1187339 "IMATLIN" 1188311 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1181402 1186700 1186758 "ILIST" 1186763 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1179361 1181262 1181375 "IIARRAY2" 1181380 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1174729 1179272 1179336 "IFF" 1179341 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1169778 1174021 1174209 "IFARRAY" 1174586 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1168985 1169682 1169755 "IFAMON" 1169760 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1168568 1168633 1168688 "IEVALAB" 1168895 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1168243 1168311 1168471 "IEVALAB-" 1168476 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1167901 1168157 1168220 "IDPO" 1168225 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1167178 1167790 1167865 "IDPOAMS" 1167870 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1166512 1167067 1167142 "IDPOAM" 1167147 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1165597 1165847 1165901 "IDPC" 1166314 NIL IDPC (NIL T T) -9 NIL 1166463) (-472 1165093 1165489 1165562 "IDPAM" 1165567 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1164496 1164985 1165058 "IDPAG" 1165063 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1160751 1161599 1162494 "IDECOMP" 1163653 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1153627 1154676 1155722 "IDEAL" 1159788 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1152791 1152903 1153102 "ICDEN" 1153511 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1151890 1152271 1152418 "ICARD" 1152664 T ICARD (NIL) -8 NIL NIL) (-466 1149962 1150275 1150678 "IBPTOOLS" 1151567 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1145576 1149582 1149695 "IBITS" 1149881 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1142299 1142875 1143570 "IBATOOL" 1144993 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1140079 1140540 1141073 "IBACHIN" 1141834 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1137962 1139925 1140028 "IARRAY2" 1140033 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1134121 1137888 1137945 "IARRAY1" 1137950 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1128061 1132539 1133017 "IAN" 1133663 T IAN (NIL) -8 NIL NIL) (-459 1127572 1127629 1127802 "IALGFACT" 1127998 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1127099 1127212 1127241 "HYPCAT" 1127448 T HYPCAT (NIL) -9 NIL NIL) (-457 1126637 1126754 1126940 "HYPCAT-" 1126945 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1123323 1124654 1124696 "HOAGG" 1125677 NIL HOAGG (NIL T) -9 NIL 1126349) (-455 1121917 1122316 1122842 "HOAGG-" 1122847 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1115748 1121358 1121524 "HEXADEC" 1121771 T HEXADEC (NIL) -8 NIL NIL) (-453 1114496 1114718 1114981 "HEUGCD" 1115525 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1113599 1114333 1114463 "HELLFDIV" 1114468 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1111833 1113376 1113464 "HEAP" 1113543 NIL HEAP (NIL T) -8 NIL NIL) (-450 1105706 1111748 1111810 "HDP" 1111815 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1099418 1105343 1105494 "HDMP" 1105607 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1098743 1098882 1099046 "HB" 1099274 T HB (NIL) -7 NIL NIL) (-447 1092252 1098589 1098693 "HASHTBL" 1098698 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1090005 1091880 1092059 "HACKPI" 1092093 T HACKPI (NIL) -8 NIL NIL) (-445 1085701 1089859 1089971 "GTSET" 1089976 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1079239 1085579 1085677 "GSTBL" 1085682 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1071477 1078277 1078540 "GSERIES" 1079031 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1070499 1070952 1070981 "GROUP" 1071242 T GROUP (NIL) -9 NIL 1071401) (-441 1069615 1069838 1070182 "GROUP-" 1070187 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1067984 1068303 1068690 "GROEBSOL" 1069292 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1066924 1067186 1067238 "GRMOD" 1067767 NIL GRMOD (NIL T T) -9 NIL 1067935) (-438 1066692 1066728 1066856 "GRMOD-" 1066861 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1062032 1063054 1064051 "GRIMAGE" 1065715 T GRIMAGE (NIL) -8 NIL NIL) (-436 1060499 1060759 1061083 "GRDEF" 1061728 T GRDEF (NIL) -7 NIL NIL) (-435 1059943 1060059 1060200 "GRAY" 1060378 T GRAY (NIL) -7 NIL NIL) (-434 1059176 1059556 1059608 "GRALG" 1059761 NIL GRALG (NIL T T) -9 NIL 1059853) (-433 1058837 1058910 1059073 "GRALG-" 1059078 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1055645 1058426 1058602 "GPOLSET" 1058744 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1055001 1055058 1055315 "GOSPER" 1055582 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1050760 1051439 1051965 "GMODPOL" 1054700 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1049765 1049949 1050187 "GHENSEL" 1050572 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1043831 1044674 1045700 "GENUPS" 1048849 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1043528 1043579 1043668 "GENUFACT" 1043774 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1042940 1043017 1043182 "GENPGCD" 1043446 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1042414 1042449 1042662 "GENMFACT" 1042899 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1040982 1041237 1041544 "GENEEZ" 1042157 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1034856 1040595 1040756 "GDMP" 1040905 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1024237 1028629 1029734 "GCNAALG" 1033840 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1022658 1023530 1023559 "GCDDOM" 1023814 T GCDDOM (NIL) -9 NIL 1023971) (-420 1022128 1022255 1022470 "GCDDOM-" 1022475 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1020802 1020987 1021290 "GB" 1021908 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1009422 1011748 1014140 "GBINTERN" 1018493 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1007259 1007551 1007972 "GBF" 1009097 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1006040 1006205 1006472 "GBEUCLID" 1007075 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1005389 1005514 1005663 "GAUSSFAC" 1005911 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1003768 1004070 1004382 "GALUTIL" 1005109 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1002085 1002359 1002682 "GALPOLYU" 1003495 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 999474 999764 1000169 "GALFACTU" 1001782 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 991280 992779 994387 "GALFACT" 997906 NIL GALFACT (NIL T) -7 NIL NIL) (-410 988667 989325 989354 "FVFUN" 990510 T FVFUN (NIL) -9 NIL 991230) (-409 987932 988114 988143 "FVC" 988434 T FVC (NIL) -9 NIL 988617) (-408 987574 987729 987810 "FUNCTION" 987884 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 985244 985795 986284 "FT" 987105 T FT (NIL) -8 NIL NIL) (-406 984062 984545 984748 "FTEM" 985061 T FTEM (NIL) -8 NIL NIL) (-405 982329 982617 983018 "FSUPFACT" 983755 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 980726 981015 981347 "FST" 982017 T FST (NIL) -8 NIL NIL) (-403 979901 980007 980201 "FSRED" 980608 NIL FSRED (NIL T T) -7 NIL NIL) (-402 978582 978837 979190 "FSPRMELT" 979617 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 975667 976105 976604 "FSPECF" 978145 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 958004 966561 966602 "FS" 970440 NIL FS (NIL T) -9 NIL 972711) (-399 946654 949644 953700 "FS-" 953997 NIL FS- (NIL T T) -8 NIL NIL) (-398 946170 946224 946400 "FSINT" 946595 NIL FSINT (NIL T T) -7 NIL NIL) (-397 944455 945167 945468 "FSERIES" 945951 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 943473 943589 943819 "FSCINT" 944335 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 939709 942419 942461 "FSAGG" 942831 NIL FSAGG (NIL T) -9 NIL 943088) (-394 937471 938072 938868 "FSAGG-" 938963 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 936513 936656 936883 "FSAGG2" 937324 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 934172 934451 935004 "FS2UPS" 936231 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 933758 933801 933954 "FS2" 934123 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 932618 932789 933097 "FS2EXPXP" 933583 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 932044 932159 932311 "FRUTIL" 932498 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 923481 927559 928907 "FR" 930728 NIL FR (NIL T) -8 NIL NIL) (-387 918558 921201 921242 "FRNAALG" 922638 NIL FRNAALG (NIL T) -9 NIL 923244) (-386 914237 915307 916582 "FRNAALG-" 917332 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 913875 913918 914045 "FRNAAF2" 914188 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 912242 912734 913027 "FRMOD" 913689 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 909965 910633 910949 "FRIDEAL" 912033 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 909164 909251 909538 "FRIDEAL2" 909872 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 908423 908831 908873 "FRETRCT" 908878 NIL FRETRCT (NIL T) -9 NIL 909047) (-380 907535 907766 908117 "FRETRCT-" 908122 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 904744 905964 906024 "FRAMALG" 906906 NIL FRAMALG (NIL T T) -9 NIL 907198) (-378 902877 903333 903963 "FRAMALG-" 904186 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 896789 902362 902633 "FRAC" 902638 NIL FRAC (NIL T) -8 NIL NIL) (-376 896425 896482 896589 "FRAC2" 896726 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 896061 896118 896225 "FR2" 896362 NIL FR2 (NIL T T) -7 NIL NIL) (-374 890690 893603 893632 "FPS" 894751 T FPS (NIL) -9 NIL 895304) (-373 890139 890248 890412 "FPS-" 890558 NIL FPS- (NIL T) -8 NIL NIL) (-372 887540 889237 889266 "FPC" 889491 T FPC (NIL) -9 NIL 889633) (-371 887333 887373 887470 "FPC-" 887475 NIL FPC- (NIL T) -8 NIL NIL) (-370 886213 886823 886865 "FPATMAB" 886870 NIL FPATMAB (NIL T) -9 NIL 887020) (-369 883913 884389 884815 "FPARFRAC" 885850 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 879308 879805 880487 "FORTRAN" 883345 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 877024 877524 878063 "FORT" 878789 T FORT (NIL) -7 NIL NIL) (-366 874699 875261 875290 "FORTFN" 876350 T FORTFN (NIL) -9 NIL 876974) (-365 874462 874512 874541 "FORTCAT" 874600 T FORTCAT (NIL) -9 NIL 874662) (-364 872522 873005 873404 "FORMULA" 874083 T FORMULA (NIL) -8 NIL NIL) (-363 872310 872340 872409 "FORMULA1" 872486 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871833 871885 872058 "FORDER" 872252 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 870929 871093 871286 "FOP" 871660 T FOP (NIL) -7 NIL NIL) (-360 869537 870209 870383 "FNLA" 870811 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 868205 868594 868623 "FNCAT" 869195 T FNCAT (NIL) -9 NIL 869488) (-358 867771 868164 868192 "FNAME" 868197 T FNAME (NIL) -8 NIL NIL) (-357 866430 867403 867432 "FMTC" 867437 T FMTC (NIL) -9 NIL 867472) (-356 862750 863957 864584 "FMONOID" 865836 NIL FMONOID (NIL T) -8 NIL NIL) (-355 861972 862495 862642 "FM" 862647 NIL FM (NIL T T) -8 NIL NIL) (-354 859395 860041 860070 "FMFUN" 861214 T FMFUN (NIL) -9 NIL 861922) (-353 858663 858844 858873 "FMC" 859163 T FMC (NIL) -9 NIL 859345) (-352 855893 856727 856781 "FMCAT" 857963 NIL FMCAT (NIL T T) -9 NIL 858456) (-351 854788 855661 855760 "FM1" 855838 NIL FM1 (NIL T T) -8 NIL NIL) (-350 852562 852978 853472 "FLOATRP" 854339 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 846049 850218 850848 "FLOAT" 851952 T FLOAT (NIL) -8 NIL NIL) (-348 843487 843987 844565 "FLOATCP" 845516 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 842276 843124 843165 "FLINEXP" 843170 NIL FLINEXP (NIL T) -9 NIL 843262) (-346 841431 841666 841993 "FLINEXP-" 841998 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 840507 840651 840875 "FLASORT" 841283 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 837725 838567 838620 "FLALG" 839847 NIL FLALG (NIL T T) -9 NIL 840314) (-343 831516 835212 835254 "FLAGG" 836516 NIL FLAGG (NIL T) -9 NIL 837164) (-342 830242 830581 831071 "FLAGG-" 831076 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 829284 829427 829654 "FLAGG2" 830095 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 826259 827277 827337 "FINRALG" 828465 NIL FINRALG (NIL T T) -9 NIL 828970) (-339 825419 825648 825987 "FINRALG-" 825992 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824825 825038 825067 "FINITE" 825263 T FINITE (NIL) -9 NIL 825370) (-337 817285 819446 819487 "FINAALG" 823154 NIL FINAALG (NIL T) -9 NIL 824606) (-336 812626 813667 814811 "FINAALG-" 816190 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 812021 812381 812484 "FILE" 812556 NIL FILE (NIL T) -8 NIL NIL) (-334 810705 811017 811072 "FILECAT" 811756 NIL FILECAT (NIL T T) -9 NIL 811972) (-333 808520 810076 810105 "FIELD" 810145 T FIELD (NIL) -9 NIL 810225) (-332 807140 807525 808036 "FIELD-" 808041 NIL FIELD- (NIL T) -8 NIL NIL) (-331 804955 805777 806123 "FGROUP" 806827 NIL FGROUP (NIL T) -8 NIL NIL) (-330 804045 804209 804429 "FGLMICPK" 804787 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799847 803970 804027 "FFX" 804032 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 799448 799509 799644 "FFSLPE" 799780 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 795444 796220 797016 "FFPOLY" 798684 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 794948 794984 795193 "FFPOLY2" 795402 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790770 794867 794930 "FFP" 794935 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 786138 790681 790745 "FF" 790750 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 781234 785481 785671 "FFNBX" 785992 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 776144 780369 780627 "FFNBP" 781088 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 770747 775428 775639 "FFNB" 775977 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 769579 769777 770092 "FFINTBAS" 770544 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765755 767995 768024 "FFIELDC" 768644 T FFIELDC (NIL) -9 NIL 769020) (-318 764418 764788 765285 "FFIELDC-" 765290 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 763988 764033 764157 "FFHOM" 764360 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 761686 762170 762687 "FFF" 763503 NIL FFF (NIL T) -7 NIL NIL) (-315 757274 761428 761529 "FFCGX" 761629 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 752876 757006 757113 "FFCGP" 757217 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 748029 752603 752711 "FFCG" 752812 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729828 738951 739038 "FFCAT" 744203 NIL FFCAT (NIL T T T) -9 NIL 745688) (-311 725026 726073 727387 "FFCAT-" 728617 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 724437 724480 724715 "FFCAT2" 724977 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713641 717431 718646 "FEXPR" 723294 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712643 713078 713120 "FEVALAB" 713204 NIL FEVALAB (NIL T) -9 NIL 713462) (-307 711802 712012 712350 "FEVALAB-" 712355 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 710395 711185 711388 "FDIV" 711701 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 707461 708176 708292 "FDIVCAT" 709860 NIL FDIVCAT (NIL T T T T) -9 NIL 710297) (-304 707223 707250 707420 "FDIVCAT-" 707425 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 706443 706530 706807 "FDIV2" 707130 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 705136 705393 705680 "FCPAK1" 706176 T FCPAK1 (NIL) -7 NIL NIL) (-301 704264 704636 704777 "FCOMP" 705027 NIL FCOMP (NIL T) -8 NIL NIL) (-300 687904 691316 694876 "FC" 700724 T FC (NIL) -8 NIL NIL) (-299 680453 684499 684540 "FAXF" 686342 NIL FAXF (NIL T) -9 NIL 687032) (-298 677732 678387 679212 "FAXF-" 679677 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672838 677108 677284 "FARRAY" 677589 NIL FARRAY (NIL T) -8 NIL NIL) (-296 668184 670255 670308 "FAMR" 671320 NIL FAMR (NIL T T) -9 NIL 671777) (-295 667075 667377 667811 "FAMR-" 667816 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 666271 666997 667050 "FAMONOID" 667055 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 664104 664788 664842 "FAMONC" 665783 NIL FAMONC (NIL T T) -9 NIL 666167) (-292 662798 663860 663996 "FAGROUP" 664001 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660601 660920 661322 "FACUTIL" 662479 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659700 659885 660107 "FACTFUNC" 660411 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 652023 658951 659163 "EXPUPXS" 659556 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649522 650058 650640 "EXPRTUBE" 651461 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645716 646308 647045 "EXPRODE" 648861 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630884 644381 644804 "EXPR" 645325 NIL EXPR (NIL T) -8 NIL NIL) (-285 625312 625899 626711 "EXPR2UPS" 630182 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 624948 625005 625112 "EXPR2" 625249 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 616302 624085 624380 "EXPEXPAN" 624786 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 616129 616259 616288 "EXIT" 616293 T EXIT (NIL) -8 NIL NIL) (-281 615756 615818 615931 "EVALCYC" 616061 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 615296 615414 615456 "EVALAB" 615626 NIL EVALAB (NIL T) -9 NIL 615730) (-279 614777 614899 615120 "EVALAB-" 615125 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 612239 613551 613580 "EUCDOM" 614135 T EUCDOM (NIL) -9 NIL 614485) (-277 610644 611086 611676 "EUCDOM-" 611681 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 598257 600996 603727 "ESTOOLS" 607933 T ESTOOLS (NIL) -7 NIL NIL) (-275 597893 597950 598057 "ESTOOLS2" 598194 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597644 597686 597766 "ESTOOLS1" 597845 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591583 593307 593336 "ES" 596100 T ES (NIL) -9 NIL 597504) (-272 586531 587817 589634 "ES-" 589798 NIL ES- (NIL T) -8 NIL NIL) (-271 582938 583690 584462 "ESCONT" 585779 T ESCONT (NIL) -7 NIL NIL) (-270 582683 582715 582797 "ESCONT1" 582900 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 582358 582408 582508 "ES2" 582627 NIL ES2 (NIL T T) -7 NIL NIL) (-268 581988 582046 582155 "ES1" 582294 NIL ES1 (NIL T T) -7 NIL NIL) (-267 581204 581333 581509 "ERROR" 581832 T ERROR (NIL) -7 NIL NIL) (-266 574719 581063 581154 "EQTBL" 581159 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 567184 570065 571498 "EQ" 573319 NIL -3015 (NIL T) -8 NIL NIL) (-264 566816 566873 566982 "EQ2" 567121 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 562108 563154 564247 "EP" 565755 NIL EP (NIL T) -7 NIL NIL) (-262 561267 561831 561860 "ENTIRER" 561865 T ENTIRER (NIL) -9 NIL 561910) (-261 557723 559222 559592 "EMR" 561066 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556867 557052 557107 "ELTAGG" 557487 NIL ELTAGG (NIL T T) -9 NIL 557697) (-259 556586 556648 556789 "ELTAGG-" 556794 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 556374 556403 556458 "ELTAB" 556542 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 555500 555646 555845 "ELFUTS" 556225 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 555241 555297 555326 "ELEMFUN" 555431 T ELEMFUN (NIL) -9 NIL NIL) (-255 555111 555132 555200 "ELEMFUN-" 555205 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 550007 553210 553252 "ELAGG" 554192 NIL ELAGG (NIL T) -9 NIL 554653) (-253 548292 548726 549389 "ELAGG-" 549394 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 541162 542961 543787 "EFUPXS" 547569 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534614 536415 537224 "EFULS" 540439 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 532045 532403 532881 "EFSTRUC" 534246 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 521117 522682 524242 "EF" 530560 NIL EF (NIL T T) -7 NIL NIL) (-248 520218 520602 520751 "EAB" 520988 T EAB (NIL) -8 NIL NIL) (-247 519431 520177 520205 "E04UCFA" 520210 T E04UCFA (NIL) -8 NIL NIL) (-246 518644 519390 519418 "E04NAFA" 519423 T E04NAFA (NIL) -8 NIL NIL) (-245 517857 518603 518631 "E04MBFA" 518636 T E04MBFA (NIL) -8 NIL NIL) (-244 517070 517816 517844 "E04JAFA" 517849 T E04JAFA (NIL) -8 NIL NIL) (-243 516285 517029 517057 "E04GCFA" 517062 T E04GCFA (NIL) -8 NIL NIL) (-242 515500 516244 516272 "E04FDFA" 516277 T E04FDFA (NIL) -8 NIL NIL) (-241 514713 515459 515487 "E04DGFA" 515492 T E04DGFA (NIL) -8 NIL NIL) (-240 508899 510243 511605 "E04AGNT" 513371 T E04AGNT (NIL) -7 NIL NIL) (-239 507625 508105 508146 "DVARCAT" 508621 NIL DVARCAT (NIL T) -9 NIL 508819) (-238 506829 507041 507355 "DVARCAT-" 507360 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499691 506631 506758 "DSMP" 506763 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 494517 495648 496712 "DROPT" 498647 T DROPT (NIL) -8 NIL NIL) (-235 494182 494241 494339 "DROPT1" 494452 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 489304 490428 491563 "DROPT0" 493067 T DROPT0 (NIL) -7 NIL NIL) (-233 487649 487974 488360 "DRAWPT" 488938 T DRAWPT (NIL) -7 NIL NIL) (-232 482324 483223 484278 "DRAW" 486647 NIL DRAW (NIL T) -7 NIL NIL) (-231 481965 482016 482132 "DRAWHACK" 482267 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480710 480975 481262 "DRAWCX" 481698 T DRAWCX (NIL) -7 NIL NIL) (-229 480228 480296 480446 "DRAWCURV" 480636 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470832 472754 474833 "DRAWCFUN" 478169 T DRAWCFUN (NIL) -7 NIL NIL) (-227 467651 469527 469569 "DQAGG" 470198 NIL DQAGG (NIL T) -9 NIL 470471) (-226 456111 462849 462932 "DPOLCAT" 464770 NIL DPOLCAT (NIL T T T T) -9 NIL 465313) (-225 450951 452297 454254 "DPOLCAT-" 454259 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 445035 450813 450910 "DPMO" 450915 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 439022 444816 444982 "DPMM" 444987 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438784 438835 438909 "DOMAIN" 438968 T DOMAIN (NIL) -8 NIL NIL) (-221 432496 438421 438572 "DMP" 438685 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 432096 432152 432296 "DLP" 432434 NIL DLP (NIL T) -7 NIL NIL) (-219 425746 431197 431424 "DLIST" 431901 NIL DLIST (NIL T) -8 NIL NIL) (-218 422599 424602 424644 "DLAGG" 425194 NIL DLAGG (NIL T) -9 NIL 425422) (-217 421261 421953 421982 "DIVRING" 422132 T DIVRING (NIL) -9 NIL 422240) (-216 420249 420502 420895 "DIVRING-" 420900 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 418351 418708 419114 "DISPLAY" 419863 T DISPLAY (NIL) -7 NIL NIL) (-214 412246 418265 418328 "DIRPROD" 418333 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 411094 411297 411562 "DIRPROD2" 412039 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400738 406737 406791 "DIRPCAT" 407199 NIL DIRPCAT (NIL NIL T) -9 NIL 408015) (-211 398064 398706 399587 "DIRPCAT-" 399924 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 397351 397511 397697 "DIOSP" 397898 T DIOSP (NIL) -7 NIL NIL) (-209 394060 396264 396306 "DIOPS" 396740 NIL DIOPS (NIL T) -9 NIL 396968) (-208 393609 393723 393914 "DIOPS-" 393919 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 392480 393118 393147 "DIFRING" 393334 T DIFRING (NIL) -9 NIL 393443) (-206 392126 392203 392355 "DIFRING-" 392360 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389917 391199 391240 "DIFEXT" 391599 NIL DIFEXT (NIL T) -9 NIL 391890) (-204 388203 388631 389296 "DIFEXT-" 389301 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 385531 387735 387777 "DIAGG" 387782 NIL DIAGG (NIL T) -9 NIL 387802) (-202 384915 385072 385324 "DIAGG-" 385329 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 380386 383874 384151 "DHMATRIX" 384684 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 375998 376907 377917 "DFSFUN" 379396 T DFSFUN (NIL) -7 NIL NIL) (-199 370784 374712 375077 "DFLOAT" 375653 T DFLOAT (NIL) -8 NIL NIL) (-198 369017 369298 369693 "DFINTTLS" 370492 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 366050 367052 367450 "DERHAM" 368684 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363905 365825 365914 "DEQUEUE" 365994 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 363123 363256 363451 "DEGRED" 363767 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 359539 360280 361128 "DEFINTRF" 362355 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 357078 357545 358141 "DEFINTEF" 359060 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350909 356519 356685 "DECIMAL" 356932 T DECIMAL (NIL) -8 NIL NIL) (-191 348421 348879 349385 "DDFACT" 350453 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 348017 348060 348211 "DBLRESP" 348372 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345727 346061 346430 "DBASE" 347775 NIL DBASE (NIL T) -8 NIL NIL) (-188 344862 345686 345714 "D03FAFA" 345719 T D03FAFA (NIL) -8 NIL NIL) (-187 343998 344821 344849 "D03EEFA" 344854 T D03EEFA (NIL) -8 NIL NIL) (-186 341948 342414 342903 "D03AGNT" 343529 T D03AGNT (NIL) -7 NIL NIL) (-185 341266 341907 341935 "D02EJFA" 341940 T D02EJFA (NIL) -8 NIL NIL) (-184 340584 341225 341253 "D02CJFA" 341258 T D02CJFA (NIL) -8 NIL NIL) (-183 339902 340543 340571 "D02BHFA" 340576 T D02BHFA (NIL) -8 NIL NIL) (-182 339220 339861 339889 "D02BBFA" 339894 T D02BBFA (NIL) -8 NIL NIL) (-181 332419 334006 335612 "D02AGNT" 337634 T D02AGNT (NIL) -7 NIL NIL) (-180 330200 330719 331262 "D01WGTS" 331896 T D01WGTS (NIL) -7 NIL NIL) (-179 329307 330159 330187 "D01TRNS" 330192 T D01TRNS (NIL) -8 NIL NIL) (-178 328414 329266 329294 "D01GBFA" 329299 T D01GBFA (NIL) -8 NIL NIL) (-177 327521 328373 328401 "D01FCFA" 328406 T D01FCFA (NIL) -8 NIL NIL) (-176 326628 327480 327508 "D01ASFA" 327513 T D01ASFA (NIL) -8 NIL NIL) (-175 325735 326587 326615 "D01AQFA" 326620 T D01AQFA (NIL) -8 NIL NIL) (-174 324842 325694 325722 "D01APFA" 325727 T D01APFA (NIL) -8 NIL NIL) (-173 323949 324801 324829 "D01ANFA" 324834 T D01ANFA (NIL) -8 NIL NIL) (-172 323056 323908 323936 "D01AMFA" 323941 T D01AMFA (NIL) -8 NIL NIL) (-171 322163 323015 323043 "D01ALFA" 323048 T D01ALFA (NIL) -8 NIL NIL) (-170 321270 322122 322150 "D01AKFA" 322155 T D01AKFA (NIL) -8 NIL NIL) (-169 320377 321229 321257 "D01AJFA" 321262 T D01AJFA (NIL) -8 NIL NIL) (-168 313709 315251 316803 "D01AGNT" 318845 T D01AGNT (NIL) -7 NIL NIL) (-167 313046 313174 313326 "CYCLOTOM" 313577 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309781 310494 311221 "CYCLES" 312339 T CYCLES (NIL) -7 NIL NIL) (-165 309093 309227 309398 "CVMP" 309642 NIL CVMP (NIL T) -7 NIL NIL) (-164 306875 307132 307507 "CTRIGMNP" 308821 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 306249 306348 306501 "CSTTOOLS" 306772 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 302048 302705 303463 "CRFP" 305561 NIL CRFP (NIL T T) -7 NIL NIL) (-161 301095 301280 301508 "CRAPACK" 301852 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 300481 300582 300785 "CPMATCH" 300972 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 300206 300234 300340 "CPIMA" 300447 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 296570 297242 297960 "COORDSYS" 299541 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 292431 294573 295065 "CONTFRAC" 296110 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 291584 292148 292177 "COMRING" 292182 T COMRING (NIL) -9 NIL 292233) (-155 290665 290942 291126 "COMPPROP" 291420 T COMPPROP (NIL) -8 NIL NIL) (-154 290326 290361 290489 "COMPLPAT" 290624 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 280309 290137 290245 "COMPLEX" 290250 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279945 280002 280109 "COMPLEX2" 280246 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 279663 279698 279796 "COMPFACT" 279904 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263943 274237 274278 "COMPCAT" 275280 NIL COMPCAT (NIL T) -9 NIL 276656) (-149 253459 256382 260009 "COMPCAT-" 260365 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 253190 253218 253320 "COMMUPC" 253425 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252985 253018 253077 "COMMONOP" 253151 T COMMONOP (NIL) -7 NIL NIL) (-146 252568 252736 252823 "COMM" 252918 T COMM (NIL) -8 NIL NIL) (-145 251822 252014 252043 "COMBOPC" 252379 T COMBOPC (NIL) -9 NIL 252552) (-144 250718 250928 251170 "COMBINAT" 251612 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246924 247495 248133 "COMBF" 250142 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245710 246040 246275 "COLOR" 246709 T COLOR (NIL) -8 NIL NIL) (-141 245350 245397 245522 "CMPLXRT" 245657 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240908 241922 242988 "CLIP" 244304 T CLIP (NIL) -7 NIL NIL) (-139 239246 240016 240254 "CLIF" 240736 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 235477 237395 237437 "CLAGG" 238366 NIL CLAGG (NIL T) -9 NIL 238899) (-137 233899 234356 234939 "CLAGG-" 234944 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 233443 233528 233668 "CINTSLPE" 233808 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230944 231415 231963 "CHVAR" 232971 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 230166 230730 230759 "CHARZ" 230764 T CHARZ (NIL) -9 NIL 230778) (-133 229920 229960 230038 "CHARPOL" 230120 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 229026 229623 229652 "CHARNZ" 229699 T CHARNZ (NIL) -9 NIL 229754) (-131 227049 227716 228051 "CHAR" 228711 T CHAR (NIL) -8 NIL NIL) (-130 226774 226835 226864 "CFCAT" 226975 T CFCAT (NIL) -9 NIL NIL) (-129 226019 226130 226312 "CDEN" 226658 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 222011 225172 225452 "CCLASS" 225759 T CCLASS (NIL) -8 NIL NIL) (-127 217064 218040 218793 "CARTEN" 221314 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 216172 216320 216541 "CARTEN2" 216911 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 214469 215324 215580 "CARD" 215936 T CARD (NIL) -8 NIL NIL) (-124 213841 214169 214198 "CACHSET" 214330 T CACHSET (NIL) -9 NIL 214407) (-123 213337 213633 213662 "CABMON" 213712 T CABMON (NIL) -9 NIL 213768) (-122 210900 213029 213136 "BTREE" 213263 NIL BTREE (NIL T) -8 NIL NIL) (-121 208404 210548 210670 "BTOURN" 210810 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205828 207875 207917 "BTCAT" 207985 NIL BTCAT (NIL T) -9 NIL 208062) (-119 205495 205575 205724 "BTCAT-" 205729 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200685 204556 204585 "BTAGG" 204841 T BTAGG (NIL) -9 NIL 205020) (-117 200108 200252 200482 "BTAGG-" 200487 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 197158 199386 199601 "BSTREE" 199925 NIL BSTREE (NIL T) -8 NIL NIL) (-115 196296 196422 196606 "BRILL" 197014 NIL BRILL (NIL T) -7 NIL NIL) (-114 193004 195025 195067 "BRAGG" 195716 NIL BRAGG (NIL T) -9 NIL 195972) (-113 191533 191939 192494 "BRAGG-" 192499 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184741 190879 191063 "BPADICRT" 191381 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 183045 184678 184723 "BPADIC" 184728 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182745 182775 182888 "BOUNDZRO" 183009 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 178260 179351 180218 "BOP" 181898 T BOP (NIL) -8 NIL NIL) (-108 175883 176327 176846 "BOP1" 177774 NIL BOP1 (NIL T) -7 NIL NIL) (-107 174236 174926 175220 "BOOLEAN" 175609 T BOOLEAN (NIL) -8 NIL NIL) (-106 173602 173980 174033 "BMODULE" 174038 NIL BMODULE (NIL T T) -9 NIL 174102) (-105 169412 173400 173473 "BITS" 173549 T BITS (NIL) -8 NIL NIL) (-104 168509 168944 169096 "BINFILE" 169280 T BINFILE (NIL) -8 NIL NIL) (-103 162344 167953 168118 "BINARY" 168364 T BINARY (NIL) -8 NIL NIL) (-102 160177 161599 161641 "BGAGG" 161901 NIL BGAGG (NIL T) -9 NIL 162038) (-101 160008 160040 160131 "BGAGG-" 160136 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 159106 159392 159597 "BFUNCT" 159823 T BFUNCT (NIL) -8 NIL NIL) (-99 157809 157987 158271 "BEZOUT" 158931 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154340 156669 156997 "BBTREE" 157512 NIL BBTREE (NIL T) -8 NIL NIL) (-97 154077 154130 154157 "BASTYPE" 154274 T BASTYPE (NIL) -9 NIL NIL) (-96 153933 153961 154031 "BASTYPE-" 154036 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153371 153447 153597 "BALFACT" 153844 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 152193 152790 152975 "AUTOMOR" 153216 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151918 151923 151950 "ATTREG" 151955 T ATTREG (NIL) -9 NIL NIL) (-92 150197 150615 150967 "ATTRBUT" 151584 T ATTRBUT (NIL) -8 NIL NIL) (-91 149732 149845 149872 "ATRIG" 150073 T ATRIG (NIL) -9 NIL NIL) (-90 149541 149582 149669 "ATRIG-" 149674 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147744 149317 149405 "ASTACK" 149484 NIL ASTACK (NIL T) -8 NIL NIL) (-88 146251 146548 146912 "ASSOCEQ" 147427 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 145283 145910 146034 "ASP9" 146158 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 145047 145231 145270 "ASP8" 145275 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143917 144652 144794 "ASP80" 144936 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142816 143552 143684 "ASP7" 143816 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141772 142493 142611 "ASP78" 142729 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140743 141452 141569 "ASP77" 141686 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139658 140381 140512 "ASP74" 140643 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138559 139293 139425 "ASP73" 139557 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137514 138236 138354 "ASP6" 138472 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136463 137191 137309 "ASP55" 137427 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135413 136137 136256 "ASP50" 136375 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134501 135114 135224 "ASP4" 135334 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133589 134202 134312 "ASP49" 134422 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132374 133128 133296 "ASP42" 133478 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 131152 131907 132077 "ASP41" 132261 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 130104 130829 130947 "ASP35" 131065 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129869 130052 130091 "ASP34" 130096 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129606 129673 129749 "ASP33" 129824 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128502 129241 129373 "ASP31" 129505 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 128267 128450 128489 "ASP30" 128494 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 128002 128071 128147 "ASP29" 128222 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127767 127950 127989 "ASP28" 127994 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127532 127715 127754 "ASP27" 127759 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126616 127230 127341 "ASP24" 127452 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125533 126257 126387 "ASP20" 126517 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124621 125234 125344 "ASP1" 125454 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123565 124295 124414 "ASP19" 124533 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 123302 123369 123445 "ASP12" 123520 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 122155 122901 123045 "ASP10" 123189 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 120060 121999 122090 "ARRAY2" 122095 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115882 119708 119822 "ARRAY1" 119977 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114914 115087 115308 "ARRAY12" 115705 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 109279 111144 111220 "ARR2CAT" 113850 NIL ARR2CAT (NIL T T T) -9 NIL 114608) (-54 106713 107457 108411 "ARR2CAT-" 108416 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105473 105623 105926 "APPRULE" 106551 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 105126 105174 105292 "APPLYORE" 105419 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 104100 104391 104586 "ANY" 104949 T ANY (NIL) -8 NIL NIL) (-50 103378 103501 103658 "ANY1" 103974 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100910 101828 102153 "ANTISYM" 103103 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100737 100869 100896 "ANON" 100901 T ANON (NIL) -8 NIL NIL) (-47 94814 99282 99733 "AN" 100304 T AN (NIL) -8 NIL NIL) (-46 91126 92524 92575 "AMR" 93314 NIL AMR (NIL T T) -9 NIL 93907) (-45 90239 90460 90822 "AMR-" 90827 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74801 90156 90217 "ALIST" 90222 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71638 74395 74564 "ALGSC" 74719 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 68196 68750 69356 "ALGPKG" 71079 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 67473 67574 67758 "ALGMFACT" 68082 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 63230 63911 64561 "ALGMANIP" 67001 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 54549 62856 63006 "ALGFF" 63163 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53745 53876 54055 "ALGFACT" 54407 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52735 53345 53384 "ALGEBRA" 53444 NIL ALGEBRA (NIL T) -9 NIL 53502) (-36 52453 52512 52644 "ALGEBRA-" 52649 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34174 49899 49952 "ALAGG" 50088 NIL ALAGG (NIL T T) -9 NIL 50249) (-34 33709 33822 33849 "AHYP" 34050 T AHYP (NIL) -9 NIL NIL) (-33 32640 32888 32915 "AGG" 33414 T AGG (NIL) -9 NIL 33692) (-32 32074 32236 32450 "AGG-" 32455 NIL AGG- (NIL T) -8 NIL NIL) (-31 29763 30181 30597 "AF" 31718 NIL AF (NIL T T) -7 NIL NIL) (-30 29041 29295 29449 "ACPLOT" 29627 T ACPLOT (NIL) -8 NIL NIL) (-29 18460 26406 26458 "ACFS" 27169 NIL ACFS (NIL T) -9 NIL 27408) (-28 16474 16964 17739 "ACFS-" 17744 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12694 14650 14677 "ACF" 15556 T ACF (NIL) -9 NIL 15968) (-26 11398 11732 12225 "ACF-" 12230 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11192 "ABELSG" 11284 T ABELSG (NIL) -9 NIL 11349) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10232 10493 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9896 9980 10118 "ABELMON-" 10123 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9230 9576 9603 "ABELGRP" 9728 T ABELGRP (NIL) -9 NIL 9810) (-20 8693 8822 9038 "ABELGRP-" 9043 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8029 8069 "A1AGG" 8074 NIL A1AGG (NIL T) -9 NIL 8114) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index f5470b67..9f1e5471 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,2979 +1,2981 @@
-(682155 . 3403927926)
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-60 *3)) (-14 *3 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-67 *3)) (-14 *3 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-70 *3)) (-14 *3 (-1073)))) ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1158)))) ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-367)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1094) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1056)) (-4 *3 (-13 (-1094) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1056)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1094) (-880) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1056)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1073)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787))))
+(682278 . 3404130412)
+(((*1 *2 *3) (-12 (|has| *6 (-6 -4184)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4184)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1083 (-843) (-703))))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *6 (-212 (-2210 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *6)) (-2 (|:| -3353 *5) (|:| -2059 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-107)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1074)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))))
(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-131)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1081 *6)) (-5 *4 (-583 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-236)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-950)))))
+(((*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-361)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1131 (-153 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1131 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1131 (-377 *4))))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1070 *13))) (-5 *3 (-1070 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1154 (-583 (-1070 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))))
(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1162 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1105)) (-5 *3 (-865 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-361)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703)))) (-5 *1 (-1054 *4)) (-4 *4 (-1108)) (-5 *3 (-703)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))))
-(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))))) ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)))))
+(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1070 *3) (-1070 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1396 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1396 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)))))
(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-361)))) ((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-361)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)) (-5 *3 (-1056)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *1 *1) (-4 *1 (-217))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) ((*1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1153 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1153 *5)) (-5 *1 (-991 *5)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2131 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1123 *4 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) (-5 *1 (-1077)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1130 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1130 *5)) (-14 *6 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-333)) (-4 *2 (-338)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
-(((*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1069 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(((*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1070 *5)) (-5 *1 (-31 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1070 *1)))))
+(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2075 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-421)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-831)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3693 (-1070 *6)) (|:| -2059 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))))
(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1130 *4)) (-5 *1 (-844 *4 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))) ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
+(((*1 *1 *1) (-4 *1 (-217))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-3763 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1109))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1109))))) ((*1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| -2840 *5) (|:| -2070 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2840 *4) (|:| -2070 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| -2840 *5) (|:| -2070 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2840 *4) (|:| -2070 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1131 (-517))))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1088)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003)))))
+(((*1 *2) (-12 (-5 *2 (-1046 (-1057))) (-5 *1 (-361)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1070 (-1070 *4)))) (-5 *1 (-1108 *4)) (-5 *3 (-1070 (-1070 *4))))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-972)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-437)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1055 (-874 *4)) (-1055 (-874 *4)))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-1070 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1131 (-377 *2))) (-4 *2 (-1131 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1154 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-1079))) (-5 *1 (-1079)))))
+(((*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1070 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-583 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -4026 (-1070 *9)) (|:| |polval| (-1070 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1070 *9)) (-5 *4 (-1070 *8)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
+(((*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1081 *6)) (-5 *5 (-583 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1130 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))))
-(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1127 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1073)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1069 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1073)))) ((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1073)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1073))) (-5 *3 (-1073)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1158)) (-5 *1 (-487 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *5 (-1076)) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1130 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1069 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1069 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4181)) (-4 *1 (-926 *3)) (-4 *3 (-1108)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-1054 (-1054 (-874 *5)))) (-5 *1 (-1161 *5)) (-5 *4 (-1054 (-874 *5))))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-123))))
-(((*1 *2 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3)))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1056)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1158)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
+(((*1 *1) (-5 *1 (-407))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1080 *6)) (-5 *4 (-583 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))))) ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))))
-(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1153 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-926 *2)) (-4 *2 (-1109)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-100)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1074))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))))
(((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))))
(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $))))))))
-(((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-14 *6 (-1074)) (-14 *7 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1) (-5 *1 (-300))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1154 (-377 (-517)))) (-5 *1 (-1179 *4)))))
+(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1131 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *3 (-1131 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1883 *3) (|:| -3327 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1055 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)) (-5 *3 (-583 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1077)))))
+(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1070 (-1070 *4)))) (-5 *1 (-1108 *4)) (-5 *3 (-1070 (-1070 *4))))))
+(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1078)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1154 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2522 (-623 *5)) (|:| |vec| (-1154 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1626 ($ $ $))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1146 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1115 *3)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))))
+(((*1 *1 *1) (-4 *1 (-1043))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2059 (-703)) (|:| -2840 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))))
(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1079))) (-5 *1 (-1079)))))
+(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4103 *3) (|:| -2059 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1131 (-517))) (-5 *2 (-2 (|:| -3809 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -3809 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -3809 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1163 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1104 *4))) (-5 *3 (-1074)) (-5 *1 (-1104 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1070 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3693 (-1070 *8)) (|:| -2059 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))))
(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1131 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1099 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1095))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1095))))))
+(((*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1157)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2059 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2059 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2059 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1266 *3) (|:| -3105 (-703))))))))
+(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4184)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1064 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1064 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1074)))))
+(((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1131 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+(((*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1131 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1074))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1122 *3)) (-4 *3 (-1109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *5)))) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3755 *5) (|:| -3688 (-517))))) (-5 *4 (-517)) (-4 *5 (-1130 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1069 *4) (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1056)))))
-(((*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1069 *3)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1056)) (-5 *1 (-1155)))) ((*1 *1 *1) (-5 *1 (-1155))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-4 *4 (-1130 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
-(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1133 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-493)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
-(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1130 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-4 *4 (-779)))))
-(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349))))
-(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1073))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1153 (-632))) (-5 *1 (-276)))))
-(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1073)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-349)) (-5 *1 (-973)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *6)) (-4 *7 (-871 *6 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-29 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1070 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1070 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3656 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3656 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2232 (-583 *3)) (|:| -2033 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1131 (-153 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2232 (-583 *3)) (|:| -2033 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1104 *6)) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1162 *6)) (-5 *5 (-1055 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1113))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-1131 *3) (-509) (-10 -8 (-15 -1396 ($ $ $))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-787)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1057)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1057)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1074)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2230 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1095) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3591 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1074))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199))))) (-5 *1 (-100)))))
+(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1156)) (-5 *1 (-230)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1396 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1396 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-1070 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *1 *1) (-5 *1 (-973))))
(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *1 (-527 *4 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1153 *4)) (-5 *1 (-578 *4 *5)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1073))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2296 *3) (-703))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-694))))
-(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3107 *1))) (-4 *1 (-781 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1070 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1070 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))))
+(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1096 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703)))))) (-5 *1 (-210)))))
+(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1081 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-961)) (-4 *1 (-1131 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))))
(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
-(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1108)) (-4 *5 (-1108)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1054 *6)) (-4 *6 (-1108)) (-4 *3 (-1108)) (-5 *2 (-1054 *3)) (-5 *1 (-1052 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1153 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1153 *5)) (-5 *1 (-1152 *6 *5)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094))) (-5 *1 (-201 *3)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-4 *1 (-653))) ((*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-4 *1 (-1015))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1105)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1090)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1154)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1158)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))))
-(((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1055)))) ((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-92)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -2204 *5)))) (-4 *5 (-1131 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3693 *5) (|:| -4007 (-517))))) (-5 *4 (-517)) (-4 *5 (-1131 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1074) (-1057) (-1079))) (-5 *1 (-1079)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-114 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1074)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1095) (-29 *6))) (-5 *1 (-198 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1070 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1095) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095))) (-5 *1 (-201 *3)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1109)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *6 (-212 (-2210 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *6)) (-2 (|:| -3353 *5) (|:| -2059 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-4 *1 (-653))) ((*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-4 *1 (-1015))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1106)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1152 *3)) (-4 *3 (-1109)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1070 *4) (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))))
+(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1059 *4)))))
+(((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1056)))) ((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1074)))))
+(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1124 *3 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) (-1154 (-583 (-2 (|:| -3088 *3) (|:| -3353 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(((*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1055 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1055 *4)) (-4 *5 (-1146 *4)))))
(((*1 *1 *1 *1) (-5 *1 (-107))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1055 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3591 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
-(((*1 *1 *1) (-4 *1 (-1042))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-240)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 *6)) (-5 *4 (-1153 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))))
-(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1080 *4)))))
-(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1153 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1153 *1)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1130 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1094) (-256))))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
+(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1057)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))))
+(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1898 (-517)) (|:| -2232 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-1113)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1131 (-377 *4))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-706)) (-5 *1 (-109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2075 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2075 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-199)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *4 (-583 (-1074))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
+(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-843)) (-5 *1 (-718)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1070 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1070 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-291 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1069 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1130 *6)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))))
-(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))))
-(((*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))))
-(((*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-755))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) ((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) ((*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1109 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1153 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))))
+(((*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3693 *4) (|:| -4007 (-517))))) (-4 *4 (-1131 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1156)) (-5 *1 (-230)))))
+(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1148 *4 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3656 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3656 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))))
-(((*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))))
-(((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))) ((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-950)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1073))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-812 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-377 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *4) (|:| -3652 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *5)) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))))
-(((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 *2))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))))
-(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1154 *1)) (-4 *1 (-299 *4)))) ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1154 *1)) (-4 *1 (-299 *3)))) ((*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *1)) (-4 *1 (-379 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1154 *1)) (-4 *1 (-387 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 (-1154 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1131 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1074)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1074)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1074)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1131 (-377 *4))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))))
+(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2230 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2230 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *1) (-4 *1 (-319))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1154 *4)) (-5 *1 (-1075 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1154 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1113)) (-4 *6 (-1131 *5)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1131 *3)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1109)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1109)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1074))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *1 (-812 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1109)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1109)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1109)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1109)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1154 (-517))) (-5 *1 (-1179 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1131 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1131 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1131 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1131 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *5 (-1131 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1109)) (-5 *2 (-107)) (-5 *1 (-1055 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1070 (-1070 *5)))) (-5 *1 (-1108 *5)) (-5 *3 (-1070 (-1070 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-1045 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1074))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1154 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))))
+(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))))
+(((*1 *1 *1) (-5 *1 (-1073))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-761)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1146 *4)) (-5 *1 (-1149 *4 *5 *6 *2)) (-4 *6 (-593 *5)))))
+(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-718)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1050))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1109)) (-4 *1 (-212 *3 *4)))))
+(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1070 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1131 *2)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1064 (-1074) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-1072))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
+(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1146 *5)) (-4 *6 (-1131 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1147 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1074)) (-14 *7 *5) (-5 *2 (-377 (-1128 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1147 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1074)) (-14 *7 *5) (-5 *2 (-377 (-1128 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))))
(((*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-1059 *4)) (-4 *4 (-961)) (-5 *3 (-517)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1) (-4 *1 (-918))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-928))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))))
+(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *1 *1) (-5 *1 (-437))))
+(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1103 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1131 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2522 (-623 *6)) (|:| |vec| (-1154 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))))) (-5 *2 (-583 (-1057))) (-5 *1 (-240)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1055 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-1109)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1108)) (-4 *1 (-212 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1070 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1070 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1131 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1070 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1070 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1131 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1131 (-377 (-874 (-517))))))) ((*1 *2 *3) (-12 (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1131 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1131 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1131 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 (-377 *7)))) (-5 *1 (-1069 *4 *5 *6 *7)) (-5 *3 (-1070 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1113)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
+(((*1 *2 *2) (|partial| -12 (-4 *3 (-1109)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1131 *5)) (-5 *2 (-623 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)))))
+(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2830 (-564 *4 *5)) (|:| -4004 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1131 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1074)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1074)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -3809 (-583 (-1154 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(((*1 *1) (-5 *1 (-142))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
-(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3652 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1069 *1)) (-4 *1 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
-(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
-(((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1) (-4 *1 (-918))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-928))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
-(((*1 *1) (-5 *1 (-989))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1069 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1069 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1130 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1069 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1130 (-377 (-874 (-517))))))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1931 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1073)))))
-(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))))
+(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1812 (-1055 *4)) (|:| -1824 (-1055 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-1055 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1772 (*8 $)) (-15 -1783 (*8 $)) (-15 -2182 ($ *8))))))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4185 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4185 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1131 *4)) (-5 *2 (-1154 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))))
(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1156)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1055 *3))) (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
(((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921)))))
-(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-777))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1) (-4 *1 (-1037))))
-(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-517)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2256 (*2 *4)) (-15 -1549 ((-843) *2)) (-15 -1753 ((-1153 *2) (-843))) (-15 -4103 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *3) (-12 (|has| *6 (-6 -4181)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4181)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1109)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *4) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))))
+(((*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1110 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1087 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1154 *1)) (-4 *1 (-337 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946)))))
+(((*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) (-1154 (-583 (-2 (|:| -3088 *3) (|:| -3353 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1062 *4 *3)) (-4 *3 (-1131 *4)))))
(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -1913 (-1069 *9)) (|:| |polval| (-1069 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)) (-5 *4 (-1069 *8)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1130 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1103 *6)) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1161 *6)) (-5 *5 (-1054 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199))))) (-5 *1 (-100)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))))
-(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1130 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1073)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1073)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1073)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *5 *6 *2)) (-4 *6 (-593 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))))
-(((*1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1094) (-400 *3))) (-14 *4 (-1073)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1094) (-400 *3) (-10 -8 (-15 -2256 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1132 *2 *4) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1073)))))
-(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))))
-(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1074)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1131 *4)) (-4 *4 (-1113)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1131 (-377 *3))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-517)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-517)) (-5 *1 (-215)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1084 *2)) (-4 *2 (-333)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1070 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3591 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1131 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1074)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *9)))) (|:| -3809 (-583 (-1154 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1077)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
(((*1 *1) (-5 *1 (-300))))
-(((*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1073))) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-989)))) ((*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1069 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 (-1069 (-874 *4)) (-874 *4))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1074))) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *1 *2) (-3763 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3656 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1057)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-989)))) ((*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3656 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1057)) (-5 *1 (-1044 *4 *5 *6 *7 *8)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1079)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1079)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1079)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1079)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1079)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1079)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1090)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1090)))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1074))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1070 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-1045 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1131 *4)) (-5 *1 (-844 *4 *2)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -2230 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1074)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1154 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-114 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4183)))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1115 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1146 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))))
(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1349 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1349 (-703)))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))))
-(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-1037) (-29 *4))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))))
-(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1) (|partial| -4 *1 (-655))) ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
-(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *3 *2)) (-4 *3 (-1003)))))
-(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-407)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-403 *5 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1121 (-517))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1003)))))
-(((*1 *2) (-12 (-5 *2 (-2 (|:| -3100 (-583 *3)) (|:| -3521 (-583 *3)))) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3199 *4) (|:| -2932 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))))
-(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *3)) (|:| |logand| (-1069 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))))
-(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-4 *3 (-212 (-2296 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *3)) (-2 (|:| -3448 *5) (|:| -2077 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-57 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1640 (-874 *6)) (|:| -1933 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-300)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1064 *3 *2)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))))
+(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1057)) (-5 *1 (-51)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))))
+(((*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655))))
+(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-406)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1070 *1)) (-4 *1 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1070 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1131 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2075 (-583 *9)) (|:| -3656 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2075 (-583 *9)) (|:| -3656 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1077)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *1) (-5 *1 (-1077))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1070 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))))
+(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787))))
(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1130 *4)))))
-(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1055 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))) ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1095))))))
+(((*1 *1) (-4 *1 (-319))) ((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-402 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1070 *3)) (|:| |pol2| (-1070 *3)) (|:| |prim| (-1070 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1074)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-5 *5 (-1074)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1883 (-583 (-517))) (|:| |poly| (-583 (-1070 *6))) (|:| |prim| (-1070 *6)))) (-5 *1 (-881 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))))))
(((*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -2422 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1076)) (-5 *3 (-1073)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 (-377 *7)))) (-5 *1 (-1069 *4 *5 *6 *7)) (-5 *3 (-1070 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1113)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-13 (-1131 *4) (-509) (-10 -8 (-15 -1396 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-1045 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1095) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3809 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -3809 (-583 (-1154 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1154 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -3809 (-583 (-1154 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1154 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -3809 (-583 (-1154 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1154 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -3809 (-583 (-1154 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1154 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3809 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1095) (-880))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -3809 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1154 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1074)) (-4 *6 (-13 (-29 *5) (-1095) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1154 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -3809 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -3809 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3809 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3809 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1095) (-880))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3809 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1154 *6)) (|:| -3809 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1154 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1057)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1057)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1080 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1080 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1080 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1080 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1080 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1080 *4)) (-5 *3 (-377 (-874 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1080 *4)) (-5 *3 (-265 (-377 (-874 *4)))))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
-(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) ((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1074))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -3809 (-583 (-377 *6))) (|:| -2522 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -3809 (-583 (-377 *6))) (|:| -2522 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
+(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1095))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1095))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1077)) (-5 *1 (-1076)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1056)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1108)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1102 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1106 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 (-623 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-991 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
-(((*1 *1 *1) (-4 *1 (-793 *2))))
-(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1151 *3)) (-4 *3 (-23)) (-4 *3 (-1108)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-168)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))))
+(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))))
-(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1073)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1094))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1047 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) ((*1 *2 *1) (-12 (-5 *2 (-1166 (-1073) *3)) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1105)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1123 *2 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1070 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1154 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1153 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-973)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1103 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1107 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2075 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-4 *5 (-333)) (-5 *2 (-583 (-1104 *5))) (-5 *1 (-1162 *5)) (-5 *4 (-1104 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1057)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))) ((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1) (-5 *1 (-849))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1152 *3)) (-4 *3 (-23)) (-4 *3 (-1109)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-5 *1 (-572))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))))
+(((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))))
+(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3693 (-517)) (|:| -2059 (-517))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-1159)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1095) (-880))))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))))
+(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-1055 *4) (-1055 *4))) (-5 *1 (-1148 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-1059 *4)) (-4 *4 (-961)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1074))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1074))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1074)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1095))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1048 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1048 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) ((*1 *2 *1) (-12 (-5 *2 (-1167 (-1074) *3)) (-5 *1 (-1174 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1074))))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1131 (-517))) (-5 *1 (-453 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1309 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1131 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1131 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-989))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1309 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1070 *11))) (-5 *3 (-1070 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1154 (-583 (-1070 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-297 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1069 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1153 (-583 (-517)))) (-5 *1 (-448)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-186)) (-5 *3 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1108)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1) (-5 *1 (-155))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) ((*1 *1) (-5 *1 (-364))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1) (-5 *1 (-1073))) ((*1 *1) (-5 *1 (-1073))) ((*1 *1) (-5 *1 (-1089))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1839 (-1054 *4)) (|:| -1853 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1054 *3))) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))))
-(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-337 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *4)) (|:| -2575 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1074))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1136 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1070 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1154 (-583 (-517)))) (-5 *1 (-448)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1074))) (-5 *1 (-186)) (-5 *3 (-1074)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1074))) (-5 *1 (-240)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1109)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1) (-5 *1 (-155))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))) ((*1 *1) (-5 *1 (-364))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1) (-5 *1 (-1074))) ((*1 *1) (-5 *1 (-1074))) ((*1 *1) (-5 *1 (-1090))))
+(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))))
-(((*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *1) (-4 *1 (-319))) ((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-402 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1069 *3)) (|:| |pol2| (-1069 *3)) (|:| |prim| (-1069 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1073)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-5 *5 (-1073)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *6))) (|:| |prim| (-1069 *6)))) (-5 *1 (-881 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3353 *2) (|:| -2059 *3)) (-2 (|:| -3353 *2) (|:| -2059 *3)))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))) ((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1) (-5 *1 (-849))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1073))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1073))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1073)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1095 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1095 *2))) (-5 *1 (-1095 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1135 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1158)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1158)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1156)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1096 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1096 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1096 *2))) (-5 *1 (-1096 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1146 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1148 *5 *6)))))
(((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 *3) (|:| -1266 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1086 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1154 *3)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1169 *4 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -3809 (-583 (-1154 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))))
(((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))))
-(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1701 (-1054 *4)) (|:| -1711 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 *3) (|:| -1257 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1085 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1168 *4 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1077)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *1 *1) (-5 *1 (-1154))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))))
+(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1070 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))))
+(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))))
(((*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-512)))))
+(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1128 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1074)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1070 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1074)))) ((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1074)))))
+(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1685 (-1055 *4)) (|:| -1698 (-1055 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-1055 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -2184)))) (-5 *2 (-950)) (-5 *1 (-679)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
-(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1073)) (|:| |c| (-1173 *3))))) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1175 *3 *4))))) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
+(((*1 *2 *3) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -1883 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1131 *4)) (-4 *4 (-1113)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1131 (-377 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1131 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
-(((*1 *2 *3 *3) (-12 (-4 *3 (-1112)) (-4 *5 (-1130 *3)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2256 (*2 (-1073)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1073))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1063 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1074))) (-5 *3 (-1074)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9)))))
+(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1074)) (-5 *1 (-168)))))
+(((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1131 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2182 (*2 (-1074)))) (-4 *2 (-961)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1131 *2)) (-4 *5 (-1131 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1158)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)))))
+(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2131 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *1 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-109)) (-5 *1 (-147)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1095))))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-1131 *4)))))
+(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1146 *5)) (-4 *6 (-1131 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-1148 *4 *2)) (-4 *4 (-37 (-377 (-517)))))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))))
(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-1078))) (-5 *1 (-1078)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
-(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1) (-5 *1 (-300))))
-(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))))
+(((*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1074))) (-14 *7 (-1154 (-623 *4))))))
+(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1057)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1074)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *8)))) (|:| -3809 (-583 (-1154 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))))
+(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1095) (-29 *4))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1153 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1078))) (-5 *1 (-1078)))))
-(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1103 *4))) (-5 *3 (-1073)) (-5 *1 (-1103 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1257 *3) (|:| -3217 (-703))))))))
-(((*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1095) (-400 *6) (-10 -8 (-15 -2182 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1133 *3 *7) (-333) (-1095) (-10 -8 (-15 -1699 ($ $)) (-15 -2863 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1057)) (-4 *9 (-900 *8)) (-14 *10 (-1074)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-276)))))
+(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-227 *3)))) ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-222)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1057)) (-5 *1 (-1091)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-4 *3 (-1131 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1131 (-377 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1131 (-377 *4))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1073))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703)))))) (-5 *1 (-210)))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1073) (-1056) (-583 (-1078)))) (-5 *1 (-1078)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1159)) (-5 *1 (-487 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1146 *5)) (-5 *1 (-1148 *5 *2)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1078)))))
+(((*1 *1 *1 *2) (-12 (-5 *1 (-1039 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))))
-(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1159)) (-5 *1 (-1164 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1109)) (-5 *2 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-367)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-60 *3)) (-14 *3 (-1074)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-67 *3)) (-14 *3 (-1074)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-70 *3)) (-14 *3 (-1074)))) ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1159)))) ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1159)) (-5 *1 (-367)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-406)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1) (-5 *1 (-755))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
-(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))))
+(((*1 *1 *1) (-4 *1 (-509))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1064 (-1074) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1064 (-1074) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))))
+(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-361)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1159)) (-5 *1 (-437)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1159)) (-5 *1 (-437)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1063 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1159)) (-5 *1 (-361)))) ((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-361)))))
+(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1039 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *5 *6)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2204 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724)))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) ((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1038 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1039 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1038 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1102 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1130 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))))
-(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1094) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-5 *4 (-1073)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1130 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1074))))) (-5 *6 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1074))))) (-5 *6 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *5 (-1077)) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1078)))))
+(((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1095))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1095))))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *1 *1) (-5 *1 (-1155))))
+(((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 (-407))))) (-5 *1 (-1078)))))
+(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1074)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1074)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
+(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
+(((*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
+(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-891)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1070 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1076 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1128 *4 *3)) (-14 *4 (-1074)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1131 *2)))))
(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1153 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) ((*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))))
(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))))
(((*1 *1 *1) (-4 *1 (-502))))
-(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-703)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1069 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4180)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3637 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-128)))))
+(((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1055 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1055 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1154 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)))))
+(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-623 *3)))))
(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850)))))
-(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))))
-(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
+(((*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1070 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1070 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1070 *12)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *4))) (-5 *3 (-1070 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4)))))
(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1056)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
-(((*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1131 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1070 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -2243 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1070 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3107 *1))) (-4 *1 (-781 *3)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
-(((*1 *1 *1) (-5 *1 (-47))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-56 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -1913 (-1069 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-13 (-509) (-779))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-213 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1130 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) ((*1 *1 *1) (-5 *1 (-460))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-581 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-878 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1052 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1102 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1152 *5 *2)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1131 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-703)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
+(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-703)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-703)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1069 *6)) (-4 *7 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1069 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1069 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1069 *5)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) ((*1 *1 *1) (-4 *1 (-145))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *1) (-4 *1 (-338))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-5 *1 (-517))) ((*1 *1 *1) (-5 *1 (-703))) ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *1) (-4 *1 (-338))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-5 *1 (-517))) ((*1 *1 *1) (-5 *1 (-703))) ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))))
+(((*1 *2) (-12 (-5 *2 (-1154 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *4) (|:| -3631 (-517))))))) (-4 *4 (-1130 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1095) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
+(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1074))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1131 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1104 *4)) (-4 *4 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1057)) (-5 *1 (-300)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-1154 (-517)))) (-5 *3 (-843)) (-5 *1 (-435)))))
(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1073))) (-5 *1 (-571 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-735)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-3763 (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-2455 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-502))) (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-3763 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1131 *4)))))
(((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-1153 (-286 (-349)))) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3809 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -3809 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))))
+(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3656 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3656 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3656 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3656 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1044 *7 *8 *9 *10 *11)))))
+(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 (-517)))) (-5 *3 (-1069 (-517))) (-5 *1 (-525)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *1))) (-5 *3 (-1069 *1)) (-4 *1 (-831)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1158)) (-5 *1 (-763)))))
+(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-692)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-5 *1 (-316 *4)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -1921 (-703)) (|:| -1243 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -1921 (-703)) (|:| -1243 *6))) (-5 *1 (-834 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1130 *3)) (-5 *2 (-583 (-1069 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1130 *5)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-703)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3263 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))))
(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2597 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
-(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1074))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1095))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1095))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4143 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1103 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4143 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1103 *5 *6 *7 *8)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-583 *4)))))
(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
-(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-1073))) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1153 (-623 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-1073))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1153 (-623 *3))))) ((*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1073))) (-14 *5 (-1153 (-623 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))))
+(((*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1062 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 (-1128 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1128 *5 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3812 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1070 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-333)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *4 (-1056)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-1112)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))))
+(((*1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1038))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1154 (-623 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 (-623 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-4 *5 (-333)) (-5 *2 (-1154 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-4 *5 (-333)) (-5 *2 (-1154 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-991 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3693 *4) (|:| -4007 (-517))))) (-4 *4 (-1131 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1095) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1154 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1154 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1108)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
-(((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1130 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1130 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1130 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1073))) (-5 *1 (-757)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-973)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -2184 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
+(((*1 *2) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1113)) (-4 *4 (-1131 (-377 *2))) (-4 *2 (-1131 *3)))))
(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
-(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1042))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1073)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))))
+(((*1 *1 *1) (-4 *1 (-793 *2))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-1131 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1210 *1) (|:| -1513 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1153 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1069 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))))
-(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *1) (-5 *1 (-125))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1146 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1117 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1115 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1138 *4 *5)) (-4 *6 (-900 *5)))) ((*1 *1 *1 *1) (-4 *1 (-256))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-372))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-300)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *1) (-12 (-4 *1 (-374)) (-2455 (|has| *1 (-6 -4174))) (-2455 (|has| *1 (-6 -4166))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1) (-5 *1 (-1021))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *1) (-5 *1 (-125))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1116 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1114 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1137 *4 *5)) (-4 *6 (-900 *5)))) ((*1 *1 *1 *1) (-4 *1 (-256))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1114 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1145 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
-(((*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1) (-5 *1 (-1021))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)))) ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1057)) (-5 *1 (-276)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1154 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1154 *3))))))
(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)))) ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) ((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1073))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))))
-(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) ((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-107)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 (-517)))) (-5 *3 (-1070 (-517))) (-5 *1 (-525)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *1))) (-5 *3 (-1070 *1)) (-4 *1 (-831)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1069 *11))) (-5 *3 (-1069 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1153 (-583 (-1069 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1154 *5))) (-5 *4 (-517)) (-5 *2 (-1154 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1211 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) (-5 *1 (-1078)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -1546 (-107)) (|:| -3088 (-2 (|:| |ints2Floats?| (-107)) (|:| -1549 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -1495 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1211 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1096 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1159)) (-5 *1 (-763)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
(((*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *1 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-109)) (-5 *1 (-147)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1094))))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1094) (-29 *4))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1148 *3 *2)) (-4 *2 (-1146 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1110 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1131 *3)) (-5 *2 (-583 (-1070 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1131 *5)))))
(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))))
-(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4183) (-6 -4184)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1109)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4183) (-6 -4184)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-755)) (-5 *1 (-754)))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1069 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1069 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1069 *12)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 (-1153 (-517)))) (-5 *3 (-843)) (-5 *1 (-435)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))))
-(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *6))) (-5 *1 (-834 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-100)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *3 (-1130 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))))
-(((*1 *1 *1) (-4 *1 (-1042))))
-(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1155)) (-5 *1 (-230)))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-706)) (-5 *1 (-109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1056))) (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *1 (-215)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-517))) (-5 *1 (-1178 *4)))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))))
-(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1021))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4))))) (-5 *1 (-263 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))) ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))) ((*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))) ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1080 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1069 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2) (-12 (-5 *2 (-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3295 *1) (|:| -4167 *1) (|:| |associate| *1))) (-4 *1 (-509)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*3 $)) (-15 -1800 (*3 $)) (-15 -2256 ($ *3))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1130 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1054 (-517))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1114 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1135 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1145 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1094)))) ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))))
-(((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1130 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
-(((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1058 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1081 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1130 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1210 (-583 *6)) (|:| -1513 (-583 *6)))))))
-(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *5 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))))
-(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))))
-(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)) (-5 *3 (-199)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))))
-(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3618 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -2077 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1073))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-1148 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1145 *5)))))
-(((*1 *1) (-5 *1 (-973))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1145 *2)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1044 *5 *6 *7 *8))))) (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2422 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-874 *4)))) (-5 *1 (-165 *4)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1108)))) ((*1 *1 *2) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1069 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2131 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
-(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1056)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-679)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))))
-(((*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1) (-4 *1 (-1049))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) (-5 *1 (-1077)))))
-(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2059 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2059 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2059 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2059 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2059 (-703)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2059 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1154 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-5 *2 (-1070 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-928)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-168)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -3809 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1131 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -3809 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1154 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1131 *6)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *6 (-509)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-922)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
+(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1074)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1095) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1057)) (-4 *3 (-13 (-1095) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1057)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1057)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1095) (-880) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1057)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1074)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *1 (-1104 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1074)) (-4 *1 (-1115 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1115 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1363 ((-583 *2) *3))) (|has| *3 (-15 -2863 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1074)) (-4 *1 (-1136 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1136 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1363 ((-583 *2) *3))) (|has| *3 (-15 -2863 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1074)) (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1363 ((-583 *2) *3))) (|has| *3 (-15 -2863 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1095))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2400 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1154 (-1154 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1043)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1043)))))
+(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-4 *1 (-793 *2))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
(((*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))))
+(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *5 (-1113)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1057)) (-5 *2 (-706)) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1057)))) (-5 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-215)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1057))) (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *1 (-215)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *5 (-212 (-2210 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *2) (|:| -2059 *5)) (-2 (|:| -3353 *2) (|:| -2059 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1396 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-5 *2 (-1055 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
(((*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))))
-(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))))
-(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-1069 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1069 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)))))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)))))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -2831 (-349)) (|:| |explanations| (-1057)))))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1095) (-400 *6) (-10 -8 (-15 -2182 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1133 *3 *7) (-333) (-1095) (-10 -8 (-15 -1699 ($ $)) (-15 -2863 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1057)) (-4 *9 (-900 *8)) (-14 *10 (-1074)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1159)) (-5 *1 (-763)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1111)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1179 *4)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4183)))))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
+(((*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1074))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1074))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))))
+(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4184)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))))
+(((*1 *1) (-5 *1 (-1155))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-1070 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1070 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1154 *4)) (|:| |den| *4))))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1057)) (-5 *1 (-718)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-761)))))
+(((*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 *3)) (-5 *2 (-2 (|:| -3809 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1163 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))))
+(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1074)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))))
+(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1154 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) ((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4184)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1106)) (-5 *3 (-865 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-215)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1131 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))))
+(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-407)) (-5 *1 (-1078)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1106)))))
+(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1074)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1154 *4)) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-918)) (-4 *2 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2232 (-583 (-2 (|:| |irr| *3) (|:| -1671 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4184)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1074)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1106)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))))
+(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *1) (-5 *1 (-131))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))))
+(((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1883 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -4026 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
+(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3809 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *6) "failed")) (|:| -3809 (-583 (-1154 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1154 *6)))))
(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-407)) (-5 *1 (-1077)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3795 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))))
(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-787)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-883)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2365 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -2365 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1131 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1772 (*8 $)) (-15 -1783 (*8 $)) (-15 -2182 ($ *8))))))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-1074))) (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1074))) (-14 *7 (-1154 (-623 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1154 (-623 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-1074))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1154 (-623 *3))))) ((*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1074))) (-14 *5 (-1154 (-623 *2))))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1610 (-703)) (|:| |period| (-703)))) (-5 *1 (-1055 *4)) (-4 *4 (-1109)) (-5 *3 (-703)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4042 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1157)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))) ((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *2 (-950)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1109)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-349)) (-5 *1 (-973)))))
+(((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1165 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1165 *5 *6 *7 *8)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1883 *3) (|:| |gap| (-703)) (|:| -3319 (-714 *3)) (|:| -3169 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1883 *1) (|:| |gap| (-703)) (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1883 *1) (|:| |gap| (-703)) (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1883 (-583 *1)) (|:| -3107 *1))) (-5 *3 (-583 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1095))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))))
+(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1043))))
+(((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))))
+(((*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))))
+(((*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1131 *2)))))
(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-109)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1) (-4 *1 (-1050))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1057) (-706))) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
+(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1070 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1146 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1131 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1146 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1146 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1051 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3693 (-1070 *6)) (|:| -2059 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -3809 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *4 (-1057)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))))
+(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1131 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-1113)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
(((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
+(((*1 *1) (-5 *1 (-973))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-787)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-883)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-761)) (-5 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1070 *3)))))
+(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-1155)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1155)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1155)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-1156)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1156)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1154 *5)) (|:| -2075 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *6 (-593 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2522 (-623 *6)) (|:| |vec| (-1154 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1154 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3812 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1131 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-753)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))))
(((*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1131 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-1070 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))))
(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))))
-(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1155)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-377 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3577 *5) (|:| -3591 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-2 (|:| -3577 *5) (|:| -3591 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))) (-5 *4 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3577 *4) (|:| -3591 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3577 *5) (|:| -3591 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *5)) (-5 *4 (-2 (|:| -3577 *5) (|:| -3591 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1095)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1109)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))))
+(((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1124 *2 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167 (-1074) *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1167 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1176 *3 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1131 (-377 *4))))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1105 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1105 *2)) (-4 *2 (-891)))))
+(((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1057)) (-5 *1 (-718)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1154 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1154 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1154 *5)) (-5 *1 (-991 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))))
+(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1131 *5)) (-5 *2 (-1070 (-1070 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1131 *6)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1084 *2)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1003)) (-4 *2 (-779)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1131 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1131 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-2 (|:| -2075 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1124 *4 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
(((*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3376 (-583 (-787))) (|:| -1754 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -3801 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1074)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1057)) (|:| -1211 (-1057)))) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1074))) (-5 *1 (-757)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-754)))))
+(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1109)) (-4 *3 (-961)) (-5 *2 (-623 *3)))))
+(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1107 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-918)) (-4 *2 (-961)))))
(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1074)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))))
(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1131 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2075 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1154 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))))
-(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *1 *1) (-5 *1 (-47))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-56 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -4026 (-1070 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-13 (-509) (-779))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1109)) (-4 *2 (-1109)) (-5 *1 (-213 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1131 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) ((*1 *1 *1) (-5 *1 (-460))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-581 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-878 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1055 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-1053 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1103 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-1153 *5 *2)))))
+(((*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
+(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1043))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1071 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1146 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1070 (-377 (-1070 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1070 *6)) (-4 *7 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1070 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1070 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1070 *5)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1396 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-1131 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1131 (-377 *3))))))
+(((*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))))))
+(((*1 *1) (-5 *1 (-1159))))
+(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))))
+(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1131 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1131 *5)) (-14 *6 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-333)) (-4 *2 (-338)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1157)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2831 (-349)) (|:| -1211 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1131 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1131 *6)) (-14 *7 (-843)))))
+(((*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1070 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1128 *5 *4)) (-5 *1 (-1072 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1074)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1128 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1074)) (-14 *6 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4174)) (-4 *1 (-374)) (-5 *2 (-843)))))
+(((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1109)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1095))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *5 (-556 $)) $)) (-15 -1800 ((-1026 *5 (-556 $)) $)) (-15 -2256 ($ (-1026 *5 (-556 $))))))))))
-(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-1088)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2522 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -3795 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -3809 (-583 (-1154 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1095) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *5 (-556 $)) $)) (-15 -1783 ((-1026 *5 (-556 $)) $)) (-15 -2182 ($ (-1026 *5 (-556 $))))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))) ((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) ((*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
+(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-1021))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-973)))))
+(((*1 *1) (-5 *1 (-512))))
(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-1154 (-3 (-437) "undefined"))) (-5 *1 (-1155)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-517)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1109)) (-5 *2 (-517)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-517)) (-5 *3 (-128)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-517)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1215 *1) (|:| -1511 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1103 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1131 *2)))))
+(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1070 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))))
+(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-13 (-1130 *4) (-509) (-10 -8 (-15 -1401 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1157)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-168)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1056)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1073)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *8)))) (|:| -1753 (-583 (-1153 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-367)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1063 (-1073) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1062 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-973)) (-5 *3 (-1057)))))
(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-961)) (-5 *2 (-623 *3)))))
-(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1103 *4)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1073))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1094))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1094))))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3837 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1094) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))))
-(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))))
-(((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))))
-(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
-(((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1153 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) ((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))))
-(((*1 *1) (-5 *1 (-1158))))
-(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1130 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1931 *3) (|:| |gap| (-703)) (|:| -3425 (-714 *3)) (|:| -3060 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1145 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1130 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1145 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1145 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1050 *4)))))
-(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-973))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1166 (-1073) *3)) (-4 *3 (-961)) (-5 *1 (-1173 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1175 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1056)) (|:| -1207 (-1056)))) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))))
-(((*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1108)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))))
-(((*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))))
-(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1094))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-1087)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-1054 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-517)) (-5 *1 (-215)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
-(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-1021))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1073)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *9)))) (|:| -1753 (-583 (-1153 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1073)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-517)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-517)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)) (-5 *3 (-128)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
-(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-512)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-406)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-891)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-128)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
-(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))))
-(((*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1069 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 *8)) (|:| -2077 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-874 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1066 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1066 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-300)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1112))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1133 *3 *2)) (-4 *2 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
-(((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1130 *3)))))
-(((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *1 (-1077)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1070 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1131 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1115 *3)) (-5 *2 (-377 (-517))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1131 (-153 *3))))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1066 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1095))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1095))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1066 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1067 *5)) (-5 *3 (-874 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1067 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1067 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1067 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1074)) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1074)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))))
(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))))
-(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2508 (-517)) (|:| -2879 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1155)) (-5 *1 (-230)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))))
+(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 (-1055 *4) (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-1109)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1055 *5)) (-583 (-1055 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1055 *5))) (-5 *1 (-1177 *5)) (-4 *5 (-1109)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))))
(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-757)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-671)))))
-(((*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1092)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-671)))))
+(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-102 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *4 (-556 $)) $)) (-15 -1783 ((-1026 *4 (-556 $)) $)) (-15 -2182 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *4 (-556 $)) $)) (-15 -1783 ((-1026 *4 (-556 $)) $)) (-15 -2182 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))))
+(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1086 *3 *2)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2879 (-583 (-2 (|:| |irr| *10) (|:| -3631 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1069 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1069 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 *3)) (|:| |logand| (-1070 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-703)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))))
(((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1056)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1056)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1158)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1158)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
-(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))))
-(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-509))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-703))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))))
(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))))
-(((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *2)) (-2 (|:| -3448 *5) (|:| -2077 *2)))) (-4 *2 (-212 (-2296 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *2 *3) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1081 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)))))
-(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1062 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-961)) (-4 *2 (-1130 *4)) (-5 *1 (-413 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1069 (-286 *5)))) (-5 *3 (-1153 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1070 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-509))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-703))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))))
+(((*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1074))) (-4 *2 (-156)) (-4 *3 (-212 (-2210 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *3)) (-2 (|:| -3353 *5) (|:| -2059 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1070 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1103 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))))
(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-5 *1 (-973))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-1091 *4)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4183)))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-5 *1 (-973))) ((*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1052 *4)) (-4 *4 (-1109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))))
-(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-109))) ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1095))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1095))) (-5 *1 (-546 *4 *5 *2)))))
+(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1109)) (-4 *5 (-1109)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1055 *6)) (-4 *6 (-1109)) (-4 *3 (-1109)) (-5 *2 (-1055 *3)) (-5 *1 (-1053 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1154 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-1154 *5)) (-5 *1 (-1153 *6 *5)))))
+(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1115 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1115 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))))
+(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-109))) ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
-(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1130 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1148 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1145 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
-(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1164 *4 *5 *6 *7))) (-5 *1 (-1164 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1164 *6 *7 *8 *9))) (-5 *1 (-1164 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1073)) (-5 *1 (-572)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1121 (-517))) (|has| *1 (-6 -4181)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3591 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2230 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2090 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4183) (-6 -4184)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1109)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4183) (-6 -4184)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *4)) (|:| -2575 (-583 (-874 *4)))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *5)) (|:| -2575 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3870 (-1070 *4)) (|:| -2575 (-583 (-874 *4)))))) (-5 *1 (-1178 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))))
+(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4184)) (-4 *1 (-114 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4184)) (-4 *1 (-114 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1074)) (-5 *1 (-572)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1122 (-517))) (|has| *1 (-6 -4184)) (-4 *1 (-588 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4184)) (-4 *1 (-926 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
(((*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-4 *1 (-655))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
-(((*1 *2 *1) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1003)) (-4 *2 (-779)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1154 (-583 (-2 (|:| -3088 *4) (|:| -3353 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1074)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))))
+(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1131 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))))
(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))))
-(((*1 *1) (-5 *1 (-755))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-44 (-1057) (-706))) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-493)))))
+(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1154 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1095) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1131 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1131 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1076 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-57 *3)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))))
(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-973)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-372))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *4 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *1 (-1077)))))
-(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1108)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-1154))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))))
-(((*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))))
-(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1069 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1069 *3)) (-4 *7 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1149 *5)) (-14 *5 (-1073)) (-4 *6 (-961)) (-5 *2 (-1127 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1069 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-377 (-1069 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1074))) (-5 *4 (-1074)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1078)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1074))) (-5 *1 (-1078)))))
+(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1754 (-874 *6)) (|:| -1253 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))))
+(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1081 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))))
+(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2090 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1081 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1070 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1070 (-377 (-1070 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1070 *3)) (-4 *7 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1150 *5)) (-14 *5 (-1074)) (-4 *6 (-961)) (-5 *2 (-1128 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1070 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1070 *1)) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1070 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-377 (-1070 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1057)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1057)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1131 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1149 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1146 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-300)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1155)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1154 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1154 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))))
(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1130 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-300)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -1537 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
(((*1 *1) (-5 *1 (-300))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))))
-(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1045 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
-(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1073)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1130 (-377 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1069 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
-(((*1 *1) (-5 *1 (-512))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1046 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3693 *3) (|:| -2059 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
+(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349)))) (-5 *7 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -2981 (-349)))) (-5 *7 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
(((*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) ((*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))))
-(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1388 (-564 *4 *5)) (|:| -2544 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1130 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1061 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -2422 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1153 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-107)) (-5 *1 (-236)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-33)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1069 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1145 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1147 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-227 *3)))) ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-138 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-1073))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *3 *5))) (-5 *1 (-1038 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3726 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *4 *5))) (-5 *1 (-1038 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3726 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1038 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1145 *5)) (-5 *1 (-1147 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1158)) (-5 *1 (-1163 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))))
-(((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1054 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1054 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))))
-(((*1 *2) (-12 (-5 *2 (-1153 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-735)))))
-(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1073)))) ((*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-1040 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (-5 *1 (-189 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) ((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1139 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) ((*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1175 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1166 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) ((*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-632))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-467)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))) ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) ((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-948 *3)) (-4 *3 (-1108)))) ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1042)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1071 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1072)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) ((*1 *2 *1) (-12 (-5 *2 (-1082 (-1073) (-407))) (-5 *1 (-1077)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1088 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1089)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1103 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1108)) (-5 *1 (-1106 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1116 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1108)) (-5 *1 (-1121 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-1127 *3 *4)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1137 *3 *2)) (-4 *2 (-1114 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1146 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1154)))) ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1154)) (-5 *1 (-1157)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1158)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1171 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))))
-(((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1094) (-880))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))))
-(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1080 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-950)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1159)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1292 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1074))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1095) (-29 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-33)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2400 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-92)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1165 *4 *5 *6 *7))) (-5 *1 (-1165 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1165 *6 *7 *8 *9))) (-5 *1 (-1165 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-138 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2059 (-703)) (|:| -2840 *4) (|:| |num| *4)))) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *3 (-583 (-1074))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3353 *2) (|:| -2059 *3)) (-2 (|:| -3353 *2) (|:| -2059 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-1074)) (|:| -1266 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1039 *3 *5))) (-5 *1 (-1039 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3656 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1039 *4 *5))) (-5 *1 (-1039 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3656 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1040 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1040 *2 *3))) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1070 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-1149 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1146 *5)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-1122 (-517))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
+(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))))
+(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4185 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1131 *2)) (-4 *4 (-621 *2 *5 *6)))))
+(((*1 *1) (-5 *1 (-973))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-333)) (-14 *6 (-1154 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2197) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2197 (QUOTE X)) (-2197) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2197) (-2197 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2197) (-2197 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X) (QUOTE EPS)) (-2197 (QUOTE -2389)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1074)) (-14 *4 (-1074)) (-14 *5 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE EPS)) (-2197 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1074)) (-14 *4 (-1074)) (-14 *5 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2197) (-2197 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2197) (-2197 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197) (-2197 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2197 (QUOTE X) (QUOTE -2389)) (-2197) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2197 (QUOTE X)) (-2197) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X)) (-2197) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2197 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2197) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2197 (QUOTE X)) (-2197 (QUOTE -2389)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1074)))) ((*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-1041 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1154 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))) (-5 *1 (-189 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) ((*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1140 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) ((*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1176 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1167 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))) ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) ((*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-632))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -2954 (-583 (-300))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1154 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-467)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))) ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3353 *3) (|:| -2059 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3353 *3) (|:| -2059 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1883 *3) (|:| -3327 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -1495 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2663 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-14 *3 (-1074)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1074))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) ((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *1 (-948 *3)) (-4 *3 (-1109)))) ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1041 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1043)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1128 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-1072 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1074)))) ((*1 *2 *1) (-12 (-5 *2 (-1083 (-1074) (-407))) (-5 *1 (-1078)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1082 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1089 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1104 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1104 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1109)) (-5 *1 (-1107 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1117 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1109)) (-5 *1 (-1122 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-14 *3 (-1074)) (-5 *1 (-1128 *3 *4)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1138 *3 *2)) (-4 *2 (-1115 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1128 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1150 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1155)))) ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1155)) (-5 *1 (-1158)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1159)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1164 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1164 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *2) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1172 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1092 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2075 (-583 *9)) (|:| -3656 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2075 (-583 *9)) (|:| -3656 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1396 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1396 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1109)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))))
+(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-583 *4))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-131)) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1117 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1146 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1117 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1146 *2)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5)))))
(((*1 *1 *1) (-5 *1 (-107))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))))
-(((*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
-(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1054 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))))
+(((*1 *1 *1) (-4 *1 (-1043))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3721 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1156)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| *3) (|:| -1671 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
(((*1 *1 *1) (-5 *1 (-493))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
-(((*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1130 (-517))) (-5 *2 (-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1162 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1073)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1069 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1069 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-349)) (-5 *1 (-973)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2230 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-623 *3)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1074)) (-5 *1 (-240)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
(((*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-706)) (-5 *1 (-109)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1106 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1045 *5 *6 *7 *8))))) (-5 *1 (-1045 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -3809 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1074))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -3809 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -3809 (-583 (-1154 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *6)))) (|:| -3809 (-583 (-1154 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1074))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *6)))) (|:| -3809 (-583 (-1154 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -3809 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1074))) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1057)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1057)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1074)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1074))) (-5 *5 (-843)) (-5 *6 (-1057)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1074)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *6)) (-5 *4 (-1154 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))))
(((*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)) (-5 *1 (-1054 *4)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1130 *2)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1130 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1070 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
+(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2230 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *1) (-5 *1 (-735))))
+(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))))
(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2))))))
-(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1040 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))))
-(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
-(((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) ((*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
-(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1154)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1619 *5) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1074)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-843)) (-5 *1 (-718)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1057)) (-5 *1 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1082 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-961)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1077)) (-5 *3 (-1074)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1095))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1095))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1074)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))))
+(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-1154 *6)) (-5 *1 (-571 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1081 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) ((*1 *1 *1) (-4 *1 (-145))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1772 (*7 $)) (-15 -1783 (*7 $)) (-15 -2182 ($ *7))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))))
(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -4139 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1074))))) ((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1074))) (-5 *1 (-568 *3 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1099 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))))
(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
-(((*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))))
-(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-1148 *4 *2)) (-4 *4 (-37 (-377 (-517)))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-5 *5 (-1070 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-5 *5 (-377 (-1070 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))))
(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3402 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2527 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1130 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-583 (-1055 *4)))) (-5 *1 (-1148 *4 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1154 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1154 *1)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1057)) (-5 *1 (-906)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-998 *4)) (-4 *4 (-1109)) (-5 *1 (-996 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-906)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-998 *4)) (-4 *4 (-1108)) (-5 *1 (-996 *4)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))))
-(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-215)))))
-(((*1 *1 *1 *1) (-5 *1 (-146))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1073)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1130 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1056)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753)))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1056))) (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 *4))))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1054 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1073)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1139 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *2)) (-2 (|:| -3448 *3) (|:| -2077 *2)))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *1 (-235 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-51)) (-5 *1 (-236)))))
-(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3435 *3) (|:| -1257 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1074)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1140 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3353 *3) (|:| -2059 *2)) (-2 (|:| -3353 *3) (|:| -2059 *2)))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| *4) (|:| -1671 (-517))))))) (-4 *4 (-1131 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2232 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3809 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -3809 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1074))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2455 (-4 *3 (-952 (-1074)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2455 (-4 *3 (-952 (-1074)))) (-2455 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-109)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1057)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1131 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1095) (-256))))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3656 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3656 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1057))) (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1131 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1154 (-623 (-874 *4)))) (-5 *1 (-165 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-788)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-788)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-787)) (-5 *2 (-1159)) (-5 *1 (-788)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1055 *4)) (-4 *4 (-1003)) (-4 *4 (-1109)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) ((*1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1070 *6)) (-5 *1 (-291 *4 *5 *6 *7)))))
(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-278)))))
-(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-583 (-1079))) (-5 *1 (-1036)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 (-377 *8)) "failed")) (|:| -3809 (-583 (-1154 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1070 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1131 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1131 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))))
+(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3107 *1))) (-4 *1 (-278)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *1 (-235 *2)) (-4 *2 (-1109)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *2 (-51)) (-5 *1 (-236)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-1078)) (-5 *1 (-1077)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3342 *3) (|:| -1266 *4))))))
(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))))
+(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1074))) (-5 *1 (-571 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1109)))) ((*1 *1 *2) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *5 (-212 (-2210 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *2) (|:| -2059 *5)) (-2 (|:| -3353 *2) (|:| -2059 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))))
+(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1146 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1146 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-219 (-1057))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ *3)) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1131 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1057)) (-5 *1 (-467)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-572)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *1) (-4 *1 (-1043))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1074))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1074))) (-5 *1 (-568 *3 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3656 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1159)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3656 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1159)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2459 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1070 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2075 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2075 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1076 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1074))) (-5 *4 (-1154 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)) (-5 *1 (-265 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)) (-5 *1 (-265 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1076 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1074)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1074)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) ((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1074))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1109)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1109)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1074)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1055 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1057)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))))
+(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1109)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1070 *3)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
(((*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
-(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -4026 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1109)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1156)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1057)) (-5 *1 (-1156)))) ((*1 *1 *1) (-5 *1 (-1156))))
(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3837 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
-(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))))
-(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1073))) (-5 *4 (-1153 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)) (-5 *1 (-265 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1075 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1073)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1073)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) ((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1108)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1108)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1054 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))))
-(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1154)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))))
-(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1753 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *6) "failed")) (|:| -1753 (-583 (-1153 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1153 *6)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1094))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1130 *5)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-1154 (-286 (-349)))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *6)) (-15 -1772 (*6 $)) (-15 -1783 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1074)) (-5 *1 (-957 *4)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3812 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1104 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1104 *2)) (-4 *2 (-891)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)) (-5 *3 (-1056)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2790 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))) ((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) ((*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-1153 (-3 (-437) "undefined"))) (-5 *1 (-1154)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-973)) (-5 *3 (-1056)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-1076)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))))
-(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1109 *2)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-215)) (-5 *3 (-1057)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-215)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-1158)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-1158)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))))
+(((*1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2230 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2131 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-297 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))))
-(((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 (-1054 *4) (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1054 *5)) (-583 (-1054 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1054 *5))) (-5 *1 (-1176 *5)) (-4 *5 (-1108)))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1073)) (-5 *1 (-493)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1130 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))))
-(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1130 *2)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
-(((*1 *2 *3) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1130 (-377 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1038 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))))
-(((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-4 *4 (-1131 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 (-1154 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1074)) (-5 *1 (-493)))))
+(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1074)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1095) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1131 *3) (-509) (-10 -8 (-15 -1396 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1134 *3 *4)))))
+(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2230 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1131 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-718)))))
+(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *5 (-1131 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-757)))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))))
(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1075 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1127 *4 *3)) (-14 *4 (-1073)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *4))) (-5 *3 (-1069 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-300)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1102 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1102 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1069 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-333)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1175 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1168 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1130 *4)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
-(((*1 *1) (-5 *1 (-1155))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1082 (-843) (-703))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-14 *6 (-1073)) (-14 *7 *3))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-377 (-517)))) (-5 *1 (-1178 *4)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2372 *3) (|:| -2077 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-493)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1074)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 *2)) (|:| |logand| (-1070 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1041 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-4 *2 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))))
+(((*1 *2) (-12 (-5 *2 (-1046 (-1057))) (-5 *1 (-361)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4))))) (-5 *1 (-263 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1176 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1169 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-775)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1095) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3809 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1131 (-517))) (-5 *1 (-453 *3)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-787)))))
-(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1069 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-1112)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1130 (-377 *4))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1056)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1108)) (-5 *1 (-268 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1130 *9)) (-4 *11 (-1130 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1112)) (-4 *8 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *9 (-1130 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1130 (-377 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1130 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1130 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2422 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2422 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1130 *5)) (-4 *2 (-1130 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1130 (-377 *6))) (-4 *8 (-1130 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1052 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-1053 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-1067 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1085 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1118 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1118 *6 *8 *10)) (-5 *1 (-1113 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1121 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1127 *5 *6)) (-14 *5 (-1073)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1127 *7 *8)) (-5 *1 (-1122 *5 *6 *7 *8)) (-14 *7 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1130 *6)) (-5 *1 (-1128 *5 *4 *6 *2)) (-4 *4 (-1130 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1134 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6 *4 *2)) (-4 *4 (-1145 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-775)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1130 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1069 (-1069 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-1069 (-1069 *5))))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1130 *4)) (-5 *2 (-1153 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1073)) (-5 *4 (-772 *2)) (-4 *2 (-1037)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1931 *4) (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1931 *3) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1931 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-361)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1069 *3) (-1069 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1073)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1154)) (-5 *1 (-229 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-421)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-831)))))
+(((*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1093)))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1109)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))) ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))) ((*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))) ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970)))))
+(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1131 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1074))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-265 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1057)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1109)) (-5 *1 (-268 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1131 *9)) (-4 *11 (-1131 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1113)) (-4 *8 (-1113)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *9 (-1131 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1131 (-377 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1131 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1131 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2230 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2230 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1131 *5)) (-4 *2 (-1131 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1131 (-377 *6))) (-4 *8 (-1131 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1048 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1055 *6)) (-5 *1 (-1053 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-1054 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1070 *6)) (-5 *1 (-1068 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1074)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1119 *6 *8 *10)) (-5 *1 (-1114 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1074)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1122 *6)) (-5 *1 (-1121 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-777)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1055 *6)) (-5 *1 (-1121 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1128 *5 *6)) (-14 *5 (-1074)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1128 *7 *8)) (-5 *1 (-1123 *5 *6 *7 *8)) (-14 *7 (-1074)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1131 *6)) (-5 *1 (-1129 *5 *4 *6 *2)) (-4 *4 (-1131 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1074)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1135 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1074)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1146 *6)) (-5 *1 (-1144 *5 *6 *4 *2)) (-4 *4 (-1146 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1154 *6)) (-5 *1 (-1153 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1154 *6)) (-5 *1 (-1153 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1175 *3 *4)) (-4 *4 (-775)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1095) (-400 *3))) (-14 *4 (-1074)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1095) (-400 *3) (-10 -8 (-15 -2182 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1133 *2 *4) (-333) (-1095) (-10 -8 (-15 -1699 ($ $)) (-15 -2863 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1074)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)) (-4 *4 (-779)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2230 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1078)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1074)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1155)) (-5 *1 (-229 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1156)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1156)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-233)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
(((*1 *1) (-5 *1 (-407))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *3)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1080 *6)) (-5 *5 (-583 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1883 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))))
-(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1121 *3)) (-4 *3 (-1108)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 (*2 $)) (-15 -1815 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 (*2 $)) (-15 -1815 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-467)))))
+(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-1041 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1087 *3 *2)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) ((*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2232 (-583 (-2 (|:| |irr| *10) (|:| -1671 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1070 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1070 *3))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))))
(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1073)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1094) (-29 *6))) (-5 *1 (-198 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1069 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1094) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1058 *4)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-199)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1069 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1069 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))))
-(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1074))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1057)) (-5 *1 (-276)))))
(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *2 (-583 (-1056))) (-5 *1 (-240)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1111)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1111)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1087 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1131 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1070 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1070 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1153 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1130 *6)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1131 *4)) (-5 *2 (-1159)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1131 (-377 *5))) (-14 *7 *6))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 (-1070 (-874 *4)) (-874 *4))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1131 *4)) (-4 *4 (-961)) (-5 *2 (-1154 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1094))))))
-(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))))
-(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
-(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
+(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1131 *5)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1131 *6)) (-14 *7 (-843)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (|partial| -3763 (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-2455 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-502))) (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2455 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -3763 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2455 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))))
+(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1931 (-583 *1)) (|:| -3220 *1))) (-5 *3 (-583 *1)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5)) (|:| -2131 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *6 (-593 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))))
-(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) ((*1 *1 *1 *1) (-4 *1 (-725))))
+(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))))
-(((*1 *1) (-4 *1 (-319))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-5 *2 (-2 (|:| -2934 (-583 (-1074))) (|:| -3520 (-583 (-1074))))) (-5 *1 (-1111)))))
+(((*1 *1) (-5 *1 (-407))))
(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-1069 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-377 (-1069 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
-(((*1 *2 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *4)))) ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *3)))) ((*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *1)) (-4 *1 (-379 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-387 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1104 *3)) (-4 *3 (-891)))))
+(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1074))) (-4 *2 (-156)) (-4 *4 (-212 (-2210 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *3) (|:| -2059 *4)) (-2 (|:| -3353 *3) (|:| -2059 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154 (-632))) (-5 *1 (-276)))))
+(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-1126 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))))
+(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1069 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787))) ((*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1) (-5 *1 (-1076))) ((*1 *1) (-5 *1 (-1077))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))))
+(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1074)) (-4 *2 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1292 (-517)) (|:| -1925 (-517)) (|:| |spline| (-517)) (|:| -4037 (-517)) (|:| |axesColor| (-797)) (|:| -2899 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1155)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-517)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
-(((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1130 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1130 (-153 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1131 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1105 *3)) (-4 *3 (-891)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1109)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -2651 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2651 (-703)))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
-(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1130 *5)) (-5 *2 (-1069 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1130 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1074)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) ((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3577 *3) (|:| -3591 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1057)) (-5 *1 (-758 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1057)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1159)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1159)) (-5 *1 (-758 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1057)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1057)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1159)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1159)))))
+(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1697 *1) (|:| -4170 *1) (|:| |associate| *1))) (-4 *1 (-509)))))
(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4042 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1039 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1040 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1039 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1070 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *4 (-556 $)) $)) (-15 -1783 ((-1026 *4 (-556 $)) $)) (-15 -2182 ($ (-1026 *4 (-556 $))))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3577 (-377 (-517))) (|:| -3591 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1131 (-517))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
-(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1102 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
+(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-349)) (-5 *1 (-973)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| *3) (|:| -1671 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2232 (-583 (-2 (|:| |irr| *3) (|:| -1671 (-517))))))) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -3809 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -3809 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1131 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))))
(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3088 *4) (|:| -2033 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1159)) (-5 *1 (-215)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1158)) (-5 *1 (-215)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))))
-(((*1 *1) (-5 *1 (-1076))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1753 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1094) (-880))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1153 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1073)) (-4 *6 (-13 (-29 *5) (-1094) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1153 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1753 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1753 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1094) (-880))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1753 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1153 *6)) (|:| -1753 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-377 (-874 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-265 (-377 (-874 *4)))))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003)))))
-(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-5 *1 (-572))))
-(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-1158)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) ((*1 *1 *1 *1) (-4 *1 (-333))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1163 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1079 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1077)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -1605 *5) (|:| -2075 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1 *1) (-3763 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1109))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1109))))) ((*1 *1 *1 *1) (-4 *1 (-333))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1164 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
+(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1095) (-880) (-1038) (-29 *4))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *6)) (-4 *7 (-871 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-125))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-21)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2059 (-703)) (|:| -1883 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1772 (*3 $)) (-15 -1783 (*3 $)) (-15 -2182 ($ *3))))))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1772 ((-1026 *3 (-556 $)) $)) (-15 -1783 ((-1026 *3 (-556 $)) $)) (-15 -2182 ($ (-1026 *3 (-556 $))))))))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1130 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-922)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-125))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3656 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3656 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 ((-1159) $)) (-15 -1815 ((-1159) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-25)))))
+(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-996 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1074)))) ((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1150 *3)) (-14 *3 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1109)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1309 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *2 (-1158)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1130 (-377 *5))) (-14 *7 *6))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-25)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *1 *1 *1) (-4 *1 (-725))))
-(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))))
-(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1073))) (-4 *2 (-156)) (-4 *4 (-212 (-2296 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *4)) (-2 (|:| -3448 *3) (|:| -2077 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1130 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1070 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1131 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1131 *5)) (-5 *2 (-1070 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1131 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *3))) (-5 *1 (-1045 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))))
+(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1131 *5)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *3) (-12 (-4 *3 (-1130 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 (-517)))) (-5 *1 (-435)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1137 *4 *3)) (-4 *3 (-1114 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1069 *13))) (-5 *3 (-1069 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1153 (-583 (-1069 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))))
-(((*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1069 *5)) (-5 *1 (-31 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1069 *1)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1095) (-880) (-29 *4))))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-775)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1396 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *2)) (-2 (|:| -3353 *5) (|:| -2059 *2)))) (-4 *2 (-212 (-2210 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1122 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1138 *4 *3)) (-4 *3 (-1115 *4)))))
+(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1127 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
+(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1109)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 (-1128 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1128 *5 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1087)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1130 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1116 *4 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-517))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1117 *4 *3)) (-4 *3 (-1146 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))))
+(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1103 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1038))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-583 (-1103 *5))) (-5 *1 (-1161 *5)) (-5 *4 (-1103 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-703))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-703))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))))
-(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *3) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-703))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-703))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *1) (-12 (-4 *1 (-374)) (-2455 (|has| *1 (-6 -4174))) (-2455 (|has| *1 (-6 -4166))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1021))))
(((*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1153 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1153 *3))))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1) (|partial| -4 *1 (-655))) ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1131 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1055 (-517))))))
+(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))))
+(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1073))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2630 (-4 *3 (-952 (-1073)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2630 (-4 *3 (-952 (-1073)))) (-2630 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))))
-(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
(((*1 *1) (-5 *1 (-107))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
-(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))))
+(((*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1153 *5))) (-5 *4 (-517)) (-5 *2 (-1153 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1063 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1156)))) ((*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1156)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3693 (-1070 *9)) (|:| -2059 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1070 *9)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1109)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))))
(((*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-1145 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-4 *1 (-793 *2))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-517))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1122 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1115 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1136 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-4 *1 (-1146 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1146 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1055 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1054 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1040 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (-5 *1 (-824 *4 *2)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1073)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))))
+(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1074)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-1070 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1156)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
(((*1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1153 (-1153 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1153 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-531)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-961)) (-4 *2 (-1131 *4)) (-5 *1 (-413 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1070 (-286 *5)))) (-5 *3 (-1154 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))))
+(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1095)))) ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3656 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -4143 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))))
(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2503 "void"))) (-5 *1 (-407)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)) (-5 *3 (-199)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))))
+(((*1 *2 *3) (-12 (-4 *4 (-1109)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1041 *3 *4)) (-14 *3 (-703)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-403 *5 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))))
(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))))
-(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-961)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-1153 *6)) (-5 *1 (-571 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))))
+(((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1131 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
(((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-583 (-1054 *4)))) (-5 *1 (-1147 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3591 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1131 *4)) (-5 *1 (-527 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4174)) (-4 *1 (-374)) (-5 *2 (-843)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-517)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2522 (-623 *5)) (|:| |vec| (-1154 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
(((*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) ((*1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 (-377 *8)) "failed")) (|:| -1753 (-583 (-1153 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-928)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1131 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))))
(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1054 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1154 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1154 *4)) (-5 *1 (-578 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1883 *1) (|:| |gap| (-703)) (|:| -3169 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1883 *1) (|:| |gap| (-703)) (|:| -3169 *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))))
(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)) (-5 *1 (-1074 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1153 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1158)) (-5 *1 (-788)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1159)) (-5 *1 (-788)))))
(((*1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1070 *3)))) ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1131 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))))
+(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2230 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1154 *5)) (-5 *1 (-578 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 *5)) (-2455 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1154 (-377 *5))) (-5 *1 (-578 *5 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1131 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))))
+(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1131 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1095) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1057)) (-5 *1 (-92)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1057)) (-5 *1 (-92)))))
+(((*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1059 *4)))))
(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *1 *1) (-5 *1 (-437))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-219 (-1056))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ *3)) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1130 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1056)) (-5 *1 (-467)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-572)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *1) (-4 *1 (-1042))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1073)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1074))) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1074))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2210 *3) (-703))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1074))) (-4 *4 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3306 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2400 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3577 *3) (|:| -3591 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1131 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1074)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-5 *4 (-1074)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1082 (-583 *4))) (-5 *1 (-1081 *4)) (-5 *3 (-583 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))))
(((*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*7 $)) (-15 -1800 (*7 $)) (-15 -2256 ($ *7))))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2879 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1131 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
(((*1 *1) (-5 *1 (-107))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))))
(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-517)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4184)) (-4 *1 (-926 *3)) (-4 *3 (-1109)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3319 (-703)) (|:| -3169 (-703)))) (-5 *1 (-703)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-276)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-517)) (-5 *2 (-107)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1153 *5)) (-5 *1 (-578 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-2630 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1153 (-377 *5))) (-5 *1 (-578 *5 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-493)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *6)) (-15 -1787 (*6 $)) (-15 -1800 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1073)) (-5 *1 (-957 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2) (-12 (-5 *2 (-2 (|:| -3520 (-583 *3)) (|:| -2934 (-583 *3)))) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1070 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1131 *2)))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-1167 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-4 *5 (-333)) (-5 *2 (-1055 (-1055 (-874 *5)))) (-5 *1 (-1162 *5)) (-5 *4 (-1055 (-874 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1055 (-874 *4)) (-1055 (-874 *4)))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1070 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1070 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-843))) ((*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1070 *6)) (-1070 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-517)) (-5 *1 (-1092 *4)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3088 *4) (|:| -1587 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1073)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1094) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1069 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1069 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-843))) ((*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *2)) (|:| |logand| (-1069 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))))
-(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1131 *3)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-123))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-406)))))
+(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3582 ((-1074) $)) (-15 -1625 ((-3 $ "failed") (-1074)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))))
(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1073)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1056)))) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1178 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1074)))))
+(((*1 *2 *3) (-12 (|has| *2 (-6 (-4185 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1131 *2)) (-4 *4 (-621 *2 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1041 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4185 "*"))))) (-5 *1 (-824 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
-(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1105)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))))
-(((*1 *1) (-5 *1 (-131))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1913 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))))
-(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))))
-(((*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1054 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1054 *4)) (-4 *5 (-1145 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-215)))))
(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1073))) (-5 *1 (-957 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2663 (-583 (-199))))) (-5 *2 (-583 (-1074))) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1074))) (-5 *1 (-957 *4)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))))
(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3693 *3) (|:| -4007 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) ((*1 *2) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1113)) (-4 *4 (-1131 (-377 *2))) (-4 *2 (-1131 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-146))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1070 (-377 (-1070 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1070 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2182 ($ *7)) (-15 -1772 (*7 $)) (-15 -1783 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1070 (-377 (-874 *5))))) (-5 *4 (-1074)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1131 *2)))))
(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1069 (-377 (-1069 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 (-377 (-874 *5))))) (-5 *4 (-1073)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3088 (-832 *3)) (|:| -3353 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3088 *3) (|:| -3353 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3088 *3) (|:| -3353 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3)))))
+(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1095) (-880))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2210 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3353 *5) (|:| -2059 *6)) (-2 (|:| -3353 *5) (|:| -2059 *6)))) (-14 *4 (-583 (-1074))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1131 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))))
(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1158)) (-5 *1 (-763)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1130 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2296 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1057)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1159)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
+(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1215 (-583 *6)) (|:| -1511 (-583 *6)))))))
(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1095) (-880))))))
+(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787))) ((*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1) (-5 *1 (-1077))) ((*1 *1) (-5 *1 (-1078))))
+(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-1131 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1159)) (-5 *1 (-1110 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1159)) (-5 *1 (-1110 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 *9)) (|:| -2077 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1108)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1049))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1094))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153 (-1153 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-5 *2 (-1054 *3)))))
+(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1074)) (|:| |c| (-1174 *3))))) (-5 *1 (-1174 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1176 *3 *4))))) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-131)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1154 (-1154 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1154 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 (-703)) (|:| -3060 (-703)))) (-5 *1 (-703)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1130 *3)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1073)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -3688 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))))
(((*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))))
-(((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 (-832 *3)) (|:| -3448 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1073)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-1045 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-156)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-761)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-531)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))))
+(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1074)) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3809 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))))
+(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1042))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3656 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1131 (-517))))))
(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1077)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1130 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1309 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *3 (-1113)) (-4 *5 (-1131 *3)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3656 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))))
(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1074))))))
+(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1074))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1064 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1074)) (-5 *4 (-772 *2)) (-4 *2 (-1038)) (-4 *2 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -1495 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1495 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1082 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))))
(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1130 *4)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
-(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1069 *6)) (-1069 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1073))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1056)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-735))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3342 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1266 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1883 *4) (|:| -3319 *3) (|:| -3169 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-975 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1883 *3) (|:| -3319 *1) (|:| -3169 *1))) (-4 *1 (-1131 *3)))))
(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-364)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1089)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1089)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1081 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))))
-(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1056)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1073)) (-5 *1 (-493)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1153 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-102 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1) (-4 *1 (-509))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1) (-12 (-14 *2 (-583 (-1073))) (-4 *3 (-156)) (-4 *5 (-212 (-2296 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3591 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -3591 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-408 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-982 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1073))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1157)))) ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1157)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1986 ((-1057) $ (-1074))) (-15 -1250 (*2 $)) (-15 -1815 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-364)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-467)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1090)))))
+(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1081 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
+(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1131 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-1074)) (-5 *1 (-493)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1165 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1165 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1131 *4)) (-4 *2 (-1146 *4)) (-5 *1 (-1149 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(((*1 *2 *3) (-12 (-4 *3 (-1131 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-343 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-777))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1) (-4 *1 (-1038))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-1156))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1074)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2230 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1095) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))) ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1) (-12 (-14 *2 (-583 (-1074))) (-4 *3 (-156)) (-4 *5 (-212 (-2210 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *4) (|:| -2059 *5)) (-2 (|:| -3353 *4) (|:| -2059 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-517)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4184)) (-4 *1 (-456 *3)) (-4 *3 (-1109)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-408 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-982 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1159)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-517)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-1057)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1074)) (-5 *5 (-1057)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1092 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6)))))
(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1080 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))))
-(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-131)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
-((-1185 . 682053) (-1186 . 681983) (-1187 . 681900) (-1188 . 681845) (-1189 . 681772) (-1190 . 681486) (-1191 . 680381) (-1192 . 680296) (-1193 . 680215) (-1194 . 680016) (-1195 . 679884) (-1196 . 679807) (-1197 . 679691) (-1198 . 679608) (-1199 . 679534) (-1200 . 679477) (-1201 . 679368) (-1202 . 679283) (-1203 . 679210) (-1204 . 678884) (-1205 . 678762) (-1206 . 678734) (-1207 . 678332) (-1208 . 677910) (-1209 . 677809) (-1210 . 677652) (-1211 . 677580) (-1212 . 676510) (-1213 . 676479) (-1214 . 676394) (-1215 . 676366) (-1216 . 676208) (-1217 . 675758) (-1218 . 675497) (-1219 . 675411) (-1220 . 675321) (-1221 . 675207) (-1222 . 675133) (-1223 . 675048) (-1224 . 674981) (-1225 . 674834) (-1226 . 674742) (-1227 . 674651) (-1228 . 674484) (-1229 . 674425) (-1230 . 674325) (-1231 . 674225) (-1232 . 674140) (-1233 . 674089) (-1234 . 673660) (-1235 . 673527) (-1236 . 673460) (-1237 . 673404) (-1238 . 673331) (-1239 . 673148) (-1240 . 673082) (-1241 . 673000) (-1242 . 672343) (-1243 . 672309) (-1244 . 672221) (-1245 . 672193) (-1246 . 668455) (-1247 . 668389) (-1248 . 668225) (-1249 . 668012) (-1250 . 667899) (-1251 . 667817) (-1252 . 667553) (-1253 . 667455) (-1254 . 667374) (-1255 . 667283) (-1256 . 666531) (-1257 . 665599) (-1258 . 665393) (-1259 . 665253) (-1260 . 665093) (-1261 . 664915) (-1262 . 664796) (-1263 . 664610) (-1264 . 664345) (-1265 . 664254) (-1266 . 664188) (-1267 . 664074) (-1268 . 663986) (-1269 . 663748) (-1270 . 663442) (-1271 . 663303) (-1272 . 663213) (-1273 . 663088) (-1274 . 663034) (-1275 . 662940) (-1276 . 662888) (-1277 . 662794) (-1278 . 662522) (-1279 . 662324) (-1280 . 662253) (-1281 . 662045) (-1282 . 661979) (-1283 . 661746) (-1284 . 661575) (-1285 . 661490) (-1286 . 661338) (-1287 . 661283) (-1288 . 661131) (-1289 . 661103) (-1290 . 660993) (-1291 . 660855) (-1292 . 660768) (-1293 . 660589) (-1294 . 660282) (-1295 . 660224) (-1296 . 660134) (-1297 . 660068) (-1298 . 659652) (-1299 . 659600) (-1300 . 659473) (-1301 . 659303) (-1302 . 659252) (-1303 . 658882) (-1304 . 658792) (-1305 . 658740) (-1306 . 658328) (-1307 . 658095) (-1308 . 655156) (-1309 . 655082) (-1310 . 654890) (-1311 . 654409) (-1312 . 654343) (-1313 . 653292) (-1314 . 653214) (-1315 . 653148) (-1316 . 652996) (-1317 . 652846) (-1318 . 652561) (-1319 . 652519) (-1320 . 652464) (-1321 . 652390) (-1322 . 652188) (-1323 . 651900) (-1324 . 651665) (-1325 . 651347) (-1326 . 651095) (-1327 . 651017) (-1328 . 650889) (-1329 . 650787) (-1330 . 650683) (-1331 . 650353) (-1332 . 650204) (-1333 . 649932) (-1334 . 649862) (-1335 . 649782) (-1336 . 649264) (-1337 . 648998) (-1338 . 648765) (-1339 . 647228) (-1340 . 647176) (-1341 . 647063) (-1342 . 646918) (-1343 . 646782) (-1344 . 646707) (-1345 . 646610) (-1346 . 646538) (-1347 . 646217) (-1348 . 645935) (-1349 . 645842) (-1350 . 645031) (-1351 . 644962) (-1352 . 644679) (-1353 . 644627) (-1354 . 644509) (-1355 . 643882) (-1356 . 643813) (-1357 . 643594) (-1358 . 643414) (-1359 . 643260) (-1360 . 643129) (-1361 . 643095) (-1362 . 642969) (-1363 . 642724) (-1364 . 641514) (-1365 . 641428) (-1366 . 641231) (-1367 . 640946) (-1368 . 640842) (-1369 . 640612) (-1370 . 640543) (-1371 . 640418) (-1372 . 640368) (-1373 . 640243) (-1374 . 640077) (-1375 . 639843) (-1376 . 639521) (-1377 . 639201) (-1378 . 638931) (-1379 . 638767) (-1380 . 638635) (-1381 . 638553) (-1382 . 638482) (-1383 . 638399) (-1384 . 638347) (-1385 . 638213) (-1386 . 638018) (-1387 . 637921) (-1388 . 637831) (-1389 . 637465) (-1390 . 637358) (-1391 . 637217) (-1392 . 637045) (-1393 . 636941) (-1394 . 636795) (-1395 . 636696) (-1396 . 636628) (-1397 . 636513) (-1398 . 636326) (-1399 . 636106) (-1400 . 635994) (-1401 . 634945) (-1402 . 634627) (-1403 . 634561) (-1404 . 634491) (-1405 . 634369) (-1406 . 634271) (-1407 . 634167) (-1408 . 634052) (-1409 . 633633) (-1410 . 633536) (-1411 . 633473) (-1412 . 633177) (-1413 . 632827) (-1414 . 632753) (-1415 . 632693) (-1416 . 632520) (-1417 . 632467) (-1418 . 632383) (-1419 . 632146) (-1420 . 631983) (-1421 . 631876) (-1422 . 631817) (-1423 . 631668) (-1424 . 631616) (-1425 . 631588) (-1426 . 631536) (-1427 . 631432) (-1428 . 631363) (-1429 . 631214) (-1430 . 631112) (-1431 . 630988) (-1432 . 630881) (-1433 . 630665) (-1434 . 630372) (-1435 . 630239) (-1436 . 630157) (-1437 . 630101) (-1438 . 630035) (-1439 . 629886) (-1440 . 629698) (-1441 . 629360) (-1442 . 629167) (-1443 . 629045) (-1444 . 628945) (-1445 . 628724) (-1446 . 628573) (-1447 . 628306) (-1448 . 627936) (-1449 . 623082) (-1450 . 623005) (-1451 . 622639) (-1452 . 622267) (-1453 . 622163) (-1454 . 622057) (-1455 . 621966) (-1456 . 621848) (-1457 . 621773) (-1458 . 621595) (-1459 . 621539) (-1460 . 621479) (-1461 . 619800) (-1462 . 619726) (-1463 . 619543) (-1464 . 619469) (-1465 . 619335) (-1466 . 619234) (-1467 . 619127) (-1468 . 618967) (-1469 . 618887) (-1470 . 618739) (-1471 . 618589) (-1472 . 618182) (-1473 . 618039) (-1474 . 617969) (-1475 . 617896) (-1476 . 617813) (-1477 . 617580) (-1478 . 617256) (-1479 . 617081) (-1480 . 616980) (-1481 . 616852) (-1482 . 616748) (-1483 . 616390) (-1484 . 616231) (-1485 . 615973) (-1486 . 615740) (-1487 . 615466) (-1488 . 615280) (-1489 . 615148) (-1490 . 615041) (-1491 . 614893) (-1492 . 614349) (-1493 . 614277) (-1494 . 614224) (-1495 . 614065) (-1496 . 613979) (-1497 . 613481) (-1498 . 613368) (-1499 . 613040) (-1500 . 612958) (-1501 . 612856) (-1502 . 612797) (-1503 . 612658) (-1504 . 612606) (-1505 . 612470) (-1506 . 610762) (-1507 . 610591) (-1508 . 610474) (-1509 . 610372) (-1510 . 610139) (-1511 . 610087) (-1512 . 609991) (-1513 . 609825) (-1514 . 609760) (-1515 . 609572) (-1516 . 609339) (-1517 . 608969) (-1518 . 608841) (-1519 . 608737) (-1520 . 608668) (-1521 . 608524) (-1522 . 608493) (-1523 . 608311) (-1524 . 608259) (-1525 . 608022) (-1526 . 607806) (-1527 . 607702) (-1528 . 607500) (-1529 . 607386) (-1530 . 607255) (-1531 . 607127) (-1532 . 607061) (-1533 . 606913) (-1534 . 606879) (-1535 . 606799) (-1536 . 606591) (-1537 . 606352) (-1538 . 606086) (-1539 . 606003) (-1540 . 605887) (-1541 . 605762) (-1542 . 605681) (-1543 . 605598) (-1544 . 605411) (-1545 . 605105) (-1546 . 605053) (-1547 . 604789) (-1548 . 604714) (-1549 . 604576) (-1550 . 604501) (-1551 . 604429) (-1552 . 603670) (-1553 . 603576) (-1554 . 603469) (-1555 . 603321) (-1556 . 603188) (-1557 . 603073) (-1558 . 602883) (-1559 . 602812) (-1560 . 602722) (-1561 . 602570) (-1562 . 602495) (-1563 . 602422) (-1564 . 602050) (-1565 . 601992) (-1566 . 601876) (-1567 . 601604) (-1568 . 601513) (-1569 . 601485) (-1570 . 601296) (-1571 . 600623) (-1572 . 600323) (-1573 . 600214) (-1574 . 600162) (-1575 . 600079) (-1576 . 600004) (-1577 . 599745) (-1578 . 599626) (-1579 . 599543) (-1580 . 599478) (-1581 . 599380) (-1582 . 599191) (-1583 . 599105) (-1584 . 599056) (-1585 . 598883) (-1586 . 598416) (-1587 . 598043) (-1588 . 597723) (-1589 . 597625) (-1590 . 595901) (-1591 . 595775) (-1592 . 595704) (-1593 . 595584) (-1594 . 595460) (-1595 . 595303) (-1596 . 595233) (-1597 . 595055) (-1598 . 594956) (-1599 . 594794) (-1600 . 594616) (-1601 . 593195) (-1602 . 593040) (-1603 . 592838) (-1604 . 592784) (-1605 . 592635) (-1606 . 592549) (-1607 . 592316) (-1608 . 591927) (-1609 . 591292) (-1610 . 591237) (-1611 . 590281) (-1612 . 590113) (-1613 . 588659) (-1614 . 588576) (-1615 . 588428) (-1616 . 588305) (-1617 . 588205) (-1618 . 588024) (-1619 . 587627) (-1620 . 587513) (-1621 . 587417) (-1622 . 587350) (-1623 . 587288) (-1624 . 587197) (-1625 . 587004) (-1626 . 586696) (-1627 . 586613) (-1628 . 586504) (-1629 . 586453) (-1630 . 586391) (-1631 . 586100) (-1632 . 585946) (-1633 . 585894) (-1634 . 585564) (-1635 . 585396) (-1636 . 585154) (-1637 . 584884) (-1638 . 584478) (-1639 . 584237) (-1640 . 584137) (-1641 . 583974) (-1642 . 582845) (-1643 . 582694) (-1644 . 582191) (-1645 . 582118) (-1646 . 581484) (-1647 . 580968) (-1648 . 580855) (-1649 . 580441) (-1650 . 580082) (-1651 . 580008) (-1652 . 579762) (-1653 . 579643) (-1654 . 578515) (-1655 . 578377) (-1656 . 578301) (-1657 . 578157) (-1658 . 578089) (-1659 . 577551) (-1660 . 577140) (-1661 . 577018) (-1662 . 576819) (-1663 . 576673) (-1664 . 576581) (-1665 . 576448) (-1666 . 576354) (-1667 . 574267) (-1668 . 574148) (-1669 . 574064) (-1670 . 574002) (-1671 . 573898) (-1672 . 572765) (-1673 . 572643) (-1674 . 563782) (-1675 . 563582) (-1676 . 563553) (-1677 . 563399) (-1678 . 563257) (-1679 . 563163) (-1680 . 563045) (-1681 . 562906) (-1682 . 562804) (-1683 . 562571) (-1684 . 562455) (-1685 . 562384) (-1686 . 562213) (-1687 . 562161) (-1688 . 562130) (-1689 . 561992) (-1690 . 561871) (-1691 . 561780) (-1692 . 561706) (-1693 . 561629) (-1694 . 561489) (-1695 . 561273) (-1696 . 561198) (-1697 . 561046) (-1698 . 560913) (-1699 . 560804) (-1700 . 560610) (-1701 . 559906) (-1702 . 559854) (-1703 . 559728) (-1704 . 559639) (-1705 . 559560) (-1706 . 559398) (-1707 . 559343) (-1708 . 559258) (-1709 . 559224) (-1710 . 557378) (-1711 . 556674) (-1712 . 556606) (-1713 . 556454) (-1714 . 556314) (-1715 . 556184) (-1716 . 556022) (-1717 . 555872) (-1718 . 555559) (-1719 . 555061) (-1720 . 554810) (-1721 . 554158) (-1722 . 554084) (-1723 . 553990) (-1724 . 553646) (-1725 . 553453) (-1726 . 553344) (-1727 . 553176) (-1728 . 553075) (-1729 . 552996) (-1730 . 552773) (-1731 . 552444) (-1732 . 551898) (-1733 . 551780) (-1734 . 551101) (-1735 . 550592) (-1736 . 550356) (-1737 . 550288) (-1738 . 550142) (-1739 . 550038) (-1740 . 549929) (-1741 . 549775) (-1742 . 549723) (-1743 . 549177) (-1744 . 549025) (-1745 . 548923) (-1746 . 548613) (-1747 . 548392) (-1748 . 548248) (-1749 . 547983) (-1750 . 547891) (-1751 . 547799) (-1752 . 547700) (-1753 . 546878) (-1754 . 546332) (-1755 . 546270) (-1756 . 546236) (-1757 . 546126) (-1758 . 545575) (-1759 . 544799) (-1760 . 544422) (-1761 . 544365) (-1762 . 544284) (-1763 . 544126) (-1764 . 544073) (-1765 . 543423) (-1766 . 543395) (-1767 . 543303) (-1768 . 543037) (-1769 . 542846) (-1770 . 541819) (-1771 . 541694) (-1772 . 537540) (-1773 . 537239) (-1774 . 537171) (-1775 . 537016) (-1776 . 536606) (-1777 . 535956) (-1778 . 535890) (-1779 . 535824) (-1780 . 535719) (-1781 . 535566) (-1782 . 535370) (-1783 . 535305) (-1784 . 535147) (-1785 . 534984) (-1786 . 534722) (-1787 . 534052) (-1788 . 533340) (-1789 . 533312) (-1790 . 532982) (-1791 . 532532) (-1792 . 532396) (-1793 . 532319) (-1794 . 532160) (-1795 . 531983) (-1796 . 531515) (-1797 . 531457) (-1798 . 531250) (-1799 . 531132) (-1800 . 530481) (-1801 . 530373) (-1802 . 529829) (-1803 . 529654) (-1804 . 529620) (-1805 . 529436) (-1806 . 529231) (-1807 . 529155) (-1808 . 529088) (-1809 . 528910) (-1810 . 528076) (-1811 . 527976) (-1812 . 527069) (-1813 . 527032) (-1814 . 526488) (-1815 . 526175) (-1816 . 525459) (-1817 . 525274) (-1818 . 525203) (-1819 . 525132) (-1820 . 524993) (-1821 . 524870) (-1822 . 524818) (-1823 . 524762) (-1824 . 524592) (-1825 . 524492) (-1826 . 524439) (-1827 . 523895) (-1828 . 523814) (-1829 . 523678) (-1830 . 523421) (-1831 . 523304) (-1832 . 522887) (-1833 . 522814) (-1834 . 522713) (-1835 . 522682) (-1836 . 522615) (-1837 . 522185) (-1838 . 522113) (-1839 . 521462) (-1840 . 521053) (-1841 . 520980) (-1842 . 520881) (-1843 . 520733) (-1844 . 520650) (-1845 . 520572) (-1846 . 520451) (-1847 . 520316) (-1848 . 520164) (-1849 . 519962) (-1850 . 519723) (-1851 . 519424) (-1852 . 519277) (-1853 . 518626) (-1854 . 518546) (-1855 . 518119) (-1856 . 517929) (-1857 . 517836) (-1858 . 517716) (-1859 . 517590) (-1860 . 517528) (-1861 . 517500) (-1862 . 517248) (-1863 . 513407) (-1864 . 513226) (-1865 . 512575) (-1866 . 512525) (-1867 . 511351) (-1868 . 511068) (-1869 . 510962) (-1870 . 510836) (-1871 . 510631) (-1872 . 510502) (-1873 . 510354) (-1874 . 509953) (-1875 . 509414) (-1876 . 508869) (-1877 . 508717) (-1878 . 508651) (-1879 . 508231) (-1880 . 508153) (-1881 . 507741) (-1882 . 507371) (-1883 . 506873) (-1884 . 506739) (-1885 . 506661) (-1886 . 506526) (-1887 . 505981) (-1888 . 505916) (-1889 . 505713) (-1890 . 505583) (-1891 . 505465) (-1892 . 505392) (-1893 . 492155) (-1894 . 492015) (-1895 . 491905) (-1896 . 491852) (-1897 . 491435) (-1898 . 490890) (-1899 . 490807) (-1900 . 490717) (-1901 . 490414) (-1902 . 490218) (-1903 . 490149) (-1904 . 489947) (-1905 . 489834) (-1906 . 489735) (-1907 . 487516) (-1908 . 487172) (-1909 . 487043) (-1910 . 486861) (-1911 . 486791) (-1912 . 486672) (-1913 . 486579) (-1914 . 486480) (-1915 . 486355) (-1916 . 486050) (-1917 . 486013) (-1918 . 485932) (-1919 . 485898) (-1920 . 485722) (-1921 . 485565) (-1922 . 485397) (-1923 . 485291) (-1924 . 485168) (-1925 . 485034) (-1926 . 484952) (-1927 . 484611) (-1928 . 484439) (-1929 . 484410) (-1930 . 484289) (-1931 . 483951) (-1932 . 483871) (-1933 . 483802) (-1934 . 483666) (-1935 . 483349) (-1936 . 483318) (-1937 . 483188) (-1938 . 483010) (-1939 . 482771) (-1940 . 482678) (-1941 . 481628) (-1942 . 481153) (-1943 . 481072) (-1944 . 481017) (-1945 . 480919) (-1946 . 478253) (-1947 . 478200) (-1948 . 477650) (-1949 . 477552) (-1950 . 477439) (-1951 . 477322) (-1952 . 477188) (-1953 . 476719) (-1954 . 476557) (-1955 . 476419) (-1956 . 476385) (-1957 . 476172) (-1958 . 476003) (-1959 . 475505) (-1960 . 475452) (-1961 . 475349) (-1962 . 475089) (-1963 . 475025) (-1964 . 474823) (-1965 . 474771) (-1966 . 474048) (-1967 . 473476) (-1968 . 473402) (-1969 . 473167) (-1970 . 473092) (-1971 . 472923) (-1972 . 472665) (-1973 . 472394) (-1974 . 472212) (-1975 . 472079) (-1976 . 471873) (-1977 . 471709) (-1978 . 471626) (-1979 . 471267) (-1980 . 471197) (-1981 . 470983) (-1982 . 470908) (-1983 . 469943) (-1984 . 469738) (-1985 . 469665) (-1986 . 469597) (-1987 . 469524) (-1988 . 469331) (-1989 . 469197) (-1990 . 469095) (-1991 . 469040) (-1992 . 468951) (-1993 . 468884) (-1994 . 468810) (-1995 . 468731) (-1996 . 468540) (-1997 . 468506) (-1998 . 468137) (-1999 . 468029) (-2000 . 467950) (-2001 . 467685) (-2002 . 467399) (-2003 . 467242) (-2004 . 467154) (-2005 . 466663) (-2006 . 466255) (-2007 . 466181) (-2008 . 466126) (-2009 . 465979) (-2010 . 465732) (-2011 . 465666) (-2012 . 465484) (-2013 . 465433) (-2014 . 465402) (-2015 . 465233) (-2016 . 464830) (-2017 . 464757) (-2018 . 464537) (-2019 . 464435) (-2020 . 464346) (-2021 . 464293) (-2022 . 464223) (-2023 . 464099) (-2024 . 463859) (-2025 . 463740) (-2026 . 463594) (-2027 . 463506) (-2028 . 463450) (-2029 . 463159) (-2030 . 463107) (-2031 . 462896) (-2032 . 462336) (-2033 . 461876) (-2034 . 461679) (-2035 . 461397) (-2036 . 461308) (-2037 . 461170) (-2038 . 461102) (-2039 . 460944) (-2040 . 460640) (-2041 . 460511) (-2042 . 460440) (-2043 . 460105) (-2044 . 459922) (-2045 . 459870) (-2046 . 459762) (-2047 . 458574) (-2048 . 458455) (-2049 . 458327) (-2050 . 458244) (-2051 . 454440) (-2052 . 453870) (-2053 . 453761) (-2054 . 453643) (-2055 . 453569) (-2056 . 453421) (-2057 . 453344) (-2058 . 453128) (-2059 . 452767) (-2060 . 452536) (-2061 . 451980) (-2062 . 451910) (-2063 . 451778) (-2064 . 451712) (-2065 . 451638) (-2066 . 451397) (-2067 . 451326) (-2068 . 451018) (-2069 . 450819) (-2070 . 450728) (-2071 . 449768) (-2072 . 449667) (-2073 . 449402) (-2074 . 449272) (-2075 . 449066) (-2076 . 448892) (-2077 . 448434) (-2078 . 448351) (-2079 . 448232) (-2080 . 448151) (-2081 . 447857) (-2082 . 447348) (-2083 . 447216) (-2084 . 447148) (-2085 . 447074) (-2086 . 446345) (-2087 . 446255) (-2088 . 445933) (-2089 . 445905) (-2090 . 445792) (-2091 . 445590) (-2092 . 445509) (-2093 . 445450) (-2094 . 445398) (-2095 . 445234) (-2096 . 445139) (-2097 . 445006) (-2098 . 444954) (-2099 . 444448) (-2100 . 444213) (-2101 . 443914) (-2102 . 443863) (-2103 . 443782) (-2104 . 442885) (-2105 . 442832) (-2106 . 442780) (-2107 . 442541) (-2108 . 442293) (-2109 . 441959) (-2110 . 440742) (-2111 . 440652) (-2112 . 440424) (-2113 . 440375) (-2114 . 440205) (-2115 . 440115) (-2116 . 439724) (-2117 . 439585) (-2118 . 439221) (-2119 . 439085) (-2120 . 439033) (-2121 . 438690) (-2122 . 438580) (-2123 . 438497) (-2124 . 438447) (-2125 . 438171) (-2126 . 437953) (-2127 . 437870) (-2128 . 437750) (-2129 . 437552) (-2130 . 437376) (-2131 . 437225) (-2132 . 435743) (-2133 . 435631) (-2134 . 435199) (-2135 . 434725) (-2136 . 434653) (-2137 . 434551) (-2138 . 434462) (-2139 . 434410) (-2140 . 434358) (-2141 . 434262) (-2142 . 434050) (-2143 . 433948) (-2144 . 433848) (-2145 . 433728) (-2146 . 433654) (-2147 . 433582) (-2148 . 433395) (-2149 . 433287) (-2150 . 433064) (-2151 . 432963) (-2152 . 432914) (-2153 . 432817) (-2154 . 432664) (-2155 . 432470) (-2156 . 432231) (-2157 . 432178) (-2158 . 432060) (-2159 . 431926) (-2160 . 431845) (-2161 . 431640) (-2162 . 431321) (-2163 . 431269) (-2164 . 431210) (-2165 . 431012) (-2166 . 430960) (-2167 . 430812) (-2168 . 430710) (-2169 . 430571) (-2170 . 430413) (-2171 . 430113) (-2172 . 430054) (-2173 . 430001) (-2174 . 429915) (-2175 . 429817) (-2176 . 429733) (-2177 . 429186) (-2178 . 429115) (-2179 . 429025) (-2180 . 428932) (-2181 . 428844) (-2182 . 428748) (-2183 . 428378) (-2184 . 428195) (-2185 . 428023) (-2186 . 427955) (-2187 . 427751) (-2188 . 427585) (-2189 . 427489) (-2190 . 427415) (-2191 . 427319) (-2192 . 427210) (-2193 . 427006) (-2194 . 426928) (-2195 . 426278) (-2196 . 426163) (-2197 . 425755) (-2198 . 425672) (-2199 . 425185) (-2200 . 425111) (-2201 . 425040) (-2202 . 424969) (-2203 . 424893) (-2204 . 424812) (-2205 . 424734) (-2206 . 424490) (-2207 . 424222) (-2208 . 423688) (-2209 . 423479) (-2210 . 423401) (-2211 . 422786) (-2212 . 422648) (-2213 . 422595) (-2214 . 422521) (-2215 . 422472) (-2216 . 421554) (-2217 . 421468) (-2218 . 421319) (-2219 . 421288) (-2220 . 421229) (-2221 . 421142) (-2222 . 421089) (-2223 . 420727) (-2224 . 420591) (-2225 . 420473) (-2226 . 420407) (-2227 . 420352) (-2228 . 420300) (-2229 . 420115) (-2230 . 420025) (-2231 . 419911) (-2232 . 419639) (-2233 . 419608) (-2234 . 419533) (-2235 . 419424) (-2236 . 419277) (-2237 . 418440) (-2238 . 418084) (-2239 . 417962) (-2240 . 417803) (-2241 . 417729) (-2242 . 417616) (-2243 . 417295) (-2244 . 417157) (-2245 . 416734) (-2246 . 416632) (-2247 . 416544) (-2248 . 416469) (-2249 . 416362) (-2250 . 416305) (-2251 . 416253) (-2252 . 416074) (-2253 . 415989) (-2254 . 415623) (-2255 . 415546) (-2256 . 394211) (-2257 . 393853) (-2258 . 393803) (-2259 . 393593) (-2260 . 393490) (-2261 . 392306) (-2262 . 392033) (-2263 . 392002) (-2264 . 391912) (-2265 . 391730) (-2266 . 391635) (-2267 . 391540) (-2268 . 391440) (-2269 . 391384) (-2270 . 391294) (-2271 . 390981) (-2272 . 390893) (-2273 . 390535) (-2274 . 390012) (-2275 . 389874) (-2276 . 387336) (-2277 . 387141) (-2278 . 386505) (-2279 . 386449) (-2280 . 386397) (-2281 . 386332) (-2282 . 386279) (-2283 . 386224) (-2284 . 386073) (-2285 . 385910) (-2286 . 385794) (-2287 . 385713) (-2288 . 385622) (-2289 . 384929) (-2290 . 384759) (-2291 . 384678) (-2292 . 384597) (-2293 . 384371) (-2294 . 384253) (-2295 . 384204) (-2296 . 383900) (-2297 . 383872) (-2298 . 383717) (-2299 . 383662) (-2300 . 383300) (-2301 . 383186) (-2302 . 382912) (-2303 . 382793) (-2304 . 382468) (-2305 . 382375) (-2306 . 382246) (-2307 . 382034) (-2308 . 381953) (-2309 . 381804) (-2310 . 381705) (-2311 . 381526) (-2312 . 381401) (-2313 . 381326) (-2314 . 381124) (-2315 . 380809) (-2316 . 380411) (-2317 . 380232) (-2318 . 380130) (-2319 . 378095) (-2320 . 378067) (-2321 . 377895) (-2322 . 377614) (-2323 . 377583) (-2324 . 377328) (-2325 . 377192) (-2326 . 376894) (-2327 . 376795) (-2328 . 376739) (-2329 . 376637) (-2330 . 376437) (-2331 . 376364) (-2332 . 375998) (-2333 . 375924) (-2334 . 375825) (-2335 . 375750) (-2336 . 375633) (-2337 . 375450) (-2338 . 375422) (-2339 . 375367) (-2340 . 375215) (-2341 . 375162) (-2342 . 374937) (-2343 . 374875) (-2344 . 374769) (-2345 . 374546) (-2346 . 374512) (-2347 . 374364) (-2348 . 374292) (-2349 . 373848) (-2350 . 373510) (-2351 . 373437) (-2352 . 372122) (-2353 . 372047) (-2354 . 371959) (-2355 . 371743) (-2356 . 371684) (-2357 . 371217) (-2358 . 371031) (-2359 . 370942) (-2360 . 370803) (-2361 . 370774) (-2362 . 370622) (-2363 . 370436) (-2364 . 370276) (-2365 . 370192) (-2366 . 370164) (-2367 . 370068) (-2368 . 369744) (-2369 . 369670) (-2370 . 369568) (-2371 . 369414) (-2372 . 369174) (-2373 . 368706) (-2374 . 368632) (-2375 . 368601) (-2376 . 368493) (-2377 . 368425) (-2378 . 368342) (-2379 . 368232) (-2380 . 368180) (-2381 . 368096) (-2382 . 368030) (-2383 . 367831) (-2384 . 367701) (-2385 . 367505) (-2386 . 367477) (-2387 . 367394) (-2388 . 367293) (-2389 . 367265) (-2390 . 367123) (-2391 . 367057) (-2392 . 366974) (-2393 . 366630) (-2394 . 366602) (-2395 . 366102) (-2396 . 365934) (-2397 . 365868) (-2398 . 365809) (-2399 . 365580) (-2400 . 365504) (-2401 . 365398) (-2402 . 365034) (-2403 . 364769) (-2404 . 364706) (-2405 . 364602) (-2406 . 364477) (-2407 . 364382) (-2408 . 364301) (-2409 . 364058) (-2410 . 363849) (-2411 . 362612) (-2412 . 362395) (-2413 . 362257) (-2414 . 362105) (-2415 . 362034) (-2416 . 361909) (-2417 . 361820) (-2418 . 361425) (-2419 . 361373) (-2420 . 360543) (-2421 . 360434) (-2422 . 360379) (-2423 . 360241) (-2424 . 360094) (-2425 . 360011) (-2426 . 359492) (-2427 . 359440) (-2428 . 359348) (-2429 . 359295) (-2430 . 359099) (-2431 . 358861) (-2432 . 358753) (-2433 . 358436) (-2434 . 358179) (-2435 . 357997) (-2436 . 357635) (-2437 . 357513) (-2438 . 357444) (-2439 . 357371) (-2440 . 357201) (-2441 . 356931) (-2442 . 356810) (-2443 . 356730) (-2444 . 356493) (-2445 . 356396) (-2446 . 356257) (-2447 . 356174) (-2448 . 356087) (-2449 . 355905) (-2450 . 355850) (-2451 . 355759) (-2452 . 355149) (-2453 . 354996) (-2454 . 354944) (-2455 . 354741) (-2456 . 354661) (-2457 . 354627) (-2458 . 354555) (-2459 . 354481) (-2460 . 354415) (-2461 . 354322) (-2462 . 354211) (-2463 . 354136) (-2464 . 353894) (-2465 . 353695) (-2466 . 353646) (-2467 . 353381) (-2468 . 352607) (-2469 . 352500) (-2470 . 352340) (-2471 . 352288) (-2472 . 352024) (-2473 . 351645) (-2474 . 351022) (-2475 . 350784) (-2476 . 349973) (-2477 . 349885) (-2478 . 349783) (-2479 . 349667) (-2480 . 349432) (-2481 . 348989) (-2482 . 348218) (-2483 . 348124) (-2484 . 347966) (-2485 . 347450) (-2486 . 347296) (-2487 . 347090) (-2488 . 346990) (-2489 . 346802) (-2490 . 346709) (-2491 . 346587) (-2492 . 346503) (-2493 . 346447) (-2494 . 346058) (-2495 . 345972) (-2496 . 345857) (-2497 . 345761) (-2498 . 345623) (-2499 . 345395) (-2500 . 345334) (-2501 . 344117) (-2502 . 344059) (-2503 . 343990) (-2504 . 343898) (-2505 . 343825) (-2506 . 343575) (-2507 . 342933) (-2508 . 342850) (-2509 . 342790) (-2510 . 342690) (-2511 . 342588) (-2512 . 342437) (-2513 . 341495) (-2514 . 341373) (-2515 . 341189) (-2516 . 341087) (-2517 . 341014) (-2518 . 340918) (-2519 . 340766) (-2520 . 340666) (-2521 . 340359) (-2522 . 340255) (-2523 . 340115) (-2524 . 339963) (-2525 . 339870) (-2526 . 339753) (-2527 . 339678) (-2528 . 339578) (-2529 . 339488) (-2530 . 339353) (-2531 . 339322) (-2532 . 339247) (-2533 . 339084) (-2534 . 338762) (-2535 . 338342) (-2536 . 338127) (-2537 . 338048) (-2538 . 337964) (-2539 . 337912) (-2540 . 337842) (-2541 . 336455) (-2542 . 336124) (-2543 . 336035) (-2544 . 335876) (-2545 . 335759) (-2546 . 335683) (-2547 . 335435) (-2548 . 335283) (-2549 . 335147) (-2550 . 334991) (-2551 . 334939) (-2552 . 334882) (-2553 . 334808) (-2554 . 334737) (-2555 . 334587) (-2556 . 334392) (-2557 . 334286) (-2558 . 334209) (-2559 . 334107) (-2560 . 333940) (-2561 . 333858) (-2562 . 333679) (-2563 . 333603) (-2564 . 333493) (-2565 . 333296) (-2566 . 333221) (-2567 . 331628) (-2568 . 331277) (-2569 . 331225) (-2570 . 330990) (-2571 . 330897) (-2572 . 330790) (-2573 . 330501) (-2574 . 330156) (-2575 . 329993) (-2576 . 329940) (-2577 . 329805) (-2578 . 329749) (-2579 . 329578) (-2580 . 329507) (-2581 . 329454) (-2582 . 329319) (-2583 . 329223) (-2584 . 329069) (-2585 . 328960) (-2586 . 328904) (-2587 . 328683) (-2588 . 328333) (-2589 . 328113) (-2590 . 328009) (-2591 . 327725) (-2592 . 327563) (-2593 . 327513) (-2594 . 327292) (-2595 . 327105) (-2596 . 326943) (-2597 . 326845) (-2598 . 326700) (-2599 . 326622) (-2600 . 326459) (-2601 . 326409) (-2602 . 326266) (-2603 . 326157) (-2604 . 326045) (-2605 . 325974) (-2606 . 325666) (-2607 . 325166) (-2608 . 325095) (-2609 . 324991) (-2610 . 324866) (-2611 . 324752) (-2612 . 324424) (-2613 . 324337) (-2614 . 324200) (-2615 . 324009) (-2616 . 323953) (-2617 . 323856) (-2618 . 323744) (-2619 . 323497) (-2620 . 323346) (-2621 . 323141) (-2622 . 323039) (-2623 . 322956) (-2624 . 321809) (-2625 . 321632) (-2626 . 321559) (-2627 . 321439) (-2628 . 320872) (-2629 . 320794) (-2630 . 320678) (-2631 . 320313) (-2632 . 320173) (-2633 . 319984) (-2634 . 319902) (-2635 . 319868) (-2636 . 319720) (-2637 . 319155) (-2638 . 319127) (-2639 . 319040) (-2640 . 318959) (-2641 . 318901) (-2642 . 318848) (-2643 . 318773) (-2644 . 318705) (-2645 . 318452) (-2646 . 318363) (-2647 . 318173) (-2648 . 318092) (-2649 . 317992) (-2650 . 317921) (-2651 . 317865) (-2652 . 317806) (-2653 . 317693) (-2654 . 317604) (-2655 . 317464) (-2656 . 317112) (-2657 . 316936) (-2658 . 316809) (-2659 . 316690) (-2660 . 316493) (-2661 . 316410) (-2662 . 316157) (-2663 . 316105) (-2664 . 316025) (-2665 . 315997) (-2666 . 315756) (-2667 . 315257) (-2668 . 315034) (-2669 . 314546) (-2670 . 314399) (-2671 . 314136) (-2672 . 314078) (-2673 . 313984) (-2674 . 313886) (-2675 . 313834) (-2676 . 313728) (-2677 . 313699) (-2678 . 313584) (-2679 . 313045) (-2680 . 312993) (-2681 . 312922) (-2682 . 312832) (-2683 . 312746) (-2684 . 312482) (-2685 . 312421) (-2686 . 312314) (-2687 . 312162) (-2688 . 311960) (-2689 . 311524) (-2690 . 311345) (-2691 . 311273) (-2692 . 311086) (-2693 . 311013) (-2694 . 310880) (-2695 . 310439) (-2696 . 310291) (-2697 . 310094) (-2698 . 310041) (-2699 . 309935) (-2700 . 309882) (-2701 . 309556) (-2702 . 309333) (-2703 . 309185) (-2704 . 309126) (-2705 . 308993) (-2706 . 308856) (-2707 . 308735) (-2708 . 308631) (-2709 . 308549) (-2710 . 308333) (-2711 . 308094) (-2712 . 308031) (-2713 . 307956) (-2714 . 307883) (-2715 . 307808) (-2716 . 307595) (-2717 . 307521) (-2718 . 307288) (-2719 . 307233) (-2720 . 305728) (-2721 . 305654) (-2722 . 305548) (-2723 . 305455) (-2724 . 305222) (-2725 . 305108) (-2726 . 304959) (-2727 . 304906) (-2728 . 304684) (-2729 . 304496) (-2730 . 304212) (-2731 . 303419) (-2732 . 303329) (-2733 . 303258) (-2734 . 303131) (-2735 . 302675) (-2736 . 302615) (-2737 . 302449) (-2738 . 302393) (-2739 . 301884) (-2740 . 301682) (-2741 . 301586) (-2742 . 301512) (-2743 . 301035) (-2744 . 300865) (-2745 . 300732) (-2746 . 300677) (-2747 . 300327) (-2748 . 300257) (-2749 . 300184) (-2750 . 300130) (-2751 . 299996) (-2752 . 299877) (-2753 . 299756) (-2754 . 299604) (-2755 . 299551) (-2756 . 299499) (-2757 . 299121) (-2758 . 299052) (-2759 . 297841) (-2760 . 297767) (-2761 . 297623) (-2762 . 297554) (-2763 . 297502) (-2764 . 297396) (-2765 . 297179) (-2766 . 297037) (-2767 . 296964) (-2768 . 296882) (-2769 . 296317) (-2770 . 296228) (-2771 . 296175) (-2772 . 296094) (-2773 . 295962) (-2774 . 295825) (-2775 . 295728) (-2776 . 295655) (-2777 . 295559) (-2778 . 295441) (-2779 . 295243) (-2780 . 295109) (-2781 . 294946) (-2782 . 294638) (-2783 . 294345) (-2784 . 294086) (-2785 . 293981) (-2786 . 293824) (-2787 . 293525) (-2788 . 293398) (-2789 . 293367) (-2790 . 293268) (-2791 . 293149) (-2792 . 293075) (-2793 . 292982) (-2794 . 292880) (-2795 . 292495) (-2796 . 292329) (-2797 . 292115) (-2798 . 292066) (-2799 . 292000) (-2800 . 291767) (-2801 . 291670) (-2802 . 291606) (-2803 . 291499) (-2804 . 291410) (-2805 . 291327) (-2806 . 291275) (-2807 . 291194) (-2808 . 291076) (-2809 . 290978) (-2810 . 290864) (-2811 . 290788) (-2812 . 290716) (-2813 . 290483) (-2814 . 290197) (-2815 . 290125) (-2816 . 290033) (-2817 . 290005) (-2818 . 289772) (-2819 . 289378) (-2820 . 289194) (-2821 . 289081) (-2822 . 289008) (-2823 . 288933) (-2824 . 288848) (-2825 . 288425) (-2826 . 288286) (-2827 . 288209) (-2828 . 288143) (-2829 . 288014) (-2830 . 287929) (-2831 . 287816) (-2832 . 287655) (-2833 . 287572) (-2834 . 287421) (-2835 . 287310) (-2836 . 287193) (-2837 . 287117) (-2838 . 286929) (-2839 . 286820) (-2840 . 286651) (-2841 . 286500) (-2842 . 286415) (-2843 . 286060) (-2844 . 285897) (-2845 . 285806) (-2846 . 285265) (-2847 . 284858) (-2848 . 284593) (-2849 . 284303) (-2850 . 284209) (-2851 . 284038) (-2852 . 283924) (-2853 . 283822) (-2854 . 283709) (-2855 . 283656) (-2856 . 283386) (-2857 . 283215) (-2858 . 282907) (-2859 . 282684) (-2860 . 282510) (-2861 . 282294) (-2862 . 282104) (-2863 . 282040) (-2864 . 281851) (-2865 . 281386) (-2866 . 281267) (-2867 . 281124) (-2868 . 281029) (-2869 . 280456) (-2870 . 280221) (-2871 . 279639) (-2872 . 279611) (-2873 . 279472) (-2874 . 279402) (-2875 . 279296) (-2876 . 279105) (-2877 . 279015) (-2878 . 278920) (-2879 . 278491) (-2880 . 278289) (-2881 . 278117) (-2882 . 278043) (-2883 . 277638) (-2884 . 277585) (-2885 . 276989) (-2886 . 276929) (-2887 . 276837) (-2888 . 276286) (-2889 . 275678) (-2890 . 275580) (-2891 . 275295) (-2892 . 274977) (-2893 . 274888) (-2894 . 274711) (-2895 . 274645) (-2896 . 274568) (-2897 . 274495) (-2898 . 274316) (-2899 . 274114) (-2900 . 274013) (-2901 . 273837) (-2902 . 273745) (-2903 . 273647) (-2904 . 273519) (-2905 . 273468) (-2906 . 272872) (-2907 . 272789) (-2908 . 272582) (-2909 . 272511) (-2910 . 272411) (-2911 . 272291) (-2912 . 272190) (-2913 . 272078) (-2914 . 271930) (-2915 . 271618) (-2916 . 271320) (-2917 . 271158) (-2918 . 270788) (-2919 . 270652) (-2920 . 270244) (-2921 . 270051) (-2922 . 269926) (-2923 . 269808) (-2924 . 269688) (-2925 . 266939) (-2926 . 266849) (-2927 . 266768) (-2928 . 266580) (-2929 . 266510) (-2930 . 266199) (-2931 . 266105) (-2932 . 265683) (-2933 . 265515) (-2934 . 265279) (-2935 . 265168) (-2936 . 264868) (-2937 . 264745) (-2938 . 264629) (-2939 . 264574) (-2940 . 264308) (-2941 . 264238) (-2942 . 264137) (-2943 . 263781) (-2944 . 263715) (-2945 . 263517) (-2946 . 263415) (-2947 . 263289) (-2948 . 263161) (-2949 . 263099) (-2950 . 263009) (-2951 . 262853) (-2952 . 262785) (-2953 . 262716) (-2954 . 262366) (-2955 . 262293) (-2956 . 262008) (-2957 . 261913) (-2958 . 261842) (-2959 . 261763) (-2960 . 261690) (-2961 . 260874) (-2962 . 260485) (-2963 . 260328) (-2964 . 260178) (-2965 . 259936) (-2966 . 259747) (-2967 . 259476) (-2968 . 259381) (-2969 . 259280) (-2970 . 259129) (-2971 . 259007) (-2972 . 258936) (-2973 . 258860) (-2974 . 258760) (-2975 . 258677) (-2976 . 258570) (-2977 . 258472) (-2978 . 258357) (-2979 . 258290) (-2980 . 258241) (-2981 . 257988) (-2982 . 257861) (-2983 . 257759) (-2984 . 257594) (-2985 . 257445) (-2986 . 257126) (-2987 . 256679) (-2988 . 256581) (-2989 . 256479) (-2990 . 256415) (-2991 . 256307) (-2992 . 256066) (-2993 . 256009) (-2994 . 255928) (-2995 . 255806) (-2996 . 255091) (-2997 . 254846) (-2998 . 254793) (-2999 . 254686) (-3000 . 254529) (-3001 . 254474) (-3002 . 254395) (-3003 . 254253) (-3004 . 254155) (-3005 . 254098) (-3006 . 254066) (-3007 . 253978) (-3008 . 253770) (-3009 . 253695) (-3010 . 253023) (-3011 . 252866) (-3012 . 252733) (-3013 . 252659) (-3014 . 252559) (-3015 . 252502) (-3016 . 252446) (-3017 . 252364) (-3018 . 252247) (-3019 . 252194) (-3020 . 251796) (-3021 . 251611) (-3022 . 251528) (-3023 . 251430) (-3024 . 251305) (-3025 . 251252) (-3026 . 251196) (-3027 . 250786) (-3028 . 250371) (-3029 . 249997) (-3030 . 249939) (-3031 . 249883) (-3032 . 249726) (-3033 . 249644) (-3034 . 249543) (-3035 . 249211) (-3036 . 248888) (-3037 . 248830) (-3038 . 248739) (-3039 . 248441) (-3040 . 248345) (-3041 . 248296) (-3042 . 248214) (-3043 . 248055) (-3044 . 247958) (-3045 . 247854) (-3046 . 247360) (-3047 . 246621) (-3048 . 246018) (-3049 . 245932) (-3050 . 245603) (-3051 . 245476) (-3052 . 245263) (-3053 . 244958) (-3054 . 244796) (-3055 . 244480) (-3056 . 244373) (-3057 . 243874) (-3058 . 243766) (-3059 . 243622) (-3060 . 243424) (-3061 . 243077) (-3062 . 242987) (-3063 . 242913) (-3064 . 242757) (-3065 . 242544) (-3066 . 242446) (-3067 . 242385) (-3068 . 242170) (-3069 . 242009) (-3070 . 241896) (-3071 . 240939) (-3072 . 239944) (-3073 . 239866) (-3074 . 239760) (-3075 . 239604) (-3076 . 239500) (-3077 . 239348) (-3078 . 238804) (-3079 . 238590) (-3080 . 238387) (-3081 . 238130) (-3082 . 238004) (-3083 . 237970) (-3084 . 237873) (-3085 . 237582) (-3086 . 237478) (-3087 . 237353) (-3088 . 237276) (-3089 . 237152) (-3090 . 237097) (-3091 . 236896) (-3092 . 236707) (-3093 . 236492) (-3094 . 236382) (-3095 . 236311) (-3096 . 236154) (-3097 . 236102) (-3098 . 236046) (-3099 . 235775) (-3100 . 235719) (-3101 . 235634) (-3102 . 235581) (-3103 . 235342) (-3104 . 235232) (-3105 . 235059) (** . 232101) (-3107 . 231997) (-3108 . 231879) (-3109 . 231666) (-3110 . 231358) (-3111 . 231216) (-3112 . 231112) (-3113 . 231046) (-3114 . 230936) (-3115 . 230808) (-3116 . 230612) (-3117 . 230498) (-3118 . 230423) (-3119 . 230370) (-3120 . 230176) (-3121 . 230148) (-3122 . 230056) (-3123 . 229966) (-3124 . 229841) (-3125 . 229774) (-3126 . 229718) (-3127 . 227664) (-3128 . 227509) (-3129 . 227453) (-3130 . 227150) (-3131 . 227025) (-3132 . 226940) (-3133 . 226702) (-3134 . 226559) (-3135 . 226390) (-3136 . 226312) (-3137 . 226160) (-3138 . 225994) (-3139 . 225856) (-3140 . 225720) (-3141 . 225017) (-3142 . 224504) (-3143 . 224295) (-3144 . 224159) (-3145 . 223985) (-3146 . 223933) (-3147 . 223850) (-3148 . 223644) (-3149 . 223254) (-3150 . 223198) (-3151 . 223103) (-3152 . 222966) (-3153 . 222481) (-3154 . 221532) (-3155 . 221421) (-3156 . 221300) (-3157 . 221182) (-3158 . 221000) (-3159 . 220856) (-3160 . 220469) (-3161 . 220363) (-3162 . 220297) (-3163 . 220245) (-3164 . 220067) (-3165 . 219963) (-3166 . 219552) (-3167 . 219342) (-3168 . 219225) (-3169 . 219100) (-3170 . 218983) (-3171 . 218902) (-3172 . 218871) (-3173 . 218767) (-3174 . 217809) (-3175 . 217709) (-3176 . 217406) (-3177 . 217305) (-3178 . 217220) (-3179 . 216767) (-3180 . 216699) (-3181 . 216644) (-3182 . 216496) (-3183 . 216283) (-3184 . 216182) (-3185 . 215827) (-3186 . 215771) (-3187 . 215656) (-3188 . 215559) (-3189 . 210712) (-3190 . 210612) (-3191 . 210375) (-3192 . 210292) (-3193 . 210188) (-3194 . 210081) (-3195 . 209926) (-3196 . 209787) (-3197 . 209697) (-3198 . 209575) (-3199 . 209323) (-3200 . 209191) (-3201 . 209018) (-3202 . 208947) (-3203 . 208742) (-3204 . 208412) (-3205 . 208333) (-3206 . 208138) (-3207 . 208007) (-3208 . 207887) (-3209 . 207265) (-3210 . 206990) (-3211 . 206886) (-3212 . 206175) (-3213 . 205942) (-3214 . 205790) (-3215 . 205712) (-3216 . 204916) (-3217 . 204688) (-3218 . 204611) (-3219 . 204537) (-3220 . 203962) (-3221 . 203837) (-3222 . 202600) (-3223 . 202548) (-3224 . 202265) (-3225 . 198828) (-3226 . 198776) (-3227 . 198623) (-3228 . 198495) (-3229 . 198399) (-3230 . 198249) (-3231 . 198177) (-3232 . 197912) (-3233 . 197677) (-3234 . 197607) (-3235 . 197424) (-3236 . 196242) (-3237 . 195725) (-3238 . 195464) (-3239 . 195349) (-3240 . 194774) (-3241 . 194650) (-3242 . 194591) (-3243 . 194501) (-3244 . 194399) (-3245 . 194339) (-3246 . 194198) (-3247 . 194146) (-3248 . 193998) (-3249 . 193890) (-3250 . 193737) (-3251 . 193706) (-3252 . 193616) (-3253 . 193464) (-3254 . 193376) (-3255 . 193182) (-3256 . 193061) (-3257 . 192840) (-3258 . 192784) (-3259 . 192426) (-3260 . 192347) (-3261 . 192276) (-3262 . 192207) (-3263 . 192154) (-3264 . 192056) (-3265 . 192004) (-3266 . 191643) (-3267 . 190901) (-3268 . 190698) (-3269 . 190136) (-3270 . 190083) (-3271 . 189804) (-3272 . 189747) (-3273 . 189599) (-3274 . 189510) (-3275 . 189376) (-3276 . 189274) (-3277 . 189140) (-3278 . 189069) (-3279 . 188941) (-3280 . 188839) (-3281 . 188665) (-3282 . 188150) (-3283 . 187754) (-3284 . 187640) (-3285 . 187407) (-3286 . 187355) (-3287 . 187262) (-3288 . 187189) (-3289 . 187091) (-3290 . 186852) (-3291 . 186486) (-3292 . 186388) (-3293 . 186265) (-3294 . 185969) (-3295 . 185784) (-3296 . 185650) (-3297 . 185543) (-3298 . 185409) (-3299 . 185317) (-3300 . 185200) (-3301 . 185166) (-3302 . 185074) (-3303 . 184999) (-3304 . 184891) (-3305 . 184679) (-3306 . 184575) (-3307 . 184195) (-3308 . 184112) (-3309 . 184056) (-3310 . 184000) (-3311 . 183927) (-3312 . 183704) (-3313 . 183612) (-3314 . 183527) (-3315 . 183446) (-3316 . 181690) (-3317 . 181590) (-3318 . 181506) (-3319 . 181368) (-3320 . 181297) (-3321 . 181229) (-3322 . 181201) (-3323 . 181116) (-3324 . 181041) (-3325 . 180963) (-3326 . 180901) (-3327 . 180585) (-3328 . 180490) (-3329 . 180435) (-3330 . 180379) (-3331 . 180264) (-3332 . 180162) (-3333 . 180077) (-3334 . 179794) (-3335 . 179705) (-3336 . 179623) (-3337 . 179595) (-3338 . 179467) (-3339 . 179230) (-3340 . 179175) (-3341 . 179079) (-3342 . 178884) (-3343 . 178719) (-3344 . 178539) (-3345 . 178454) (-3346 . 178345) (-3347 . 178156) (-3348 . 177921) (-3349 . 177783) (-3350 . 177673) (-3351 . 177585) (-3352 . 177286) (-3353 . 177233) (-3354 . 177172) (-3355 . 176931) (-3356 . 176879) (-3357 . 176745) (-3358 . 176660) (-3359 . 176551) (-3360 . 176452) (-3361 . 176081) (-3362 . 175943) (-3363 . 175877) (-3364 . 175205) (-3365 . 175125) (-3366 . 175047) (-3367 . 174959) (-3368 . 174868) (-3369 . 174773) (-3370 . 174551) (-3371 . 174450) (-3372 . 174152) (-3373 . 174055) (-3374 . 173888) (-3375 . 173818) (-3376 . 173702) (-3377 . 173617) (-3378 . 173564) (-3379 . 173490) (-3380 . 173383) (-3381 . 173307) (-3382 . 173091) (-3383 . 172452) (-3384 . 172178) (-3385 . 172054) (-3386 . 171965) (-3387 . 171880) (-3388 . 171514) (-3389 . 171271) (-3390 . 171077) (-3391 . 170939) (-3392 . 170881) (-3393 . 170779) (-3394 . 170714) (-3395 . 170606) (-3396 . 170521) (-3397 . 170451) (-3398 . 170373) (-3399 . 170239) (-3400 . 170034) (-3401 . 169500) (-3402 . 169444) (-3403 . 169359) (-3404 . 169255) (-3405 . 169170) (-3406 . 169091) (-3407 . 168794) (-3408 . 168632) (-3409 . 168525) (-3410 . 168404) (-3411 . 167798) (-3412 . 167702) (-3413 . 167636) (-3414 . 167484) (-3415 . 167399) (-3416 . 167331) (-3417 . 167243) (-3418 . 167092) (-3419 . 166833) (-3420 . 166480) (-3421 . 166084) (-3422 . 165888) (-3423 . 165741) (-3424 . 165626) (-3425 . 165387) (-3426 . 165302) (-3427 . 164912) (-3428 . 164838) (-3429 . 164652) (-3430 . 164411) (-3431 . 164323) (-3432 . 163567) (-3433 . 163355) (-3434 . 163005) (-3435 . 162853) (-3436 . 162772) (-3437 . 161767) (-3438 . 161689) (-3439 . 161604) (-3440 . 161495) (-3441 . 161354) (-3442 . 160288) (-3443 . 160197) (-3444 . 159629) (-3445 . 159471) (-3446 . 159417) (-3447 . 159253) (-3448 . 158947) (-3449 . 158866) (-3450 . 158770) (-3451 . 158616) (-3452 . 158478) (-3453 . 158393) (-3454 . 158264) (-3455 . 158065) (-3456 . 157994) (-3457 . 157671) (-3458 . 157546) (-3459 . 157416) (-3460 . 157269) (-3461 . 156897) (-3462 . 156293) (-3463 . 155511) (-3464 . 155205) (-3465 . 155007) (-3466 . 154530) (-3467 . 154445) (-3468 . 154389) (-3469 . 154121) (-3470 . 154066) (-3471 . 153736) (-3472 . 153677) (-3473 . 153626) (-3474 . 153441) (-3475 . 153299) (-3476 . 153199) (-3477 . 153062) (-3478 . 152785) (-3479 . 152718) (-3480 . 152633) (-3481 . 152551) (-3482 . 152461) (-3483 . 152336) (-3484 . 151937) (-3485 . 151357) (-3486 . 151072) (-3487 . 150853) (-3488 . 150767) (-3489 . 150393) (-3490 . 150338) (-3491 . 150263) (-3492 . 150111) (-3493 . 149979) (-3494 . 149807) (-3495 . 149715) (-3496 . 149666) (-3497 . 149386) (-3498 . 149264) (-3499 . 148571) (-3500 . 148496) (-3501 . 148192) (-3502 . 147240) (-3503 . 147071) (-3504 . 146987) (-3505 . 146855) (-3506 . 146489) (-3507 . 146374) (-3508 . 146321) (-3509 . 146236) (-3510 . 146185) (-3511 . 146083) (-3512 . 145912) (-3513 . 145750) (-3514 . 145660) (-3515 . 145497) (-3516 . 145383) (-3517 . 145251) (-3518 . 145185) (-3519 . 145114) (-3520 . 144715) (-3521 . 144659) (-3522 . 144446) (-3523 . 144344) (-3524 . 144240) (-3525 . 144078) (-3526 . 143880) (-3527 . 143807) (-3528 . 143653) (-3529 . 142841) (-3530 . 142727) (-3531 . 142693) (-3532 . 142420) (-3533 . 141760) (-3534 . 141199) (-3535 . 141095) (-3536 . 140632) (-3537 . 140545) (-3538 . 140409) (-3539 . 140271) (-3540 . 140136) (-3541 . 139965) (-3542 . 139892) (-3543 . 139840) (-3544 . 139742) (-3545 . 139651) (-3546 . 139418) (-3547 . 139344) (-3548 . 139307) (-3549 . 139222) (-3550 . 138864) (-3551 . 138594) (-3552 . 138501) (-3553 . 138357) (-3554 . 138142) (-3555 . 138051) (-3556 . 137813) (-3557 . 137738) (-3558 . 137658) (-3559 . 137524) (-3560 . 137398) (-3561 . 137342) (-3562 . 137148) (-3563 . 137063) (-3564 . 136957) (-3565 . 136836) (-3566 . 136741) (-3567 . 136593) (-3568 . 136417) (-3569 . 136267) (-3570 . 136218) (-3571 . 136165) (-3572 . 135947) (-3573 . 135787) (-3574 . 135735) (-3575 . 135565) (-3576 . 135235) (-3577 . 135130) (-3578 . 135077) (-3579 . 134979) (-3580 . 134850) (-3581 . 134622) (-3582 . 134479) (-3583 . 134427) (-3584 . 134284) (-3585 . 134184) (-3586 . 134036) (-3587 . 133787) (-3588 . 133661) (-3589 . 133391) (-3590 . 133184) (-3591 . 133029) (-3592 . 132178) (-3593 . 131975) (-3594 . 131850) (-3595 . 131711) (-3596 . 131128) (-3597 . 131039) (-3598 . 130939) (-3599 . 130516) (-3600 . 130424) (-3601 . 130298) (-3602 . 130187) (-3603 . 129893) (-3604 . 129789) (-3605 . 129372) (-3606 . 129220) (-3607 . 129084) (-3608 . 129018) (-3609 . 128900) (-3610 . 128833) (-3611 . 128709) (-3612 . 128587) (-3613 . 128311) (-3614 . 128223) (-3615 . 127903) (-3616 . 127609) (-3617 . 127500) (-3618 . 127406) (-3619 . 127113) (-3620 . 127029) (-3621 . 125895) (-3622 . 125789) (-3623 . 125612) (-3624 . 125470) (-3625 . 125380) (-3626 . 125245) (-3627 . 125151) (-3628 . 125073) (-3629 . 124889) (-3630 . 124738) (-3631 . 124636) (-3632 . 124472) (-3633 . 124406) (-3634 . 124114) (-3635 . 123983) (-3636 . 123807) (-3637 . 123779) (-3638 . 123677) (-3639 . 123350) (-3640 . 123214) (-3641 . 123101) (-3642 . 122949) (-3643 . 122878) (-3644 . 122806) (-3645 . 118122) (-3646 . 118094) (-3647 . 117916) (-3648 . 117835) (-3649 . 117683) (-3650 . 117536) (-3651 . 117384) (-3652 . 117057) (-3653 . 116573) (-3654 . 116500) (-3655 . 116256) (-3656 . 116203) (-3657 . 116145) (-3658 . 116092) (-3659 . 115970) (-3660 . 115899) (-3661 . 115808) (-3662 . 115642) (-3663 . 115473) (-3664 . 115332) (-3665 . 115178) (-3666 . 115060) (-3667 . 114960) (-3668 . 114789) (-3669 . 113760) (-3670 . 113440) (-3671 . 113316) (-3672 . 113207) (-3673 . 113100) (-3674 . 112799) (-3675 . 112680) (-3676 . 112602) (-3677 . 112498) (-3678 . 112363) (-3679 . 112203) (-3680 . 112053) (-3681 . 111436) (-3682 . 111239) (-3683 . 110695) (-3684 . 110602) (-3685 . 110428) (-3686 . 110319) (-3687 . 110266) (-3688 . 108257) (-3689 . 107975) (-3690 . 107098) (-3691 . 107004) (-3692 . 106816) (-3693 . 106683) (-3694 . 106353) (-3695 . 105809) (-3696 . 105683) (-3697 . 105655) (-3698 . 105416) (-3699 . 105385) (-3700 . 105246) (-3701 . 105134) (-3702 . 104971) (-3703 . 104435) (-3704 . 104152) (-3705 . 104079) (-3706 . 103242) (-3707 . 102698) (-3708 . 102495) (-3709 . 101230) (-3710 . 100749) (-3711 . 100658) (-3712 . 100554) (-3713 . 100392) (-3714 . 100277) (-3715 . 100224) (-3716 . 100009) (-3717 . 99928) (-3718 . 99865) (-3719 . 99321) (-3720 . 99131) (-3721 . 99053) (-3722 . 98931) (-3723 . 98781) (-3724 . 98698) (-3725 . 98646) (-3726 . 98584) (-3727 . 98503) (-3728 . 98264) (-3729 . 98166) (-3730 . 98093) (-3731 . 97549) (-3732 . 97449) (-3733 . 97371) (-3734 . 97220) (-3735 . 97103) (-3736 . 96848) (-3737 . 96796) (-3738 . 96725) (-3739 . 96607) (-3740 . 96430) (-3741 . 96371) (-3742 . 96273) (-3743 . 96142) (-3744 . 96042) (-3745 . 95908) (-3746 . 95626) (-3747 . 95495) (-3748 . 95414) (-3749 . 95331) (-3750 . 95178) (-3751 . 95030) (-3752 . 94936) (-3753 . 94838) (-3754 . 94680) (-3755 . 89490) (-3756 . 89391) (-3757 . 89310) (-3758 . 89039) (-3759 . 88918) (-3760 . 88524) (-3761 . 88435) (-3762 . 88231) (-3763 . 88143) (-3764 . 88115) (-3765 . 88054) (-3766 . 87677) (-3767 . 87496) (-3768 . 87351) (-3769 . 87233) (-3770 . 86865) (-3771 . 86775) (-3772 . 86673) (-3773 . 86639) (-3774 . 86583) (-3775 . 86144) (-3776 . 85973) (-3777 . 85616) (-3778 . 85563) (-3779 . 85416) (-3780 . 85229) (-3781 . 85147) (-3782 . 84943) (-3783 . 84573) (-3784 . 84500) (-3785 . 84165) (-3786 . 83832) (-3787 . 83583) (-3788 . 83384) (-3789 . 83269) (-3790 . 83158) (-3791 . 82624) (-3792 . 82570) (-3793 . 82316) (-3794 . 82238) (-3795 . 82136) (-3796 . 82017) (-3797 . 81836) (-3798 . 81718) (-3799 . 81666) (-3800 . 81263) (-3801 . 81172) (-3802 . 80864) (-3803 . 80714) (-3804 . 80509) (-3805 . 80428) (-3806 . 79649) (-3807 . 79494) (-3808 . 79416) (-3809 . 79256) (-3810 . 79099) (-3811 . 79027) (-3812 . 78917) (-3813 . 77590) (-3814 . 77312) (-3815 . 77238) (-3816 . 77186) (-12 . 77031) (-3818 . 76956) (-3819 . 76713) (-3820 . 75614) (-3821 . 75451) (-3822 . 75335) (-3823 . 75084) (-3824 . 74867) (-3825 . 74522) (-3826 . 74189) (-3827 . 73881) (-3828 . 73782) (-3829 . 73716) (-3830 . 73239) (-3831 . 73149) (-3832 . 73026) (-3833 . 72920) (-3834 . 72749) (-3835 . 72681) (-3836 . 72380) (-3837 . 72304) (-3838 . 72245) (-3839 . 72154) (-3840 . 72016) (-3841 . 71418) (-3842 . 71328) (-3843 . 71202) (-3844 . 71091) (-3845 . 70951) (-3846 . 70899) (-3847 . 70647) (-3848 . 70416) (-3849 . 70050) (-3850 . 69925) (-3851 . 69897) (-3852 . 69399) (-3853 . 69323) (-3854 . 69071) (-3855 . 68728) (-3856 . 68597) (-3857 . 68511) (-3858 . 68459) (-3859 . 68409) (-3860 . 67966) (-3861 . 67910) (-3862 . 67829) (-3863 . 67622) (-3864 . 67466) (-3865 . 67411) (-3866 . 67356) (-3867 . 67045) (-3868 . 66956) (-3869 . 66632) (-3870 . 66452) (-3871 . 66342) (-3872 . 66212) (-3873 . 66103) (-3874 . 65958) (-3875 . 65760) (-3876 . 65612) (-3877 . 65477) (-3878 . 65406) (-3879 . 65250) (-3880 . 65218) (-3881 . 65085) (-3882 . 64737) (-3883 . 64557) (-3884 . 64491) (-3885 . 64425) (-3886 . 64391) (-3887 . 64310) (-3888 . 64261) (-3889 . 64087) (-3890 . 63825) (-3891 . 63752) (-3892 . 63681) (-3893 . 63609) (-3894 . 63536) (-3895 . 63469) (-3896 . 63193) (-3897 . 63073) (-3898 . 62925) (-3899 . 62664) (-3900 . 62611) (* . 58280) (-3902 . 58228) (-3903 . 58088) (-3904 . 57972) (-3905 . 56841) (-3906 . 56578) (-3907 . 56529) (-3908 . 56478) (-3909 . 56342) (-3910 . 56268) (-3911 . 55568) (-3912 . 55365) (-3913 . 55310) (-3914 . 55145) (-3915 . 55079) (-3916 . 55001) (-3917 . 54964) (-3918 . 54759) (-3919 . 54693) (-3920 . 54562) (-3921 . 54426) (-3922 . 54322) (-3923 . 53959) (-3924 . 53608) (-3925 . 53457) (-3926 . 53252) (-3927 . 53128) (-3928 . 53062) (-3929 . 52873) (-3930 . 52807) (-3931 . 52715) (-3932 . 52514) (-3933 . 52432) (-3934 . 52127) (-3935 . 52075) (-3936 . 51992) (-3937 . 51891) (-3938 . 51700) (-3939 . 51432) (-3940 . 51342) (-3941 . 51176) (-3942 . 51078) (-3943 . 50912) (-3944 . 50750) (-3945 . 50679) (-3946 . 50474) (-3947 . 50403) (-3948 . 50300) (-3949 . 50230) (-3950 . 50087) (-3951 . 49893) (-3952 . 49811) (-3953 . 49720) (-3954 . 49608) (-3955 . 49458) (-3956 . 49405) (-3957 . 49251) (-3958 . 49000) (-3959 . 48860) (-3960 . 48748) (-3961 . 48720) (-3962 . 48653) (-3963 . 48600) (-3964 . 48487) (-3965 . 48368) (-3966 . 48313) (-3967 . 48224) (-3968 . 48165) (-3969 . 48061) (-3970 . 48008) (-3971 . 47793) (-3972 . 45654) (-3973 . 45605) (-3974 . 45556) (-3975 . 45493) (-3976 . 45412) (-3977 . 45220) (-3978 . 44939) (-3979 . 44679) (-3980 . 44608) (-3981 . 44463) (-3982 . 43356) (-3983 . 43204) (-3984 . 42954) (-3985 . 42900) (-3986 . 42847) (-3987 . 42698) (-3988 . 42403) (-3989 . 42344) (-3990 . 42142) (-3991 . 41695) (-3992 . 41621) (-3993 . 41548) (-3994 . 41240) (-3995 . 40679) (-3996 . 40565) (-3997 . 40416) (-3998 . 40225) (-3999 . 40197) (-4000 . 40047) (-4001 . 39988) (-4002 . 39893) (-4003 . 39784) (-4004 . 39687) (-4005 . 39432) (-4006 . 39376) (-4007 . 39321) (-4008 . 39224) (-4009 . 39069) (-4010 . 38934) (-4011 . 38832) (-4012 . 38774) (-4013 . 37937) (-4014 . 37483) (-4015 . 37257) (-4016 . 37049) (-4017 . 36997) (-4018 . 36941) (-4019 . 36783) (-4020 . 36567) (-4021 . 36222) (-4022 . 36034) (-4023 . 35975) (-4024 . 35854) (-4025 . 35758) (-4026 . 35616) (-4027 . 35345) (-4028 . 35265) (-4029 . 33412) (-4030 . 33316) (-4031 . 32816) (-4032 . 32627) (-4033 . 32554) (-4034 . 32234) (-4035 . 32138) (-4036 . 32039) (-4037 . 31866) (-4038 . 31822) (-4039 . 31687) (-4040 . 31588) (-4041 . 31217) (-4042 . 31086) (-4043 . 31013) (-4044 . 30936) (-4045 . 30784) (-4046 . 30616) (-4047 . 30512) (-4048 . 29938) (-4049 . 29816) (-4050 . 29764) (-4051 . 29593) (-4052 . 29456) (-4053 . 29213) (-4054 . 29102) (-4055 . 28985) (-4056 . 28841) (-4057 . 26702) (-4058 . 26330) (-4059 . 26219) (-4060 . 26083) (-4061 . 26012) (-4062 . 25815) (-4063 . 25679) (-4064 . 24875) (-4065 . 24613) (-4066 . 24358) (-4067 . 24199) (-4068 . 24115) (-4069 . 23922) (-4070 . 23870) (-4071 . 23787) (-4072 . 23610) (-4073 . 23506) (-4074 . 22641) (-4075 . 22560) (-4076 . 22137) (-4077 . 22047) (-4078 . 21981) (-4079 . 21826) (-4080 . 21752) (-4081 . 21664) (-4082 . 21566) (-4083 . 21460) (-4084 . 21319) (-4085 . 21240) (-4086 . 21129) (-4087 . 21011) (-4088 . 20918) (-4089 . 20763) (-4090 . 20498) (-4091 . 20424) (-4092 . 20249) (-4093 . 19906) (-4094 . 19610) (-4095 . 19508) (-4096 . 19321) (-4097 . 19250) (-4098 . 19165) (-4099 . 19002) (-4100 . 18847) (-4101 . 18785) (-4102 . 18636) (-4103 . 18343) (-4104 . 18219) (-4105 . 18126) (-4106 . 18052) (-4107 . 17955) (-4108 . 17874) (-4109 . 17789) (-4110 . 17736) (-4111 . 17581) (-4112 . 16762) (-4113 . 16725) (-4114 . 15592) (-4115 . 15494) (-4116 . 13765) (-4117 . 13615) (-4118 . 12909) (-4119 . 12833) (-4120 . 12748) (-4121 . 12659) (-4122 . 12583) (-4123 . 12490) (-4124 . 12356) (-4125 . 12322) (-4126 . 12224) (-4127 . 12069) (-4128 . 12019) (-4129 . 11945) (-4130 . 11794) (-4131 . 11662) (-4132 . 11329) (-4133 . 11196) (-4134 . 11105) (-4135 . 11013) (-4136 . 10961) (-4137 . 10911) (-4138 . 10774) (-4139 . 10717) (-4140 . 9912) (-4141 . 9787) (-4142 . 9732) (-4143 . 9600) (-4144 . 9545) (-4145 . 9285) (-4146 . 9167) (-4147 . 9114) (-4148 . 9003) (-4149 . 8798) (-4150 . 8530) (-4151 . 1988) (-4152 . 1387) (-4153 . 1255) (-4154 . 1144) (-4155 . 604) (-4156 . 409) (-4157 . 338) (-4158 . 253) (-4159 . 120) (-4160 . 30)) \ No newline at end of file
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 (-1154 (-517)))) (-5 *1 (-435)))))
+(((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3490 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2182 (*2 *4)) (-15 -2903 ((-843) *2)) (-15 -3809 ((-1154 *2) (-843))) (-15 -2496 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *5 (-212 (-2210 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3353 *4) (|:| -2059 *5)) (-2 (|:| -3353 *4) (|:| -2059 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))))
+(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))))
+((-1186 . 681995) (-1187 . 681828) (-1188 . 681706) (-1189 . 681654) (-1190 . 681539) (-1191 . 681484) (-1192 . 680379) (-1193 . 680323) (-1194 . 679982) (-1195 . 679779) (-1196 . 679612) (-1197 . 679506) (-1198 . 679436) (-1199 . 679277) (-1200 . 679221) (-1201 . 679162) (-1202 . 679079) (-1203 . 678970) (-1204 . 678798) (-1205 . 678388) (-1206 . 678306) (-1207 . 677041) (-1208 . 676965) (-1209 . 676839) (-1210 . 676723) (-1211 . 676321) (-1212 . 676247) (-1213 . 676031) (-1214 . 675873) (-1215 . 675716) (-1216 . 675568) (-1217 . 674498) (-1218 . 674083) (-1219 . 674054) (-1220 . 673875) (-1221 . 673394) (-1222 . 673327) (-1223 . 673122) (-1224 . 673009) (-1225 . 672956) (-1226 . 672735) (-1227 . 672519) (-1228 . 672461) (-1229 . 672338) (-1230 . 672262) (-1231 . 672141) (-1232 . 672088) (-1233 . 671997) (-1234 . 671163) (-1235 . 671034) (-1236 . 670960) (-1237 . 670639) (-1238 . 670294) (-1239 . 670214) (-1240 . 670158) (-1241 . 670048) (-1242 . 669944) (-1243 . 669515) (-1244 . 669367) (-1245 . 669267) (-1246 . 669160) (-1247 . 669022) (-1248 . 668834) (-1249 . 668736) (-1250 . 668079) (-1251 . 667997) (-1252 . 667941) (-1253 . 667872) (-1254 . 667675) (-1255 . 667560) (-1256 . 667526) (-1257 . 667125) (-1258 . 667049) (-1259 . 666626) (-1260 . 666567) (-1261 . 666381) (-1262 . 666245) (-1263 . 665913) (-1264 . 665860) (-1265 . 665785) (-1266 . 664853) (-1267 . 664314) (-1268 . 664098) (-1269 . 663996) (-1270 . 663875) (-1271 . 663637) (-1272 . 663314) (-1273 . 662997) (-1274 . 662764) (-1275 . 662549) (-1276 . 660956) (-1277 . 660682) (-1278 . 660594) (-1279 . 660050) (-1280 . 659908) (-1281 . 659675) (-1282 . 659594) (-1283 . 659536) (-1284 . 659505) (-1285 . 659135) (-1286 . 658784) (-1287 . 658709) (-1288 . 658585) (-1289 . 658314) (-1290 . 658007) (-1291 . 657877) (-1292 . 657786) (-1293 . 657682) (-1294 . 657447) (-1295 . 657384) (-1296 . 657332) (-1297 . 657225) (-1298 . 657136) (-1299 . 657056) (-1300 . 656904) (-1301 . 656534) (-1302 . 656344) (-1303 . 656046) (-1304 . 655868) (-1305 . 655799) (-1306 . 655706) (-1307 . 655554) (-1308 . 655497) (-1309 . 655131) (-1310 . 653278) (-1311 . 653226) (-1312 . 653034) (-1313 . 652927) (-1314 . 652783) (-1315 . 652705) (-1316 . 652603) (-1317 . 652529) (-1318 . 652477) (-1319 . 652234) (-1320 . 652138) (-1321 . 651886) (-1322 . 651684) (-1323 . 651502) (-1324 . 651213) (-1325 . 651091) (-1326 . 650781) (-1327 . 650587) (-1328 . 650408) (-1329 . 650334) (-1330 . 650244) (-1331 . 649744) (-1332 . 649226) (-1333 . 649050) (-1334 . 648998) (-1335 . 648848) (-1336 . 648503) (-1337 . 648365) (-1338 . 648280) (-1339 . 648214) (-1340 . 648025) (-1341 . 647743) (-1342 . 647651) (-1343 . 646114) (-1344 . 646031) (-1345 . 645815) (-1346 . 645652) (-1347 . 645621) (-1348 . 645548) (-1349 . 645132) (-1350 . 645001) (-1351 . 644903) (-1352 . 644092) (-1353 . 644039) (-1354 . 643935) (-1355 . 643883) (-1356 . 643800) (-1357 . 643442) (-1358 . 643315) (-1359 . 643081) (-1360 . 642761) (-1361 . 642635) (-1362 . 642390) (-1363 . 641180) (-1364 . 641052) (-1365 . 640971) (-1366 . 640836) (-1367 . 640634) (-1368 . 640548) (-1369 . 640498) (-1370 . 640419) (-1371 . 640249) (-1372 . 640150) (-1373 . 639955) (-1374 . 639904) (-1375 . 639776) (-1376 . 639720) (-1377 . 639481) (-1378 . 639205) (-1379 . 639134) (-1380 . 638961) (-1381 . 638910) (-1382 . 638806) (-1383 . 638210) (-1384 . 638144) (-1385 . 638075) (-1386 . 637992) (-1387 . 637948) (-1388 . 637858) (-1389 . 637760) (-1390 . 637692) (-1391 . 637609) (-1392 . 637483) (-1393 . 637396) (-1394 . 637248) (-1395 . 636984) (-1396 . 635935) (-1397 . 635882) (-1398 . 635762) (-1399 . 635584) (-1400 . 635532) (-1401 . 635397) (-1402 . 635290) (-1403 . 635083) (-1404 . 634901) (-1405 . 634790) (-1406 . 634756) (-1407 . 634675) (-1408 . 634325) (-1409 . 634251) (-1410 . 634053) (-1411 . 634001) (-1412 . 633589) (-1413 . 633470) (-1414 . 633371) (-1415 . 633264) (-1416 . 633193) (-1417 . 633141) (-1418 . 633086) (-1419 . 632982) (-1420 . 632902) (-1421 . 632874) (-1422 . 632122) (-1423 . 631761) (-1424 . 631585) (-1425 . 631320) (-1426 . 631198) (-1427 . 630781) (-1428 . 630681) (-1429 . 630628) (-1430 . 630537) (-1431 . 630298) (-1432 . 630092) (-1433 . 630036) (-1434 . 629294) (-1435 . 627812) (-1436 . 627461) (-1437 . 627395) (-1438 . 627291) (-1439 . 627190) (-1440 . 627038) (-1441 . 626885) (-1442 . 626619) (-1443 . 626479) (-1444 . 626276) (-1445 . 625844) (-1446 . 625693) (-1447 . 625579) (-1448 . 625478) (-1449 . 625387) (-1450 . 625239) (-1451 . 625103) (-1452 . 625051) (-1453 . 624755) (-1454 . 624595) (-1455 . 624033) (-1456 . 623977) (-1457 . 623503) (-1458 . 623443) (-1459 . 623369) (-1460 . 623164) (-1461 . 623014) (-1462 . 622841) (-1463 . 622529) (-1464 . 622326) (-1465 . 622260) (-1466 . 622207) (-1467 . 622135) (-1468 . 622011) (-1469 . 621883) (-1470 . 621476) (-1471 . 621404) (-1472 . 621106) (-1473 . 620988) (-1474 . 620935) (-1475 . 620833) (-1476 . 620554) (-1477 . 620488) (-1478 . 620381) (-1479 . 620219) (-1480 . 620135) (-1481 . 620011) (-1482 . 619937) (-1483 . 619848) (-1484 . 619791) (-1485 . 619602) (-1486 . 619489) (-1487 . 619119) (-1488 . 618997) (-1489 . 618760) (-1490 . 618694) (-1491 . 618642) (-1492 . 618553) (-1493 . 618487) (-1494 . 618316) (-1495 . 618180) (-1496 . 617904) (-1497 . 617741) (-1498 . 617648) (-1499 . 617596) (-1500 . 617462) (-1501 . 617370) (-1502 . 617311) (-1503 . 616703) (-1504 . 616575) (-1505 . 616500) (-1506 . 616092) (-1507 . 616004) (-1508 . 615855) (-1509 . 615753) (-1510 . 615701) (-1511 . 615535) (-1512 . 615323) (-1513 . 615122) (-1514 . 614991) (-1515 . 614939) (-1516 . 614746) (-1517 . 614426) (-1518 . 614184) (-1519 . 614082) (-1520 . 614051) (-1521 . 613917) (-1522 . 613680) (-1523 . 613598) (-1524 . 613484) (-1525 . 613359) (-1526 . 613250) (-1527 . 613125) (-1528 . 612926) (-1529 . 612822) (-1530 . 612751) (-1531 . 612651) (-1532 . 612346) (-1533 . 612230) (-1534 . 609481) (-1535 . 609374) (-1536 . 609256) (-1537 . 609162) (-1538 . 609113) (-1539 . 608849) (-1540 . 608721) (-1541 . 608601) (-1542 . 608549) (-1543 . 608474) (-1544 . 608186) (-1545 . 608070) (-1546 . 607777) (-1547 . 607589) (-1548 . 607324) (-1549 . 607191) (-1550 . 607089) (-1551 . 607015) (-1552 . 606932) (-1553 . 606857) (-1554 . 606738) (-1555 . 606503) (-1556 . 606433) (-1557 . 606349) (-1558 . 605575) (-1559 . 605547) (-1560 . 605247) (-1561 . 605060) (-1562 . 604886) (-1563 . 604785) (-1564 . 604710) (-1565 . 604612) (-1566 . 604294) (-1567 . 603983) (-1568 . 602849) (-1569 . 602742) (-1570 . 602656) (-1571 . 602548) (-1572 . 602033) (-1573 . 601842) (-1574 . 601469) (-1575 . 601198) (-1576 . 601120) (-1577 . 600942) (-1578 . 600848) (-1579 . 599124) (-1580 . 598964) (-1581 . 598858) (-1582 . 598701) (-1583 . 598478) (-1584 . 598082) (-1585 . 597942) (-1586 . 597674) (-1587 . 597252) (-1588 . 597084) (-1589 . 596956) (-1590 . 595535) (-1591 . 595358) (-1592 . 595306) (-1593 . 595220) (-1594 . 594987) (-1595 . 594886) (-1596 . 594756) (-1597 . 594666) (-1598 . 593710) (-1599 . 593542) (-1600 . 593349) (-1601 . 593247) (-1602 . 591793) (-1603 . 591529) (-1604 . 591387) (-1605 . 590990) (-1606 . 590938) (-1607 . 590889) (-1608 . 590739) (-1609 . 590573) (-1610 . 590511) (-1611 . 590343) (-1612 . 590013) (-1613 . 589777) (-1614 . 589687) (-1615 . 589064) (-1616 . 588967) (-1617 . 588874) (-1618 . 588561) (-1619 . 588463) (-1620 . 588328) (-1621 . 588215) (-1622 . 588066) (-1623 . 587955) (-1624 . 587717) (-1625 . 587311) (-1626 . 586182) (-1627 . 586109) (-1628 . 585956) (-1629 . 585790) (-1630 . 585292) (-1631 . 584776) (-1632 . 584654) (-1633 . 584382) (-1634 . 584082) (-1635 . 583988) (-1636 . 583900) (-1637 . 582772) (-1638 . 582634) (-1639 . 582538) (-1640 . 582440) (-1641 . 582246) (-1642 . 581995) (-1643 . 581833) (-1644 . 581422) (-1645 . 581300) (-1646 . 581184) (-1647 . 581000) (-1648 . 580898) (-1649 . 578811) (-1650 . 578737) (-1651 . 578641) (-1652 . 578402) (-1653 . 578163) (-1654 . 578092) (-1655 . 578041) (-1656 . 577979) (-1657 . 577863) (-1658 . 577808) (-1659 . 577692) (-1660 . 577541) (-1661 . 577399) (-1662 . 577337) (-1663 . 576971) (-1664 . 576918) (-1665 . 576824) (-1666 . 576619) (-1667 . 576525) (-1668 . 576437) (-1669 . 576221) (-1670 . 575955) (-1671 . 575853) (-1672 . 575618) (-1673 . 575327) (-1674 . 575189) (-1675 . 575071) (-1676 . 574973) (-1677 . 574629) (-1678 . 574558) (-1679 . 574252) (-1680 . 574090) (-1681 . 574020) (-1682 . 573577) (-1683 . 573413) (-1684 . 573192) (-1685 . 572488) (-1686 . 572354) (-1687 . 572058) (-1688 . 571904) (-1689 . 571801) (-1690 . 571662) (-1691 . 571500) (-1692 . 571399) (-1693 . 570628) (-1694 . 570562) (-1695 . 570479) (-1696 . 570335) (-1697 . 570150) (-1698 . 569446) (-1699 . 567392) (-1700 . 567311) (-1701 . 567259) (-1702 . 567189) (-1703 . 567099) (-1704 . 566931) (-1705 . 566575) (-1706 . 566481) (-1707 . 566189) (-1708 . 566108) (-1709 . 566016) (-1710 . 565364) (-1711 . 565230) (-1712 . 565025) (-1713 . 564882) (-1714 . 564552) (-1715 . 564427) (-1716 . 564281) (-1717 . 564215) (-1718 . 564057) (-1719 . 563926) (-1720 . 563843) (-1721 . 563751) (-1722 . 563205) (-1723 . 563098) (-1724 . 562779) (-1725 . 562585) (-1726 . 562343) (-1727 . 562078) (-1728 . 561880) (-1729 . 561704) (-1730 . 561188) (-1731 . 560642) (-1732 . 560590) (-1733 . 560456) (-1734 . 560374) (-1735 . 560104) (-1736 . 559727) (-1737 . 559699) (-1738 . 559597) (-1739 . 559512) (-1740 . 559306) (-1741 . 558760) (-1742 . 558701) (-1743 . 558609) (-1744 . 558368) (-1745 . 558277) (-1746 . 558152) (-1747 . 558050) (-1748 . 557922) (-1749 . 557837) (-1750 . 557737) (-1751 . 557087) (-1752 . 556970) (-1753 . 556772) (-1754 . 556672) (-1755 . 556560) (-1756 . 556498) (-1757 . 556302) (-1758 . 556170) (-1759 . 552016) (-1760 . 551880) (-1761 . 551692) (-1762 . 551042) (-1763 . 550990) (-1764 . 550956) (-1765 . 550806) (-1766 . 550643) (-1767 . 550466) (-1768 . 550334) (-1769 . 550244) (-1770 . 550151) (-1771 . 550038) (-1772 . 549368) (-1773 . 548656) (-1774 . 548554) (-1775 . 548479) (-1776 . 548328) (-1777 . 548275) (-1778 . 548097) (-1779 . 547941) (-1780 . 547819) (-1781 . 547667) (-1782 . 547582) (-1783 . 546931) (-1784 . 546387) (-1785 . 546248) (-1786 . 546140) (-1787 . 545637) (-1788 . 545483) (-1789 . 545360) (-1790 . 545292) (-1791 . 545221) (-1792 . 545137) (-1793 . 545052) (-1794 . 544508) (-1795 . 544350) (-1796 . 544138) (-1797 . 543887) (-1798 . 543786) (-1799 . 543717) (-1800 . 543328) (-1801 . 543256) (-1802 . 543171) (-1803 . 542627) (-1804 . 542327) (-1805 . 542223) (-1806 . 542083) (-1807 . 541948) (-1808 . 541770) (-1809 . 541420) (-1810 . 541334) (-1811 . 541249) (-1812 . 540598) (-1813 . 540189) (-1814 . 540130) (-1815 . 539750) (-1816 . 539638) (-1817 . 539512) (-1818 . 539397) (-1819 . 539324) (-1820 . 539243) (-1821 . 539158) (-1822 . 538859) (-1823 . 538773) (-1824 . 538122) (-1825 . 538039) (-1826 . 536865) (-1827 . 536837) (-1828 . 536729) (-1829 . 536577) (-1830 . 536292) (-1831 . 536154) (-1832 . 536069) (-1833 . 532228) (-1834 . 531577) (-1835 . 531521) (-1836 . 531423) (-1837 . 531356) (-1838 . 531128) (-1839 . 531057) (-1840 . 530910) (-1841 . 530822) (-1842 . 530277) (-1843 . 530193) (-1844 . 530120) (-1845 . 530067) (-1846 . 529655) (-1847 . 529503) (-1848 . 529424) (-1849 . 529363) (-1850 . 529272) (-1851 . 528727) (-1852 . 528180) (-1853 . 527957) (-1854 . 527844) (-1855 . 527360) (-1856 . 527287) (-1857 . 514050) (-1858 . 512833) (-1859 . 512742) (-1860 . 512197) (-1861 . 512105) (-1862 . 512034) (-1863 . 511915) (-1864 . 511821) (-1865 . 511005) (-1866 . 510932) (-1867 . 510874) (-1868 . 508655) (-1869 . 508565) (-1870 . 508484) (-1871 . 508429) (-1872 . 508040) (-1873 . 507948) (-1874 . 507704) (-1875 . 507471) (-1876 . 505715) (-1877 . 505622) (-1878 . 505533) (-1879 . 505463) (-1880 . 505306) (-1881 . 505253) (-1882 . 505180) (-1883 . 504842) (-1884 . 504754) (-1885 . 504654) (-1886 . 504595) (-1887 . 504522) (-1888 . 504372) (-1889 . 504292) (-1890 . 504234) (-1891 . 503984) (-1892 . 503900) (-1893 . 503804) (-1894 . 503170) (-1895 . 503066) (-1896 . 502846) (-1897 . 502793) (-1898 . 502710) (-1899 . 502296) (-1900 . 502158) (-1901 . 501788) (-1902 . 501735) (-1903 . 501597) (-1904 . 501485) (-1905 . 501334) (-1906 . 501274) (-1907 . 501152) (-1908 . 500969) (-1909 . 500901) (-1910 . 500542) (-1911 . 500327) (-1912 . 500009) (-1913 . 499934) (-1914 . 499823) (-1915 . 499752) (-1916 . 499652) (-1917 . 499584) (-1918 . 498642) (-1919 . 498614) (-1920 . 498540) (-1921 . 496401) (-1922 . 496335) (-1923 . 496259) (-1924 . 496157) (-1925 . 496066) (-1926 . 495820) (-1927 . 495771) (-1928 . 495701) (-1929 . 495513) (-1930 . 495362) (-1931 . 495196) (-1932 . 494980) (-1933 . 494625) (-1934 . 494506) (-1935 . 494457) (-1936 . 494335) (-1937 . 494226) (-1938 . 494057) (-1939 . 493935) (-1940 . 493669) (-1941 . 493308) (-1942 . 493252) (-1943 . 493070) (-1944 . 492994) (-1945 . 492931) (-1946 . 492827) (-1947 . 492658) (-1948 . 492517) (-1949 . 492415) (-1950 . 492184) (-1951 . 492069) (-1952 . 491925) (-1953 . 491844) (-1954 . 491425) (-1955 . 491340) (-1956 . 491243) (-1957 . 490687) (-1958 . 490495) (-1959 . 490398) (-1960 . 490043) (-1961 . 489847) (-1962 . 489743) (-1963 . 489611) (-1964 . 489511) (-1965 . 489230) (-1966 . 489067) (-1967 . 489039) (-1968 . 488952) (-1969 . 488715) (-1970 . 488649) (-1971 . 488079) (-1972 . 487819) (-1973 . 487539) (-1974 . 487448) (-1975 . 487365) (-1976 . 487229) (-1977 . 487155) (-1978 . 487072) (-1979 . 483268) (-1980 . 482727) (-1981 . 482589) (-1982 . 482488) (-1983 . 482381) (-1984 . 481904) (-1985 . 481663) (-1986 . 476809) (-1987 . 476753) (-1988 . 476445) (-1989 . 476046) (-1990 . 475976) (-1991 . 475569) (-1992 . 475541) (-1993 . 475370) (-1994 . 475215) (-1995 . 475144) (-1996 . 475014) (-1997 . 474933) (-1998 . 474668) (-1999 . 474526) (-2000 . 474453) (-2001 . 474247) (-2002 . 474048) (-2003 . 473909) (-2004 . 473702) (-2005 . 473444) (-2006 . 473154) (-2007 . 473102) (-2008 . 473019) (-2009 . 472942) (-2010 . 472852) (-2011 . 472761) (-2012 . 472605) (-2013 . 472331) (-2014 . 472237) (-2015 . 472139) (-2016 . 471795) (-2017 . 471523) (-2018 . 470563) (-2019 . 470441) (-2020 . 470119) (-2021 . 470064) (-2022 . 469878) (-2023 . 469764) (-2024 . 469531) (-2025 . 469503) (-2026 . 469339) (-2027 . 469248) (-2028 . 469147) (-2029 . 468974) (-2030 . 468919) (-2031 . 468787) (-2032 . 468685) (-2033 . 468386) (-2034 . 467886) (-2035 . 467812) (-2036 . 467679) (-2037 . 467490) (-2038 . 467225) (-2039 . 467154) (-2040 . 466843) (-2041 . 466695) (-2042 . 466636) (-2043 . 466523) (-2044 . 466486) (-2045 . 466247) (-2046 . 466178) (-2047 . 465505) (-2048 . 465372) (-2049 . 465198) (-2050 . 464993) (-2051 . 464904) (-2052 . 464832) (-2053 . 464779) (-2054 . 464421) (-2055 . 464192) (-2056 . 464083) (-2057 . 463934) (-2058 . 463604) (-2059 . 463146) (-2060 . 462822) (-2061 . 462769) (-2062 . 462659) (-2063 . 462389) (-2064 . 462119) (-2065 . 462043) (-2066 . 461941) (-2067 . 461889) (-2068 . 461806) (-2069 . 461727) (-2070 . 461509) (-2071 . 461329) (-2072 . 461170) (-2073 . 461077) (-2074 . 460906) (-2075 . 460755) (-2076 . 460643) (-2077 . 460537) (-2078 . 460413) (-2079 . 459862) (-2080 . 459779) (-2081 . 459648) (-2082 . 459529) (-2083 . 459419) (-2084 . 459333) (-2085 . 459237) (-2086 . 458929) (-2087 . 458785) (-2088 . 458421) (-2089 . 457645) (-2090 . 457573) (-2091 . 457314) (-2092 . 457021) (-2093 . 456940) (-2094 . 456820) (-2095 . 456690) (-2096 . 456192) (-2097 . 455969) (-2098 . 455704) (-2099 . 455466) (-2100 . 455191) (-2101 . 455108) (-2102 . 454814) (-2103 . 454757) (-2104 . 454648) (-2105 . 454320) (-2106 . 454104) (-2107 . 454041) (-2108 . 453966) (-2109 . 453818) (-2110 . 453309) (-2111 . 452598) (-2112 . 452517) (-2113 . 452372) (-2114 . 452290) (-2115 . 452100) (-2116 . 452020) (-2117 . 451916) (-2118 . 451784) (-2119 . 451551) (-2120 . 451353) (-2121 . 451251) (-2122 . 451169) (-2123 . 451105) (-2124 . 450971) (-2125 . 450846) (-2126 . 450778) (-2127 . 450626) (-2128 . 450454) (-2129 . 450306) (-2130 . 450278) (-2131 . 450089) (-2132 . 449963) (-2133 . 449868) (-2134 . 449794) (-2135 . 449716) (-2136 . 449638) (-2137 . 449503) (-2138 . 445765) (-2139 . 445300) (-2140 . 445244) (-2141 . 445163) (-2142 . 444434) (-2143 . 444356) (-2144 . 444279) (-2145 . 444208) (-2146 . 443940) (-2147 . 443821) (-2148 . 443612) (-2149 . 443418) (-2150 . 443328) (-2151 . 443254) (-2152 . 443098) (-2153 . 443067) (-2154 . 442924) (-2155 . 442818) (-2156 . 442601) (-2157 . 442573) (-2158 . 442455) (-2159 . 441218) (-2160 . 441186) (-2161 . 441155) (-2162 . 441041) (-2163 . 440468) (-2164 . 440330) (-2165 . 440209) (-2166 . 440157) (-2167 . 439320) (-2168 . 439207) (-2169 . 438859) (-2170 . 438624) (-2171 . 438472) (-2172 . 438377) (-2173 . 438103) (-2174 . 437901) (-2175 . 437618) (-2176 . 437438) (-2177 . 436856) (-2178 . 436785) (-2179 . 436637) (-2180 . 436585) (-2181 . 436504) (-2182 . 415169) (-2183 . 415103) (-2184 . 415028) (-2185 . 415000) (-2186 . 414824) (-2187 . 414699) (-2188 . 414640) (-2189 . 414487) (-2190 . 414421) (-2191 . 414354) (-2192 . 414215) (-2193 . 414126) (-2194 . 414073) (-2195 . 413945) (-2196 . 413893) (-2197 . 411355) (-2198 . 411274) (-2199 . 411208) (-2200 . 411138) (-2201 . 410920) (-2202 . 410525) (-2203 . 410430) (-2204 . 410334) (-2205 . 410285) (-2206 . 410121) (-2207 . 410015) (-2208 . 409963) (-2209 . 409803) (-2210 . 409499) (-2211 . 409366) (-2212 . 409294) (-2213 . 409120) (-2214 . 408907) (-2215 . 408716) (-2216 . 408664) (-2217 . 407834) (-2218 . 407674) (-2219 . 407409) (-2220 . 407357) (-2221 . 407286) (-2222 . 407173) (-2223 . 407083) (-2224 . 406974) (-2225 . 406804) (-2226 . 404769) (-2227 . 404263) (-2228 . 404028) (-2229 . 403956) (-2230 . 403901) (-2231 . 403819) (-2232 . 403390) (-2233 . 403135) (-2234 . 403031) (-2235 . 402701) (-2236 . 402631) (-2237 . 402396) (-2238 . 402323) (-2239 . 402248) (-2240 . 402220) (-2241 . 402018) (-2242 . 401880) (-2243 . 401775) (-2244 . 401722) (-2245 . 401671) (-2246 . 401538) (-2247 . 401476) (-2248 . 401293) (-2249 . 401226) (-2250 . 401152) (-2251 . 401099) (-2252 . 400952) (-2253 . 400870) (-2254 . 399688) (-2255 . 398373) (-2256 . 398292) (-2257 . 398016) (-2258 . 397611) (-2259 . 397513) (-2260 . 397430) (-2261 . 397364) (-2262 . 396847) (-2263 . 395950) (-2264 . 395811) (-2265 . 395691) (-2266 . 395638) (-2267 . 395509) (-2268 . 394990) (-2269 . 394841) (-2270 . 394788) (-2271 . 394673) (-2272 . 394525) (-2273 . 394473) (-2274 . 394421) (-2275 . 393825) (-2276 . 393597) (-2277 . 393129) (-2278 . 392941) (-2279 . 392366) (-2280 . 392314) (-2281 . 392178) (-2282 . 391917) (-2283 . 391851) (-2284 . 391791) (-2285 . 391648) (-2286 . 391556) (-2287 . 391308) (-2288 . 391184) (-2289 . 389476) (-2290 . 389423) (-2291 . 389357) (-2292 . 389305) (-2293 . 389213) (-2294 . 389150) (-2295 . 389097) (-2296 . 389031) (-2297 . 388863) (-2298 . 388804) (-2299 . 388470) (-2300 . 388418) (-2301 . 388301) (-2302 . 387750) (-2303 . 387554) (-2304 . 387411) (-2305 . 387321) (-2306 . 387078) (-2307 . 385841) (-2308 . 384624) (-2309 . 384522) (-2310 . 384382) (-2311 . 384097) (-2312 . 383859) (-2313 . 383759) (-2314 . 383669) (-2315 . 383567) (-2316 . 383334) (-2317 . 383218) (-2318 . 382900) (-2319 . 382792) (-2320 . 382644) (-2321 . 382584) (-2322 . 382267) (-2323 . 382039) (-2324 . 381943) (-2325 . 380812) (-2326 . 380723) (-2327 . 380466) (-2328 . 380217) (-2329 . 380165) (-2330 . 380116) (-2331 . 379879) (-2332 . 379814) (-2333 . 379551) (-2334 . 379374) (-2335 . 379248) (-2336 . 379066) (-2337 . 378456) (-2338 . 378308) (-2339 . 378274) (-2340 . 378104) (-2341 . 377916) (-2342 . 377867) (-2343 . 377787) (-2344 . 377425) (-2345 . 377359) (-2346 . 377089) (-2347 . 377003) (-2348 . 376892) (-2349 . 376081) (-2350 . 375991) (-2351 . 375883) (-2352 . 375747) (-2353 . 375657) (-2354 . 375580) (-2355 . 375373) (-2356 . 375251) (-2357 . 374872) (-2358 . 374718) (-2359 . 374327) (-2360 . 374174) (-2361 . 374100) (-2362 . 373986) (-2363 . 373913) (-2364 . 373844) (-2365 . 373689) (-2366 . 373593) (-2367 . 373503) (-2368 . 373364) (-2369 . 372664) (-2370 . 372594) (-2371 . 371743) (-2372 . 371564) (-2373 . 371490) (-2374 . 371417) (-2375 . 371053) (-2376 . 370901) (-2377 . 370846) (-2378 . 370643) (-2379 . 370576) (-2380 . 370507) (-2381 . 370337) (-2382 . 369695) (-2383 . 369599) (-2384 . 369478) (-2385 . 369342) (-2386 . 369177) (-2387 . 368911) (-2388 . 368346) (-2389 . 368088) (-2390 . 367949) (-2391 . 367765) (-2392 . 367495) (-2393 . 367304) (-2394 . 367252) (-2395 . 367031) (-2396 . 366965) (-2397 . 366732) (-2398 . 366643) (-2399 . 366522) (-2400 . 366447) (-2401 . 365864) (-2402 . 365774) (-2403 . 365718) (-2404 . 365375) (-2405 . 365297) (-2406 . 365244) (-2407 . 365165) (-2408 . 365076) (-2409 . 364996) (-2410 . 363609) (-2411 . 363572) (-2412 . 363491) (-2413 . 363394) (-2414 . 363294) (-2415 . 362925) (-2416 . 362797) (-2417 . 362592) (-2418 . 362460) (-2419 . 362321) (-2420 . 361898) (-2421 . 361790) (-2422 . 361594) (-2423 . 361528) (-2424 . 361476) (-2425 . 361339) (-2426 . 361247) (-2427 . 361164) (-2428 . 361050) (-2429 . 360971) (-2430 . 360840) (-2431 . 360767) (-2432 . 360502) (-2433 . 360449) (-2434 . 360313) (-2435 . 360093) (-2436 . 359997) (-2437 . 359799) (-2438 . 359620) (-2439 . 359334) (-2440 . 359140) (-2441 . 359036) (-2442 . 358924) (-2443 . 358806) (-2444 . 358704) (-2445 . 358227) (-2446 . 357727) (-2447 . 357699) (-2448 . 357542) (-2449 . 357179) (-2450 . 357045) (-2451 . 357017) (-2452 . 356961) (-2453 . 356849) (-2454 . 356698) (-2455 . 356582) (-2456 . 356490) (-2457 . 356402) (-2458 . 356239) (-2459 . 355092) (-2460 . 354824) (-2461 . 354652) (-2462 . 354562) (-2463 . 354071) (-2464 . 353706) (-2465 . 353654) (-2466 . 353579) (-2467 . 353271) (-2468 . 352990) (-2469 . 352935) (-2470 . 352527) (-2471 . 352460) (-2472 . 352057) (-2473 . 351989) (-2474 . 351696) (-2475 . 351443) (-2476 . 351412) (-2477 . 351082) (-2478 . 351011) (-2479 . 350937) (-2480 . 350881) (-2481 . 350792) (-2482 . 350701) (-2483 . 350233) (-2484 . 349974) (-2485 . 349915) (-2486 . 349779) (-2487 . 349660) (-2488 . 349407) (-2489 . 349352) (-2490 . 349296) (-2491 . 348988) (-2492 . 348798) (-2493 . 348641) (-2494 . 348343) (-2495 . 348292) (-2496 . 347999) (-2497 . 347696) (-2498 . 347549) (-2499 . 347399) (-2500 . 347318) (-2501 . 347212) (-2502 . 346913) (-2503 . 346884) (-2504 . 346699) (-2505 . 346600) (-2506 . 346476) (-2507 . 346229) (-2508 . 346104) (-2509 . 345899) (-2510 . 345799) (-2511 . 345003) (-2512 . 344876) (-2513 . 344734) (-2514 . 344678) (-2515 . 344585) (-2516 . 344519) (-2517 . 344434) (-2518 . 343407) (-2519 . 343326) (-2520 . 343270) (-2521 . 339833) (-2522 . 339734) (-2523 . 339628) (-2524 . 339491) (-2525 . 339389) (-2526 . 339315) (-2527 . 339264) (-2528 . 339026) (-2529 . 338967) (-2530 . 338666) (-2531 . 337887) (-2532 . 337766) (-2533 . 337647) (-2534 . 337447) (-2535 . 337170) (-2536 . 337089) (-2537 . 337058) (-2538 . 336889) (-2539 . 336811) (-2540 . 336698) (-2541 . 336624) (-2542 . 335974) (-2543 . 335868) (-2544 . 335775) (-2545 . 335708) (-2546 . 335635) (-2547 . 335582) (-2548 . 335422) (-2549 . 335344) (-2550 . 335175) (-2551 . 334268) (-2552 . 334179) (-2553 . 333386) (-2554 . 333142) (-2555 . 333049) (-2556 . 332967) (-2557 . 332601) (-2558 . 331782) (-2559 . 331630) (-2560 . 331227) (-2561 . 331070) (-2562 . 330930) (-2563 . 330828) (-2564 . 330738) (-2565 . 330664) (-2566 . 330627) (-2567 . 330461) (-2568 . 330388) (-2569 . 330036) (-2570 . 329964) (-2571 . 329910) (-2572 . 329744) (-2573 . 329619) (-2574 . 329520) (-2575 . 328387) (-2576 . 328319) (-2577 . 328183) (-2578 . 327963) (-2579 . 327853) (-2580 . 327677) (-2581 . 327463) (-2582 . 327280) (-2583 . 326881) (-2584 . 326783) (-2585 . 326681) (-2586 . 325978) (-2587 . 325851) (-2588 . 324524) (-2589 . 324475) (-2590 . 324420) (-2591 . 323840) (-2592 . 322111) (-2593 . 322022) (-2594 . 321813) (-2595 . 321658) (-2596 . 321584) (-2597 . 321387) (-2598 . 321321) (-2599 . 321036) (-2600 . 320884) (-2601 . 320734) (-2602 . 320536) (-2603 . 320483) (-2604 . 320347) (-2605 . 320264) (-2606 . 320212) (-2607 . 319987) (-2608 . 319754) (-2609 . 319535) (-2610 . 319430) (-2611 . 319354) (-2612 . 319230) (-2613 . 318820) (-2614 . 318646) (-2615 . 318594) (-2616 . 318519) (-2617 . 318422) (-2618 . 318316) (-2619 . 317942) (-2620 . 317557) (-2621 . 317468) (-2622 . 317228) (-2623 . 317176) (-2624 . 317096) (-2625 . 316853) (-2626 . 316789) (-2627 . 316566) (-2628 . 316511) (-2629 . 316435) (-2630 . 316383) (-2631 . 316264) (-2632 . 316181) (-2633 . 316115) (-2634 . 315997) (-2635 . 315969) (-2636 . 315806) (-2637 . 315699) (-2638 . 315665) (-2639 . 315590) (-2640 . 315497) (-2641 . 315176) (-2642 . 314970) (-2643 . 314824) (-2644 . 314583) (-2645 . 314467) (-2646 . 314410) (-2647 . 314321) (-2648 . 314169) (-2649 . 314021) (-2650 . 313987) (-2651 . 313894) (-2652 . 313504) (-2653 . 313416) (-2654 . 313350) (-2655 . 313099) (-2656 . 312600) (-2657 . 312527) (-2658 . 312444) (-2659 . 312272) (-2660 . 312200) (-2661 . 312131) (-2662 . 312033) (-2663 . 311916) (-2664 . 311860) (-2665 . 311804) (-2666 . 311587) (-2667 . 311364) (-2668 . 311038) (-2669 . 310988) (-2670 . 310907) (-2671 . 310815) (-2672 . 310371) (-2673 . 310088) (-2674 . 310038) (-2675 . 309943) (-2676 . 309858) (-2677 . 309567) (-2678 . 309462) (-2679 . 308974) (-2680 . 308629) (-2681 . 308507) (-2682 . 308382) (-2683 . 308284) (-2684 . 308235) (-2685 . 307897) (-2686 . 307823) (-2687 . 307771) (-2688 . 307619) (-2689 . 307567) (-2690 . 307082) (-2691 . 306749) (-2692 . 306602) (-2693 . 306574) (-2694 . 306408) (-2695 . 306294) (-2696 . 306172) (-2697 . 306099) (-2698 . 305981) (-2699 . 305830) (-2700 . 304881) (-2701 . 304826) (-2702 . 304673) (-2703 . 304462) (-2704 . 304154) (-2705 . 303891) (-2706 . 303469) (-2707 . 303393) (-2708 . 303071) (-2709 . 302378) (-2710 . 302303) (-2711 . 301970) (-2712 . 301343) (-2713 . 301315) (-2714 . 300755) (-2715 . 300644) (-2716 . 300586) (-2717 . 300487) (-2718 . 300418) (-2719 . 300317) (-2720 . 300047) (-2721 . 299975) (-2722 . 299900) (-2723 . 299812) (-2724 . 299679) (-2725 . 299507) (-2726 . 299442) (-2727 . 299332) (-2728 . 299211) (-2729 . 298751) (-2730 . 298657) (-2731 . 298591) (-2732 . 298519) (-2733 . 298355) (-2734 . 298122) (-2735 . 297906) (-2736 . 297602) (-2737 . 297383) (-2738 . 297292) (-2739 . 297154) (-2740 . 296957) (-2741 . 296839) (-2742 . 296741) (-2743 . 296651) (-2744 . 296519) (-2745 . 296233) (-2746 . 296064) (-2747 . 296005) (-2748 . 295913) (-2749 . 295861) (-2750 . 295679) (-2751 . 295592) (-2752 . 295434) (-2753 . 295152) (-2754 . 295029) (-2755 . 294977) (-2756 . 294510) (-2757 . 294428) (-2758 . 294356) (-2759 . 294272) (-2760 . 294160) (-2761 . 294108) (-2762 . 293995) (-2763 . 293816) (-2764 . 293429) (-2765 . 293340) (-2766 . 293225) (-2767 . 293119) (-2768 . 293048) (-2769 . 292958) (-2770 . 292866) (-2771 . 292785) (-2772 . 292599) (-2773 . 292233) (-2774 . 292096) (-2775 . 291951) (-2776 . 291893) (-2777 . 291755) (-2778 . 291649) (-2779 . 291486) (-2780 . 291315) (-2781 . 290776) (-2782 . 290748) (-2783 . 290665) (-2784 . 290550) (-2785 . 290461) (-2786 . 289656) (-2787 . 289520) (-2788 . 289454) (-2789 . 289192) (-2790 . 289124) (-2791 . 289072) (-2792 . 289004) (-2793 . 288952) (-2794 . 288719) (-2795 . 288580) (-2796 . 288527) (-2797 . 288472) (-2798 . 288397) (-2799 . 288369) (-2800 . 288211) (-2801 . 288159) (-2802 . 287858) (-2803 . 287787) (-2804 . 287393) (-2805 . 287259) (-2806 . 287174) (-2807 . 287145) (-2808 . 287090) (-2809 . 286993) (-2810 . 286815) (-2811 . 286511) (-2812 . 286181) (-2813 . 286122) (-2814 . 286032) (-2815 . 285880) (-2816 . 285691) (-2817 . 285507) (-2818 . 285410) (-2819 . 285359) (-2820 . 285126) (-2821 . 284866) (-2822 . 284794) (-2823 . 284665) (-2824 . 284525) (-2825 . 284075) (-2826 . 283971) (-2827 . 283885) (-2828 . 283794) (-2829 . 283692) (-2830 . 283602) (-2831 . 280663) (-2832 . 280590) (-2833 . 280404) (-2834 . 279923) (-2835 . 279805) (-2836 . 279680) (-2837 . 279609) (-2838 . 279345) (-2839 . 279207) (-2840 . 278888) (-2841 . 278804) (-2842 . 278729) (-2843 . 278542) (-2844 . 278176) (-2845 . 278005) (-2846 . 277939) (-2847 . 277734) (-2848 . 277592) (-2849 . 277535) (-2850 . 277454) (-2851 . 277119) (-2852 . 277002) (-2853 . 276404) (-2854 . 276343) (-2855 . 276253) (-2856 . 276146) (-2857 . 276118) (-2858 . 276033) (-2859 . 275915) (-2860 . 275609) (-2861 . 274558) (-2862 . 274425) (-2863 . 267883) (-2864 . 267826) (-2865 . 267745) (-2866 . 267562) (-2867 . 267455) (-2868 . 267365) (-2869 . 267269) (-2870 . 267128) (-2871 . 266965) (-2872 . 266542) (-2873 . 266434) (-2874 . 266382) (-2875 . 266304) (-2876 . 266236) (-2877 . 266138) (-2878 . 266006) (-2879 . 265954) (-2880 . 265761) (-2881 . 265730) (-2882 . 265604) (-2883 . 265452) (-2884 . 265313) (-2885 . 265138) (-2886 . 264814) (-2887 . 264276) (-2888 . 264144) (-2889 . 263972) (-2890 . 263906) (-2891 . 263831) (-2892 . 263730) (-2893 . 263619) (-2894 . 263508) (-2895 . 263399) (-2896 . 263291) (-2897 . 263187) (-2898 . 262985) (-2899 . 262611) (-2900 . 262412) (-2901 . 262335) (-2902 . 262183) (-2903 . 262045) (-2904 . 261899) (-2905 . 261865) (-2906 . 261791) (-2907 . 261725) (-2908 . 261621) (-2909 . 261426) (-2910 . 261325) (-2911 . 260367) (-2912 . 259179) (-2913 . 259039) (-2914 . 258603) (-2915 . 258501) (-2916 . 258351) (-2917 . 258167) (-2918 . 258096) (-2919 . 257997) (-2920 . 257931) (-2921 . 257785) (-2922 . 257713) (-2923 . 257606) (-2924 . 257535) (-2925 . 257416) (-2926 . 257337) (-2927 . 257237) (-2928 . 257185) (-2929 . 257006) (-2930 . 256877) (-2931 . 256690) (-2932 . 256598) (-2933 . 256444) (-2934 . 256388) (-2935 . 256103) (-2936 . 255344) (-2937 . 255211) (-2938 . 255113) (-2939 . 254810) (-2940 . 254587) (-2941 . 254459) (-2942 . 254207) (-2943 . 254135) (-2944 . 254061) (-2945 . 253976) (-2946 . 253763) (-2947 . 253669) (-2948 . 253565) (-2949 . 253475) (-2950 . 253410) (-2951 . 253223) (-2952 . 253138) (-2953 . 253055) (-2954 . 252098) (-2955 . 251867) (-2956 . 251765) (-2957 . 251604) (-2958 . 251573) (-2959 . 251425) (-2960 . 251321) (-2961 . 251223) (-2962 . 251114) (-2963 . 250661) (-2964 . 250588) (-2965 . 250222) (-2966 . 250114) (-2967 . 250031) (-2968 . 249927) (-2969 . 249812) (-2970 . 249702) (-2971 . 249513) (-2972 . 249445) (-2973 . 249327) (-2974 . 248886) (-2975 . 248761) (-2976 . 248693) (-2977 . 248620) (-2978 . 248430) (-2979 . 248215) (-2980 . 248111) (-2981 . 248055) (-2982 . 247981) (-2983 . 247926) (-2984 . 247778) (-2985 . 247750) (-2986 . 247479) (-2987 . 247397) (-2988 . 247287) (-2989 . 247216) (-2990 . 247133) (-2991 . 246979) (** . 244021) (-2993 . 243911) (-2994 . 243763) (-2995 . 243627) (-2996 . 243479) (-2997 . 243282) (-2998 . 242784) (-2999 . 242568) (-3000 . 242478) (-3001 . 241666) (-3002 . 241556) (-3003 . 241431) (-3004 . 241354) (-3005 . 241277) (-3006 . 241064) (-3007 . 240988) (-3008 . 240935) (-3009 . 240696) (-3010 . 240544) (-3011 . 240510) (-3012 . 240458) (-3013 . 240315) (-3014 . 240063) (-3015 . 239908) (-3016 . 239855) (-3017 . 239792) (-3018 . 239519) (-3019 . 239435) (-3020 . 239362) (-3021 . 238849) (-3022 . 238753) (-3023 . 238514) (-3024 . 238171) (-3025 . 237845) (-3026 . 237707) (-3027 . 237632) (-3028 . 237433) (-3029 . 236773) (-3030 . 236401) (-3031 . 236264) (-3032 . 236215) (-3033 . 236122) (-3034 . 235991) (-3035 . 235768) (-3036 . 235695) (-3037 . 235487) (-3038 . 235357) (-3039 . 234796) (-3040 . 234738) (-3041 . 234594) (-3042 . 233544) (-3043 . 233462) (-3044 . 233376) (-3045 . 233228) (-3046 . 233153) (-3047 . 233036) (-3048 . 232939) (-3049 . 232464) (-3050 . 232412) (-3051 . 232353) (-3052 . 232251) (-3053 . 232038) (-3054 . 231672) (-3055 . 231462) (-3056 . 231051) (-3057 . 230950) (-3058 . 230869) (-3059 . 230375) (-3060 . 230238) (-3061 . 230188) (-3062 . 230114) (-3063 . 230037) (-3064 . 229972) (-3065 . 229871) (-3066 . 229816) (-3067 . 229077) (-3068 . 228634) (-3069 . 228530) (-3070 . 228297) (-3071 . 228189) (-3072 . 227831) (-3073 . 227727) (-3074 . 227629) (-3075 . 227026) (-3076 . 222179) (-3077 . 222124) (-3078 . 222054) (-3079 . 222004) (-3080 . 221872) (-3081 . 221786) (-3082 . 219120) (-3083 . 219022) (-3084 . 218851) (-3085 . 218641) (-3086 . 217136) (-3087 . 217058) (-3088 . 216806) (-3089 . 216702) (-3090 . 216373) (-3091 . 216320) (-3092 . 216247) (-3093 . 216176) (-3094 . 215981) (-3095 . 215907) (-3096 . 215773) (-3097 . 215670) (-3098 . 215048) (-3099 . 214923) (-3100 . 214870) (-3101 . 214320) (-3102 . 214193) (-3103 . 214132) (-3104 . 214032) (-3105 . 213804) (-3106 . 213571) (-3107 . 212996) (-3108 . 212723) (-3109 . 212518) (-3110 . 212368) (-3111 . 212155) (-3112 . 212057) (-3113 . 211979) (-3114 . 211844) (-3115 . 211730) (-3116 . 211196) (-3117 . 211165) (-3118 . 210794) (-3119 . 210533) (-3120 . 210420) (-3121 . 210115) (-3122 . 210019) (-3123 . 209868) (-3124 . 209719) (-3125 . 209634) (-3126 . 209544) (-3127 . 209413) (-3128 . 209272) (-3129 . 208956) (-3130 . 208839) (-3131 . 208722) (-3132 . 208568) (-3133 . 208515) (-3134 . 208333) (-3135 . 208229) (-3136 . 208156) (-3137 . 207962) (-3138 . 207828) (-3139 . 207329) (-3140 . 207220) (-3141 . 207168) (-3142 . 206946) (-3143 . 206915) (-3144 . 206820) (-3145 . 206741) (-3146 . 206664) (-3147 . 206576) (-3148 . 206478) (-3149 . 206370) (-3150 . 205901) (-3151 . 205845) (-3152 . 205774) (-3153 . 205586) (-3154 . 205289) (-3155 . 205194) (-3156 . 205042) (-3157 . 204894) (-3158 . 204732) (-3159 . 204588) (-3160 . 204470) (-3161 . 204249) (-3162 . 203965) (-3163 . 203803) (-3164 . 203703) (-3165 . 203535) (-3166 . 203421) (-3167 . 203244) (-3168 . 203210) (-3169 . 203012) (-3170 . 202662) (-3171 . 202565) (-3172 . 202475) (-3173 . 202270) (-3174 . 202214) (-3175 . 202107) (-3176 . 201997) (-3177 . 201893) (-3178 . 201770) (-3179 . 201611) (-3180 . 201398) (-3181 . 201051) (-3182 . 200953) (-3183 . 200849) (-3184 . 200778) (-3185 . 200688) (-3186 . 200567) (-3187 . 199993) (-3188 . 199901) (-3189 . 199811) (-3190 . 199680) (-3191 . 199511) (-3192 . 199377) (-3193 . 199093) (-3194 . 198966) (-3195 . 198653) (-3196 . 198047) (-3197 . 197925) (-3198 . 197840) (-3199 . 197790) (-3200 . 197716) (-3201 . 197218) (-3202 . 197056) (-3203 . 196956) (-3204 . 196500) (-3205 . 196444) (-3206 . 196348) (-3207 . 196260) (-3208 . 196208) (-3209 . 196177) (-3210 . 196092) (-3211 . 196042) (-3212 . 195829) (-3213 . 195776) (-3214 . 195642) (-3215 . 195102) (-3216 . 195042) (-3217 . 194971) (-3218 . 194905) (-3219 . 194547) (-3220 . 194376) (-3221 . 194348) (-3222 . 194263) (-3223 . 194160) (-3224 . 194099) (-3225 . 193878) (-3226 . 193596) (-3227 . 193430) (-3228 . 193374) (-3229 . 193222) (-3230 . 193084) (-3231 . 192947) (-3232 . 192862) (-3233 . 192704) (-3234 . 192646) (-3235 . 192386) (-3236 . 192171) (-3237 . 192040) (-3238 . 191853) (-3239 . 191800) (-3240 . 191744) (-3241 . 191549) (-3242 . 191481) (-3243 . 191238) (-3244 . 190788) (-3245 . 190703) (-3246 . 190594) (-3247 . 190433) (-3248 . 190226) (-3249 . 190162) (-3250 . 190081) (-3251 . 189919) (-3252 . 189866) (-3253 . 189357) (-3254 . 188721) (-3255 . 188633) (-3256 . 188372) (-3257 . 188261) (-3258 . 188170) (-3259 . 188061) (-3260 . 187859) (-3261 . 187746) (-3262 . 187663) (-3263 . 187565) (-3264 . 187363) (-3265 . 187307) (-3266 . 187156) (-3267 . 187039) (-3268 . 186954) (-3269 . 186860) (-3270 . 185865) (-3271 . 185813) (-3272 . 185712) (-3273 . 185567) (-3274 . 185454) (-3275 . 185358) (-3276 . 185005) (-3277 . 184953) (-3278 . 184809) (-3279 . 184724) (-3280 . 184001) (-3281 . 183923) (-3282 . 183845) (-3283 . 183747) (-3284 . 183108) (-3285 . 183034) (-3286 . 182921) (-3287 . 182856) (-3288 . 182460) (-3289 . 180321) (-3290 . 180236) (-3291 . 179664) (-3292 . 179558) (-3293 . 179400) (-3294 . 179237) (-3295 . 179179) (-3296 . 178702) (-3297 . 178551) (-3298 . 178498) (-3299 . 178351) (-3300 . 177979) (-3301 . 177894) (-3302 . 177820) (-3303 . 177668) (-3304 . 177569) (-3305 . 177519) (-3306 . 177463) (-3307 . 177292) (-3308 . 177122) (-3309 . 177007) (-3310 . 176952) (-3311 . 176841) (-3312 . 176756) (-3313 . 176521) (-3314 . 175977) (-3315 . 175834) (-3316 . 175753) (-3317 . 175620) (-3318 . 175446) (-3319 . 175207) (-3320 . 175056) (-3321 . 174920) (-3322 . 174835) (-3323 . 174726) (-3324 . 174455) (-3325 . 174286) (-3326 . 174072) (-3327 . 173813) (-3328 . 173738) (-3329 . 173683) (-3330 . 173588) (-3331 . 173392) (-3332 . 173002) (-3333 . 172839) (-3334 . 172768) (-3335 . 172683) (-3336 . 172480) (-3337 . 172209) (-3338 . 172138) (-3339 . 172017) (-3340 . 171922) (-3341 . 171710) (-3342 . 171558) (-3343 . 171208) (-3344 . 171127) (-3345 . 171053) (-3346 . 170856) (-3347 . 170771) (-3348 . 170514) (-3349 . 170332) (-3350 . 170243) (-3351 . 169935) (-3352 . 169865) (-3353 . 169559) (-3354 . 169461) (-3355 . 169275) (-3356 . 169184) (-3357 . 169048) (-3358 . 168963) (-3359 . 168914) (-3360 . 168715) (-3361 . 168589) (-3362 . 168456) (-3363 . 168252) (-3364 . 168181) (-3365 . 168080) (-3366 . 167476) (-3367 . 166694) (-3368 . 166388) (-3369 . 166315) (-3370 . 165622) (-3371 . 165381) (-3372 . 164577) (-3373 . 164362) (-3374 . 164277) (-3375 . 164104) (-3376 . 164070) (-3377 . 163864) (-3378 . 163776) (-3379 . 163672) (-3380 . 163538) (-3381 . 163418) (-3382 . 163248) (-3383 . 163160) (-3384 . 163060) (-3385 . 162798) (-3386 . 162666) (-3387 . 162199) (-3388 . 162035) (-3389 . 161744) (-3390 . 161619) (-3391 . 161591) (-3392 . 161472) (-3393 . 161386) (-3394 . 161266) (-3395 . 161133) (-3396 . 161052) (-3397 . 160296) (-3398 . 160041) (-3399 . 159909) (-3400 . 159589) (-3401 . 159464) (-3402 . 159381) (-3403 . 159200) (-3404 . 159086) (-3405 . 159005) (-3406 . 158882) (-3407 . 158761) (-3408 . 157809) (-3409 . 157459) (-3410 . 157365) (-3411 . 157206) (-3412 . 157092) (-3413 . 156733) (-3414 . 156607) (-3415 . 156530) (-3416 . 156383) (-3417 . 156055) (-3418 . 155910) (-3419 . 155758) (-3420 . 155532) (-3421 . 155406) (-3422 . 155244) (-3423 . 155125) (-3424 . 155044) (-3425 . 154960) (-3426 . 154846) (-3427 . 154776) (-3428 . 154705) (-3429 . 154581) (-3430 . 154489) (-3431 . 154371) (-3432 . 154284) (-3433 . 154200) (-3434 . 154105) (-3435 . 154052) (-3436 . 153890) (-3437 . 153692) (-3438 . 152687) (-3439 . 152569) (-3440 . 152376) (-3441 . 152241) (-3442 . 152150) (-3443 . 152030) (-3444 . 151816) (-3445 . 151761) (-3446 . 151393) (-3447 . 151256) (-3448 . 151207) (-3449 . 151112) (-3450 . 151060) (-3451 . 150597) (-3452 . 150519) (-3453 . 150415) (-3454 . 150332) (-3455 . 150247) (-3456 . 150046) (-3457 . 149922) (-3458 . 149755) (-3459 . 149680) (-3460 . 149590) (-3461 . 149399) (-3462 . 149371) (-3463 . 149273) (-3464 . 148895) (-3465 . 148804) (-3466 . 148695) (-3467 . 147562) (-3468 . 147385) (-3469 . 147300) (-3470 . 147230) (-3471 . 147171) (-3472 . 146206) (-3473 . 146017) (-3474 . 145915) (-3475 . 145859) (-3476 . 145704) (-3477 . 145606) (-3478 . 145537) (-3479 . 145446) (-3480 . 136585) (-3481 . 136444) (-3482 . 136340) (-3483 . 136135) (-3484 . 136064) (-3485 . 135964) (-3486 . 135867) (-3487 . 135833) (-3488 . 135778) (-3489 . 135621) (-3490 . 134410) (-3491 . 134325) (-3492 . 134125) (-3493 . 133059) (-3494 . 132194) (-3495 . 131947) (-3496 . 131874) (-3497 . 131774) (-3498 . 131624) (-3499 . 131467) (-3500 . 131418) (-3501 . 131362) (-3502 . 131288) (-3503 . 130926) (-3504 . 130769) (-3505 . 130740) (-3506 . 130649) (-3507 . 130568) (-3508 . 130500) (-3509 . 130448) (-3510 . 130397) (-3511 . 130226) (-3512 . 130021) (-3513 . 129836) (-3514 . 129692) (-3515 . 129538) (-3516 . 129424) (-3517 . 128856) (-3518 . 128433) (-3519 . 128360) (-3520 . 128304) (-3521 . 128171) (-3522 . 128069) (-3523 . 127712) (-3524 . 127643) (-3525 . 127518) (-3526 . 127400) (-3527 . 127243) (-3528 . 127085) (-3529 . 126966) (-3530 . 126876) (-3531 . 126809) (-3532 . 126616) (-3533 . 126531) (-3534 . 126448) (-3535 . 126395) (-3536 . 126101) (-3537 . 125776) (-3538 . 125617) (-3539 . 125565) (-3540 . 125426) (-3541 . 125372) (-3542 . 125306) (-3543 . 125250) (-3544 . 125197) (-3545 . 125063) (-3546 . 124886) (-3547 . 124739) (-3548 . 124445) (-3549 . 124334) (-3550 . 124241) (-3551 . 124079) (-3552 . 123973) (-3553 . 123871) (-3554 . 123707) (-3555 . 123633) (-3556 . 123531) (-3557 . 123458) (-3558 . 123219) (-3559 . 123032) (-3560 . 122959) (-3561 . 122878) (-3562 . 122800) (-3563 . 122644) (-3564 . 122427) (-3565 . 122194) (-3566 . 122065) (-3567 . 121977) (-3568 . 121639) (-3569 . 121466) (-3570 . 121411) (-3571 . 121345) (-3572 . 121225) (-3573 . 121143) (-3574 . 120931) (-3575 . 120775) (-3576 . 120633) (-3577 . 120306) (-3578 . 120210) (-3579 . 120139) (-3580 . 119946) (-3581 . 119848) (-3582 . 115164) (-3583 . 115136) (-3584 . 115047) (-3585 . 114929) (-3586 . 114362) (-3587 . 114158) (-3588 . 114077) (-3589 . 113980) (-3590 . 113907) (-3591 . 113580) (-3592 . 113409) (-3593 . 113255) (-3594 . 113149) (-3595 . 113049) (-3596 . 112836) (-3597 . 112769) (-3598 . 112399) (-3599 . 112321) (-3600 . 112239) (-3601 . 112202) (-3602 . 112053) (-3603 . 111870) (-3604 . 111732) (-3605 . 111680) (-3606 . 111539) (-3607 . 111388) (-3608 . 111080) (-3609 . 111006) (-3610 . 110866) (-3611 . 110793) (-3612 . 110664) (-3613 . 110397) (-3614 . 110366) (-3615 . 110267) (-3616 . 110188) (-3617 . 110114) (-3618 . 110035) (-3619 . 109893) (-3620 . 109560) (-3621 . 109371) (-3622 . 108827) (-3623 . 108706) (-3624 . 108635) (-3625 . 108456) (-3626 . 108345) (-3627 . 108241) (-3628 . 108050) (-3629 . 107968) (-3630 . 107719) (-3631 . 107175) (-3632 . 107084) (-3633 . 106761) (-3634 . 106636) (-3635 . 106518) (-3636 . 106418) (-3637 . 106256) (-3638 . 106222) (-3639 . 106156) (-3640 . 106041) (-3641 . 106007) (-3642 . 105463) (-3643 . 105389) (-3644 . 105314) (-3645 . 105189) (-3646 . 105096) (-3647 . 104915) (-3648 . 104804) (-3649 . 104656) (-3650 . 104112) (-3651 . 104035) (-3652 . 103833) (-3653 . 103703) (-3654 . 103589) (-3655 . 103324) (-3656 . 103262) (-3657 . 103110) (-3658 . 102868) (-3659 . 102303) (-3660 . 101769) (-3661 . 101225) (-3662 . 101073) (-3663 . 100977) (-3664 . 100662) (-3665 . 100515) (-3666 . 100441) (-3667 . 100071) (-3668 . 99970) (-3669 . 99904) (-3670 . 99850) (-3671 . 99822) (-3672 . 99745) (-3673 . 99686) (-3674 . 99553) (-3675 . 99181) (-3676 . 98926) (-3677 . 98528) (-3678 . 98461) (-3679 . 98286) (-3680 . 98135) (-3681 . 97715) (-3682 . 97661) (-3683 . 97574) (-3684 . 97320) (-3685 . 97167) (-3686 . 97019) (-3687 . 96928) (-3688 . 96819) (-3689 . 96476) (-3690 . 96110) (-3691 . 95988) (-3692 . 95910) (-3693 . 90720) (-3694 . 90668) (-3695 . 90566) (-3696 . 90485) (-3697 . 90172) (-3698 . 89778) (-3699 . 89574) (-3700 . 89499) (-3701 . 89191) (-3702 . 88997) (-3703 . 88625) (-3704 . 88329) (-3705 . 88258) (-3706 . 87881) (-3707 . 87511) (-3708 . 87417) (-3709 . 87298) (-3710 . 87240) (-3711 . 86524) (-3712 . 86358) (-3713 . 86280) (-3714 . 86228) (-3715 . 86126) (-3716 . 86043) (-3717 . 85937) (-3718 . 85861) (-3719 . 85363) (-3720 . 84924) (-3721 . 84652) (-3722 . 84534) (-3723 . 84481) (-3724 . 84296) (-3725 . 84200) (-3726 . 84138) (-3727 . 84012) (-3728 . 83825) (-3729 . 83707) (-3730 . 83598) (-3731 . 83464) (-3732 . 83129) (-3733 . 83029) (-3734 . 82831) (-3735 . 82632) (-3736 . 82561) (-3737 . 82487) (-3738 . 82171) (-3739 . 82093) (-3740 . 82004) (-3741 . 81929) (-3742 . 81858) (-3743 . 81785) (-3744 . 81743) (-3745 . 81665) (-3746 . 81582) (-3747 . 81428) (-3748 . 81357) (-3749 . 81176) (-3750 . 81105) (-3751 . 81010) (-3752 . 80914) (-3753 . 80859) (-3754 . 80780) (-3755 . 80602) (-3756 . 80439) (-3757 . 80231) (-3758 . 80113) (-3759 . 80006) (-3760 . 79871) (-3761 . 79719) (-3762 . 79561) (-3763 . 79406) (-3764 . 79341) (-3765 . 79286) (-3766 . 79147) (-3767 . 79092) (-3768 . 78983) (-3769 . 78930) (-3770 . 78750) (-3771 . 78601) (-3772 . 76922) (-3773 . 76822) (-3774 . 76620) (-3775 . 76342) (-3776 . 76227) (-3777 . 76127) (-3778 . 76061) (-12 . 75906) (-3780 . 75854) (-3781 . 74755) (-3782 . 74640) (-3783 . 74436) (-3784 . 74233) (-3785 . 74148) (-3786 . 74081) (-3787 . 73898) (-3788 . 73870) (-3789 . 73800) (-3790 . 73629) (-3791 . 73322) (-3792 . 73168) (-3793 . 72997) (-3794 . 72898) (-3795 . 71714) (-3796 . 71612) (-3797 . 71556) (-3798 . 71441) (-3799 . 70918) (-3800 . 70847) (-3801 . 70813) (-3802 . 70739) (-3803 . 70609) (-3804 . 69580) (-3805 . 69483) (-3806 . 69434) (-3807 . 69330) (-3808 . 69296) (-3809 . 68474) (-3810 . 68391) (-3811 . 68221) (-3812 . 68145) (-3813 . 67737) (-3814 . 67454) (-3815 . 67309) (-3816 . 65463) (-3817 . 65329) (-3818 . 65189) (-3819 . 64936) (-3820 . 64818) (-3821 . 64621) (-3822 . 64301) (-3823 . 64246) (-3824 . 64184) (-3825 . 64084) (-3826 . 63995) (-3827 . 63912) (-3828 . 62805) (-3829 . 62737) (-3830 . 62630) (-3831 . 62503) (-3832 . 62351) (-3833 . 62278) (-3834 . 62154) (-3835 . 61869) (-3836 . 61796) (-3837 . 61762) (-3838 . 61709) (-3839 . 61222) (-3840 . 61140) (-3841 . 60988) (-3842 . 60836) (-3843 . 60676) (-3844 . 60574) (-3845 . 60481) (-3846 . 60341) (-3847 . 60232) (-3848 . 60128) (-3849 . 59842) (-3850 . 59761) (-3851 . 59687) (-3852 . 59659) (-3853 . 59409) (-3854 . 59329) (-3855 . 59219) (-3856 . 59112) (-3857 . 58995) (-3858 . 58830) (-3859 . 58738) (-3860 . 58508) (-3861 . 58427) (-3862 . 58291) (-3863 . 58220) (-3864 . 58092) (-3865 . 58038) (-3866 . 57890) (-3867 . 57821) (-3868 . 57768) (-3869 . 57619) (-3870 . 57318) (-3871 . 57218) (-3872 . 57019) (-3873 . 56886) (-3874 . 56629) (-3875 . 56392) (-3876 . 56321) (-3877 . 56268) (-3878 . 56125) (-3879 . 56091) (-3880 . 55966) (-3881 . 55519) (-3882 . 55102) (-3883 . 54983) (-3884 . 54848) (-3885 . 54731) (-3886 . 54599) (-3887 . 54337) (-3888 . 54220) (-3889 . 54144) (-3890 . 54089) (-3891 . 53940) (-3892 . 53870) (-3893 . 53768) (-3894 . 53685) (-3895 . 53607) (-3896 . 53576) (-3897 . 53499) (* . 49168) (-3899 . 48751) (-3900 . 48670) (-3901 . 48581) (-3902 . 48286) (-3903 . 48213) (-3904 . 48162) (-3905 . 48098) (-3906 . 48008) (-3907 . 47904) (-3908 . 47829) (-3909 . 47713) (-3910 . 47510) (-3911 . 47437) (-3912 . 47242) (-3913 . 46708) (-3914 . 46649) (-3915 . 46566) (-3916 . 46325) (-3917 . 46022) (-3918 . 45887) (-3919 . 45724) (-3920 . 45641) (-3921 . 45610) (-3922 . 45445) (-3923 . 45236) (-3924 . 45034) (-3925 . 44710) (-3926 . 44588) (-3927 . 44392) (-3928 . 44232) (-3929 . 43910) (-3930 . 43836) (-3931 . 43769) (-3932 . 43589) (-3933 . 43511) (-3934 . 43064) (-3935 . 42889) (-3936 . 42174) (-3937 . 42105) (-3938 . 41685) (-3939 . 41535) (-3940 . 41206) (-3941 . 40776) (-3942 . 40161) (-3943 . 39972) (-3944 . 39899) (-3945 . 39798) (-3946 . 39553) (-3947 . 39351) (-3948 . 38734) (-3949 . 38519) (-3950 . 38381) (-3951 . 38309) (-3952 . 38074) (-3953 . 37956) (-3954 . 37648) (-3955 . 37544) (-3956 . 37431) (-3957 . 37378) (-3958 . 37294) (-3959 . 37097) (-3960 . 37024) (-3961 . 36886) (-3962 . 36207) (-3963 . 36154) (-3964 . 35593) (-3965 . 35235) (-3966 . 35136) (-3967 . 35029) (-3968 . 34936) (-3969 . 34884) (-3970 . 34810) (-3971 . 34711) (-3972 . 34601) (-3973 . 34092) (-3974 . 33978) (-3975 . 33819) (-3976 . 33764) (-3977 . 33420) (-3978 . 33350) (-3979 . 33176) (-3980 . 33028) (-3981 . 32940) (-3982 . 32704) (-3983 . 32655) (-3984 . 32506) (-3985 . 32433) (-3986 . 32354) (-3987 . 32225) (-3988 . 31894) (-3989 . 31785) (-3990 . 31702) (-3991 . 31634) (-3992 . 31335) (-3993 . 30417) (-3994 . 30226) (-3995 . 30044) (-3996 . 29946) (-3997 . 29857) (-3998 . 29804) (-3999 . 29726) (-4000 . 29640) (-4001 . 29579) (-4002 . 29475) (-4003 . 29447) (-4004 . 29288) (-4005 . 29218) (-4006 . 29186) (-4007 . 27177) (-4008 . 27068) (-4009 . 26813) (-4010 . 26704) (-4011 . 26583) (-4012 . 26342) (-4013 . 26193) (-4014 . 26043) (-4015 . 25927) (-4016 . 25839) (-4017 . 25720) (-4018 . 25438) (-4019 . 25321) (-4020 . 25001) (-4021 . 24942) (-4022 . 24790) (-4023 . 24738) (-4024 . 24584) (-4025 . 24525) (-4026 . 24432) (-4027 . 24224) (-4028 . 24130) (-4029 . 24054) (-4030 . 23852) (-4031 . 23765) (-4032 . 23631) (-4033 . 23536) (-4034 . 23437) (-4035 . 23362) (-4036 . 23174) (-4037 . 22926) (-4038 . 22687) (-4039 . 22588) (-4040 . 22226) (-4041 . 22129) (-4042 . 21457) (-4043 . 21332) (-4044 . 21199) (-4045 . 21047) (-4046 . 20900) (-4047 . 20529) (-4048 . 20393) (-4049 . 20337) (-4050 . 20032) (-4051 . 19958) (-4052 . 19822) (-4053 . 19492) (-4054 . 19412) (-4055 . 19274) (-4056 . 19208) (-4057 . 19153) (-4058 . 19093) (-4059 . 18915) (-4060 . 18038) (-4061 . 18001) (-4062 . 17901) (-4063 . 17775) (-4064 . 17619) (-4065 . 17192) (-4066 . 17137) (-4067 . 17071) (-4068 . 16974) (-4069 . 16811) (-4070 . 16712) (-4071 . 16655) (-4072 . 16574) (-4073 . 16522) (-4074 . 16494) (-4075 . 16442) (-4076 . 16252) (-4077 . 16200) (-4078 . 15528) (-4079 . 15373) (-4080 . 15211) (-4081 . 15155) (-4082 . 15121) (-4083 . 14882) (-4084 . 14825) (-4085 . 14670) (-4086 . 14577) (-4087 . 14392) (-4088 . 14312) (-4089 . 14177) (-4090 . 14022) (-4091 . 13940) (-4092 . 13764) (-4093 . 13690) (-4094 . 13659) (-4095 . 13504) (-4096 . 13384) (-4097 . 13306) (-4098 . 13216) (-4099 . 13114) (-4100 . 12957) (-4101 . 12755) (-4102 . 12638) (-4103 . 12398) (-4104 . 12327) (-4105 . 12188) (-4106 . 12033) (-4107 . 11971) (-4108 . 11699) (-4109 . 11611) (-4110 . 11553) (-4111 . 11491) (-4112 . 11437) (-4113 . 11269) (-4114 . 11216) (-4115 . 11104) (-4116 . 10954) (-4117 . 10799) (-4118 . 10771) (-4119 . 10696) (-4120 . 10601) (-4121 . 9764) (-4122 . 9531) (-4123 . 8825) (-4124 . 8676) (-4125 . 8570) (-4126 . 8172) (-4127 . 7977) (-4128 . 7441) (-4129 . 7189) (-4130 . 6967) (-4131 . 6858) (-4132 . 6404) (-4133 . 6171) (-4134 . 6016) (-4135 . 5893) (-4136 . 5810) (-4137 . 5527) (-4138 . 5421) (-4139 . 5240) (-4140 . 4942) (-4141 . 4795) (-4142 . 4569) (-4143 . 4512) (-4144 . 4387) (-4145 . 3998) (-4146 . 3873) (-4147 . 3739) (-4148 . 3662) (-4149 . 3589) (-4150 . 3492) (-4151 . 3442) (-4152 . 3086) (-4153 . 2818) (-4154 . 2703) (-4155 . 2495) (-4156 . 2393) (-4157 . 2340) (-4158 . 1705) (-4159 . 1104) (-4160 . 1022) (-4161 . 969) (-4162 . 867) (-4163 . 30)) \ No newline at end of file